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We formulate positivity bounds for scattering amplitudes including exchange of massless particles. We
generalize the standard construction through dispersion relations to include the presence of a branch cut
along the real axis in the complex plane for the Maldestam variable s. In general, validity of these bounds
requires the cancellation of divergences in the forward limit of the amplitude, proportional to t−1 and logðtÞ.
We show that this is possible in the case of gravitons if one assumes a Regge behavior of the amplitude at
high energies below the Planck scale, as previously suggested in the literature, and that the concrete UV
behavior of the amplitude is uniquely determined by the structure of IR divergences. We thus extend
previous results by including a subleading logarithmic term, which we show to be universal. The bounds
that we present here have the potential of constraining very general models of modified gravity and
effective field theories of matter coupled to gravitation.

DOI: 10.1103/PhysRevD.104.085022

I. INTRODUCTION

Positivity bounds [1–5] have become standard tools in
assessing the validity of low-energy effective field theories
(EFT). By invoking the plausible existence of an ultraviolet
(UV) completion satisfying reasonable properties such as
Lorentz invariance, unitarity, and locality, positivity bounds
exclude large regions of the parameter space of a given EFT
by demanding the positivity of a certain combination of
couplings.
In particular, these bounds are obtained by combining

the knowledge of the analytic structure of 2-to-2 scattering
amplitudes with the optical theorem

ImAðs; 0Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
σðsÞ; ð1Þ

which ensures positivity of the imaginary part of the
scattering amplitude Aðs; tÞ in the forward limit t → 0.

Applications of positivity bounds include the proof of
the a-theorem [6,7], the study of chiral perturbation theory
[8], effective Higgs models [9], quantum gravity [10,11],
massive gravity and Galileons [12–16], higher spins [17],
cosmology [18–21], string theory [22,23], and many more.
Recently, a generalization of positivity bounds, named
arcs, was proposed [24].
However, all these examples omit an important case of

physical relevance, the exchange of massless particles. In
that case, the scattering amplitude contains pathologies
that impede one from taking the forward limit—a pole t−1

and a logarithmic divergence logðtÞ, due to exchange and
production of massless particles. This is particularly
relevant in the presence of gravity, since gravitons couple
to all forms of matter. Although for energies below the
Planck scale gravity could be ignored, its character as a
long range force produces contributions to the scattering
amplitude down to the deep infra-red (IR). Formally, the
pathologies which come with the exchange of gravitons
are never absent and cast a shadow on the validity of
positivity bounds. Even if one trusts the decoupling limit
and the validity of gravity-less positivity bounds, it would
be desirable to find a way to extend them to include
graviton exchange. There have been previous attempts to
solve this issue by compactifying space-time down to
three dimensions, where gravitons decompose in massive
fields [25,26], but a general formalism applicable in more
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varied situations, without requiring compactification, is
still lacking.
Recently, it was suggested that forward divergences in

graviton exchange can be cancelled by assuming a Regge
form for the high-energy limit of the scattering amplitude
[27], which is expected to hold from string theory [28,29].
However, in [27] only the term t−1 is cancelled and nothing
is said about the logarithm. This is important, though,
because due to crossing symmetry, equivalent logðsÞ and
logðuÞ terms are expected to coexist in the scattering
amplitude. These terms split the complex plane in s in
two, with a branch cut along the real line for t → 0. This
obstructs the formulation of usual positivity bounds, which
require one to deform an integration contour crossing the
real axis.
In this paper we construct new positivity bounds for

theories with exchange of massless particles, provided that
we cancel the divergences in the forward limit. We show
that this is indeed possible when the massless states
correspond to gravitons. Generalizing the results of [27],
we prove that both the pole t−1 and the logðtÞ can be
eliminated, with the remaining pieces in the amplitude
satisfying a positivity bound reminiscent of the standard
case. Finally, we discuss the robustness of our result by
showing agreement with previous works in the literature,
formally deriving the bounds recently proposed by [25,26].

II. DISPERSION RELATIONS

From now on we will consider ab → ab scattering
amplitudes which include a massless particle coupled to
the bosonic external states a and b. The presence of this
massless state will produce poles in s, t, and u from tree-
level exchange, as well as logarithmic cuts logðsÞ, logðtÞ,
and logðuÞ indicating particle production, found at loop
level in perturbation theory. Here s, t, and u are the
Maldestam variables, with s the energy in the center-
of-mass frame squared. u can always be eliminated by
using sþ tþ u ¼ 4m2, where we have assumed that both
states a and b have the same mass m. From Cauchy’s
integral theorem, one can write a family of dispersion
relations for the amplitude

Aðs; tÞ ¼ ðs − μÞn
2πi

I
γs

dz
Aðz; tÞ

ðz − sÞðz − μÞn ; ð2Þ

with n ≥ 1. The integration contour γs must be taken as a
small circle surrounding only the point z ¼ s, while the
point z ¼ μ is arbitrary provided that it lays outside the
contour. We take μ real hereinafter.
A key point in deriving positivity bounds lays on the

behavior of the scattering amplitude at high energies. For
massive particles, it can be proven that it satisfies the
Froissart-Martin bound [30], which implies

lim
jsj→∞

����Aðs; tÞ
s2

���� ¼ 0; t < 4m2: ð3Þ

Alas, the formal proof of this bound cannot be applied to
the exchange of massless particles. However, we will
assume that this is still true for the cases considered here.
We will justify this assumption later.
Now we take the forward limit of (2). In the case of

massless particles in the intermediate channel, this is
divergent and cannot be taken exactly. We thus instead,
in more generality,1 expand the amplitude around the limit
t → 0−

Aðs; 0−Þ≡Aðs; tÞjt→0−

¼ fðsÞ
t

þ gðsÞ logðtÞ þA∘ðsÞ þOðtÞ; ð4Þ

where the limit is taken from the negative side of the
real line.
Here fðsÞ and gðsÞ are holomorphic functions. When the

scattering amplitude is computed in perturbation theory,
fðsÞ contains the residue on the pole of the massless
propagator, while gðsÞ is proportional to the β function of
the ab → ab coupling. The analytic structure ofAðs; 0−Þ is
therefore controlled by A∘ðsÞ. This is analytic in the whole
complex plane except for a branch cut running over the
whole real line, due to production of massless particles and
crossing symmetry [30].
The branch cut obstructs the standard derivation of

positivity bounds, which uses a contour integral crossing
the real line [2]. Here instead we note that for any real value
of s, we can perform two different analytic continuations of
the amplitude, by adding a small imaginary part s� iϵ
which moves the point to the upper (down) part of the
complex plane. Afterwards we can deform the integration
contour to run above (below) the real axis plus a semi-
circumference at infinity, as shown in Fig. 1. This allows
one to define two different realisations of (2)

Aðsþ iϵ;0−Þ¼ðs−μÞn
2πi

Z
∞

−∞
dz

Aðzþ iϵ;0−Þ
ðz−sÞðz−μÞn ; ð5Þ

Aðs− iϵ;0−Þ¼ðs−μÞn
2πi

Z
−∞

∞
dz

Aðz− iϵ;0−Þ
ðz−sÞðz−μÞn ; ð6Þ

where the circles at infinity vanish due to (3) and ϵ must be
understood as infinitesimal. Here we keep it finite only on
nonholomorphic tems. Subtracting both representations we
get

1This form encodes all the cases of relevance to our knowl-
edge. For exchange of scalars and vectors, both fðsÞ and gðsÞ are
constant, while for gravitons, they behave as ∼s2.
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Aðsþ iϵ; 0−Þ −Aðs − iϵ; 0−Þ

¼ ðs − μÞn
2πi

Z
∞

−∞
dz

Aðzþ iϵ; 0−Þ þAðz − iϵ; 0−Þ
ðz − sÞðz − μÞn : ð7Þ

In the physical region s ∈ R and we have
A�ðs − iϵ; tÞ ¼ Aðsþ iϵ; tÞ. Then

ImAðs� iϵ; 0−Þ ¼∓ ðs − μÞn
2π

Z
∞

−∞
dz

ReAðz� iϵ; 0−Þ
ðz − sÞðz − μÞn :

ð8Þ

We now take Aðsþ iϵ; 0−Þ and use this result to rewrite
it as

Aðsþ iϵ; 0−Þ − iImAðsþ iϵ; 0−Þ

¼ ReAðsþ iϵ; 0−Þ ¼ ðs − μÞn
2π

Z
∞

−∞
dz

ImAðzþ iϵ; 0−Þ
ðz − sÞðz − μÞn :

ð9Þ

This expression is reminiscent of the standard derivation
of positivity bounds. However, in our case we have
cancelled out the imaginary part of the amplitude, getting
rid of the discontinuity explicitly.
The integral in (9) runs over nonphysical values of z.

This can be solved by splitting it in three integrals over
f−∞; 0g, f0; 4m2g and f4m2;∞g. Performing a change of
variables z → −zþ 4m2 in the first one and using crossing
symmetry, (9) can be rewritten as

Bðs; 0−Þ ¼ ðs − μÞn
2π

Z
∞

4m2

dz

�
ImAðzþ iϵ; 0−Þ
ðz − sÞðz − μÞn þ ð−1ÞnImA×ðzþ iϵ; 0−Þ

ðz − 4m2 þ sÞðz − 4m2 þ μÞn
�
; ð10Þ

where we have defined

Bðs; 0−Þ ¼ ReAðsþ iϵ; 0−Þ

−
ðs − μÞn

2π

Z
4m2

0

dz
ImAðzþ iϵ; 0−Þ
ðz − sÞðz − μÞn : ð11Þ

Here A×ðs; 0−Þ ¼ Að−sþ 4m2; 0−Þ þOðtÞ is the crossed
amplitude in the u channel.
Now, by using the optical theorem (1) in the right-hand

side of (10), we would be tempted to follow the standard
derivation of positivity bounds, and conclude that

1

n!
dn

dsn
Bðs;0−Þj

s¼0

¼
Z

∞

4m2

dz
2π

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

z

s �
σðzÞ
znþ1

þ ð−1Þnσ×ðzÞ
ðz− 4m2Þnþ1

�
> 0; ð12Þ

for even n, after taking derivatives in both sides of (10).

Nonetheless, this is not possible in the case at hand.
Barring aside the issue of the forward limit divergences—
which we will discuss later—we must note that the left-
hand side of (10) can be IR divergent in perturbation theory.
For finite masses, the integral piece in (11) takes care of
these IR divergences, replacing them by m−2 and logðm2Þ.
However, this will not work in the massless case. To
circumvent this issue, we take (10) and define instead the
following function:

ΣðjÞ ¼ 1

2πi

I
γδ

ds
s3Bðs; 0−Þ

ðs2 þ δ2Þ2jþ1
ð13Þ

where now n ¼ 2j and δ has dimensions of energy squared.
Using now (10) we find

ΣðjÞ ¼
Z

∞

4m2

dzFðjÞðzÞ; ð14Þ

FIG. 1. Integration contours in the complex plane for s. The
zigzag line represents the branch cut. For points s� iϵ,
the integration contour γs in the corresponding half of the
complex plane is shown in red. The equivalent contours used in
(5) are dotted in blue. The radius of the large semicircumfer-
ences γ�∞ is jsj → ∞.
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were we have performed the integral in s explicitly, getting

FðjÞðzÞ ¼ z3ImAðzþ iϵ; 0−Þ
2πðz2 þ δ2Þ2jþ1

þ ðz − 4m2Þ3ImA×ðzþ iϵ; 0−Þ
2πððz − 4m2Þ2 þ δ2Þ2jþ1

: ð15Þ

Notice that all dependence on μ has cancelled after
integration, with δ taking its place in the denominators. The
contour γδ is the sum of two small circles enclosing the
points s ¼ �iδ, with δ > 0. It acts as a sort of an IR
regulator, but it is not constrained to be small. Note also that
the right-hand side of (14) is positive definite for all j, since
FjðzÞ > 0within the integration regime from application of
(1). In that case, we can conclude that

ΣðjÞ ¼ 1

2πi

I
γδ

ds
s3Bðs; 0−Þ

ðs2 þ δ2Þ2jþ1
> 0; ð16Þ

regardless of the shape of the scattering amplitude, which
might be even unknown above a certain energy scale Λ.
Indeed, let us assume that Aðs; tÞ is known only within

an EFT with validity up to2 E ∼ Λ ≫ m, δ. In that case,
we can split the integral on the right-hand side and
rewrite (13) as

Σ̂ðjÞ ¼
Z

∞

Λ2

dzFðjÞðzÞ; ð17Þ

where

Σ̂ðjÞ ¼ ΣðjÞ −
Z

Λ2

4m2

dzFðjÞðzÞ: ð18Þ

Again, the right-hand side of (17) is positive and we
conclude

Σ̂ðjÞ > 0: ð19Þ

Expressions (16) and (19) are the massless version of
positivity and beyond positivity bounds [3]. They state
that the contour integral in (13)—or the quantity Σ̄ðjÞ in
(17)—which can be computed in an EFT provided that it
is valid below Λ, has to be positive. They differ from
standard positivity bounds in two manners, which encode
the particularities of the massless exchange. First, we find
that the imaginary part of the amplitude in (9) cancels out
from the left-hand side, leaving only its real part. Second,
the definition of Bðs; 0−Þ also includes an integral in the
region 0 ≤ s ≤ 4m2, which regulates IR divergences for

massive external fields, ensuring finiteness of the physi-
cal result. Notice that when only massive modes are
exchanged, our bounds reduce trivially to the standard
bounds in the absence of massless poles.
From now on, all expressions can be equivalently used

with either ΣðjÞ or Σ̂ðjÞ, the only difference being the lower
limit of the integral in the right-hand side of the
dispersion relation. However, its explicit positivity does
not change. Provided that the amplitudeAðs; 0−Þ is finite,
these bounds are applicable and can lead to interesting
constraints on the structure of EFT Lagrangians through
the presence of the Wilson coefficients in ReAðs; 0−Þ.

III. REGULARITY IN THE FORWARD LIMIT

Although the bounds (16) and (19) are completely
general and valid in the case of massless particles in the
spectrum of the theory, they are meaningless in the
presence of divergences in the forward limit, as is the case
when gravitons are exchanged in the t channel.
In that case, the left-hand side of the bound is dominated

by the tree-level contribution to the exchange, which is of
the form

Aðs; tÞ ∝ −R ×
s2

t
; ð20Þ

where R is the residue in the pole of the graviton
propagator.
Since the limit t → 0− is continuous—although diver-

gent—in principle we can always use (16) to fix the sign of
the divergence and conclude that

R > 0; ð21Þ

which tells us that in order to agree with unitarity require-
ments, the graviton must not be a ghost. Although it is
interesting to see this trivial condition for unitarity arising
in this way, the information that it provides is scarce. If we
want to extract more information from the positivity
bounds (16) and (19) in the presence of a graviton in
the spectrum, then we need to find a way to regularize the
forward limit divergences.
In [27] it is shown3 that this is possible for the pole t−1 if

one takes a seemingly strong assumption about the scatter-
ing amplitude—that it takes the Regge form [31]

ImAðs; tÞ ¼ rðtÞðα0sÞ2þlðtÞ
�
1þ ζ

logðα0sÞ þO
�

1

α0s

��
;

ð22Þ
which we extend here with a subleading correction, above a
certain energy scale E ∼M�. Here rðtÞ encodes information2Note that Λ might not be strictly the cutoff of the theory, but

the energy at which the EFT is not a good approximation to the
UV complete theory anymore. This might happen a few orders of
magnitude below the cutoff.

3Note however that the bounds derived in [27] do not take into
account the presence of the branch cut at all.
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about the polarization of external states, while lðtÞ is
constrained to be negative lðtÞ < 0 and satisfies
lð0Þ ¼ 0, in order for the amplitude to unitarize at high
energies. The scale α0 is controlled by the value of the
Regge scale M� as α0 ∼Oð1ÞM−2� . Note that in [27]
the logarithmic correction that we include here is not
considered.
By assuming this behavior of the amplitude at large s, it

can be easily shown that the right-hand side of (17) will also
present divergences when t → 0, which are thus controlled
only by the large s limit of the integral. These can then be
cancelled against those in the left-hand side, with the
remaining finite piece satisfying its own version of positivity.
Retaining only the leading term in the amplitude allows one
to cancel the pole t−1 but leaves the logarithmic divergence
untouched. As we will see in a moment, the subleading
correction that we have included accounts for the latter.
Of course, at this point one could question the validity of

the high-energy behavior (22). So far this is an assumption of
our work, but one which is well justified in the case of
gravitons for two different reasons. First, let us give a
heuristic argument. If we believe that string theory provides a
UV completion of gravitational interactions, then it can be
shown that graviton mediated scattering amplitudes satisfy
(22) at Oð1Þ, where α0 is the string scale [28,29,32]. This
happens due to the contribution of the tower of massive
modes in the spectrum that are excited above these energies.
Logarithmic corrections of similar form to the ones in (22)
can also be found in certain cases [28] and we expect them to
arise from string loops.4 Second, if instead we assume an

arbitrary subleading correction gðsÞ, it can be checked that
the only choice that allows for cancelling the logarithmic
divergence is precisely gðsÞ ¼ ζ= logðα0sÞ, as it is shown in
Appendix. Therefore, from now on we assume (22). Note
that by assuming (22), the bound (3) is automatically
satisfied.
We can then split the integral on the right-hand side of

(17) in two

Z
∞

Λ2

dzFðjÞðzÞ ¼
Z

M2�

Λ2

dzFðjÞðzÞ þ
Z

∞

M2�
dzFðjÞðzÞ: ð23Þ

Calling Δ ¼ R∞
M2�

dzFðjÞðzÞ and using the Regge form of
the scattering amplitude (22), we get

Δ ¼ rðtÞα02þlðtÞ

π

Z
∞

M2�
dzz3þlðtÞ−4j

�
1þ ζ

logðα0zÞ
�
; ð24Þ

which can be computed explicitly in terms of the analytic
continuation of the Gamma function.
The forward limit can be taken in this expression after

integration. Note that since lð0Þ ¼ 0, t → 0−, and lðtÞ < 0,
we have

lðtÞ ¼ l0ð0Þtþ l00ð0Þ
2

t2 þOðt3Þ; ð25Þ

with l0ð0Þ > 0. We thus get

lim
t→0−

Δ ¼ rð0Þα02
π

8<
:

ððM2�Þ4−4j
4j−4 þ ζα04j−4Γ½0; ð4j − 4Þ logðM2�α0Þ�Þ; j > 1

ð 1
l0ð0Þt −

l00ð0Þ
2l0ð0Þ2 þ logðM2�α0ÞÞ − ζðγ þ logðtÞ þ log ½−l0ð0Þ logðM2�α0Þ�Þ; j ¼ 1

; ð26Þ

up to terms which vanish when t ¼ 0. Here γ is the Euler-
Mascheroni constant, Γðs; xÞ ¼ R∞

x dtts−1e−t is the incom-
plete Gamma function, and we have taken z ≫ m2; δ. We
have also assumed that our external states satisfy
ImA×ðs; tÞ ¼ ImAðs; tÞ from crossing symmetry, which
limits the application of our result to bosonic
states. Fermions will introduce extra signs from crossing
symmetry.
We find that indeed the leading term in (22) produces a

pole t−1, while the subleading correction gives a logðtÞ.
However, note that they only exist when j ¼ 1, while for
j > 1 the result is completely regular. This is exactly the

same kind of divergence that we find in the forward limit of
ΣðjÞ, only present for j ¼ 1 as well.5 Thus, we can expand
both sides of expressions (13) and (17) in the limit t → 0−

and cancel divergences in the left-hand side against those in
the right-hand side provided byΔ, with the rest of the terms
remaining finite. It is particularly interesting to note that
assuming Regge behavior, which is expected to arise in
gravity, precisely allows for cancellation of those diver-
gences produced in graviton scattering. As discussed in
Appendix, this seems to be a unique result.
Explicitly, using (26) we can now rewrite (17) for

j ¼ 1 as

4Higher loop contributions like logðlog tÞ are expected beyond
one loop in the scattering amplitude. We expect them to cancel
against higher loop corrections in the string theory.

5The divergent part of the amplitude for graviton exchange is
proportional to s2. Thus, it vanishes from ΣðjÞ with j > 1 after
evaluation of the residues in the pole.
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Σ̂ð1Þ
R ¼

Z
M2�

Λ2

dzFð1ÞðzÞ þ rð0Þα02 logðM2�α0Þ
π

−
rð0Þα02

π

l00ð0Þ
2l0ð0Þ2 −

rð0Þα02ζ
π

log ½−l0ð0Þ logðM2�α0Þ�

−
rð0Þα02ζγ

π
; ð27Þ

where we have introduced the regularized version of Σ̂ð1Þ as

Σ̂ð1Þ
R ¼ Σ̂ð1Þ þ rð0Þα02

π

�
ζ logðtÞ − 1

l0ð0Þt
�
; ð28Þ

by taking all divergent terms to the left-hand side.
By choosing the appropriate value of the combinations

rð0Þα02=l0ð0Þ and rð0Þα02ζ, the forward limit divergences
can be cancelled, so that (27) remains regular. Note that,
since α02 > 0 and l0ð0Þ > 0 this also fixes the sign of ζ
uniquely, although in a case by case way.
Finally, we turn our attention to the explicit form of (27).

Note that the integral along Λ2 < s < M2� must remain
positive by application of (1). However, the rest of the terms
do not have a definite sign. In particular, we cannot
determine the overall sign of the right-hand side in (27)
without knowing the value of l00ð0Þ, which we do not know.
Nevertheless, all these terms come multiplied by the overall
scale rð0Þα02. Thus, what we can do is to assess that the
right-hand side is positive up to the order in which they
become important. Meaning

Σ̂ð1Þ
R > −Oðrð0Þα02Þ; ð29Þ

so that a small amount of positivity violation is allowed and
controlled by the dynamics of the UV degrees of freedom.
For j > 1 things are simpler. Since (26) is always

convergent in this case, there is no need to expand nor
to split the range of integration in (24). Thus, we simply
recover our result (19), which remains valid

Σ̂ðj>1Þ > 0: ð30Þ

Expressions (29) and (30) are the final results of our
work. They represent positivity bounds whose left-hand
sides can be computed in an EFT, as long as δ < Λ2, and
whose value is constrained by features of the high-energy
theory.

IV. GRAVITATING SCALAR FIELD

Now that we have derived useful positivity bounds in the
presence of exchange of gravitons, let us test their validity
with some well-known theories of scalar fields coupled to
Einstein gravity. The first case that we examine is a free
gravitating scalar field, with action

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−

R
2κ2

þ 1

2
∂μϕ∂μϕ

�
; ð31Þ

where κ2 ¼ 8πG ¼ M−2
P .

In order to include the branch cut into the scattering
amplitude ϕϕ → ϕϕwe must at least compute the first loop
correction. Combining it with the tree-level amplitude we
get, in the forward limit and after renormalization6

Aðs; 0−Þ ¼ −
κ2s2

t
−
33κ4s2

24π2
ðlogðsÞ þ logð−sÞÞ

−
33κ4s2

24π2
logðtÞ: ð32Þ

Here we have used the de Donder gauge and set the
renormalization scale μR ¼ 1 in the modified minimal
subtraction scheme. This choice is harmless since its value
always drops from the result.
The integral in (11) vanishes for massless external fields.

Thus

Bðs; 0−Þ ¼ ReAðs; 0−Þ ¼ −
κ2s2

t
−
33κ4s2

24π2
logðs2Þ

−
33κ4s2

48π2
logðt2Þ; ð33Þ

and from this we can easily use (13) to compute

Σð1Þ ¼ −
κ2

t
−
33κ4

24π2

�
3

2
þ logðtÞ þ logðδ2Þ

�
; ð34Þ

Σðj>1Þ ¼ yðjÞκ2
π2δ4j−4

; ð35Þ

where yðjÞ > 0 for all j. Here we have decided not to add
the contribution from

RΛ2

0 dzFðjÞðzÞ, thus working with ΣðjÞ
instead of Σ̂ðjÞ.
Cancelling the divergences using (28) determines

rð0Þα02 ∼ −l0ð0Þκ2 and rð0Þα02ζ ∼ κ4. Thus the bounds read

−
33κ4

24π2

�
3

2
þ logðδ2Þ

�
> −Oðrð0Þα02Þ; ð36Þ

yðjÞκ2
π2δ4j−4

> 0: ð37Þ

The first bound is however meaningless since the left-hand
side is already comparable to the subleading terms in the
right-hand side. This forbids us to conclude anything from
Σð1Þ. On the other hand, the second bound is automatically

6The coefficient in front of the logarithms is gauge dependent.
However, its sign is universal for the family of β gauges [33]
explored here.
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satisfied for all δ, confirming a trivial statement, that a free
gravitating scalar field is a bona fide theory up to MP.

V. SCALAR QED

Even more interesting is to explore the case of scalar
QED with a photon ϕ, an electron ψ , and an spectator field
χ, as suggested in [26]. The action is

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−

R
2κ2

þ 1

2
∂μϕ∂μϕþ 1

2
∂μχ∂μχ

þ 1

2
∂μψ∂μψ −

1

2
Λ2ψ2 − λΛϕψ2

�
: ð38Þ

At energies below the mass of the electron Λ ≪ MP, ψ
can be integrated out, leaving a generic EFT describing
effective interactions between the rest of the fields

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−

R
2κ2

þ 1

2
∂μχ∂μχ þ 1

2
∂μϕ∂μϕ

−
λ3Λ
ð2πÞ2

ϕ3

3!
þ λ4

2π2
ϕ4

4!
þDλ2κ2

Λ2
ð∂ϕÞ4

þ Cλ2κ2

Λ2
ð∂μϕ∂μχÞ2 þ…

�
; ð39Þ

where the dots indicate further Λ or κ2 suppressed terms. In
matching both actions, the Wilson coefficients D and C
must be determined by a direct comparison of a scattering
amplitude. However here we are interested in exploring
what positivity can say about them. Following [26] we
focus on ϕχ → ϕχ, whose one-loop amplitude gives

Aðs; 0−Þ ¼ −
κ2s2

t
þ s2Cλ2κ2

Λ2
−
11κ4s2

24π2
logðtÞ

−
11κ4s2

24π2
ðlogðsÞ þ logð−sÞÞ þOðtÞ: ð40Þ

Again, we have added the one-loop correction, with
μR ¼ 1, in order to make the branch cut explicit. From here
we find

Σð1Þ ¼ κ2

48

�
−
48

t
þ 48Cλ2

Λ2
−
33κ2

π2

−
22κ2

π2
logðtÞ − 22κ2

π2
logðδ2Þ

�
; ð41Þ

Σðj>1Þ ¼ yðjÞκ4
π2δ4j−4

: ð42Þ

Cancelling the forward divergences we get again
rð0Þα02 ∼ −l0ð0Þκ2, rð0Þα02ζ ∼ κ4. From this the bound
Σðj>1Þ > 0 is automatically satisfied. It also allows us to
disregard the loop corrections in Σð1Þ, since they are
subleading. We thus get

Cκ2λ2

Λ2
> −Oðrð0Þα02Þ: ð43Þ

This result agrees with that of [25,26], where it is
proposed from different arguments. This also proves the
conjecture in their conclusions of new physics required at a
scale ðrð0Þα02Þ−1=4 < MP in order to unitarize the theory.
This can be seen from the fact that a direct matching
between the EFT (39) and its partial UV completion (38)
demands C < 0 with C ∼Oð1Þ, which violates our bound.
Thus, (38) needs to be completed at intermediate energies.

VI. CONCLUSIONS

In this paper we have derived new positivity bounds in
the presence of exchange of massless particles between
bosonic states. They generalize and formalize previous
results in the literature. Provided that divergences in the
forward limit can be ignored, our bounds can constrain the
value of Wilson coefficients and other couplings in EFTs
for which the existence of a plausible unitary, Lorentz
invariant, and local UV completion is demanded.
We have gone further and shown that in the case of

exchange of gravitons, forward divergences can be can-
celled by assuming a Regge behavior of the scattering
amplitude, which is unique if one assumes analyticity of the
function lðtÞ. Although peculiar, this form of the amplitude
has been previously found in the literature on string theory.
This leads to well-defined bounds which can now be used
in the presence of gravity.
We have shown how our bounds work in two simple

examples. A free gravitating scalar field, where they are
automatically satisfied, and scalar QED with a spectator
field, for which they demand new physics below the Planck
scale to unitarize the theory, as previously suggested
by [25,26].
These new bounds open up a window to explore the

theory space of phenomenological viable theories of
(matter and) gravity. We believe that our results here have
the potential to highly constrain different popular models
currently used to investigate properties of black hole
physics and cosmology. It would also be interesting to
apply them to the exploration of unitarization mechanisms
for graviton scattering [34–36].
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APPENDIX: UNIVERSALITY OF THE
SUBLEADING CORRECTION

Let us address here the question on the uniqueness of the
subleading correction to the amplitude in the Regge limit
(22) required to cancel divergences in the forward limit.
Let us start by noticing again that the leading term, which

cancels the t−1 contribution of the amplitude in the IR, was
already proposed in earlier works [27] and can be obtained
from a closed string amplitude after careful manipulation.
In particular, the imaginary part of the string amplitude is
not a regular function of s and t; it has instead an infinite set
of Regge poles that require regularization. Hereinafter we
will assume instead that the imaginary part of the Regge
amplitude that we consider is regular in both arguments
when s → ∞, t → 0.
Going back to FðjÞðz; tÞ, defined in (15), let us examine

the integral in (24)

Δj ¼
Z

∞

M2�
dzFðjÞðz; tÞ: ðA1Þ

Note that this integral can give a singularity at t → 0 only if
it is divergent when t ¼ 0 but finite for some small finite t.
In particular, for j ¼ 1 we obtain

Δ1 ¼
Z

∞

M2�
dz

ImAðz; tÞ
z3

: ðA2Þ

Since ImAðs; tÞ is regular at t ¼ 0 from our assumption,
we can Taylor expand it around this point

ImAðs;tÞ¼ ImAðs;0Þþ∂tImAðs;tÞjt¼0tþOðt2Þ; ðA3Þ

in one to one correspondence to the series expansion of the
Regge form (22),

ImAðs; tÞ ¼ rðtÞðα0sÞ2þlðtÞð1þ gðsÞÞ∼
¼ ðα0sÞ2ð1þ gðsÞÞ½rð0Þ þ tðr0ð0Þ− l0ð0Þ logðsÞ�;

ðA4Þ

where we have assumed the expansion (25).
At this point we leave the form of the subleading

correction gðsÞ completely arbitrary. If we demand that
the result of Δ1 has the correct divergent structure we have

Δ1¼
Z

∞

M2�

dz
z
rðtÞz−lðtÞð1þgðzÞÞ¼a

t
þbðtÞþOð1Þ: ðA5Þ

Here bðtÞ stands for the remaining divergent terms at t → 0,
which include the one-loop log t term among others.
Changing the integration variable to log z ¼ σ and plugging
the small t expansion on the integrand, brings us to the
condition

rðtÞ
Z

∞

logM2�
dσe−ðl0ð0ÞtþOðt2ÞÞσð1þ gðσÞÞ

¼ a
t
þ bðtÞ þOð1Þ: ðA6Þ

The leading term in the left-hand side can be computed
explicitly and shown to cancel the at−1 term, while for the
rest we have

rð0Þ
Z

∞

logM2�
dσe−ðl0ð0ÞtÞσgðσÞ ¼ bðtÞ þOð1Þ: ðA7Þ

After multiplying by a step function under the integral
sign, this becomes a Laplace transform. Although it
requires regularization, its result is unique and therefore
there exists a single function gðsÞ which satisfies this
identity. Since gðsÞ ¼ ζ= logðα0sÞ does the work, we
conclude that it is the only option.
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