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Abstract: This paper studies a system of coupled discrete fractional-order logistic maps, modeled
by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics.
Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map
system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence
of hidden attractors, is proved and analyzed.

Keywords: discrete fractional-order system; caputo delta fractional difference; fractional-order
difference equation; stability; hidden attractor

1. Introduction

Nonlinear phenomena are difficult to describe by models analysis based only on
smoothness; thereby, fractional calculus has been used to model many such processes for
which the standard integer-order derivatives cannot be applied adequately. The general-
ization of the concept of derivatives of non-integer values dates back to the beginning of
the theory of differential calculus, while the rapid development of the theory of fractional
calculus started from the work of Euler, Liouville, Riemann, Letnikov, and so on [1,2]. In
the past, new results of fractional modeling and applications were reported every year.
The fractional derivatives and integrals are useful in engineering and mathematics, being
helpful for scientists and researchers working with real-life applications (see, e.g., [3,4]).

It is well-known that the classical derivative of a continuous-time periodic function
is a periodic function with the same period. However, with respect to derivatives of
fractional order, this is not necessarily the case [5–12]. The non-periodicity of solutions in
fractional-order (FO) systems was first discovered by engineers (see, e.g., [7]), and then
proved by mathematicians (see, e.g., [5,12]). Generally, FO systems have no non-constant
periodic solutions by their nature (verified, e.g., using Laplace or Z transformations).
Nevertheless, both continuous and discrete FO systems may have asymptotic periodic
solutions. However, just like continuous FO systems, the periodicity of solutions in discrete
FO systems is a delicate issue [10,13–17]. As a consequence, all reported results based on the
“periodicity” of continuous- or discrete-time autonomous FO systems became questionable.

In this paper, orbits apparently indicating some regular behavior will be called
“periodic-like” orbits. Recall that for some values of the bifurcation parameter of the
integral-order (IO) logistic map, unstable periodic orbits (UPOs) will emerge, leading to
chaos. For FO logistic maps, this will be referred to as “chaotic-like” behavior. In [18],
these kinds of periodic-like orbits are called “numerically periodic orbits”. It is also well-
known that in the theory of dynamical systems, every emerging abrupt period-doubling
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phenomenon is considered as bifurcation. Therefore, in this paper, the term bifurcation or
bifurcation diagram is understood in the above sense of a periodic-like phenomenon.

On the other hand, from a computational point of view, based on the complexity or
simplicity in finding a basin of attraction in the phase space, it is natural to consider the fol-
lowing classification of attractors: self-excited attractors, which can be revealed numerically
by integrating the systems with initial conditions within small neighborhoods of unstable
equilibria, and hidden attractors, which have the basins of attraction not connected with
any equilibria [19–23]. Examples of hidden attractors in continuous-time FO systems exist
in some classical systems, such as the Rabinovich-Fabrikant system [24–26], Hopfield neu-
ronal system [27], economic system [28], hyperchaotic discontinuous system [29], and so
on [30].

In a numerical approach, the need for previous history in numerical integration
requires a trade-off between the calculation time and the approximation precision. This is a
basic principle for some classical numerical methods for fractional differential equations
(FDEs), such as the Adams-Bashforth-Moulton method [31], for which a tutorial can be
found in [32]. Finally, it should also be noted that the mathematical theory of FDEs is still
quite limited today, although the subject has been studied since 1956 [33].

With all the above motivations and background, the present paper is devoted to
studying a system of discrete coupled FO logistic maps, with respect to its numerical
bifurcation analysis and hidden attractor search, which reveals some very interesting new
dynamical properties and unusual phenomena.

This paper will also discuss the stability of discrete FO equations, where [34–36] can
be referred to for more details.

2. A Model of Coupled FO Logistic Maps

In [37], the bistability of some “aggregates” of logistic maps with excitation-type
coupling is studied. One such model is composed by two functional units, a neuron or
a group of neurons (voxels), as a discrete nonlinear oscillator with two possible states:
active (meaning one type of activity) or not (meaning other type of activity). A reasonable
modality to take the most elemental local nonlinearity is, for instance, the logistic evolution:

x(n + 1) = p(3y(n) + 1)x(n)(1− x(n)),
y(n + 1) = p(−3x(n) + 4)y(n)(1− y(n)), n ∈ N.

(1)

The first equation with the coupled functional units (1) refers to excitation coupling,
while the second equation, to inhibition coupling. These kinds of models are proposed
in [37] to mimic the waking-sleeping bistability and even multistability found in brain
systems (see [37] for details).

In this paper, the Fractional Order (FO) variant of the system (1) is considered.
To obtain the FO form, let Na = {a, a + 1, a + 2, . . .}. Then, for q > 0 and q 6∈ N,

the q-th Caputo-like discrete fractional difference of a function u : Na → R is defined
as [38,39]

∆q
au(t) = ∆−(n−q)

a ∆nu(t) =
1

Γ(n− q)

t−(n−q)

∑
s=a

(t− s− 1)(n−q−1)∆nu(s), (2)

for t ∈ Na+n−q and n = [q] + 1. In (4), ∆n is the n-th order forward difference operator,

∆nu(s) =
n

∑
k=0

(
n
k

)
(−1)n−ku(s + k)

and ∆−q
a represents the fractional sum of order q of u, namely,

∆−q
a u(t) =

1
Γ(q)

t−q

∑
s=a

(t− s− 1)(q−1)u(s), t ∈ Na+q (3)
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with the falling factorial t(q) in the following form:

t(q) =
Γ(t + 1)

Γ(t− q + 1)
.

Note that the fractional operator ∆−q
a maps functions defined on Na to functions

on Na+q.
For the case considered in this paper, q ∈ (0, 1), when n = 1, ∆u(s) = u(s + 1)− u(s),

and Caputo’s fractional difference, denoted hereafter ∆q
∗, becomes

∆q
∗u(t) =

1
Γ(1− q)

t−(1−q)

∑
s=a

(t− s− 1)(−q)∆u(s). (4)

Assuming the starting point of the fractional sum (3), a = 0, one can consider the
following discrete autonomous Initial Value Problem (IVP) of FO (the non-autonomous
case can be found in [40,41]):

∆q
∗u(t) = f (u(t + q− 1)), t ∈ N1−q, u(0) = u0, (5)

for q ∈ (0, 1) and f is a continuous map.
The solution of the IVP (5) is given by [40,41]

u(t) = u0 +
1

Γ(q)

t−q

∑
s=1−q

(t− s− 1)(q−1) f (u(s + q− 1)). (6)

A convenient iterative form of the integral (6) is [35]

u(n) = u(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

f (u(i− 1)), u(0) = u0, n ∈ N , n > 0. (7)

Now, one can introduce the FO variant of the system (1) modeled by the Caputo delta
fractional difference equation:

∆q
∗x(t) = p(3y(t + q− 1) + 1)x(t + q− 1)(1− x(t + q− 1)),

∆q
∗y(t) = p(−3x(t + q− 1) + 4)y(t + q− 1)(1− y(t + q− 1)),

t ∈ N1−q, x(0) = x0, y(0) = y0,
(8)

where p ∈ R is a parameter. In this case,

f (u) := f (x, y) =

(
p(3y + 1)x(1− x)
p(−3x + 4)y(1− y)

)
, (9)

and the integral (7) has the following form, which will be used to integrate and simulate
the system dynamics later:

x(n) = x(0) + 1
Γ(q)

n

∑
i=1

Γ(n−i+q)
Γ(n−i+1) p(3y(i− 1) + 1)x(i− 1)(1− x(i− 1)),

y(n) = y(0) + 1
Γ(q)

n

∑
i=1

Γ(n−i+q)
Γ(n−i+1) p(−3x(i− 1) + 4)y(i− 1)(1− y(i− 1)),

n ∈ N, n > 0, x(0) = x0, y(0) = y0.

(10)
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3. Bounds and Global Dynamics

The theory of orbits for discrete FO systems is technically rather sophisticated in
general and is still under development. Additionally, finding either bounds of solutions or
qualitative properties of global dynamics are difficult tasks.

Nevertheless, from the expressions (10), one can see that x(n) and y(n) are polynomi-
als of p, that is,

x(n) =
k(n)

∑
j=0

anj(x(0), y(0))pj

y(n) =
k(n)

∑
j=0

bnj(x(0), y(0))pj,

(11)

where the coefficients anj(x(0), y(0)), bnj(x(0), y(0)) are polynomials of x(0), y(0).
From (10), the degree k of polynomials (11) is

k(0) = 0, k(n) = 3k(n− 1) + 1, n ≥ 1,

so
k(n) =

3n − 1
2

.

The formulas anj(x(0), y(0)) and bnj(x(0), y(0)) are difficult to find explicitly for
general n, but nevertheless, one can find that

an0(x(0), y(0)) = x(0), bn0(x(0), y(0)) = y(0),

an1(x(0), y(0)) =
(3y(0) + 1)x(0)(1− x(0))

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

,

bn1(x(0), y(0)) =
(−3x(0) + 4)y(0)(1− y(0))

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

.

Using [42] (Proposition 1), one obtains the following result.

Theorem 1. The following limits hold:

lim
n→∞

an1(x(0), y(0))
nq =

(3y(0) + 1)x(0)(1− x(0))
Γ(q + 1)

,

lim
n→∞

bn1(x(0), y(0))
nq =

(−3x(0) + 4)y(0)(1− y(0))
Γ(q + 1)

.

Consequently, the first-order approximations of (11) diverges to ∞ as n→ ∞, except at the
equilibria, where f (u(0)) = 0.

Concerning global dynamics, the following result holds (for the dynamical behavior
of discrete-time linear FO systems, see [43]).

Theorem 2. There is no orbit {(x(n), y(n))}∞
n=1 of (8) such that

(x(n), y(n)) ∈ S, ∀n ≥ n0, (12)

for some n0 ∈ N, where S is one of the following subsets of R2:{
x ≥ 1 + δ, y ≥ −1

3
+ δ

}
,
{

x ≤ −δ, y ≤ −1
3
− δ

}
,{

x ≤ 4
3
+ δ, y ≥ 1 + δ

}
,
{

x ≥ 4
3
+ δ, y ≤ −δ

}
,

(13)
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with δ > 0.

Proof.

(1) If S = {x ≥ 1 + δ, y ≥ − 1
3 + δ} and (12) holds, then (7) implies that

x(n) = x(0) +
p

Γ(q)

n0

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(3y(i− 1) + 1)x(i− 1)(1− x(i− 1))

+
p

Γ(q)

n

∑
i=n0+1

Γ(n− i + q)
Γ(n− i + 1)

(3y(i− 1) + 1)x(i− 1)(1− x(i− 1))

≤ x(0) +
p

Γ(q)

n0

∑
i=1

(3y(i− 1) + 1)x(i− 1)(1− x(i− 1))

−3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n− i + q)
Γ(n− i + 1)

, (14)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (15) gives limn→∞ x(n) = −∞, which
contradicts x(n) ≥ 1 + δ for n ≥ n0. The proof is completed for the first subset of (13).

(2) If S = {x ≤ −δ, y ≤ − 1
3 − δ} and (12) holds, then (7) implies that

x(n) ≥ x(0) +
p

Γ(q)

n0

∑
i=1

(3y(i− 1) + 1)x(i− 1)(1− x(i− 1))

+3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n− i + q)
Γ(n− i + 1)

, (15)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (15) gives limn→∞ x(n) = ∞, which
contradicts x(n) ≤ −δ for n ≥ n0. The proof is completed for the second subset
of (13).

(3) If S = {x ≤ 4
3 − δ, y ≥ 1 + δ} and (12) holds, then (7) implies that

y(n) ≤ y(0) +
p

Γ(q)

n0

∑
i=1

(−3x(i− 1) + 4)y(i− 1)(1− y(i− 1))

−3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n− i + q)
Γ(n− i + 1)

, (16)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (16) gives limn→∞ y(n) = −∞, which
contradicts y(n) ≥ 1+ δ for n ≥ n0. The proof is completed for the third subset of (13).

(4) If S = {x ≥ 4
3 + δ, y ≤ −δ} and (12) holds, then (7) implies that

y(n) ≥ y(0) +
p

Γ(q)

n0

∑
i=1

(−3x(i− 1) + 4)y(i− 1)(1− y(i− 1))

+3δ2(1 + δ)
p

Γ(q)

n

∑
i=n0+1

Γ(n− i + q)
Γ(n− i + 1)

, (17)

for n ≥ n0 + 1. By applying [42] (Proposition 1), (17) gives limn→∞ y(n) = ∞, which
contradicts y(n) ≥ −δ for n ≥ n0. The proof is completed for the fourth subset of (13).

The whole proof is thus completed.

Remark 1. Theorem 2 asserts the non-existence of an attractor of (8) within any subsets shown
in (13).
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4. Non-Existence of Hidden Attractors

To numerically find hidden attractors, it is necessary to determine the stability of the
system equilibria.

Proposition 1. The equilibria of system (8) are

E1 =

(
4
3

,−1
3

)
, E2 = (0, 0), E3 = (1, 0), E4 = (0, 1), E5 = (1, 1). (18)

Proof. For 0 < q < 1, by using the explicit form of f (u) given by (9), the equilibrium
means that u(n) = u(0) for all n ≥ 1. This is equivalent to the equation f (u(0)) = 0. By (9),
the equation f (u(0)) = 0 becomes:

(3y(0) + 1)x(0)(1− x(0)) = 0, (19)

(−3x(0) + 4)y(0)(1− y(0)) = 0, (20)

with solutions (18).

The Jacobian of the function (9)

J(x, y) = p
(
(3y + 1)(1− 2x) 3x(1− x)
−3y(1− y) (4− 3x)(1− 2y)

)
, (21)

evaluated at equilibria Ei, i = 1, 2, . . . , 5, gives the spectrum of eigenvalues σ as shown in
Table 1.

Table 1. Spectrum σ of eigenvalues of J evaluated at equilibria Ei, i = 1, 2, . . . , 5.

E σ(J)

E1 (− 4p
3 ı, 4p

3 ı)
E2 (p, 4p)
E3 (−p, p)
E4 (−4p, 4p)
E5 (−4p,−p)

The stability of the linearized FO system implies the stability of the nonlinear FO
system (8), which conforms to [44] (Theorem 1.4). The system (8) is asymptotically stable if
all the eigenvalues belong to the following set Sq:

Sq =

{
z ∈ C : |z| <

(
2 cos

|λ| − π

2− q

)q

and |λ| > qπ

2

}
,

where λ denotes the argument of the eigenvalue.
Obviously, if there exist eigenvalues not belonging to Sq, then the system is unstable.

Theorem 3. The system (8) is unstable for all q ∈ (0, 1) and p.

Proof. Consider E1, for which the arguments of eigenvalues {e1, e2} are λ1,2 = ±π
2 and

|z| = p 4
3 . For both eigenvalues {e1, e2}, the first inequality in Sq becomes (see the first

column in Table 2)

p <
3
4

(
2 cos

|λ| − π

2− q

)q
= 2q−23 cosq π

2(2− q)
.

The second inequality in Sq is verified for both arguments λ1,2.
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For E5, λ1,2 = −π, and the first inequality reads

4p <

(
2 cos

0
2− q

)q

= 2q,

which is the result in the last column of Table 2. The second inequality is verified for all
q ∈ (0, 1).

Because for equilibria E2,3,4, one argument is zero, the second inequality is not verified,
so the eigenvalues do not belong to Sq, e /∈ Sq. Therefore, E2,3,4 are unstable and the system
is unstable for all q ∈ (0, 1) and p (the second column in Table 2).

Table 2. Stability of equilibria Ei, i = 1, 2, . . . , 5.

E1 E2,3,4 E5

stable for p < 3× 2q−2 cosq π
2(2−q) Unstable for all p and q ∈ (0, 1) stable for p < 2q−2

In the following simulations, unless otherwise mentioned, 3500 iterations were per-
formed for all examples, and the last 600 points are plotted.

The stability regions in the plane (q, p) for equilibria E1,5 are plotted in Figure 1a,b.
The region where all equilibria are unstable is shown in Figure 1c (light brawn). Figure 1d,e
presents orbits starting from initial conditions near equilibria E1 and E5. The spiral orbit of
E1 corresponds to complex eigenvalues of the system at this equilibrium, while the orbit of
E5 corresponds to real eigenvalues.

Figure 1. Stability regions of equilibria. (a) Stability region of E1 (grey plot); (b) Stability region of E5

(grey plot); (c) Instability region of all equilibria (light red plot); (d) Phase plot of a representative
orbit from the point within the stability region of E1, with p = 0.5 and q = 0.5 (Figure 1a) from initial
condition close to E1; (e) phase plot of a representative orbit from a point within the stability region
of E1, with p = 0.1 and q = 0.5 (Figure 1b) from initial condition close to E5.

It is observed that, sometimes, possible system dynamics are richer than what can
be revealed through examining bifurcation diagrams (BDs). As experienced, the BDs are
suggestive and they show what parameter values the system can take on, and therefore
helps to identify potential hidden attractors coexisting with other attractors. Consider,
for example, the BDs of the component x vs. parameter q for fixed p = 0.55 with initial
condition (x0, y0) = (0.1, 0.3) (Figure 2a), and for q = 0.4 vs. parameter p ∈ (0.3, 0.6) (the



Mathematics 2021, 9, 2204 8 of 14

largest range of p for q = 0.4) (Figure 2b). As expected, Figure 2 reveals the influence of the
IO logistic map. However, there are some significant differences, which will be illustrated
and discussed next.

Figure 2. (a) The BD for p = 0.55 vs. q obtained for (x0, y0) = (0.1, 0.3); (b) the BD and for q = 0.4 vs.
p ∈ (0.3, 0.6) for (x0, y0) = (0.1, 0.3).

The first interesting phenomenon observed is related to the apparent “bifurcation
points” (see the zoomed in rectangular region in Figure 2a). This “explosion” takes place
for a relatively large range of q values, which was also found from some other discrete FO
systems (e.g., [45,46]).

Note that this system cannot be numerically characterized in some regions of the
(p, q)-space. There exist some values of p and q for which the orbits are unbounded for
whatever initial conditions (x0, y0), as shown by the BD in Figure 2b, where for q = 0.4,
the upper bound of the range of p values could only be chosen to be p = 0.6 (see also
Theorem 2).

Now, consider the BDs with respect to q ∈ [0.1, 0.5] and p = 0.4, for two different initial
conditions (0.1, 0.3) (blue) and (0.5, 0.5) (red) (Figure 3a), and with respect to p ∈ [0.3, 0.5]
and q = 0.295, for initial conditions (0.1, 0.3) (blue) and (0.9, 0.6) (red) (Figure 3b).

Within the BD with respect to q, we denote the bifurcation sets of points corresponding
to a single initial condition (Poincaré vertical slices through BD) as bifurcative sets (BSs).
For better visualization, within the BD in Figure 3a, the BS corresponding to (0.1, 0.3) is
colored blue, while the BD corresponding to (0.5, 0.5) is colored red. Similarly, the BD with
respect to p, shown in Figure 3b, is composed of two BSs. To each point on the p- or q-axis,
there is a vertical line of points, colored red or blue on the corresponding BS.

The dotted line in Figure 3a indicates a chosen representative case, with q = 0.28 for
p = 0.55. Two different attractors can be seen in the two red and blue BSs: a four-period-
like attractor (red bullets numbered 1, 2, 3, and 4; see also Figure 4a, where the light red
lines indicate the way in which the points 1, 2, 3, 4 are visited) and a two-band, chaotic-like
attractor (dark blue tick lines; see also Figure 4b). The zoomed region around the point
1 (Figure 4c) shows the last 600 points, which reveals the slow convergence of this orbit
towards a regular-like state. The schematic arrows marked on the time series in Figure 4d
indicate the order in which the points 1, 2, 3, and 4 are visited by the orbit.
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Figure 3. (a) The BD for p = 0.55 vs. q with two BSs: one obtained for (x0, y0) = (0.1, 0.3), in Figure 2a
(red plot), and one for a second initial condition (x0, y0) = (0.5, 0.5) (blue plot); (b) the BD for q = 0.4
vs. p ∈ (0.3, 0.6) with two BSs: one for (x0, y0) = (0.1, 0.3), in Figure 2b (red plot), and a new one
for (x0, y0) = (0.9, 0.6) (blue plot). Dotted line in the BD in Figure 2b indicates the existence of two
different attractors: a four-periodic-like orbit (red bullets) and a two-period chaotic band orbit (dark
blue segments).

Figure 4. Two attractors for p = 0.55 and q = 0.28: (a) The four-periodic-like attractor for (x0, y0) =

(0.1, 0.3); (b) the two-period chaotic-like attractor for (x0, y0) = (0.5, 0.5); (c) zoomed region around
the point 1 of the periodic-like orbit underlines the slow convergence of the orbit; (d) time series of
the periodic-like orbit.

From experience, this “coexistence” of attractors or “multistability” suggests the
possible existence of hidden attractor(s). However, instead of the two initial conditions
(0.1, 0.3) (red BS) and (0.5, 0.5) (blue BS) (Figure 5a), if one considers three initial conditions
(0.1, 0.3) (red BS), (0.5, 0.5) (blue BS) and (0.01, 0.7) (green plot) (Figure 5b), then one
can see that there exist three BSs, which allow to find three possibly different attractors
(see dotted lines I, II, and III within the three attractors) and this phenomenon seems to
continue indefinitely.



Mathematics 2021, 9, 2204 10 of 14

Figure 5. The BDs of system (8) for p = 0.55. (a) Initial conditions (0.1, 0.3) (red BS) and (0.5, 0.5)
(blue BS); (b) Initial conditions (0.1, 0.3) (red BS), (0.5, 0.5) (blue BS) and (0.01, 0.7) (green plot).

To verify the influence of the maximum number of iterations on this phenomenon,
consider two BDs generated with the above same three initial conditions, but with different
numbers of iterations, 3500 and 5000 (Figure 6a,b), respectively. The iteration number affects
the shape of BSs only slightly (compare the green two-period chaotic bands generated after
3500 iterations in Figure 6a and the one-period chaotic band in Figure 6b generated after
5000 iterations). However, the existence of different BSs is not affected by the maximum
number of iterations.

To this end, one can conclude that the BSs are non-invariant with respect to the initial
conditions and, in fact, their positions change significantly with initial conditions in the
fractional order space. Similarly, this happens also in the parameter space. While in the
parameter space, the non-invariance is evident for all parameter values p, in the fractional
order space, this property is conceived only for small values of q (once q grows over
q ≈ 0.75, the phenomenon vanishes, see the right vertical dotted line in Figure 3a).

The above-described numerical simulations on the complex dynamics of system (8)
are summarized as follows.

Proposition 2. The BDs of the FO system (8), obtained with the discretization (7), presents
non-invariance with respect to the initial conditions in both the fractional order space and the
parameter space.

Remark 2. Some interesting observations are worth highlighting.

(i) The shapes of BSs approximately preserve the shapes for different initial conditions, but move
along the p-axis.
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(ii) This delay-like phenomenon with respect to the initial conditions (the BSs seem to move
“forward” or “backward” on the BDs (see the dotted lines I, I I, and I I I in Figure 5, as the
initial conditions are changing) was already found in a continuous-time FO system [47], where
the “delay” was observed with respect to the integration step-size of the numerical method
used.

(iii) It is interesting to compare the above results with the case of the Feigenbaum attractor of the
IO logistic map x(n + 1) = px(n)(1− x(n)), for the limiting value p∞ = 3.569946 . . .
[48], which, however, is not an attracting set and for which there is no sensitive dependence on
initial conditions.

By summarizing the investigation in this work, it is concluded that, because of the
mentioned dependence on initial conditions, it is impossible to find hidden attractors in
the FO system (8) by numerically searching the paths of system orbits by testing initial
conditions within neighborhoods of equilibria.

Figure 6. The BDs of system (8) for p = 0.55, obtained with the same three different initial conditions
but with different maximum iteration numbers: (a) 3500 iterations; (b) 5000 iterations.

5. Discussion

In this paper, the system of coupled logistic maps modeled by Caputo’s delta fractional
difference was studied, both analytically and numerically. The system boundedness
and global dynamics were analyzed in detail. Extensive numerical simulations were
performed on the system dynamics, revealing the impossibility of finding hidden attractors
by numerically testing the orbits starting from initial conditions within neighborhoods of
equilibria. The main reason appears to be that, at least for the considered system, the BSs
forming the BDs for small values of q (about q < 0.75) are different for different initial
conditions; thereby, the existence of hidden attractors cannot be realized numerically, as
typical for continuous integer-order systems. It seems that the coexistence of attractors as
necessary for the existence of hidden attractors cannot be well-defined for such a discrete
fractional-order system, perhaps also for other discrete fractional-order systems. In general,
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the phenomenon of “coexistence of attractors” for discrete fractional-order systems needs
further investigation.

A possible future research direction is to consider k-periodic problems given by the
condition u(k) = u(0) for k ≥ 1, regarding the existence, uniqueness, and bifurcation of
solutions, similarly to the periodic boundary value problem x(0) = x(T) for functional
differential equations [49–51].
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