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Abstract: We compute the differential yield for quark anti-quark dijet production in
high-energy electron-proton and electron-nucleus collisions at small x as a function of the
relative momentum P⊥ and momentum imbalance k⊥ of the dijet system for different
photon virtualities Q2, and study the elliptic and quadrangular anisotropies in the relative
angle between P⊥ and k⊥. We review and extend the analysis in [1], which compared
the results of the Color Glass Condensate (CGC) with those obtained using the transverse
momentum dependent (TMD) framework. In particular, we include in our comparison
the improved TMD (ITMD) framework, which resums kinematic power corrections of the
ratio k⊥ over the hard scale Q⊥. By comparing ITMD and CGC results we are able to
isolate genuine higher saturation contributions in the ratio Qs/Q⊥ which are resummed
only in the CGC. These saturation contributions are in addition to those in the Weizsäcker-
Williams gluon TMD that appear in powers of Qs/k⊥. We provide numerical estimates
of these contributions for inclusive dijet production at the future Electron-Ion Collider,
and identify kinematic windows where they can become relevant in the measurement of
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dijet and dihadron azimuthal correlations. We argue that such measurements will allow
the detailed experimental study of both kinematic power corrections and genuine gluon
saturation effects.
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1 Introduction

In the past decades, high energy collider experiments have successfully verified that quan-
tum chromodynamics (QCD) is the theory of strong interactions of quarks and gluons
(partons) inside hadrons and nuclei. A systematic program to uncover the structure of
hadrons began with the introduction of parton distributions functions (PDFs) which de-
scribe the parton densities as functions of the longitudinal momentum fraction x. Beyond
this one-dimensional picture, transverse momentum dependent (TMD) PDFs have been
introduced to characterize the three-momenta of partons inside hadrons [2–4]. Comple-
mentarily, generalized parton distributions (GPDs) have been defined by furnishing PDFs
with the two dimensional transverse spatial distribution of partons resulting in a tomo-
graphic picture of hadrons and nuclei [5–7].

While a partonic description is appropriate at moderate values of x, at sufficiently high
energies (or small x), gluon densities grow quickly resulting in a large parton occupation
number. At sufficiently small x this growth is expected to eventually be tamed by non-
linear QCD effects [8, 9] (see also [10, 11] for a recent discussion on the transition between
non-linear evolution at small-x and linear evolution moderate-x for gluon distributions).
An appropriate description of the fundamental degrees of freedom of hadrons and nuclei in
this regime is in terms of classical strong gluon fields. The Color Glass Condensate (CGC)
is a semi-classical effective field theory (EFT) for small-x gluons in this regime [12–22].
The CGC has been applied for a variety of processes in proton-nucleus collisions as well as
DIS: structure functions (inclusive [23, 24] and diffractive [25]), semi-inclusive production
(photon [26–29], inclusive single hadron [30–34], dihadron/dijet [35–38], quarkonia [39–
42]), and exclusive processes (deeply virtual Compton scattering and vector meson [43–51],
dijet [52–55], trijet [56–58] production) to name a few (for a recent review see [59]).

Among these various processes, forward particle azimuthal angle correlations are pow-
erful observables to access the small-x structure of hadrons and nuclei at current and future
collider experiments [60]. A paradigmatic example is that of inclusive dihadron production
in d+Au collisions at RHIC, where a suppression in the back-to-back peak relative to p+p

collisions [61, 62] might signal the presence of gluon saturation [35, 63, 64].1 At the future
Electron-Ion Collider (EIC) [66–68] and at the LHeC/FCC-he [69] a similar measurement
has been proposed where a depletion of the back-to-back peak in forward (electron-going)
dihadron production is expected to be observed when going from proton to nuclear deeply
inelastic scattering (DIS) [37, 70]. This measurement at the EIC offers two advantages:
i) there is no need to assume a hybrid dilute-dense factorization in which one convolutes
with PDFs of the proton since in DIS the projectile is a virtual photon whose kinematics
can be reconstructed by measuring the scattered electron, ii) in the correlation (back-to-
back kinematics) limit, it is only sensitive to one type of gluon TMD distribution:2 the
Weizsäcker-Williams (WW) type. Furthermore, measurements of the azimuthal distribu-

1Another mechanism that could provide a suppression of the back-to-back peak is the momentum broad-
ening due to cold nuclear matter energy loss and coherent power corrections, which has been studied for
dihadron production in p + p and d + Au in [65].

2Unlike p/d + p/Au, which is sensitive to eight different types of gluon TMDs [64, 70, 71].
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tion of the momentum imbalance k⊥ of the dihadron/dijet system provide the opportunity
to access the linearly polarized WW gluon TMD. In particular, the elliptic anisotropy in
the angle between the momentum imbalance k⊥ and the relative dijet momentum P⊥ is
proportional to the ratio of linearly polarized to unpolarized gluon pairs [72–74]. Both un-
polarized and linearly polarized WW gluon TMD are expected to be sensitive to saturation
effects at small x as they resum contributions in powers of Qs/k⊥, making the studies of
dihadron and dijet anisotropies promising channels to investigate gluon saturation [37, 38].

While the TMD framework for inclusive dijet production is expected to hold near back-
to-back kinematics, there are important higher twist corrections that must be resummed for
more controlled phenomenological predictions. At small x, the CGC EFT approach to high-
energy QCD [18–20, 22] encodes these higher order corrections in the dipole and quadrupole
correlators of light-like Wilson lines.3 In [1], we computed the inclusive dijet production
differential cross section in the CGC formalism employing the Gaussian approximation [70,
75, 76] and at realistic energies for the future EIC, and observed deviations from the
TMD framework at large momentum imbalance k⊥ ∼ P⊥. In addition, we also found
differences at small momentum imbalance if also Qs ∼ P⊥, which were enhanced in nuclear
DIS due to the enhanced nuclear saturation scale Q2

s ∝ A1/3. These genuine saturation
contributions are different than those existing in the WW gluon TMD at small x which
scale as Qs/k⊥ [70, 74].

When studying power corrections to semi-inclusive processes with several hard and
semi-hard scales involved, it is necessary to distinguish terms according to the ratios they
resum. Indeed, the presence of a semi-hard k⊥ and a saturation scale Qs in addition to the
hard scale Q⊥ implies that power-suppressed terms can scale as k⊥/Q⊥ or Qs/Q⊥, which
can be significantly enhanced when compared to the simpler ΛQCD/Q⊥ twist corrections.
This approach has been recently applied to the production of quark anti-quark dijets in
p + p and p + A collisions in [77]. The present manuscript follows the same spirit of [77]
combined with the results in [78, 79], which allow us to make the distinction of higher
twists into kinematic (k⊥/Q⊥) and genuine (Qs/Q⊥) saturation contributions for the elec-
troproduction of a quark anti-quark dijet. On the level of the differential cross section they
can be schematically identified as follows:

dσCGC = dσTMD +

kinematic︷ ︸︸ ︷
O
(
k⊥
Q⊥

)
︸ ︷︷ ︸

dσITMD

+

genuine︷ ︸︸ ︷
O
(
Qs
Q⊥

)
, (1.1)

where the hard scale Q⊥ of the process is built from the relative momentum P⊥ and the
virtuality of the photon Q, both controlling the dipole size r⊥.

In practice, the so-called genuine saturation terms correspond to the contribution of
genuine higher twist operators. At small x, they correspond to operators with higher pow-
ers of the gluon field strength tensor in the form of gFµν insertions along with gauge links
that maintain gauge invariance. As we will prove in this article, these corrections yield

3Note that only the higher order corrections that are leading in powers of the center-of-mass energy W
are resummed in the CGC EFT.
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powers of Qs/Q⊥ in the CGC because of semi-perturbative gluon loops whose internal
transverse momenta peak around Qs. The ITMD framework resums only the kinematic
power corrections (kinematic twists) leaving aside the genuine saturation contributions.
This framework was originally introduced to study dijet production in proton-nucleus col-
lisions [71, 80, 81], and recently extended for DIS and photo-production ([78, 79]). By
comparing TMD, ITMD and CGC frameworks, we are able to identify the separate roles
of kinematic and genuine higher twists in the production of quark anti-quark dijets at the
EIC, which is the goal of the present manuscript.

This manuscript is organized as follows. In section 2 we begin by briefly reviewing the
results in [82] relating the product of two light-like Wilson lines to a transverse gauge link.
This allow us to generalize the small dipole size expansion in [70], and isolate kinematic
and genuine higher twists. In section 3, we discuss the inclusive production of dijets
in high energy (small-x) DIS. We start with the computation in the CGC formalism
in momentum space, where we also take the opportunity to set up the notations. We
choose to express the differential cross-section in terms of the momentum imbalance k⊥
and the relative momentum P⊥ of the dijet pair. Then, we review the derivation of the
TMD limit for back-to-back dijets (k⊥, Qs � Q⊥) and introduce the WW gluon TMD.
Next, we study the ITMD framework which resums the kinematic twists (in powers of
k⊥/Q⊥), and obtain analytic expressions for the hard factors. We briefly discuss genuine
higher twists and argue that these are parametrically of the order Qs/Q⊥. In section 4,
we discuss the setup for our numerical computation: the initial conditions, the small-
x evolution, the Gaussian approximation for high energy CGC correlators and the WW
gluon TMD, and the computation of the harmonics of the differential cross-section in the
angle φ = φP⊥ − φk⊥ . Our numerical results for the production of quark anti-quark
dijets at realistic EIC kinematics are presented in section 5. We focus on the hadronic
sub-amplitudes γ∗L/T + p/Au → qq̄ + X, and compare the results in the TMD, ITMD
and CGC formalisms. We first present the angle averaged yield (over φP⊥ and φk⊥) as a
function of momentum imbalance k⊥ at different values of P⊥ and virtuality Q. Then, we
focus on the production close to back-to-back kinematics at various values of virtuality and
relative jet momentum. Finally, we present our results for the elliptic and quadrangular
azimuthal anisotropies in the angle φ. In section 6 we summarize our main results and
comment about their implications to the measurements of azimuthal dijets and dihadron
correlations at the EIC.

2 Kinematic and genuine higher twists in the Wilson line pairs

In the CGC, the scattering of a colored particle moving along the minus light-cone direction
through the background field Aµ of a nucleus propagating in the plus light-cone direction
can be characterized (in the eikonal approximation) as a color rotation of the particle given
by the light-like Wilson line:

V (z⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,a(z−, z⊥)ta
)
, (2.1)

– 3 –
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where ta are the generators of SU(3) in the fundamental representation, and A+,a is in
Lorenz gauge ∂µAµ = 0. Here P stands for path ordering such that the operator at
z = −∞ is in the rightmost position, while that at z = +∞ is in the leftmost position.4

For the sake of clarity, we will decorate the gauge field with a tilde Ã when working in
Ã+ = 0 light-cone gauge as opposed to Lorenz gauge ∂µAµ = 0.

At the level of the amplitude, the inclusive production of a quark anti-quark dijet
in the CGC will contain the product of two Wilson lines V (x⊥)V †(y⊥) corresponding to
the color rotation of the quark and the anti-quark, respectively. The seminal work in [70]
established the connection between CGC and TMD amplitudes (cross-sections) by noting
that the first term in the expansion in powers of r⊥ = x⊥ − y⊥ of this product produces
the transverse gauge field Ãi

⊥ in light-cone gauge Ã+ = 0:

1− V (x⊥)V † (y⊥) = igri⊥Ã
i
⊥︸ ︷︷ ︸

TMD

+O
(
r2
⊥

)
, (2.2)

where Ãi
⊥ = i

gV ∂
iV † (see sections 3.1 and 3.2). Such transverse gauge fields can be written

in terms of the field strength tensor F i+, which constitute the building blocks of small-x
gluon TMDs (see appendix F).

It seems natural to wonder what is the behavior of the higher terms in powers of
r⊥ in the expansion in eq. (2.2). This is the approach followed in [83], where part of
the quadratic term in r⊥ has been isolated. However, one quickly realizes that order by
order in the r⊥ expansion, the resulting terms are cumbersome to organize in a way which
preserves explicit QCD gauge invariance for the involved operators. Recent developments
on the CGC/TMD correspondence rely on the possibility to express the product of two
Wilson lines as a transverse gauge link at x− = −∞ [82]:

V (x⊥)V †(y⊥) = P exp
[
−ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)

]
. (2.3)

One can then show (see appendix A for details) that as a consequence of recursive relations
satisfied by the transverse gauge link, it is possible to re-organize all terms beyond the linear
expansion in gÃi

⊥ as follows:

1− V (x⊥)V †(y⊥) = ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)︸ ︷︷ ︸

ITMD

+ g2
∫ x⊥

y⊥

dzi1⊥
∫ z1⊥

y⊥

dzj2⊥Ã
i
⊥(z1⊥)V (z1⊥)V †(z2⊥)Ãj

⊥(z2⊥)︸ ︷︷ ︸
genuine higher twists (g.h.t.)

. (2.4)

We note that this is an exact relation, and that it is organized in a gauge invariant way
circumventing the difficulty introduced by the naive expansion in the dipole size r⊥.

The infinite series obtained via iteration of the right-hand side of eq. (2.4) re-expresses
the multiple scattering of a quark anti-quark pair as a combination of gluon saturation

4Other authors may use the opposite convention for the path ordering. In that case, an additional −
sign would appear in the exponent of the Wilson line.
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(embodied in the strong transverse gauge field Ãi
⊥(z⊥) ∼ 1/g) and multiple scattering

in light-cone gauge.5 In section 3.3 we will show explicitly that when the linear term
in eq. (2.4) is used to calculate the amplitude for quark anti-quark dijet production, it
will only involve the WW gluon TMD (single scattering) but with a modified hard factor
that resums all kinematic power corrections in k⊥/Q⊥ (ITMD). On the other hand, the
higher order terms in the quadratic term (gÃ⊥)2 (higher order operators in gF i+) resum
contributions in powers of Qs/Q⊥, corresponding to double scattering (and beyond through
iteration), which will be discussed in section 3.4.

3 Inclusive dijet production in high energy DIS

In this section, we review the computation of the differential cross section for the production
of a forward quark anti-quark dijet in DIS within the CGC EFT

e(ke) +A(PA)→ e(k′e) + q(k1) + q̄(k2) +X, (3.1)

where A can be proton or a nucleus. The kinematic variables are detailed in table 1.
The leptonic and hadronic parts of this process can be separated by expressing the

production cross-section as follows:

dσe+A→e′+qq̄+X

dW 2dQ2d2k1⊥d2k2⊥dη1dη2
=

∑
λ=L,T

fλ(W 2, Q2) dσγ∗λ+A→qq̄+X

d2k1⊥d2k2⊥dη1dη2
, (3.2)

where λ is the polarization of the exchanged virtual photon, Q2 is its virtuality, and W 2 is
the center of mass energy per nucleon of the γ∗−A system. The leptonic part is contained
in the photon fluxes:

fL
(
W 2, Q2

)
= αem
πQ2sy

(1− y) , (3.3)

fT
(
W 2, Q2

)
= αem

2πQ2sy

[
1 + (1− y)2

]
, (3.4)

where the inelasticity is given by y = W 2+Q2−m2
n

s−m2
n

and
√
s is the center of mass energy per

nucleon in the e+A collision.
In the present work, we focus on the hadronic content of the scattering encoded in the

sub-process:

γ∗λ(q) +A(PA)→ q(k1) + q̄(k2) +X. (3.5)

We will work in light-cone coordinates,6 and in a frame where the proton or nucleus prop-
agates in the plus light-cone direction and the virtual photon in the minus light-cone

5We note that the physical picture of gluon saturation is gauge dependent. In Lorenz gauge ∂µAµ = 0,
high gluon-density manifests as multiple scattering encoded in the Wilson lines. On the other hand, in light-
cone gauge Ã+ = 0 the phenomenon of gluon saturation becomes manifest in the WW gluon distribution,
which represents the gluon number density (see e.g. Sections 2.5 and 2.6 in the review article [18]).

6We follow the convention a± = 1√
2 (a0 ± a3), such that aµbµ = a+b− + a−b+ − a⊥ · b⊥, where a⊥

and b⊥ are the 2-dimensional transverse vectors. We will denote the magnitude of transverse vectors as
a⊥ = (a⊥ · a⊥)1/2.
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PA nucleus four-momentum
Pn nucleon four-momentum
ke (k′e) incoming (outgoing) electron four-momentum
q = ke − k′e virtual photon four-momentum
k1,2 quark (anti-quark) four-momentum
z1,2 quark (anti-quark) longitudinal momentum fraction
η1,2 quark (anti-quark) rapidity
k1,2⊥ quark (anti-quark) transverse momentum
k⊥ = k1⊥ + k2⊥ quark anti-quark dijet transverse momentum imbalance
P⊥ = z2k1⊥ − z1k2⊥ quark anti-quark dijet relative transverse momentum
s = (Pn + ke)2 nucleon-electron system center of momentum energy squared
W 2 = (Pn + q)2 nucleon-virtual photon system center of momentum energy squared
m2
n = P 2

n nucleon invariant mass squared
M2
qq̄ = (k1 + k2)2 invariant mass squared of the dijet system.

Q2 = −q2 virtuality squared of the exchanged photon

Table 1. Kinematic variables.

direction:

PA =
(
P+
A ,

m2
A

2P+
A

,0⊥

)
, (3.6)

q =
(
− Q2

2q− , q
−,0⊥

)
, (3.7)

with mA the proton (nucleus) mass. The momenta of the produced q and q̄ are given by

k1 =
(
k2

1⊥
2k−1

, k−1 ,k1⊥

)
, (3.8)

k2 =
(
k2

2⊥
2k−2

, k−2 ,k2⊥

)
, (3.9)

respectively. We will denote the longitudinal momentum fractions z1,2 = k−1,2/q
−, and we

will neglect the quark masses.

3.1 Inclusive quark anti-quark production in the CGC

In the CGC EFT, the large-x degrees of freedom in the nucleus are treated as stochastic
color sources ρaA which generate the strong classical gluon field Aµ, characterizing the
small-x gluon content of the nucleus.

For a fast moving nucleus along the plus light-cone direction, the color sources generate
a current of the form

Jµ(x−,x⊥) = δµ+ρA(x−,x⊥) , (3.10)

which is independent of light-cone time x+.

– 6 –
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It can be easily verified that the Yang-Mills equations [Dµ, F
µν ] = Jν are satisfied by

the gauge field

A+(x) = α(x−,x⊥), A− = Ai = 0 , (3.11)

where α(x−,x⊥) solves the Poisson equation

∇2
⊥α(x−,x⊥) = −ρA(x−,x⊥) . (3.12)

The solution in eq. (3.11) is in Lorenz gauge ∂µAµ = 0.
An infinite set of solutions Ã can be found by application of gauge transformations

Ãµ(x) = Ω(x)Aµ(x)Ω−1(x)− 1
ig

Ω(x)∂µΩ−1(x) . (3.13)

One notable choice is the light-cone gauge Ã+ = 0, which can be obtained from the gauge
transformation

Ωx⊥(x−) = P exp
(
ig

∫ +∞

x−
dz−A+(z−,x⊥)

)
. (3.14)

In such a case one obtains a solution in terms of a purely transverse gauge field:

Ã
i
⊥(x−,x⊥) = i

g
Ωx⊥(x−)∂iΩ−1

x⊥
(x−), Ã+ = Ã− = 0 . (3.15)

Note that this choice relies implicitly on the boundary condition Ãi
⊥(+∞,x⊥) = 0 which

is allowed by the freedom of the residual subgauge condition in light-cone gauges. It will
be useful to denote the transverse gauge field at x− = −∞ by simply suppressing the
light-cone argument:

Ã
i
⊥(x⊥) ≡ Ãi

⊥(−∞,x⊥) = i

g
V (x⊥)∂iV †(x⊥) , (3.16)

where we used Ωx⊥(x− = −∞) = V (x⊥).
The expectation value of any observable in the CGC is then computed in perturbation

theory in the presence of the background field Aµ for a given configuration of sources ρA,
and then averaging over all possible configurations:

〈O[ρA]〉Y =
∫

[DρA]WY [ρA]O[ρA] , (3.17)

where WY [ρA] is a gauge invariant weight functional for the configuration of ρA, at the
rapidity scale Y = log(1/x) (see also ref. [84] for a discussion of different evolution rapidity
variables). Here x is the typical longitudinal momentum fraction probed by the observable.

Following this prescription, the differential cross-section reads:

dσγ∗λ+A→qq̄+X

d2k1⊥d2k2⊥dη1dη2
= 1

4(2π)6
1

2q− (2π)δ(k−1 + k−2 − q
−)
〈
Mλ†

CGC[ρA]Mλ
CGC[ρA]

〉
Y
,

(3.18)

where Mλ
CGC[ρA] is the CGC amplitude for the production of quark anti-quark in the

collision of a virtual photon γ∗ with the external classical background field (shock-wave)
produced by the source configuration ρA characterizing the nucleus A.

– 7 –
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γ∗

k2

k1

l − q

l

q

Figure 1. CGC EFT diagram for the production of a quark anti-quark pair in DIS. The red
rectangle and crosses represent the effective interaction of the quark and the anti-quark with the
background field representing the small-x content of the nucleus.

3.1.1 Amplitude

At leading order in the CGC, the forward production of a dijet pair proceeds by the splitting
of the virtual photon γ∗ into a quark anti-quark dipole that subsequently scatters off the
field Aµ, and then fragments into two jets (see figure 1).7

The result for the computation of quark anti-quark production in DIS within the CGC
is well-known and has been obtained in [70, 72]. Here we briefly review the computation
of the amplitude for this process following momentum space Feynman rules [86]. The
expression for the amplitude is

Sλ[ρA] =
∫ d4l

(2π)4 ū(k1)T q(k1, l)S0(l) (−ieef/ε(q, λ))S0(l − q)T q(l − q,−k2)v(k2) , (3.19)

where we followed the standard momentum space Feynman rules of QCD+QED in ∂µAµ =
0 gauge for QCD, supplemented by the effective CGC vertex for quark interaction with the
back-ground field. The Feynman propagator for a free massless quark reads

S0(l) = i/l

l2 + iε
, (3.20)

and the effective CGC vertex for the eikonal multiple scattering of a quark (anti-quark) off
the color field Aµ [87, 88]:

T qij(l, l
′) = (2π)δ(l− − l′−)γ−sgn(l−)

∫
d2z⊥e

−i(l⊥−l′⊥)·z⊥V
sgn(l−)
ij (z⊥) , (3.21)

where i, j represent the color indices, and l and l′ are the outgoing and incoming momenta of
the quark, and the light-like Wilson line in the fundamental representation was introduced
in eq. (2.1). The superscript sgn(p) in eq. (3.21) denotes matrix exponentiation: V +1(z⊥) =
V (z⊥) and V −1(z⊥) = V †(z⊥), where the latter follows from the unitarity of V (z⊥).

It is convenient to work in A−QED = 0 light-cone gauge for the QED part of the ampli-
tude and in a frame where the transverse momentum of the photon is 0⊥. The polarization

7We expect that the contribution from the quark initiated channel γ∗ + q → q + g to be negligible in
low-x kinematics because of the dominance of gluon exchanges. For a recent study of this process and the
impact of gluon saturation and multiple parton scattering see [85].
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vectors for the virtual photon read8

ελ=0,µ =
(
Q

q−
, 0,0⊥

)
, (3.22)

ελ=±1,µ =
(
0, 0, ελ⊥

)
, (3.23)

where ε±1
⊥ = 1√

2(1,±i), λ = 0 denotes the longitudinal polarization, and λ = ±1 the two
transverse polarizations.

Subtracting the non-interacting piece and factoring out an overall delta function 2πδ(k−1 +
k−2 − q−), the amplitude can be organized as follows

Mλ
CGC[ρA] = eefq

−

π

∫
d2x⊥d2y⊥e

−ik1⊥·x⊥e−ik2⊥·y⊥N λ
σσ′(x⊥ − y⊥)

[
1− V (x⊥)V †(y⊥)

]
,

(3.24)

with the perturbative factor:

N λ
σσ′(r⊥) = −i(2q−)

∫ d4l

(2π)2
Nλ
σσ′(l)eil⊥·r⊥δ(k− − l−)
(l2 + iε)((q − l)2 + iε) , (3.25)

Nλ
σσ′(l) = 1

(2q−)2

[
ūσ(k1)γ−/l/ε(q, λ)(/q − /l)γ−vσ′(k2)

]
, (3.26)

where σ and σ′ are the helicities of the quark and anti-quark respectively.
The computation of the perturbative factors is straightforward, we briefly outline it in

appendices C and D. We find

N λ=0
σσ′ (r⊥) = 2(z1z2)3/2QK0(εr⊥)δσ,−σ′ , (3.27)

N λ=±1
σσ′ (r⊥) = (z1z2)1/2 [(z1 − z2)− σλ] iεr⊥ · ε

λ
⊥

r⊥
K1(εr⊥)δσ,−σ′ , (3.28)

where ε2 = z1z2Q
2.

3.1.2 Differential cross-section

The color structure obtained by squaring the amplitude, summing over the colors of the
quark and the anti-quark in the final state, and averaging over the different color charge
configurations ρA is given by

ΞY
(
x⊥,y⊥;y′⊥x′⊥

)
= 1− S(2) (x⊥,y⊥)− S(2) (y′⊥,x′⊥)+ S(4) (x⊥,y⊥;y′⊥,x′⊥

)
, (3.29)

where we define the CGC average of the dipole and quadrupole operators respectively as

S(2)(x⊥,y⊥) = 1
Nc

〈
Tr
[
V (x⊥)V †(y⊥)

]〉
Y
, (3.30)

S(4) (x⊥,y⊥;y′⊥,x′⊥
)

= 1
Nc

〈
Tr
[
V (x⊥)V †(y⊥)V (y′⊥)V †(x′⊥)

]〉
Y
. (3.31)

8In the Lorenz gauge ∂µAµ = 0 for QED, the longitudinally photon polarization takes the form ελ=0,µ =(
Q

2q− ,
q−

Q
,0⊥
)
.
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The impact factor is obtained by squaring the perturbative factor in eq. (3.25) and summing
over the helicities of the quark and the anti-quark in the final state:

Rλ
(
r⊥, r

′
⊥
)

=
∑
σ,σ′

N †λσσ′
(
r′⊥
)
N λ
σσ′ (r⊥) . (3.32)

The differential cross-section for quark anti-quark production in the CGC is then

dσγ
∗
λ+A→qq̄+X

CGC
d2k1⊥d2k2⊥dη1dη2

=
αeme

2
fNcδz

(2π)6

∫
d8Π e−ik1⊥·(x⊥−x′⊥)e−ik2⊥·(y⊥−y′⊥)

× ΞY
(
x⊥,y⊥;y′⊥x′⊥

)
Rλ

(
x⊥ − y⊥,x′⊥ − y′⊥

)
,

(3.33)

where αem = e2/(4π) is the electromagnetic coupling constant, δz = δ(1 − z1 − z2) is
an overall minus light-cone momentum conserving delta function, and for convenience we
defined the measure:

d8Π = d2x⊥d2y⊥d2y′⊥d2x′⊥ . (3.34)

The impact factors corresponding to longitudinally and transversely polarized photons can
be easily obtained by inserting eqs. (3.27) and (3.28) in eq. (3.32):

RL
(
r⊥, r

′
⊥
)

= 8 (z1z2)3QK0 (εr⊥)QK0
(
εr′⊥

)
, (3.35)

RT
(
r⊥, r

′
⊥
)

= 2 (z1z2)
[
z2

1 + z2
2

] r⊥ · r′⊥
r⊥r

′
⊥
εK1 (εr⊥) εK1

(
εr′⊥

)
. (3.36)

For transversely polarized photon contributions we averaged over both polarizations λ =
±1. The obtained differential cross section agrees with the previous calculations presented
in refs. [70, 72, 73].

A convenient choice of momentum variables to characterize the production of dijets is

k⊥ = k1⊥ + k2⊥ , (3.37)
P⊥ = z2k1⊥ − z1k2⊥ , (3.38)

which are conjugate to the coordinate variables:

b⊥ = z1x⊥ + z2y⊥ , (3.39)
r⊥ = x⊥ − y⊥ , (3.40)

respectively the dipole impact parameter and the dipole relative vector.
The momentum imbalance k⊥ measures the deviations of the dijet system from being

back-to-back in the transverse plane, while the relative momentum P⊥ is closely related
to the invariant mass of the dijet pair

M2
qq̄ = (k1 + k2)2 = P 2

⊥
z1z2

. (3.41)
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This pair of momentum variables is also useful to establish the relation between the CGC
EFT and the TMD framework as will be shown in the next section.

With this alternative choice of coordinates, the differential cross-section is written as

dσγ
∗
λ+A→qq̄+X

CGC
d2P⊥d2k⊥dη1dη2

=
αeme

2
fNcδz

(2π)6

∫
d8Π̃ e−iP⊥·(r⊥−r

′
⊥)e−ik⊥·(b⊥−b

′
⊥)

Ξ̃Y (r⊥, b⊥, r′⊥, b′⊥)Rλ(r⊥, r′⊥) , (3.42)

where the measure is defined as

d8Π̃ = d2b⊥d2r⊥d2b′⊥d2r′⊥ , (3.43)

and

Ξ̃Y
(
r⊥, b⊥, r

′
⊥, b

′
⊥
)

= ΞY
(
b⊥ + z2r⊥, b⊥ − z1r⊥; b′⊥ − z1r

′
⊥, b

′
⊥ + z2r

′
⊥
)
, (3.44)

with the right-hand side defined in eq. (3.29).

3.2 The TMD limit

The transverse momentum dependent (TMD) framework for the inclusive production of a
quark anti-quark pair is expected to hold when the momentum imbalance is small relative
to the typical transverse momenta of the q and q̄, i.e., k⊥ � P⊥. In coordinate space, this
condition is expected to be equivalent to the small dipole expansion r⊥ � b⊥ (see [70]),
although this assertion will be corrected in section 3.4. Such an expansion applied to the
Wilson line correlators in the CGC amplitude (eq. (3.24)) results in:[

1− V (x⊥)V † (y⊥)
]

= −rj⊥
[
V (b⊥) ∂jV † (b⊥)

]
+O

(
r2
⊥

)
. (3.45)

The correlator appearing on the right hand side is the pure gauge transverse gauge field
one would obtain if working in the Ã+ = 0 gauge [89]:

Ã
i
⊥(b⊥) = i

g

[
V (b⊥)∂iV †(b⊥)

]
, (3.46)

as introduced in section 3.1.
Inserting the result of eq. (3.45) in eq. (3.24) and ignoring higher order terms in r⊥

(or equivalently in 1/Q⊥), we obtain the amplitude in the TMD framework:

Mλ
TMD = 2geefq− Iλ,i(P⊥)Ãi

⊥(k⊥) , (3.47)

where

Iλ,iσσ′(P⊥) =
∫ d2r⊥

2π e−iP⊥·r⊥N λ
σσ′(r⊥)iri⊥ , (3.48)

Ãi
⊥(k⊥) =

∫
d2b⊥e

−ik⊥·b⊥Ã
i
⊥(b⊥) . (3.49)
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The perturbative factors in eq. (3.48) for longitudinally and transversely polarized photons
are given respectively by:

Iλ=0,i
σσ′ (P⊥) = 4(z1z2)3/2Qδσ,−σ′

P i
⊥

(P 2 + ε2)2 , (3.50)

Iλ=±1,i
σσ′ (P⊥) = (z1z2)1/2 [(z2 − z1) + σλ] 1

P 2 + ε2

(
δij −

2P i
⊥P

j
⊥

P 2 + ε2

)
ελ,j⊥ . (3.51)

Then the differential cross-section reads:

dσγ
∗
λ+A→qq̄+X

TMD
d2P⊥d2k⊥dη1dη2

= αsαeme
2
fNcδzHij,λTMD(P⊥)xGij(x,k⊥) , (3.52)

where the hard factor is

Hij,λTMD(P⊥) = 1
2
∑
σ,σ′

I†λ,iσσ′ (P⊥)Iλ,jσσ′(P⊥) , (3.53)

and the soft factor is the Weizsäcker-Williams [70, 90] gluon TMD defined as (see ap-
pendix F for more details):

xGij(x,k⊥) = 4
(2π)3

〈
Tr
[
Ã†,i⊥ (k⊥)Ãj

⊥(k⊥)
]〉
x
. (3.54)

While at large k⊥, one expects a power tail xGii(x,k⊥) ∼ 1/k2
⊥ from perturbative QCD, at

smaller momentum imbalance k⊥ . Qs(x) the saturation framework predicts logarithmic
behavior xGii(x,k⊥) ∼ log

(
Q2
s(x)/k2

⊥
)
[72]. This behavior at low momentum imbalance

results in a nuclear suppression of back-to-back dihadron production in DIS [37].
The differential cross-section for quark anti-quark production in DIS within the TMD

limit is given by [70, 72, 73]:

dσγ
∗
L+A→qq̄+X

TMD
d2P⊥d2k⊥dη1dη2

= αsαeme
2
fNcδz (z1z2)3 8Q2P 2

⊥(
P 2
⊥ + ε2

)4

×
[
xG0 (x, k⊥) + xh0 (x, k⊥) cos 2φ

]
, (3.55)

dσγ
∗
T+A→qq̄+X

TMD
d2P⊥d2k⊥dη1dη2

= αsαeme
2
fNcδz (z1z2)

[
z2

1 + z2
2

] P 4
⊥ + ε4(

P 2
⊥ + ε2

)4

×

xG0 (x, k⊥)− 2ε2P 2
⊥(

P 4
⊥ + ε4

)xh0 (x, k⊥) cos 2φ

 , (3.56)

where φ is the angle between P⊥ and k⊥, and the WW correlator has been decomposed
into trace and traceless parts:

xGij (x,k⊥) = 1
2δ

ijxG0 (x, k⊥) + 1
2

(
2ki⊥k

j
⊥

k2
⊥
− δij

)
xh0 (x, k⊥) . (3.57)
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The trace and traceless parts are known as unpolarized and linearly polarized gluon WW
TMD distributions, respectively. They obey the inequality

xh0(x, k⊥) ≤ xG0(x, k⊥) , (3.58)

which renders the cross-sections in eqs. (3.55) and (3.56) positive [3].
Note that in the TMD framework the elliptic anisotropy defined as

v2,λ =
∫

dφP⊥dφk⊥e
2i(φP⊥−φk⊥) dσγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2

/∫
dφP⊥dφk⊥

dσγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
,

(3.59)

is proportional to the ratio of the linearly polarized to the unpolarized distribution [72, 74]:

v2,L = xh0 (x, k⊥)
xG0 (x, k⊥) , (3.60)

v2,T = − 2ε2P 2
⊥

P 4
⊥ + ε4

xh0 (x, k⊥)
xG0 (x, k⊥) . (3.61)

3.3 The improved TMD framework: resumming kinematic twists

While the CGC EFT takes into account all possible twist corrections that are not sup-
pressed by a factor of 1/W , the so-called small-x improved TMD framework (ITMD for
short) [80] only resums specific power corrections which correspond to kinematic corrections
in the hard sub-amplitude: while the TMD framework expresses the observable as

dσ ∼ Hij,λTMD (P⊥)xGij (x,k⊥) , (3.62)

the ITMD framework rewrites it as

dσ ∼ Hij,λITMD(P⊥,k⊥)xGij(x,k⊥) , (3.63)

with Hij,λITMD(P⊥,0⊥) = Hij,λTMD(P⊥). It is crucial that the distribution xGij is the same
for both schemes. Indeed, the ITMD framework neglects higher order corrections gÃi

⊥ in
the operators that appear in the CGC EFT. Unlike the TMD approximation, where one
expands in r⊥, our starting point is the truncation of the expansion introduced in section 2
(see eq. (2.4)): [

1− V (x⊥)V †(y⊥)
]

ITMD
= ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥) . (3.64)

This expression can be cast into the following form (see appendix A):

[
1− V (x⊥)V †(y⊥)

]
ITMD

= iri⊥

∫
d2v⊥

∫ d2`⊥
(2π)2 e

−i`⊥·v⊥ gÃ
i
⊥(v⊥)

(
ei`⊥·x⊥ − ei`⊥·y⊥

i`⊥ · r⊥

)
.

(3.65)
When plugged into the amplitude from eq. (3.24), it yields:

Mλ
ITMD = 2geefq−J λ,i(P⊥,k⊥)Ãi

⊥(k⊥) , (3.66)
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where Ãi
⊥(k⊥) has been defined in eq. (3.49) and the hard factor is defined as

J λ,iσσ′(P⊥,k⊥) =
∫ d2r⊥

2π e−iP⊥·r⊥N λ
σσ′(r⊥) iri⊥

(
eiz2(k⊥·r⊥) − e−iz1(k⊥·r⊥)

ik⊥ · r⊥

)
. (3.67)

Note that by neglecting powers of k⊥ · r⊥ (or equivalently powers in k⊥/Q⊥) one recovers
eq. (3.48) and thus eq. (3.66) reduces to the TMD limit in eq. (3.47).

The differential cross-section for the production of an quark anti-quark pair in the
ITMD framework reads:

dσγ
∗
λ+A→qq̄+X

ITMD
d2P⊥d2k⊥dη1dη2

= αsαeme
2
fNcδzHij,λITMD(P⊥,k⊥)xGij(x,k⊥) , (3.68)

where

Hij,λITMD(P⊥,k⊥) = 1
2
∑
σ,σ′

J †λ,iσσ′ (P⊥,k⊥)J λ,jσσ′(P⊥,k⊥) . (3.69)

The computation is almost identical to that in the TMD framework, except for the hard
factor in eq. (3.69), whose dependence on k⊥ resums kinematic power corrections in k⊥/Q⊥.
The hard factor in the ITMD framework (eq. (3.67)) can be computed fully analytically
(see appendix E for details). When the virtual photon is longitudinally polarized, we find

J λ=0,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)3/2Qδσ,σ′

 ki1⊥ − ki2⊥(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
)

+

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

−

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 2

 −k1⊥ · k2⊥ + ε2(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
)
 , (3.70)

and for the transversely polarized photon, we have

J λ=±1,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)1/2 [(z2 − z1) + σλ] δσ,σ′ελ=±1,j

⊥

×

ε
2
(
δijk2

⊥ − ki⊥k
j
⊥

)
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

+ 1
k2
⊥

ε2
(
δijk2

⊥ − ki⊥k
j
⊥

)
kk⊥

X 2

(
kk1⊥

k2
1⊥ + ε2 + kk2⊥

k2
2⊥ + ε2

)

+ 1
k2
⊥

(
ki⊥δ

jk + kj⊥δ
ik − kk⊥δij

)( kk1⊥
k2

1⊥ + ε2 + kk2⊥
k2

2⊥ + ε2

)}
, (3.71)

where we used k1⊥ = P⊥ + z1k⊥, k2⊥ = −P⊥ + z2k⊥ (see eqs. (3.37) and (3.38)), and
we defined:

X 2 = P 2
⊥k

2
⊥ − (P⊥ · k⊥)2 + ε2k2

⊥ . (3.72)
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These expressions will be the ones used in our numerical evaluation of the ITMD differential
cross-section.9 Some interesting limits are discussed in appendix E.

3.4 Genuine higher twists

In the landmark article on the equivalence between CGC observables and TMD-factorized
observables [70], the notion of the correlation limit was introduced as a means to justify
taking the Taylor expansion from which TMD distributions emerge as correlators of Wilson
lines and derivatives of Wilson lines. While this limit does correspond to the TMD limit,
there is an additional subtlety worth discussing. Indeed, it is common to identify the corre-
lation limit with the back-to-back kinematic limit. Given that r⊥ and b⊥ are respectively
Fourier conjugated to P⊥ and k⊥, in the k⊥ � P⊥ limit one can justify assuming r⊥ � b⊥.
More recent insights on the CGC/TMD correspondence [79] have revealed the limit of this
hypothesis. Because in CGC observables dipole sizes appear both in the non-perturbative
correlators and in the hard subamplitudes, powers of r⊥ can actually be enhanced by pow-
ers of the saturation scale Qs via non-perturbative effects in the target. Assuming that the
k⊥ � P⊥ limit (or more precisely k⊥ � Q⊥) and the r⊥ � b⊥ limit are indistinguishable is
tantamount to neglecting all powers of Qs/Q⊥. As we will show in this section, there is ac-
tually a non-zero contribution from genuine higher twists even in the k⊥ → 0 limit. These
Qs/Q⊥ corrections are taken into account neither in the TMD nor ITMD framework.10

The quadratic term in eq. (2.4) can be cast into the following form (see appendix A):

[
1− V (x⊥)V † (y⊥)

]
g.h.t

=
∫ d2l1⊥

(2π)2
d2l2⊥

(2π)2

∫
d2v1⊥d2v2⊥e−i(l1⊥·v1⊥)−i(l2⊥·v2⊥) ri⊥r

j
⊥

i (l2⊥ · r⊥)

×
(

ei(l1⊥+l2⊥)·x⊥ − ei(l1⊥+l2⊥)·y⊥

i (l1⊥ + l2⊥) · r⊥
− ei(l2⊥·y⊥) ei(l1⊥·x⊥) − ei(l1⊥·y⊥)

i (l1⊥ · r⊥)

)

× g2Ai (v1⊥)V (v1⊥)V † (v2⊥)Aj (v2⊥) . (3.73)

The last line in the r.h.s. of this equation is a building block to construct genuine higher
twist TMD distributions, e.g. gauge invariant distributions with 4 field strength tensors
carrying non-zero transverse momenta, but it is worth noting that the V (v1⊥)V †(v2⊥)
operator could also be recursively expanded in powers of gÃi

⊥ ad nauseam. When plugged
into the CGC amplitude from eq. (3.24), we obtain the following (g2Ã

2
⊥)-suppressed

9While this work was in progress, the hard ITMD factors were computed independently in [91]. We have
verified that both results are equivalent.

10Recall the saturation scale Qs appears in the TMD (and ITMD) framework only as powers Qs/k⊥ in
the WW gluon TMD.
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contribution:

Mλ
g.h.t. = eefq

−g2

π

∫ d2`⊥

(2π)2

∫
d2v1⊥d2v2⊥e−i(`⊥·v1⊥)−i(k⊥−`⊥)·v2⊥

×Ai (v1⊥)V (v1⊥)V † (v2⊥)Aj (v2⊥) (3.74)

×
∫

d2r⊥e−i(k1⊥·r⊥)N λ
σσ′ (r⊥)

×
ri⊥r

j
⊥

i (k⊥ − `⊥) · r⊥

(
ei(k⊥·r⊥) − 1
i (k⊥ · r⊥) −

ei(`⊥·r⊥) − 1
i (`⊥ · r⊥)

)
.

We can now see the mechanism through which a Qs/P⊥ correction emerges from such a
contribution. The 2 gluons in the amplitude both carry transverse momenta, whose sum is
k⊥. The momentum difference `⊥, which is Fourier conjugated to the difference in positions
v1⊥ and v2⊥, provides an additional loop variable. In CGC descriptions for the target, the
momentum integral will typically peak around |`⊥| ∼ Qs, while due to the hard factors
the dipole sizes peak around r⊥ ∼ 1/Q⊥. Overall, every power of (`⊥ · r⊥) yields a Qs/Q⊥
correction, regardless of the magnitude of k⊥. Taking the limit k⊥ → 0⊥ (back-to-back)
in the hard subfactor, we get the non-zero correction

Mλ
g.h.t.

∣∣∣
k⊥→0⊥

= eefq
−g2

π

∫ d2`⊥

(2π)2

∫
d2v1⊥d2v2⊥e−i(`⊥·v1⊥)−i(k⊥−`⊥)·v2⊥

×Ai (v1⊥)V (v1⊥)V † (v2⊥)Aj (v2⊥)

×
∫

d2r⊥e−i(P⊥·r⊥)N λ
σσ′ (r⊥)

×
ri⊥r

j
⊥

i (`⊥ · r⊥)

(
ei(`⊥·r⊥) − 1− i (`⊥ · r⊥)

i (`⊥ · r⊥)

)
. (3.75)

We finally see the difference between the so-called correlation (small dipole) limit and the
kinematic back-to-back limit: genuine higher twists contribute in the latter but not in
the former. Let us illustrate this more concretely by taking the leading power of Q⊥ in
eq. (3.75). From the previous discussion, we know that each power of (`⊥ · r⊥) yields a
power correction. From the leading term of such an expansion, we get

Mλ
g.h.t.

∣∣∣
k⊥→0⊥

' eefq
−g2

2π

∫
d2b⊥e−i(k⊥·b⊥)Ai(b⊥)Aj(b⊥)

∫
d2r⊥e−i(P⊥·r⊥)ri⊥r

j
⊥N

λ
σσ′(r⊥).

(3.76)

It is particularly revealing to compare this to the TMD amplitude, given by

Mλ
TMD = eefq

−g

π

∫
d2b⊥e−i(k⊥·b⊥)Ai(b⊥)

∫
d2r⊥e−i(P⊥·r⊥)iri⊥N λ

σσ′(r⊥). (3.77)

We immediately see that in Mλ
g.h.t., the hard factor is enhanced by a power of r⊥ hence

suppressed by a power of the hard scale after the integral is taken. This additional power
is compensated by the fact that the operator now has its dimension (hence its twist)
increased by 1 due to the presence of an additional gAj insertion. The action of a higher
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twist operator on target states will be one higher power of the typical target scale: Qs in
the CGC or ΛQCD in dilute schemes.

To sum up this section: genuine higher twist corrections are suppressed by a power of
the ratio between a target scale and a hard scale, and they contribute to the observable
regardless of how k⊥ compares to P⊥ or Q. In the CGC, we expect the ratio to be linear
in Qs, which means comparing CGC predictions to TMD predictions for dense targets in
the exact back-to-back limit would provide a probe for genuine saturation effects.

4 Numerical setup

4.1 Initial conditions and small-x evolution

The CGC target average of the dipole and quadrupole operators, eqs. (3.30) and (3.31),
are necessary ingredients to evaluate the dijet production cross section (3.33), and are
defined as correlators of Wilson lines V (x⊥). The Weizsäcker-Williams gluon distribution,
eq. (3.54), can also be written in terms of the dipole operator (and its derivatives) as
we will show explicitly below. The energy (or momentum fraction x) dependence of the
Wilson lines is given by the JIMWLK evolution equation [15–17, 89, 92–94]. In the so-called
planar limit where the number of colors Nc is considered large enough to neglect 1/(N2

c −1)
corrections, it reduces to the Balitsky-Kovchegov (BK) evolution equation [95, 96], which
is a closed equation to describe the energy evolution of the dipole operator.

The JIMWLK evolution of Wilson lines on a transverse lattice can be solved numer-
ically [97–100], which would allow one to directly evaluate the 2- and 4-point correlators,
eqs. (3.30) and (3.31). However, this is computationally demanding, and instead we will
employ the Gaussian approximation discussed in section 4.2 which allows one to express
higher point correlators in terms of the dipole correlator only.11

We use the dipole-target scattering amplitude obtained in ref. [32] (see also ref. [23]).
Here, at the initial x = 0.01 the functional form of the dipole operator (in case of proton
targets) is obtained from a McLerran-Venugopalan model [12] based parametrization and
written as (see also refs. [101, 102])

S(2)(x⊥,y⊥)x=0.01 = exp
[
−
r2
⊥Q

2
s,0

4 ln
(

1
r⊥ΛQCD

+ e

)]
. (4.1)

The dipole amplitude at x < 0.01 is obtained by solving the BK equation over Y = ln 0.01
x

units of rapidity, including running coupling corrections [103]. The free parameters (Q2
s,0,

the scale of the running coupling in coordinate space and the proton transverse area S⊥)
are determined in ref. [32] by performing a fit to the proton structure function data from
HERA [104]. We note that there has recently been progress to promote the structure
function calculations to next-to-leading order accuracy [24, 105–111], but for consistency
we use the leading order result from ref. [32] in our leading order calculations.

11The calculation of WW gluon distribution has been done beyond the Gaussian approximation in [74].
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To generalize the dipole-proton operator S(2) to describe the interaction with a heavy
nucleus, we again follow ref. [32]. At the initial condition, the dipole operator is written as

S(2)(x⊥,y⊥)x=0.01 = exp
[
−S⊥ATA(b⊥)

r2
⊥Q

2
s,0

4 ln
(

1
r⊥ΛQCD

+ e

)]
, (4.2)

with S⊥ = 18.81 mb, and TA is the spatial density profile obtained from the Woods-
Saxon distribution. To obtain the dipole amplitude at smaller x, the BK equation is
solved at fixed impact parameter. This approach results in vanishing nuclear effects in
the dilute region and successful phenomenology, see e.g. refs. [42, 112, 113]. Since the
determination of the impact parameter is subtle in electron-nucleus collisions (see however
refs. [114, 115]), in this work (as in ref. [1]) we use an impact parameter independent
dipole amplitude, obtained by evaluating the dipole at the median impact parameter 〈b⊥〉
defined as 〈b⊥〉 =

∫
d2b⊥b⊥TA(b⊥) with the normalization

∫
d2b⊥TA(b⊥) = 1, as a proxy

for minimum bias collisions. This results in a nuclear oohmp factor of the effective initial
nuclear saturation scale

Q2
s,A0 = S⊥ATA(〈b⊥〉) Q2

s,0 , (4.3)

relative to the proton saturation scale. For gold nuclei, we find S⊥ATA(〈b⊥〉) ≈ 3.1.

4.2 Gaussian approximation for high energy correlators

Assuming that the color charges in the target are Gaussian distributed both at the initial
condition and after the small-x evolution, it becomes possible to express all higher point
correlators in terms of the two-point correlator only. This is referred to as a Gaussian
approximation or Gaussian truncation [70, 75, 76], and is used in this work to express
the quadrupole operator (3.31) in terms of the dipole operator (3.30) satisfying the BK
evolution as discussed in the previous section. The validity of the Gaussian approximation
has been numerically confirmed in ref. [116] by comparing the approximatively calculated
quadrupole operator to the one obtained from JIMWLK-evolved Wilson lines, and analyt-
ically justified in [117]. It has also been used for example in phenomenological analyses of
multi particle production [35, 118, 119] and to evaluate the higher point correlators in the
next-to-leading order BK evolution equation [110, 120] in ref. [121]. Following ref. [70], the
quadrupole operator in the Gaussian approximation can be written as

S
(4)
Y

(
x⊥,y⊥;y′⊥,x′⊥

)
= exp

(
−ΓY (x⊥ − y⊥)− ΓY

(
y′⊥ − x′⊥

))
[(√

∆Y + FY (x⊥,y′⊥;y⊥,x′⊥)
2
√

∆Y
− FY (x⊥,y⊥;y′⊥,x′⊥)√

∆Y

)
exp

(
Nc

4
√

∆Y

)

+
(√

∆Y − FY (x⊥,y′⊥;y⊥,x′⊥)
2
√

∆Y
+ FY (x⊥,y⊥;y′⊥,x′⊥)√

∆Y

)
exp

(
−Nc

4
√

∆Y

)]

× exp
(
−Nc

4 FY
(
x⊥,y

′
⊥;y⊥,x′⊥

)
+ 1

2Nc
FY

(
x⊥,y⊥;y′⊥,x′⊥

))
. (4.4)
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Here we used the following definitions:

ΓY (x⊥ − y⊥) = − 2
CF

lnS(2)(x⊥,y⊥) (4.5)

∆Y = F 2
Y (x⊥,y′⊥;y⊥,x′⊥) + 4

N2
c

FY (x⊥,y⊥;y′⊥,x′⊥)FY (x⊥,x′⊥;y′⊥,y⊥),

(4.6)

FY (x⊥,y⊥;y′⊥,x′⊥) = 1
CF

ln
[
S(2)(x⊥ − y′⊥)S(2)(y⊥ − x′⊥)
S(2)(x⊥ − x′⊥)S(2)(y⊥ − y′⊥)

]
, (4.7)

where CF = (N2
c − 1)/(2Nc) = 4/3 is the fundamental Casimir. Note that we assumed

that the dipole only depends on its relative vector and not the impact parameter.
The Weizsäcker-Williams distribution from eq. (3.54) can be conveniently written in

terms of Γ and its derivatives as [70, 83, 122]

xGij(x,k⊥) = S⊥
αs

2CF
CA

∫ d2R⊥
(2π)4 e

−ik⊥·R⊥ ∂
i∂jΓ(R⊥)
Γ(R⊥)

[
1− exp

(
−CA
CF

ΓY (R⊥)
)]

. (4.8)

where CA = Nc = 3 is the adjoint Casimir, and S⊥ represents the transverse area of the
target, which factors out when the dipole is translationally invariant (impact parameter
independent). The trace and traceless components xG0 and xh0 defined in eq. (3.57) can
now be written as

xG0 (x,k⊥) = S⊥
(
N2
c − 1

)
(2π)3 αsNc

∫
R⊥dR⊥J0 (R⊥k⊥)

[
1− exp

(
−CA
CF

ΓY (R⊥)
)]

× 1
ΓY (R⊥)

[
d2

dR2
⊥

+ 1
R⊥

d
dR⊥

]
ΓY (R⊥) , (4.9)

xh0(x,k⊥) = S⊥(N2
c − 1)

(2π)3αsNc

∫
R⊥dR⊥J2(R⊥k⊥)

[
1− exp

(
−CA
CF

ΓY (R⊥)
)]

× 1
ΓY (R⊥)

[
1
R⊥

d
dR⊥

− d2

dR2
⊥

]
ΓY (R⊥). (4.10)

With these results, it becomes possible to evaluate all cross sections in terms of the BK
evolved dipole operator S(2) only.

4.3 Computing harmonics

Before we proceed, we note that due to the translational invariance of the dipole, the
differential cross-section is proportional to the overall area of the target (proton/nucleus)
S⊥. Thus, we shall study the differential yield

dNγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
= 1
S⊥

dσγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
. (4.11)

Due to overall rotational invariance, the differential yield is independent of the angle Φ =
φP⊥ + φk⊥ ; thus it is sufficient to characterize the transverse momenta of the jets with
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P⊥, k⊥ and the relative angle φ = φP⊥ − φk⊥ . It is then convenient to decompose the
differential yield in angular modes with respect to φ:

dNγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
= Nλ

0 (P⊥, k⊥) + 2
∞∑
n=1

Nλ
n (P⊥, k⊥) cos(nφ) , (4.12)

where the modes are given by

Nλ
n (P⊥, k⊥) = 1

S⊥

∫ dφP⊥
2π

dφk⊥
2π ein(φP⊥−φk⊥ ) dσγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
. (4.13)

From these quantities, we can then compute the elliptic and quadrangular anisotropies:

v2,λ = 〈cos 2φ〉 = Nλ
2 /N

λ
0 , (4.14)

v4,λ = 〈cos 4φ〉 = Nλ
4 /N

λ
0 . (4.15)

In the TMD limit the only non-vanishing mode is v2,λ for which there are explicit ex-
pressions in terms of the kinematic variables and the WW gluon TMD (see eqs. (3.60)
and (3.61)). In the ITMD and CGC there are no simple expressions for the anisotropies,
thus they have to be computed numerically by first evaluating the differential yield as a
function of relative angle φ, and subsequent integration. While this is the approach we
follow to compute these modes in the ITMD framework, for the computation in the CGC
it is advantageous to use the following identity:

eiA cosα =
∞∑

n=−∞
(−i)nJn(A)e−inα . (4.16)

Inserting the CGC differential cross-section eq. (3.42) into eq. (4.13) and using the identity
above, we can perform analytically the integrals over φP⊥ and φk⊥ resulting in

Nλ,CGC
n (P⊥, k⊥) =

αeme
2
fNcS⊥δz

(2π)6 (−1)n
∫

d2R⊥d2r⊥d2r′⊥Jn (R⊥k⊥) Jn
(
|r⊥ − r′⊥|P⊥

)
Ξ̃Y

(
r⊥, b⊥, r

′
⊥, b

′
⊥
)
Rλ

(
r⊥, r

′
⊥
)
. (4.17)

The computation of the modes and anisotropies for dijet production in the CGC reduces
to the 6 dimensional integration above. Our results are shown in the next section.

5 Numerical results

In this section we numerically evaluate the differential yield for the inclusive quark anti-
quark production in proton and nuclear DIS. As argued in section 4.3 (see eq. (4.12)) we
can write the differential yield as

dNγ∗λ+A→qq̄+X

d2P⊥d2k⊥dη1dη2
= Nλ

0 (P⊥, k⊥)
[
1 + 2

∞∑
k=1

vk,λ(P⊥, k⊥) cos(kφ)
]
. (5.1)
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Figure 2. Left: saturation scale Qs as a function of xg for proton, and gold at median impact
parameter (proxy for minimum bias collision). Right: values of xg as a function of the kine-
matic variables.

We will focus our study on the averaged angle differential yield Nλ
0 (P⊥, k⊥), the elliptic

anisotropy v2,λ(P⊥, k⊥) and the quadrangular anisotropy v4,λ(P⊥, k⊥). The small-x BK
evolution will be carried up to Y = log(0.01/xg), where

xg =
Q2 +M2

qq̄ + k2
⊥

W 2 +Q2 −m2
n

(5.2)

is the fraction of the target plus momentum transferred to the dijet system in the t-channel
exchange.

The left panel in figure 2 shows the saturation scale Qs as a function of xg for proton,
and for gold at median impact parameter (as a proxy of minimum bias collisions) following
our initial conditions (see section 4.1).12 The saturation scale has been defined as

Qs =
√

2
rs
, S

(2)
Y (rs) = exp(−1/2) , (5.3)

where Y = log
(
x0
xg

)
. The right panel in figure 2 displays the value of xg as a function of

the kinematic variables. At the projected top EIC energies, requiring xg ≤ 10−2 constrains
the transverse momenta and virtualities of the dijet system as shown.

Our results will be shown separately for transversely and longitudinally polarized pho-
tons in collisions off protons and gold nuclei at a center of mass energy W = 90 GeV.
We choose a configuration for the quark and the anti-quark in which they have identical
longitudinal momenta z1 = z2 = 1

2 (note that the momentum fractions are related to pseu-
dorapidities as zi = 2En|ki⊥|e−ηi/W 2 where En is the nucleon energy). Experimentally
it is not directly possible to determine the photon polarization in dijet production, and
as such the cross section can not be directly measured for the longitudinal and transverse
polarization states separately. As the photon flux factors fλ in the electron-nucleus cross

12The modest values of the saturation scale displayed in figure 2 are a result of the parametrization of
the dipole amplitude with MV initial conditions in [32]. Other parametrizations can result in larger values
of the saturation scale.
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section (eq. (3.2)) depend on inelasticity, some insight can in principle be obtained by doing
the same measurement at different

√
s resulting in different inelasticities y. Additionally,

as discussed in ref. [38], the polarization dependent cross sections and elliptic modulations
can be extracted from the data assuming that the functional form of the v2,λ coefficients
is know from theory.

We will perform our computations in the TMD framework (section 3.2), the improved
TMD framework (section 3.3), and the CGC EFT (section 3.1). We remind the reader that
by comparing the TMD and the improved TMD framework we gain access to kinematic
power corrections:

dσITMD − dσTMD = O
(
k⊥
Q⊥

)
, (5.4)

while the comparison of the CGC with the ITMD will help us assess the role of genuine
saturation contributions:

dσCGC − dσITMD = O
(
Qs
Q⊥

)
. (5.5)

These saturation contributions are present in addition to those appearing in the WW gluon
TMD that resum powers of Qs/k⊥.

5.1 Angle averaged differential yield

We start by presenting our results for the angle averaged differential yield. In figure 3 we
show our results for NT

0 (P⊥, k⊥) as a function of momentum imbalance k⊥, and at fixed
virtuality Q2 = 10 GeV2 and relative momentum P⊥ = 2 GeV.

In both proton and gold collisions, the CGC results in a suppression of ∼ 20% relative
to the TMD when P⊥ ∼ k⊥. This suppression is enhanced as the momentum imbalance
k⊥ is increased (away from the quark anti-quark back-to-back configuration) signaling the
breakdown of the TMD framework. When kinematic power corrections in k⊥/P⊥ are
resummed into the hard factors of the improved TMD framework, we observe an excellent
agreement between the CGC and ITMD results for k⊥ > P⊥ and up to large values of k⊥
relative to P⊥, suggesting that genuine higher twist effects are suppressed for non-back-to-
back configurations and the suppression in the yield observed in the CGC relative to the
TMD is driven by kinematic power corrections. Interestingly, the genuine saturation effects
become visible in the back-to-back regime where deviations between TMD (or ITMD13)
and the CGC are observed, and which are enhanced from 7% in e+ p to about ∼ 20% in
e+ Au collisions.

In figure 4, we present the ratios ITMD/CGC and TMD/CGC, and study their de-
pendence as a function of k⊥ at different virtualities Q and relative momenta P⊥. As
expected, increasing either Q or P⊥ eventually reduces the kinematic twists resulting in
smaller differences between the CGC and TMD at a given k⊥. We also observe a systematic
reduction of the genuine higher twist contributions at moderate P⊥ and Q values. Thus we
expect that the improved TMD framework will provide good agreement with the CGC in

13Recall that TMD and ITMD match in the back-to-back limit k⊥ � Q⊥.
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Figure 3. Top: differential yield (averaged over azimuthal angles φP⊥ and φk⊥) for production
of quark anti-quark pairs in γ∗T + p (left) and γ∗T + Au (right) scattering. Bottom: ratio of the
differential yield in the (I)TMD to the CGC.
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Figure 4. Ratio of the averaged angle differential yield (I)TMD to CGC as a function of k⊥ at
different values of Q (left), and at different values of P⊥ (right).

the production of quark anti-quark pairs in DIS for kinematics in which P⊥ or Q are signifi-
cantly larger than the saturation scale. On the other hand, genuine twist corrections have a
significant impact on the measurement of back-to-back dihadrons/dijets at low virtualities
and transverse momenta in nuclear DIS where the saturation scale is enhanced.

We now move to the differential yield NL
0 (P⊥, k⊥) for the longitudinally polarized

virtual photon case, shown in figure 5 as a function of momentum imbalance k⊥, and
at a fixed virtuality Q2 = 10 GeV2 and relative momentum P⊥ = 2 GeV. The results
depicted are qualitatively similar to those in the transversely polarized case, but with
some notable differences. We observe deviations between the CGC and the TMD at large
momentum imbalance k⊥ because of the importance of kinematic power corrections. Once
these contributions are resummed in the ITMD the agreement with the CGC results is
improved. We note that the agreement between CGC and ITMD at large momentum
imbalance is not as good as in the transversely polarized case, which might be caused by

– 23 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
8

10
-9

10
-8

10
-7

10
-6

0 0.5 1 1.5 2 2.5 3 3.5

0.6

1

1.4

CGC

ITMD

TMD

0 0.5 1 1.5 2 2.5 3 3.5

Figure 5. Top: differential yield (averaged over azimuthal angles φP⊥ and φk⊥) for production of
quark anti-quark pair in γ∗L +p/Au scattering. Bottom: ratio of the differential yield in the (I)TMD
to the CGC.
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Figure 6. Ratio of the averaged angle differential yield (I)TMD to CGC at different values of Q
(left), and at different values of P⊥ (right).

the bias for larger dipole size contributions in the light-cone wave-function of longitudinally
polarized photons.14 This reveals that genuine saturation corrections also appear away from
the back-to-back limit in the longitudinally polarized case.

Ratios of ITMD and TMD to GCC for other choices of P⊥ and Q2 are shown in figure 6.
We find both enhancement and suppression of the quark anti-quark production in the CGC
relative to the ITMD, depending on the virtuality Q and the relative momenta P⊥. Overall
we observe that the inclusion of kinematic power corrections improves the agreement with
the CGC, and that increasing Q or P⊥ reduces genuine higher twist contributions as one
should expect. The apparent better agreement in figure 6 at P⊥ = 3 GeV andQ2 = 10 GeV2

is coincidental as the CGC is transitioning from enhancement to suppression as Q2 grows.

14In contrast to fully inclusive DIS, in dijet production the longitudinal momentum fractions z1,2 are
kept fixed. At the chosen values of z1 = z2 = 0.5 here (and at fixed virtuality Q2), one can verify that the
light-cone wave-function for a transverse photon ∼ K1(εr⊥) grows more quickly than that of a longitudinal
photon ∼ K0(εr⊥) in the limit r⊥ → 0.
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Figure 7. Ratio of TMD to CGC for near back-to-back kinematics k⊥ ≈ 0 in γ∗λ+Au→ q+ q̄+X,
as a function of virtuality Q and relative momentum P⊥. Left: transversely polarized case. Right:
longitudinally polarized case.

In order to single out the effect of genuine higher twists, we study the ratio of TMD
to CGC near the back-to-back configuration k⊥ ≈ 0, where kinematic power corrections
vanish (see section 3.4). In figure 7 we show this ratio in nuclear DIS, and observe that
if either the relative momentum P⊥ or the virtuality Q are large enough this ratio goes
to unity, and thus the genuine twists are suppressed. However, significant differences are
observed at low to moderate values of Q and P⊥. They amount to more than a factor of
2 difference between the CGC and the TMD framework. In particular, a suppression of
the CGC relative to the TMD prediction is observed at all back-to-back kinematics in the
case of transverse polarization, while both suppression and enhancement are seen for the
longitudinally polarized case depending on the virtuality and relative momenta.

The genuine saturation contribution to dijet production in the back-to-back limit k⊥ →
0 (and in the light-cone gauge) is the result of multiple scattering, such that the total
transverse momentum transferred to the qq̄ pair is zero (since it compensates between
several scatterings). The TMD and ITMD calculations miss this contribution as their
result is proportional to the number of gluons with zero transverse momentum

5.2 Elliptic anisotropy

In this section we study the elliptic anisotropy in the angle φ separately for transversely
and longitudinally polarized photons. This quantity can be accessed by measuring the
distribution of the momentum imbalance k⊥ with respect to the relative momentum P⊥.

In the TMD framework, the magnitude of the elliptic anisotropy is proportional to the
ratio of polarized to unpolarized Weizsäcker-Williams TMD (see eqs. (3.60) and (3.61)):

v2,L/T ∼
xh0

xG0 . (5.6)

The study of v2 as a function of the dijet momentum imbalance k⊥ is a promising
observable to extract the behavior of the linearly polarized gluons inside protons and nuclei.
In particular, it is expected that xh0/xG0 → 0 in the regime of small momentum imbalance
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(k⊥ � Qs), while the gluons are completely linearly polarized xh0/xG0 → 1 for the
perturbative limit k⊥ & Qs [72–74].

However, it is important to note that kinematic power corrections in the ITMD hard
factor also induce correlations between the P⊥ and k⊥ (see Eqs (3.70) and (3.71)). These
azimuthal correlations also couple to the linearly polarized WW. Consequently, distinguish-
ing contributions purely from kinematic twists and those solely from the linearly polarized
WW is not possible. However, we can compare the full ITMD predictions to the case where
we set the linearly polarized WW gluon distribution to zero by hand, which will show the
contribution from kinematic twists only. The comparison is shown in figure 8 as a function
of the momentum imbalance k⊥. For both polarizations we find that the kinematic power
corrections result in positive contributions to v2, which grow with the dijet momentum im-
balance. On the other hand, in the TMD curve (which does not include kinematic power
corrections) the elliptic anisotropy is sourced only by the linearly polarized gluons; in this
case the sign of v2 depends on the polarization of the photon (see eqs. (3.60) and (3.61)).
This additional v2 from kinematic twists should be taken into account when extracting the
linearly polarized gluon distribution in azimuthal dijet measurements [38]. In addition to
kinematic corrections, genuine higher twists contribute to azimuthal correlations through
higher body operators (see section 3.4). Our goal in this section is to quantitatively study
the different contributions to v2 by comparing CGC, ITMD and TMD formalisms.

In figure 9 we present our results for the elliptic anisotropy as a function of the momen-
tum imbalance k⊥ when the virtual photon in DIS is transversely polarized. We consider
proton and gold targets and different P⊥ and Q2. We observe sizeable deviations between
the TMD and CGC results when P⊥ ∼ k⊥, signaling the appearance of azimuthal correla-
tions due to kinematic power corrections and genuine higher twists. In particular, in the
CGC we observe minima in v2,T, which are absent in the TMD limit, and the anisotropies
are considerably reduced at large k⊥ (as argued previously the contribution to v2,T from
the intrinsic correlations due to linearly polarized gluons and those from kinematic twists
come with different signs, see figure 8).

In order to distinguish the relative importance of kinematic and genuine saturation cor-
rections, we compare the CGC to the ITMD framework. We observe that the deviations
in v2T are enhanced for the nuclear DIS and for the lower scales in P⊥ and Q. Interest-
ingly, our results also indicate that the contributions of kinematic and genuine saturation
contributions appear to come with different signs. In particular, we observe that at low
momentum imbalance k⊥ this results in an apparent better agreement between the CGC
and its TMD limit despite the exclusion of kinematic power corrections.

Our results for the elliptic anisotropy for longitudinally polarized photons are shown in
figure 10. In this case we observe that kinematic power corrections in the ITMD increase
the azimuthal modulations compared to the TMD limit, which results in very large v2,L at
large momentum imbalance. In the CGC, this enhancement is partially tamed by genuine
saturation corrections (most pronounced at low values of P⊥ and Q2 and for nuclear DIS).

Note that in the TMD framework v2,L cannot exceed 1/2, which is because of the
bound in eq. (3.58). On the other hand, in ITMD and CGC the anisotropies exceed 1/2
due to kinematic (k⊥/Q⊥) and genuine (Qs/Q⊥) power corrections. Since the cross-section
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Figure 8. Elliptic anisotropy in γ∗λ+ Au→ q+ q̄+X for transversely polarized photons (left), and
longitudinally polarized photons (right). We show results in the TMD (dashed) and ITMD (solid)
framework. To illustrate the effect purely from kinematic twists, we also show the result for the
ITMD in which we turn off the linearly polarized WW gluon TMD (dashed dotted).
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Figure 9. Elliptic anisotropy v2 in the angle φ for production of quark anti-quark pairs in γ∗T + p

(left) and γ∗T + Au (right) scattering. The grey band shows the numerical uncertainty of the
CGC calculation.
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Figure 10. Elliptic anisotropy v2 in the angle φ for production of quark anti-quark pair in γ∗L+p/Au
scattering. The grey band shows the numerical uncertainty of the CGC calculation.

must remain positive, this indicates the presence of higher azimuthal correlations, which
render the cross-section finite as we will show in the next section.

5.3 Quadrangular anisotropy

In this section we study the quadrangular anisotropy v4 in the azimuthal angle between
P⊥ and k⊥. We note that this contribution is completely absent in the TMD framework.
Contributions to the quadrangular anisotropy have been computed for the first time in [83]
by considering the first correction to the leading power of the dipole size r⊥ when taking
the TMD limit. Such higher powers of the dipole size can account for k⊥/Q⊥ and Qs/Q⊥
corrections without distinction unless one is careful with the separation between kinematic
and genuine higher twists. This distinction for v4 is the purpose of this section, where our
results will be presented in the ITMD and CGC frameworks.

A quadrangular anisotropy can be generated by correlations between P⊥ and k⊥ in
the hard factor in the ITMD (see eqs. (3.70) and (3.71)) as well as correlations in the
genuine higher twists embodied in eq. (3.75). Figure 11 demonstrates in scattering on Au
targets that while the linearly polarized WW gluon distribution produces only an elliptic
anisotropy in the TMD framework, in the ITMD framework the linearly polarized WW
gluon distribution also has a contribution to v4, as it couples to higher modes. To illustrate
this, observe that using eqs. (3.57) and (3.68), we can write the differential cross-section
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Figure 11. Quadrangular anisotropy in γ∗λ + Au→ q + q̄ +X: for transversely polarized photons
(left), and longitudinally polarized photons (right). We show results in the TMD and ITMD
framework. To illustrate the effect purely from kinematic twists, we also show the result for the
ITMD in which we turn off the linearly polarized WW gluon TMD (dashed dotted).

for the ITMD as

dσ ∼ HG (P⊥,k⊥)xG0 (x, k⊥) +Hh (P⊥,k⊥)xh0 (x, k⊥) , (5.7)

where we introduced the hard factors:

HG(P⊥,k⊥) = δijHijITMD(P⊥,k⊥) , (5.8)

Hh(P⊥,k⊥) =
(
2ki⊥k

j
⊥/k

2
⊥ − δij

)
HijITMD(P⊥,k⊥) . (5.9)

One could then expand HG and Hh in modes in φ:

HG(P⊥,k⊥) = HG0 (P⊥, k⊥) +HG2 (P⊥, k⊥) cos(2φ) +HG4 (P⊥, k⊥) cos(4φ) + . . . , (5.10)
Hh(P⊥,k⊥) = Hh0(P⊥, k⊥) +Hh2(P⊥, k⊥) cos(2φ) +Hh4(P⊥, k⊥) cos(4φ) + . . . . (5.11)

Then we can obtain expressions for the elliptic and quadrangular anisotropies:

v2 = xG0(x, k⊥)HG2 (P⊥, k⊥) + xh0(x, k⊥)Hh2(P⊥, k⊥)
xG0(x, k⊥)HG0 (P⊥, k⊥) + xh0(x, k⊥)Hh0(P⊥, k⊥)

(5.12)

v4 = xG0(x, k⊥)HG4 (P⊥, k⊥) + xh0(x, k⊥)Hh4(P⊥, k⊥)
xG0(x, k⊥)HG0 (P⊥, k⊥) + xh0(x, k⊥)Hh0(P⊥, k⊥)

. (5.13)

This implies that when Hh4(P⊥, k⊥) is non-zero, xh0(x, k⊥) can contribute to v4. While
analytic expressions for these modes in the ITMD are difficult to obtain, the numerical
results in figure 11 suggest that Hh4(P⊥, k⊥) is larger than HG4 (P⊥, k⊥).

Turning off the linearly polarized WW gluon TMD by hand in the ITMD framework
reveals the v4 purely from kinematic twists. Its sign is positive for both transverse and
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Figure 12. Quadrangular anisotropy v4 in the angle φ for production of quark anti-quark pairs in
γ∗T + p (left) and γ∗T + Au (right) scattering. The grey band shows the numerical uncertainty of the
CGC calculation.

longitudinal photon polarizations, while the full ITMD result has opposite signs for the
two polarizations.

We present the CGC and ITMD results for the quadrangular anisotropy as a function
of momentum imbalance k⊥ at two different values of P⊥ and Q2 in figure 12 for the case
in which the virtual photon is transversely polarized. First, we note that the quadrangular
anisotropy v4,T is negative (similar to v2,T) and on the order of a few percent at low
momentum imbalance (k⊥ . P⊥). In the lower panels (higher P⊥ and Q) we observe that
the results between the ITMD and CGC schemes closely agree with each other, showing
that the quadrangular anisotropy is mostly driven by kinematic power corrections. The
genuine higher twists tend to suppress v4,T, this effect can be seen more clearly in the
upper right plot corresponding to nuclear DIS and at low values of P⊥ and Q.

Our results to the quadrangular anisotropy when the photon is longitudinally polarized
are shown in figure 13. The behavior of v4,L is similar to that of v2,L: it is positive and
significantly larger in magnitude than in the transversely polarized case. We observe that
the quadrangular anisotropy is mostly sourced by kinematic power corrections; except for
nuclear DIS and at small Q and P⊥ (upper right panel). As in the transversely polarized
case, the effect of the genuine higher twists is to suppress the quadrangular anisotropy.

We close this section by pointing out that our results for v4,L and v4,T as a function of
momentum imbalance k⊥ and at P⊥ = 4 GeV and Q2 = 10 GeV2 have the same sign and
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Figure 13. Quadrangular anisotropy v4 in the angle φ for production of quark anti-quark pairs in
γ∗T + p (left) and γ∗T + Au (right) scattering. The grey band shows the numerical uncertainty of the
CGC calculation.

similar magnitudes to those estimated in [74]. However, for this choice of kinematics the
ITMD seems to be sufficient to describe the quadrangular anisotropy, especially in γ∗ + p

scattering, and thus one only needs the WW gluon TMD (supplemented with ITMD hard
factors) and no higher order derivative operators of Wilson lines.

6 Conclusions

The uncovering of the small-x structure in protons and nuclei is one of the major goals
of the Electron-Ion Collider. The study of azimuthal dihadron and dijet anisotropies
can shed light both on the emergence of gluon saturation as well as the nature of the
Weizsäcker-Williams gluon TMD at small x (both linearly polarized and unpolarized). In
this manuscript, we explicitly computed the production of quark anti-quark dijets at lead-
ing order in the ITMD scheme and the CGC EFT, extending the results in [1]. We briefly
reviewed the origin of kinematic twists and genuine higher twist corrections by expressing
the product of Wilson lines as a transverse gauge link at x− = −∞ [82], generalizing the
small dipole size expansion in [70]. The genuine higher twists (genuine saturation effects)
enter with powers of Qs/Q⊥, and these are present in addition to the saturation contribu-
tions Qs/k⊥ in the WW gluon TMD at small x. Meanwhile, the ITMD resums kinematic
power corrections to all orders in k⊥/Q⊥.
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We found that for kinematics where either P⊥ (dijet relative momentum) or Q (vir-
tuality of the DIS photon) is sufficiently larger than the saturation scale Qs, the ITMD
framework provides a good approximation to the CGC quark anti-quark differential cross-
section and its anisotropies in the azimuthal angle φ between P⊥ and k⊥. Compared to
the standard TMD framework, we observe that the resummation of kinematic power cor-
rections in the ITMD hard factors result in additional azimuthal correlations between P⊥
and k⊥; in particular, we observe a non-zero quadrangular anisotropy. Thus, we expect
that a proper extraction of the linearly polarized WW gluon TMD xh0(x, k⊥) from dijet
azimuthal asymmetries [38] will require the implementation of the ITMD hard factors that
have been computed analytically in this manuscript. An advantage of the ITMD framework
is that it only depends on the WW gluon TMD in contrast to the CGC, which requires the
computation of the quadrupole. This drastically simplifies the complexity of the computa-
tion of the differential cross-section for a wide set of kinematics, and makes it suitable for
coupling to Monte-Carlo based hadronization and fragmentation routines. Efforts in this
direction can be found in [123] where projections for the EIC have been made using the
ITMD∗,15 framework coupled to the event generator in [124].

On the other hand, genuine higher twists effects which are absent in the ITMD frame-
work, are most significant for scattering off a heavy target, as expected due to the en-
hancement of the nuclear saturation scale Q2

s ∼ A1/3. The genuine higher twist contribu-
tions suppress both the differential yield (near the back-to-back configuration) as well as
the anisotropies (elliptic and quadrangular) in the angle φ for realistic EIC kinematics.16

These genuine saturation effects may be accessed in the back-to-back measurement of low
transverse momentum dihadrons and at low photon virtualities, and could be an important
experimental tool for the gluon saturation searches at the EIC [37]. For non back-to-back
configurations, it might be possible to probe genuine saturation effects when the virtual
photon is longitudinally polarized as figure 6 showed deviations between CGC and ITMD
across a wide range in k⊥. In figure 7 we observed that in e+Au collisions the back-to-back
peak for quark anti-quark production in the CGC is suppressed by a factor of 2 relative
to the TMD framework for P⊥, Q ∼ 1 GeV, whereas when either P⊥ or Q ∼ 4 GeV both
frameworks agree to a less than a few percent difference.

To go towards more phenomenological applications, we plan to incorporate in our
analysis the effect of Sudakov resummation [125, 126] and final state soft gluon radia-
tion [127, 128], which have been shown to significantly impact the measurement of az-
imuthal dihadron and dijet anisotropies at the EIC [37, 123, 129]. Furthermore, recent
progress towards next-to-leading order computations for DIS at small-x [58, 105–107, 109–
111, 130–133] will allow us to extend our computation to higher accuracy (for a recent
computation of NLO contributions for dijet production in the CGC see [134]). The inclu-
sion of parton showers, hadronization, full jet reconstruction, and appropriate background

15The ITMD∗ framework is equivalent to the ITMD framework in the abscense of linearly polarized
gluons, see appendix E.

16Except for the angle averaged differential yield for the longitudinally polarized photon, where we observe
an enhancement of the CGC relative to the TMD when the dijet momenta are large and the virtualities
are small (see figure 7).
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processes will be necessary to fully assess the impact of our study on future EIC phe-
nomenology. Finally, it would be interesting to compare the results of the suppression
of the back-to-back peak due to gluon saturation with those caused by the momentum
broadening due to cold nuclear matter energy loss and coherent power corrections [135]
(see also [136] for a recent computation in the CGC).
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A Wilson lines and transverse gauge links

The goal of this section is to briefly summarize the derivation of eq. (2.3) which relates the
product of two Wilson lines to a transverse gauge link at x− = −∞:

V (x⊥)V †(y⊥) = P exp
[
−ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)

]
. (A.1)

As discussed in section 2 this relation is helpful to establish the relation between CGC and
TMD amplitudes rigorously since it allows for a systematic expansion in powers of gÃ⊥.
More details and generalizations of the presented derivations can be found in [78, 79, 82].

To begin we recall that the gauge transformation (introduced in eq. (3.14)) going from
∂µA

µ = 0 Lorenz gauge to Ã+ = 0 light-cone gauge is given by

Ωx⊥
(
x−
)

= P exp
(
ig

∫ +∞

x−
dz−A+ (z−,x⊥)) . (A.2)

It follows by comparing eq. (A.2) with the definition of the light-like Wilson line in
eq. (2.1) that

V (x⊥) = Ωx⊥(−∞) . (A.3)

Similarly, the product of two Wilson lines can be expressed as the product of two gauge
rotations at the x− = −∞ boundary

V (x⊥)V †(y⊥) = Ωx⊥(−∞)Ω−1
y⊥

(−∞) . (A.4)
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In order to connect this result with that in eq. (A.1) we shall express the product of these
gauge rotations as a transverse gauge link. This follows by first noting

Ω−1
x⊥

(−∞) = Ω−1
y⊥

(−∞) +
∫ x⊥

y⊥

dzi⊥∂iΩ−1
z⊥

(−∞) ,

= Ω−1
y⊥

(−∞) + ig

∫ x⊥

y⊥

dzi⊥Ω−1
z⊥

(−∞)Ãi
⊥(z⊥) , (A.5)

where in the second equality we related the derivative of the gauge rotation to the gauge
field in Ã+ = 0 gauge by igÃ

i
⊥(z⊥) = Ωz⊥(−∞)∂iΩ−1

z⊥
(−∞) (see eq. (3.15)). From

eq. (A.5) then we find the recursive relation

Ωx⊥(−∞)Ω−1
y⊥

(−∞) = 1− ig
∫ x⊥

y⊥

dzi⊥Ωx⊥(−∞)Ω−1
z⊥

(−∞)Ãi
⊥(z⊥) , (A.6)

and in a similar fashion one can show

Ωx⊥(−∞)Ω−1
y⊥

(−∞) = 1− ig
∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)Ωz⊥(−∞)Ω−1

y⊥
(−∞) . (A.7)

These two recursive relations are satisfied by

Ωx⊥(−∞)Ω−1
y⊥

(−∞) = P exp
[
−ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)

]
, (A.8)

combining this expression with eq. (A.4) results in the desired relation in eq. (A.1).
The integral is independent of the choice of path connecting the transverse points y⊥

and x⊥ due to the non-Abelian Stokes’ theorem and the fact that the transverse components
of the field strength are zero F̃ ij = 0 (at a given x−, Ãi

⊥(x−,x⊥) is a pure gauge field in two
dimensions), more precisely P exp

(∮
C dzi⊥Ã

i
⊥(z⊥)

)
= 1 for any closed path C contained

in the transverse plane.17

It follows from eq. (A.6) that the product of two Wilson lines satisfy an identical
recursive relation

V (x⊥)V †(y⊥) = 1− ig
∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥)V (z⊥)V †(y⊥) . (A.9)

After the application of the recursive relation in eq. (A.7) we find

1− V (x⊥)V † (y⊥) =
[
1− V (x⊥)V † (y⊥)

]
ITMD

+
[
1− V (x⊥)V † (y⊥)

]
g.h.t.

, (A.10)

where we define[
1− V (x⊥)V †(y⊥)

]
ITMD

= ig

∫ x⊥

y⊥

dzi⊥Ã
i
⊥(z⊥) , (A.11)[

1− V (x⊥)V †(y⊥)
]

g.h.t.
= g2

∫ x⊥

y⊥

dzi1⊥
∫ z1⊥

y⊥

dzj2⊥Ã
i
⊥(z1⊥)V (z1⊥)V †(z2⊥)Ãj

⊥(z2⊥) .

(A.12)
17The non-Abelian Stokes’ theorem reads P exp

(∮
C dxµAµ

)
= P exp

(∫
S dσµνUFµνU†

)
where dσµν is

the surface measure on S and U denotes a Wilson line connecting the point x ∈ S enclosed by the surface
measure to an arbitrary base point O on C (see [137]).
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We would like to obtain a tractable expression for eq. (A.11) which will be the starting point
for our study of the production of quark and anti-quark pairs in the ITMD framework.

Since the choice of path connecting y⊥ and x⊥ in eq. (A.11) is arbitrary, we choose a
straight line path

z⊥(s) = y⊥ + sr⊥, s ∈ [0, 1] , (A.13)

where r⊥ = x⊥ − y⊥. Then we have

[
1− V (x⊥)V †(y⊥)

]
ITMD

= iri⊥

∫ 1

0
ds gÃi

⊥(y⊥ + sr⊥) . (A.14)

The integral over s is easily done in momentum space using the identity

Ã
i
⊥(z⊥) =

∫ d2l⊥
(2π)2 e

il⊥·z⊥
∫

d2v⊥e
−il⊥·v⊥Ã

i
⊥(v⊥) , (A.15)

and the simple integral over the phase

∫
ds eil⊥·(y⊥+sr⊥) =

(
eil⊥·x⊥ − eil⊥·y⊥

il⊥ · r⊥

)
. (A.16)

We find

[
1− V (x⊥)V †(y⊥)

]
ITMD

= iri⊥

∫
d2v⊥

∫ d2l⊥
(2π)2 e

−il⊥·v⊥ gÃ
i
⊥(v⊥)

(
eil⊥·x⊥ − eil⊥·y⊥

il⊥ · r⊥

)
.

(A.17)

Despite the fact that this expression might look more formidable than eq. (A.11), we will
show in section 3.3 that the resultant differential cross-section for quark and anti-quark
dijet production has a relatively simple analytic expression.

Following the same procedure and with some algebra we find a similar expression for
eq. (A.12)

[
1−V (x⊥)V † (y⊥)

]
g.h.t

=
∫ d2l1⊥

(2π)2
d2l2⊥

(2π)2

∫
d2v1⊥d2v2⊥e−i(l1⊥·v1⊥)−i(l2⊥·v2⊥) ri⊥r

j
⊥

i(l2⊥ ·r⊥)

×
(

ei(l1⊥+l2⊥)·x⊥−ei(l1⊥+l2⊥)·y⊥

i(l1⊥+l2⊥)·r⊥
−ei(l2⊥·y⊥) ei(l1⊥·x⊥)−ei(l1⊥·y⊥)

i(l1⊥ ·r⊥)

)

×g2Ai (v1⊥)V (v1⊥)V † (v2⊥)Aj (v2⊥) . (A.18)
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B Useful integrals

We list some useful transverse integrals:∫ d2r⊥
2π e−iP⊥·r⊥K0 (εr⊥) = 1

P 2 + ε2 , (B.1)∫ d2r⊥
2π e−iP⊥·r⊥

iεrj⊥
r⊥

K1 (εr⊥) = P j
⊥

P 2 + ε2 , (B.2)∫ d2l⊥
2π eil⊥·r⊥

1
l2⊥ + ε2 = K0 (εr⊥) , (B.3)

∫ d2l⊥
2π eil⊥·r⊥

lj⊥
l2⊥ + ε2 = iεrj⊥

r⊥
K1 (εr⊥) , (B.4)∫ d2r⊥

2π e−iP⊥·r⊥irj⊥K0 (εr⊥) = 2P i
⊥

(P 2 + ε2)2 , (B.5)

∫ d2r⊥
2π e−iP⊥·r⊥rk⊥

εrj⊥
r⊥

K1 (εr⊥) = 1
P 2 + ε2

(
δjk −

2P j
⊥P

k
⊥

P 2 + ε2

)
. (B.6)

C Explicit representation of Dirac spinors

We work in the Dirac basis for gamma matrices

γ0 =
[
1 0
0 −1

]
, γi =

[
0 σi

−σi 0

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

(C.1)

where 1 is the two-by-two identity matrix.
The helicity operator h is defined as

h = 2~k · ~S
|~k|

, ~S = 1
2

[
~σ 0
0 ~σ

]
. (C.2)

where ~k = (k⊥, k3) is the three momentum.
It is straightforward to check that the (massless) Dirac equation

/ku(k) = 0 , (C.3)

has the following solutions18

u+(k) = v−(k) = 1
21/4


√
k+e−iφk√
k−√

k+e−iφk√
k−

 , u−(k) = v+(k) = 1
21/4


√
k−

−
√
k+eiφk

−
√
k−√

k+eiφk

 , (C.4)

18In the massless case, the spinors corresponding to particle and anti-particle are the same, but correspond
to opposite helicities.
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where the subscripts ± denote the helicities,19 φk is the azimuthal angle of k⊥, and the
normalization is chosen so that

/k =
∑
σ

uσ(k)ūσ(k) , (C.5)

where the barred spinors are defined as usual by ū = u†γ0.
The following identities hold:

ūσ(k1)γ−vσ′(k2) = 2
√
k−1 k

−
2 δσ,−σ′ , (C.6)

ūσ(k1)γiγjγ−vσ′(k2) = 2
√
k−1 k

−
2

(
−δij + iσεij

)
δσ,−σ′ . (C.7)

D Computing the perturbative factors N λ

To compute N λ
σσ′(r⊥) we first perform the l− and l+ integrations. The former is done

immediately using the delta function δ(k− − l−), while the latter is performed via contour
integration using Cauchy’s theorem, we find

N λ
σσ′(r⊥) =

∫ d2l⊥
(2π)

Nλ
σσ′(l)eil⊥·r⊥
z1z2Q2 + l2⊥

. (D.1)

To compute the transverse integration, we must first work out the Dirac algebra. We find

Nλ=0
σσ′ = 2 (z1z2)3/2Qδσ,−σ′ , (D.2)

Nλ=±1
σσ′ = (z1z2)1/2

(
l⊥ · ελ⊥

)
[(z1 − z2)− λσ] δσ,−σ′ , (D.3)

where we used eqs. (C.6) and (C.7), and εijελ,i⊥ = −iλελ,i⊥ . This last identity of the polar-
ization vector holds for circularly polarized states ε±1

⊥ = 1√
2(1,±i).

Eqs. (3.27) and (3.28) then follow by inserting eqs. (D.2) and (D.3) into eq. (D.1) and
performing the transverse integrations with the aid of identities in appendix B.

E Computing the ITMD hard factors J λ

To compute the ITMD hard factors in eqs. (3.70) and (3.71) we insert eqs. (3.27) and (3.28)
into eq. (3.67) and find

J λ=0,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)3/2Qδσ,σ′J

i
L (P⊥ + z1k⊥,k⊥) , (E.1)

J λ=±1,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)1/2 [(z2 − z1) + σλ] δσ,σ′ελ=±1,j

⊥ J ijT (P⊥ + z1k⊥,k⊥) , (E.2)

where

J iL(p⊥,k⊥) ≡
∫ d2r⊥

2π e−i(p⊥·r⊥)iri⊥K0(ε|r⊥|)
ei(k⊥·r⊥) − 1
i(k⊥ · r⊥) , (E.3)

19Note that in this manuscript, p− is the large component of the spinor momenta; thus p3 < 0.
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and

J ijT (p⊥,k⊥) ≡
∫ d2r⊥

2π e−i(p⊥·r⊥)ri⊥
εrj⊥
|r⊥|

K1(ε|r⊥|)
ei(k⊥·r⊥) − 1
i(k⊥ · r⊥) . (E.4)

The first steps to perform these integrals explicitly is to integrate the ri⊥ factors by parts
into derivatives w.r.t. pi⊥, and to use the integral form

ei(k⊥·r⊥) − 1
i(k⊥ · r⊥) =

∫ 1

0
dα eiα(k⊥·r⊥). (E.5)

Using eq. (B.1) for J iL and eq. (B.2) for J ijT then yields:

J iL(p⊥,k⊥) = − ∂

∂pi⊥

∫ 1

0
dα 1

(p⊥ − αk⊥)2 + ε2 , (E.6)

and

J ijT (p⊥,k⊥) = ∂

∂pi⊥

∫ 1

0
dα pj⊥ − αk

j
⊥

(p⊥ − αk⊥)2 + ε2 . (E.7)

Let us now address the α integral. Introducing

A2 =
√
k2
⊥
(
p2
⊥ + ε2)− (p⊥ · k⊥)2 , (E.8)

noting that

1
(p⊥ − αk⊥)2 + ε2 = 1

k2
⊥

[(
α− (p⊥·k⊥)

k2
⊥

)2
+ A4

k4
⊥

] , (E.9)

and using the standard integrals∫ α1

α0

dα
α2 + a2 = 1

a

[
arctan

(
α1
a

)
− arctan

(
α0
a

)]
, (E.10)

and ∫ α1

α0
dα α

α2 + a2 = 1
2 ln

(
α2

1 + a2

α2
0 + a2

)
, (E.11)

we have:

J iL(p⊥,k⊥) = − ∂

∂pi⊥

1
A2

[
arctan

((p⊥ + k⊥) · k⊥
A2

)
− arctan

((p⊥ · k⊥)
A2

)]
, (E.12)

and

J ijT (p⊥,k⊥) = − 1
k2
⊥

∂

∂pi⊥

[
kj⊥
2 ln

(
(p⊥ + k⊥)2 + ε2

p2
⊥ + ε2

)
(E.13)

−
k2
⊥p

j
⊥ − (p⊥ · k⊥)kj⊥

A2

{
arctan

((p⊥ + k⊥) · k⊥
A2

)
− arctan

((p⊥ · k⊥)
A2

)}]
.
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With the help of the relation

∂

∂pi⊥
A2 = 2

[
k2
⊥p

i
⊥ − ki⊥(p⊥ · k⊥)

]
, (E.14)

and the following additional relation for J ijT :

k2
⊥p

i
⊥p

j
⊥ + p2

⊥k
i
⊥k

j
⊥ =

[
p2
⊥k

2
⊥ − (p⊥ · k⊥)2

]
δij + (p⊥ · k⊥)

(
pi⊥k

j
⊥ + pj⊥k

i
⊥

)
. (E.15)

Along with tedious but straightforward algebra, we find eventually:

J iL (k1⊥,k⊥) =

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

−

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 2

 −k1⊥ · k2⊥ + ε2(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
)


+ ki1⊥ − ki2⊥(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
) , (E.16)

and

J ijT (k1⊥,k⊥) =
ε2
(
δijk2

⊥ − ki⊥k
j
⊥

)
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

+ 1
k2
⊥

ε2
(
δijk2

⊥ − ki⊥k
j
⊥

)
kk⊥

X 2

(
kk1⊥

k2
1⊥ + ε2 + kk2⊥

k2
2⊥ + ε2

)

+ 1
k2
⊥

(
ki⊥δ

jk + kj⊥δ
ik − kk⊥δij

)( kk1⊥
k2

1⊥ + ε2 + kk2⊥
k2

2⊥ + ε2

)
, (E.17)

where

X 2 = P 2
⊥k

2
⊥ − (P⊥ · k⊥)2 + ε2k2

⊥ . (E.18)

Therefore, we find the following expressions for the ITMD hard factors in the amplitude
of quark anti-quark production:

J λ=0,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)3/2Qδσ,σ′

 ki1⊥ − ki2⊥(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
)

+

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

−

[
k2
⊥P

i
⊥ − (P⊥ · k⊥)ki⊥

]
X 2

 −k1⊥ · k2⊥ + ε2(
k2

1⊥ + ε2
) (
k2

2⊥ + ε2
)
 , (E.19)
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and

J λ=±1,i
σ,σ′ (P⊥,k⊥) = 2 (z1z2)1/2 [(z2 − z1) + σλ] δσ,σ′ελ=±1,j

⊥

×

ε
2
(
δijk2

⊥ − ki⊥k
j
⊥

)
X 3

[
arctan

(
k⊥ · k1⊥
X

)
+ arctan

(
k⊥ · k2⊥
X

)]

+ 1
k2
⊥

ε2
(
δijk2

⊥ − ki⊥k
j
⊥

)
kk⊥

X 2

(
kk1⊥

k2
1⊥ + ε2 + kk2⊥

k2
2⊥ + ε2

)

+ 1
k2
⊥

(
ki⊥δ

jk + kj⊥δ
ik − kk⊥δij

)( kk1⊥
k2

1⊥ + ε2 + kk2⊥
k2

2⊥ + ε2

)}
. (E.20)

It is illustrative to consider two interesting limits: the so-called ITMD∗ limit [91], and
photo-production limit Q2 → 0.

The hard factors in the ITMD∗ scheme can be obtained in a diagrammatic approach
with off-shell gluons [80], and they can be obtained from our results by the following
projection [91]:

Hij,λITMD∗(P⊥,k⊥) = Hij,λITMD(P⊥,k⊥)k
i
⊥k

j
⊥

k2
⊥

. (E.21)

Therefore, in the ITMD∗ limit it is enough to consider the projections:

J λ=0,i
σ,σ′ (P⊥,k⊥)k

i
⊥
k⊥

= 2(z1z2)3/2Qδσ,−σ′

(
1

k2
2⊥ + ε2 −

1
k2

1⊥ + ε2

)
1
k⊥

, (E.22)

J λ=±1,i
σ,σ′ (P⊥,k⊥)k

i
⊥
k⊥

= (z1z2)1/2 [(z2 − z1) + σλ] δσ,σ′
(
k2⊥ · ελ⊥
k2

2⊥ + ε2 + k1⊥ · ελ⊥
k2

1⊥ + ε2

)
1
k⊥

.

(E.23)

Alternatively, the projections in eqs. (E.22) and (E.23) could have been easily obtained by
first projecting eq. (3.67) with ki⊥, resulting in:

kj⊥J
λ,j
σσ′(P⊥,k⊥) =

∫ d2r⊥
2π

(
eik2⊥·r⊥ − e−ik1⊥·r⊥

)
N λ
σσ′(r⊥) . (E.24)

We refer the reader to [91] where the differences between the ITMD∗ and ITMD schemes
have been numerically studied for the electro-production of heavy quarks.

Finally, in the photo-production limit, we find

lim
Q2→0

J λ=±1,i
σσ′ (P⊥,k⊥) = (z1z2)1/2 [(z2 − z1) + σλ] δσ,σ′ελ=±1,j

⊥
cijk

k2
⊥

(
kk1⊥
k2

1⊥
+ kk2⊥
k2

2⊥

)
,

(E.25)

where

cijk = ki⊥δ
jk + kj⊥δ

ik − kk⊥δij , (E.26)

which is compatible with the result from [78].
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F Operator definition of the WW gluon TMD

In this appendix we briefly review the relation between the operator definition of the
Weizsäcker-Williams distribution and the definition in eq. (3.54), which was fleshed out for
the first time in [70]. In what follows let us go back to the general case where we have not
fixed the gauge condition for the gauge field Aµ,a.

The operator definition of a generic gluon TMD is constructed from the bilocal operator
field strength tensors appropriately dressed by gauge links for gauge invariance. Let us
define the finite path Wilson lines along the light-cone direction as

[b−2 , b
−
1 ]b⊥ = P exp

[
ig

∫ b−2

b−1

A+,a(z−, b⊥)tadz−
]
, (F.1)

and that along the transverse direction (where the path is a straight line) as

[b2⊥, b1⊥]b− = P exp
[
−ig

∫ b2⊥

b1⊥
Ai,a
⊥ (b−, z⊥)tadzi⊥

]
. (F.2)

The Weizsäcker-Williams distribution is defined as

xGij(x,k⊥) = 4
〈P |P 〉

∫ db−db′−d2b⊥d2b′⊥
(2π)3 e−ixP (b−−b′−)−ik⊥·(b⊥−b′⊥)

〈
P
∣∣∣Tr

[
F i+(b)U [+]†

b′,b F
j+(b′)U [+]

b′,b

] ∣∣∣P〉 , (F.3)

which involves the future pointing staple shaped infinite gauge link:

U
[+]
b2,b1

= [b−2 ,+∞]b2⊥ [b2⊥, b1⊥]+∞[+∞, b−1 ]b1⊥ . (F.4)

To make the connection of the operator definition in eq. (F.3) with that given in eq. (3.54),
let us now work in the Lorenz gauge ∂µAµ = 0 and in the small x limit, in which case Ai

⊥
is suppressed. We note that the (infinite) light-like Wilson line defined in eq. (2.1) can be
expressed as

V (b⊥) = [∞,−∞]b⊥ , (F.5)

and the derivative ∂i acting on the Wilson line is given by

∂iV †(b⊥) = −ig
∫ ∞
−∞

db−[−∞, b−]b⊥F
i+(b−, b⊥)[b−,+∞]b⊥ , (F.6)

where we used Aµ = δµ+A+ and thus F i+(b−, b⊥) = ∂iA+(b−, b⊥) in light-cone gauge.
Thus we find

Ãi
⊥(k⊥) =

∫
db−d2b⊥e

−ik⊥·b⊥ [+∞, b−]b⊥F
i+(b−, b⊥)[b−,+∞]b⊥ , (F.7)

where we used Ãi
⊥(b⊥) = i

gV (b⊥)∂iV †(b⊥).
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Then it follows from eq. (3.54):

xGij(x,k⊥) = 4
(2π)3

∫
db−db′−d2b⊥d2b⊥e

−ik⊥·(b⊥−b′⊥)

〈
Tr
[
F i+(b−, b⊥)U [+]†F j+(b′−, b′⊥)U [+]

]〉
x
, (F.8)

where we used [b′⊥, b⊥]+∞ = 1 in ∂µA
µ = 0 gauge with the subgauge condition that

transverse fields cancel at +∞, which is allowed for both components in the small x limit.
The equivalence to the operator definition in eq. (F.3) follows (strictly speaking) in

the limit x → 0, and by noting the relation between the CGC average and the operator
expectation value:

〈O〉x ↔
〈P |O|P 〉
〈P |P 〉

. (F.9)
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