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Abstract: A low-carbohydrate, high-fat (LCHF) diet has been proposed to enhance the fat utilization
of muscle and the aerobic capacity of endurance athletes, thereby improving their exercise perfor-
mance. However, it remains uncertain how the macronutrient intake shift from carbohydrate to
fat affects endurance exercise training and performance. This study performed a systematic review
and meta-analysis to explore the effects of a ketogenic low-carbohydrate, high-fat (K-LCHF) diet on
aerobic capacity and exercise performance among endurance athletes. Searches were carried out
in five electronic databases, and we followed the Preferred Reporting Items for Systematic Review
and Meta-Analyses (PRISMA) guidelines. The search included studies using an LCHF diet as an
intervention protocol and compared data on factors such as maximum oxygen uptake (VO2max)
and rating of perceived exertion (RPE) from the graded exercise test. In this case, 10 studies met the
criteria and were included in the meta-analysis. We did not find a significant effect of K-LCHF diet
interventions on VO2max, time to exhaustion, HRmax or RPE. However, a significant overall effect
in the substrate oxidation response to respiratory exchange rate was observed. The meta-analysis
showed that K-LCHF diets did not affect aerobic capacity and exercise performance. Therefore,
high-quality interventions of a K-LCHF diet are needed to illustrate its effect on various endurance
training programs.

Keywords: ketogenic low-carbohydrate; high-fat diet; aerobic capacity; endurance athletes

1. Introduction

The low-carbohydrate, high-fat (LCHF) diet has become popular as a treatment for
excess weight, epilepsy and type 2 diabetes in recent decades [1–3]. The first LCHF
diet study to optimize fat oxidation in endurance athletes was conducted in 1983 by
Phinney et al. [4]. He spotlighted various mechanisms to boost endurance performance
by promoting a shift in substrate utilization to enhance physiological training benefits
by adopting the LCHF diet. However, the concept of improving athletic performance
by adapting to a high-fat diet was reconsidered after a series of studies failed to prove
significant benefits [5]. As a result, the pace of research in this area has slowed significantly.
However, with the resurgence in popularity of “Paleolithic” and “ketogenic” diets, there
has been renewed interest in the LCHF diet [6].

Limiting carbohydrate (CHO) consumption can reduce the muscle glycogen concen-
tration, resulting in greater fat oxidation [7,8]. After adapting to the LCHF diet, the body
uses more fat for energy, and fat stores are far more abundant than CHO, thus theoret-
ically providing energy for a longer period [9]. A ketogenic LCHF (K-LCHF) diet may
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influence the adaptation of the body through the molecular mechanism of regulating cell
signal transduction [10–13]. In addition, this signaling pathway’s activation may lead to
increased physical and motor ability through, for example, mitochondrial biogenesis, capil-
lary thinning and regeneration processes, especially the efficient utilization of fat energy
substrates [14–16]. Of note, in the study on adopting ketogenic diets in mice, they found
that long-term ketogenic diet might decreased mitochondrial biogenesis, impaired cellular
respiration and increased myocardial apoptosis and myocardial fibrosis [17]. The energy
obtained from fat under aerobic conditions produces acetoacetic acid, β-hydroxybutyric
acid (β-HB) and acetone, of which β-HB accounts for about 70% of the ketone body, which
serves as a stable energy source for the body and brain [17,18].

The review by Hawley et al. was the first to summarize the effect of the LCHF
diet on exercise performance and metabolism. He found that long-term (>7-day) use of
the LCHF diet extended endurance for a fixed, sub-maximum workload in well-trained
athletes [19]. One study from Burke examined the LCHF diet’s acute effect and found
that it took just five days for muscles to adapt [20]. The metabolic adaptations needed
for the full benefit produced from adaptation to LCHF diets are suggested by the long
time it takes to lower the rate of carbohydrate oxidation and glycogen utilization [21].
However, LCHF diets have been shown to have mixed results [22], with some studies
reporting positive effects [23,24], while other studies finding that prolonged adaptation
might not change performance [25,26]. A relatively long period on the LCHF diet did
not affect performance in endurance exercise and resistance training [27,28]. In addition,
individuals might have different adaptation processes to the LCHF diet [29]. Studies have
suggested that, beyond diet duration, other variables may influence the effect of the LCHF
diet on exercise performance (e.g., training status, performance test type, intensity and sex
differences [30]).

The ketogenic diet is a special case of an LCHF diet. Some studies have suggested that
LCHF diets with CHOs accounting for less than 5% [31] or between 5% and 10% [32] of
total energy intake belong to the ketogenic diet. Furthermore, it is proposed that diets with
less than 10% CHOs can induce ketosis [33]. As there is overlap in the definitions of the
LCHF and ketogenic diets, most studies use the term “LCHF”, some use the term “keto”
and some use “K-LCHF”, even though the content of these diets are similar. In this study,
we use K-LCHF [30] to indicate the diet intervention.

Recent studies on the K-LCHF diet have not systematically analyzed the effects of
the K-LCHF diet on endurance performance and related indicators. The effects of the
K-LCHF diet on athletes during endurance exercise are controversial. Hence, the objective
of this systematic review and meta-analysis was to aggregate the results from experimental
data to investigate the overall effects of the K-LCHF diet on aerobic capacity and exercise
performance in endurance athletes.

2. Materials and Methods
2.1. Literature Search

By following the Preferred Reporting Items for Systematic Review and Meta-Analyses
(PRISMA) guidelines, we systematically searched online databases for studies published
until April 2021. The study protocol was registered in the international database of prospec-
tively registered systematic reviews in health and social care (PROSPERO: 226008). The
literature search identified full-text articles published in peer-reviewed scientific journals in
English from five online databases: Ovid Web of Science, PubMed, Science Direct, ProQuest
and Cochrane library. The search strategy (Table S2) was conducted independently by
two authors (J.C. and S.L.). When conflicting opinions arose, the eligibility of the studies
was discussed with the other authors (S.C and X.W.) until an agreement was reached. The
search strategy and keywords/terms included “low-carbohydrate high-fat diet” or “keto-
genic diet” and “aerobic capacity” or “athlete” or “VO2max” or “exercise” or “training”.
Additional studies were retrieved by examining the reference lists of the relevant articles.
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Reference lists from previous relevant reviews and included studies were further examined
as complementary sources.

2.2. Inclusion and Exclusion Criteria

The screening process was divided into two phases: a preliminary selection by title
and abstract only, and a second phase of screening the full text of the remaining articles. Ar-
ticles that met the following criteria were included: (1) randomized controlled intervention
trial or controlled intervention trial or crossover trial in endurance athletes (including pro-
fessional athletes and individuals who participated in endurance exercise as their hobby);
(2) a LCHF diet with less than 10% CHOs is considered a K-LCHF diet [31,32]; (3) com-
parison of the effects of the K-LCHF diet with those of the non-LCHF diet; (4) performed
graded exercise test (GXT); 5) reported daily nutrition intake based on food diaries or
recalls; (5) endurance training was defined as long-duration continuous sustain moderate
or submaximal intensity exercise of 5 min to 4 h [34,35].

The exclusion criteria included (1) systematic reviews or meta-analyses, (2) observa-
tional studies, (3) no appropriate control group and (4) non-endurance athletes.

2.3. Data Extraction

Data extracted from the studies included number of subjects, age, gender, study
design, intervention duration, dietary components, energy intake, type of exercise, maximal
oxygen uptake (VO2max), time to exhaustion (TTE), maximal heart rate during exercise
(HRmax), respiratory exchange rate (RER) and rating of perceived exertion (RPE). The
authors, publication year, study design, outcome variables, testing protocol for outcomes,
participant characteristics and exercise protocol were extracted and are summarized in
Table 1. Baseline and post-intervention outcome variables were taken from all intervention
and control groups as the mean and standard deviation (SD), as recommended by the
Cochrane Collaboration Handbook [36]. If the mean or SD was reported in the original article,
the established methods were used [36,37]; otherwise, the original data were obtained by
contacting the study authors directly.

VO2max indicates the aerobic capacity, the VO2max test [38] refers to the aerobic
capacity measurement, and TTE represents the endurance exercise performance [39] in a
laboratory environment.

2.4. Risk of Bias and Quality Assessment

Two of the authors (J.C. and S.L.) assessed the risk of bias using Review Manager
software (RevMan, version 5.4, Cochrane Collaboration, Oxford, UK), which is summarized
as a risk of bias in Figure 1. The validity of the studies was assessed using the Cochrane
Collaboration risk-of-bias tool. This tool includes the following items: “Random sequence
generation (selection bias)”, “Concealment of the allocation sequence (selection bias)”,
“Blinding of participants and personnel (performance bias)”, “Blinding of outcome assess-
ment (detection bias)”, “Incomplete outcome data (attrition bias)”, “Selective outcome
reporting (reporting bias)” and “Other biases”, which were assigned as “low risk of bias”,
“unclear risk of bias” or “high risk of bias”.

The quality of the included articles was evaluated using the Assessment of Multi-
ple Systematic Review (AMSTAR) measurement tool [40] and is presented in Table S1.
This tool has 11 items (i.e., “A prior design”, “Duplicate selection and data extraction”,
“Comprehensive search”, “Gray literature search”, “List of included and excluded studies”,
“Characteristics of studies”, “Scientific quality assessed”, “Scientific quality in conclusions”,
“Methods to combine studies”, “Publication bias assessment” and “Conflict of interest”)
with four subscales (i.e., “yes”, “no”, “can’t answer” or “not applicable”).
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Figure 1. Risk of bias included studies in meta-analysis.

2.5. Statistical Analysis

The outcome data were extracted from the GXT and expressed as mean ± SD. The
meta-analysis was conducted using Review Manager software (RevMan, version 5.4).
For each study, the standardized mean difference (SMD) with 95% confidence intervals
(95% CI) was calculated to quantify changes in the performance variables, in which the
mean or mean difference and corresponding SD were extracted from the pre- and post-
intervention exercise tests and converted to the same unit. The effect of the K-LCHF diet
on aerobic capacity and exercise performance was tested by inverse variance and a random
effects model. The mean differences and 95% CI between studies were obtained through
productive forest plots. SMD is the difference between the mean of the experiment group
and the mean of the control group divided by the mean standard deviation, eliminating the
effect of the “unit” so that the mean differences of different dimensions can be combined.
SMD = 0 represents no difference, SMD > 0 represents more occurrence in the experimental
group and SMD < 0 represents less occurrence in the experimental group. I2 statistics
evaluated heterogeneity, with I2 values of 25%, 50% and 75% indicating low, medium and
high heterogeneity, respectively. I2 > 50% indicated high heterogeneity between studies.

3. Results
3.1. Synopsis of Included Studies

Of a total of 3946 non-duplicate studies, 3789 records were excluded by title and
abstract inspection. The remaining 157 studies were assessed with full text, and 25 studies
that met the inclusion criteria were selected. A further exclusion assessment was performed
to remove the studies with no measurement of VO2max (n = 8), case-study design (n = 1),
an inconsistent unit of VO2max (n = 4), use of a ketone ester supplement (n = 1) and having
only an intervention arm (n = 1) (Figure 2). Finally, 10 articles were eligible for this report,
including four crossover and six control studies.
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3.2. Characteristics of Subjects

A total of 139 participants (5–24 healthy and/or trained adults in each study) in
10 studies [18,41–49] were included in this review. Except for the study of Burke et al. [18],
all participants were male athletes. The four crossover studies had a small sample size
(5–8 males) with older athletes (aged 30–50 years) compared with the other control trials.
Six other control trials had a larger sample size (13–24 individuals) and young adults (aged
20–30 years, see Table 1).
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Table 1. Characteristics of included studies.

Citation,
Year Subjects Age (Years) Body Mass

Change Study Design Dietary
Components

Energy
Intake

Intervention
Duration

VO2max Test
Type

Other Exercise
Test

Exercise Session during
the Intervention

Burke et al.
2017 [42]

19 highly
competitive

male race
walkers

K-LCHF: n =
10

HC: n = 9

K-LCHF: 28.3 ±
3.5

HC: 25.4 ± 4.0

K-LCHF:
significantly

reduction
HC: no

significant
change

Control study

K-LCHF: 3.5%
CHO

17% protein
78% fat

HC: 60% CHO
16% protein

20% fat

K-LCHF: 3560
kcal/d

HC: 3519
kcal/d

3 weeks
Graded

economy test:
Treadmill

10-km race;
20-km race

Race walking, resistance
training and cross-training

(running, cycling or
swimming)

Burke et al.
2020 (a) [41]

13 male race
walkers

K-LCHF: n = 6
HC: n = 7

K-LCHF: 28.3 ±
2.7

HC: 32.7 ± 4.8

K-LCHF:
significant
reduction

HC: no
significant

change

Parallel control
study

K-LCHF: 4% CHO
16% protein

80% fat
HC: 65% CHO

15% protein
20% fat

K-LCHF: 3766
± 477 kcal/d
HC: 3957 ±
726 kcal/d

5 days
Incremental

testing:
Treadmill

10-km race
25-km race

25–40 km walk, interval
training session (8–12 × 1

km on a 6-min cycle),
tempo hill session (14 km

with ~450 m elevation
gain). Low-intensity

walking sessions (6–12 km
each), and a strength

training session

Burke et al.
2020 (b) [18]

18 highly
competitive
race walkers

K-LCHF (M: 8;
F: 2)

HC (M: 5; F: 3)

K-LCHF: 29.9 ±
2.1

HC: 25.5 ± 3.6

K-LCHF:
significant
reduction

HC: no
significant

change

Parallel control
study

K-LCHF: 4% CHO
16% protein

78% fat
HC: 65% CHO

15% protein
18% fat

K-LCHF: 3679
± 382 kcal/d
HC: 3345 ±
529 kcal/d

25 days

Graded
exercise test

(GXT):
Treadmill

10-km race;
20-km race

Race walking, resistance
training and cross-training
(e.g., running, cycling or

swimming)

Cipryan et al.
2018 [43]

17 moderately
trained males
K-LCHF: n = 9

HD: n = 8

K-LCHF: 23.8 ±
2.4

HD: 23.8 ± 1.8

K-LCHF:
significant
reduction

HD: no
significant

change

Control study

K-LCHF: 8% CHO
29% protein

63% fat
HD: 48% CHO

17% protein
35% fat

No report 4 weeks

Graded
exercise test

(GXT):
Treadmill

No report

HIIT: 10-min warmup at
60% VO2max, followed by
5 high-intensity exercises

consisting of 3 min at 100%
VO2max (work to rest

ratio, 2:1)
Endurance-based running
sessions or exercise (3–5

times a week)
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Table 1. Cont.

Citation,
Year Subjects Age (Years) Body Mass

Change Study Design Dietary
Components

Energy
Intake

Intervention
Duration

VO2max Test
Type

Other Exercise
Test

Exercise Session during
the Intervention

Dostal et al.
2019 [44]

24 recreational
trained
runners

K-LCHF: n =
12

HD: n = 12

K-LCHF: 25.3 ±
2.0

HD: 23.9 ± 3.8

K-LCHF:
significant
reduction

HD: no
significant

change

Parallel control
study

K-LCHF:8% CHO
23% protein

69% fat
HD: 45% CHO

18% protein
37% fat

K-LCHF: 1960
± 316 kcal/d
HC: 1782 ±
412 kcal/d

12 weeks

Graded
exercise test

(GXT):
Treadmill

No report

HIIT (sessions lasted
approximately 40 min in
total and consisted of a

4-min warmup followed
by 5 × 6-min sets,

separated by 2-min
recovery), endurance
exercise (e.g., running,
cycling, sport games)

Fleming et al.
2003 [45]

20 non-highly
trained men
K-LCHF: n =

12
HC: n = 8

K-LCHF: 35 ±
13

HC: 36 ± 12
No report Control study

K-LCHF: 8% CHO
30% protein

61% fat
HC: 59% CHO

15% protein
25% fat

K-LCHF: 2235
± 375 kcal/d
HC: 1815 ±
195 kcal/d

6 weeks

Graded
exercise test:

Cycle
ergometer

Wingate Sprint,
Time ride

Walking, running, cycling
and cross-training

Heatherly
et al.

2018 [46]

8 trained
runners 39.5 ± 9.9

K-LCHF:
significant
reduction

HC: no
significant

change

Crossover study

K-LCHF: 7 ± 4%
CHO

29 ± 9% protein
64 ± 9% fat

HC: 43 ± 11%
CHO

17 ± 8% protein
38 ± 7% fat

K-LCHF: 1886
± 520 kcal/d
HC: 2820 ±
955 kcal/d

3 weeks
Graded

exercise test:
Treadmill

50-min run in
heat, 5-km time

trial
No report

Lambert et al.
1994 [47]

5 endurance
trained male

cyclists
22.0 ± 1.80 No report Crossover study

K-LCHF: 7% CHO
23% protein

70% fat
HC: 74% CHO

14% protein
12% fat

No report 2 weeks

Progressive
exercise test:

Cycle
ergometer

30-s
Wingate test No report
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Table 1. Cont.

Citation,
Year Subjects Age (Years) Body Mass

Change Study Design Dietary
Components

Energy
Intake

Intervention
Duration

VO2max Test
Type

Other Exercise
Test

Exercise Session during
the Intervention

Prins et al.
2019 [48]

7 competitive
recreational

distance male
runners

35.6 ± 8.4 No report
Randomized

counterbalance
crossover study

K-LCHF: 6.0 ±
1.3% CHO
25.1 ±1.5%

protein
69 ± 2% fat

HC: 56.4 ± 2.6%
CHO

15.3 ±1.1% protein
28 ± 2% fat

K-LCHF: 2837
± 251 kcal/d
HC: 2947 ±
284 kcal/d

6 weeks
Graded

exercise test:
Treadmill

5-km time trial Maintain usual training

Shaw et al.
2019 [49]

8 trained male
endurance

athletes
29.6 ± 5.1

K-LCHF:
significant
reduction

HD: no
significant

change

Randomized
crossover study

K-LCHF: 4.1 ±
0.8% CHO
18.2 ± 3.5%

protein
78 ± 4% fat

HD: 42.9 ± 7.8%
CHO

18.6 ± 1.4%
protein

39 ± 7% fat

K-LCHF: 3122
kcal/d

HD: 3280
kcal/d

31 days
Graded

metabolic test:
Treadmill

Run to
exhaustion trial Running and cycling

Note: K-LCHF: ketogenic low-carbohydrate, high-fat diet group; HD: habitual diet group; HC: high-carbohydrate diet; CHO: carbohydrate; HIIT: high-intensity interval training.
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3.3. Study Protocol

Ten studies investigated the effects of the K-LCHF diet on VO2max [18,41–49]. Among
them, three studies investigated the effects of the K-LCHF diet on TTE [43,44,49]; eight
studies investigated the effects of the K-LCHF diet on HRmax [18,39–44,46,47]; eight
studies investigated the effects of the K-LCHF diet on RER [18,41,44–49]; and six studies
investigated the effects of the K-LCHF diet on RPE [18,41,43–45,49]. The intervention
protocol of the studies included in the review differed by dietary components, intervention
duration, VO2max test type, other exercise tests and exercise session during intervention
(Table 1). Most of the studies were conducted by using a treadmill test [18,41–43,46,48,49],
while two studies were performed on a cycle ergometer [45,47]. All studies adopted the
GXT to measure VO2max.

3.4. Intervention Implementation

In all studies, the intervention group received the K-LCHF diet, and the control group
received a high-carbohydrate or habitual diet. The K-LCHF diet consisted of ≤10% CHO
and ≥60% fat; all non-LCHF diets consisted of ≥40% CHO and ≤40% fat. Eight studies
reported the daily energy intake (Table 1). Among those studies, the energy intake from the
K-LCHF groups was in the range of 2000–4000 kcal/d; five studies reported a range of 3000–
4000 kcal/d [18,41,42,48,49], while three studies reported a range of 2000–3000 kcal/d [44–46].

The durations of most interventions were two to six weeks [18,42,43,47–49]. One study
had a short intervention of five days [41], while another had a relatively long intervention
of 12 weeks [44].

3.5. Effect of K-LCHF Diet on VO2max during a GXT

No significant overall difference in VO2max was found between the K-LCHF and
HF/HD diets (SMD: −0.06, CI: −0.36, 0.25, p = 0.72). There was low heterogeneity in
this analysis (I2 = 0%) (Figure 3). Only one study [42] reported a significantly increased
VO2max within the group after the K-LCHF diet intervention.
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3.6. Effect of K-LCHF Diet on TTE during a GXT

TTE (minutes) was reported in three studies [43,44,48] involving 48 trained endurance
athletes. No significant overall difference in TTE was found between the K-LCHF and
HC/HD diet (SMD: −0.13, CI: −0.66, 0.40, p = 0.64), with an overall effect size of Z = 0.47
(Figure 4). There was low heterogeneity in this analysis (I2 = 0%).
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3.7. Effect of K-LCHF Diet on Maximal Heart Rate (HRmax) during GXT

HRmax was recorded in eight studies [18,41–46,48,49] involving 126 trained endurance
athletes. No significant overall difference in HRmax was found between the K-LCHF and
HC/HD diet (SMD: 0.14, CI: −0.35, 0.63, p = 0.58), with an overall effect size of Z = 0.55
(Figure 5). There was high heterogeneity in this analysis (I2 = 52%). Only one study [49]
reported a significant increase in HRmax.
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3.8. Effect of K-LCHF Diet on Maximal Respiratory Exchange Ratio (RER) during GXT

RER was presented in eight studies [18,41,44–49] involving 103 trained endurance
athletes. A significant overall difference in RER was found between the K-LCHF and
HC/HD diets (SMD: −1.81, CI: −2.49, –1.13, p < 0.00001), with an overall effect size of
Z = 5.22 (Figure 6). There was high heterogeneity in this analysis (I2 = 58%). Those studies
all showed a significant decrease in RER after the intervention.
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3.9. Effect of K-LCHF Diet on RPE during GXT

RPE was presented in six studies [18,41,43–45,49] involving 102 trained endurance
athletes. No significant overall difference in RPE was found between the K-LCHF and
HC/HD diets (SMD: 0.14, CI: −0.58, 0.86, p = 0.71), with an overall effect size of Z = 0.38
(Figure 7). There was high heterogeneity in this analysis (I2 = 70%). Only one study [45]
showed a significant increase in RPE after the intervention.



Nutrients 2021, 13, 2896 11 of 16Nutrients 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 7. Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on rating of perceived 
exertion (RPE) during graded exercise test (GXT); CI: confidence interval; SMD: standardize mean 
difference. 

4. Discussion 
After reviewing the limited literature on the K-LCHF diet in endurance athletes, 10 

eligible studies were included in the meta-analysis. Based on the outcomes of aerobic ca-
pacity, exercise performance and substrate oxidation in endurance athletes, we only found 
a significant effect of K-LCHF on RER, but not on VO2max, HRmax, TTE and RPE. This 
finding aligns with those of previous studies [18,41,43–49] that found that the K-LCHF 
diet had little effect on maximal aerobic capacity. 

Under normal circumstances, glycogen stores in the liver and muscle cells need to 
break down to generate energy, and endogenous carbohydrates are stored mainly in the 
liver and muscle as a primary energy source in distance races [50–55]. In a previous study, 
Heatherly et al. [46] found that adaptation to a high-fat diet had a negative effect on 
VO2max owing to body mass reduction in middle-aged male runners. However, Helge et 
al. [56] found an increased VO2max after a fat-rich diet in untrained healthy males, and 
Phinney et al. found no change in endurance-trained athletes [4]. The K-LCHF diet might 
alter the maximal aerobic capacity through weight loss [45], but might not change VO2max 
as weight loss was not the primary objective in those studies, and is not the objective for 
endurance athletes generally. In another study, the K-LCHF diet was effective in extend-
ing some older athletes’ professional life by controlling or losing weight [9]. Another 
study analyzed gender differences after adopting the K-LCHF diet for four weeks and 
found a reduction in VO2max in women after the intervention, which was not observed 
in men [31]. We found that body mass was significantly decreased after the K-LCHF diet 
intervention in seven studies, but no significant changes in VO2max were observed. Of 
note, most studies have only reported on absolute VO2max. Absolute values indicate the 
total quantity of oxygen being used during exercise, while relative values indicate how 
aerobically fit someone is compared with their peers. In this report, two studies reported 
both absolute and relative VO2max, but neither showed a significant change after inter-
vention [45,48]. Therefore, the interpretation of a K-LCHF diet strategy should be cau-
tiously considered for athletic prowess in endurance sports if VO2max has not changed 
but body weight has decreased. 

Moreover, no significant effect of K-LCHF diet was found on TTE. However, caution 
should be paid as only three studies with limited available data were used to examine the 
impact of the K-LCHF diet on the TTE. A reasonable explanation is that, during adapta-
tion to the K-LCHF diet, individuals still had sufficient muscle glucose stores to sustain 
high-intensity exercise [57]. A high-fat diet significantly enhanced subsequent prolonged 
exercise at approximately 60% of VO2max, but, at the beginning of the workout, they only 
had 50% muscle glycogen content stored compared with the high-CHO-diet group [51]. 
In contrast, high-level athletes showed higher rates of fat oxidation, and their bodies uti-
lized fat to replace part of the muscle glycogen for energy at a higher intensity [4]. This 
study also showed that after the body adapted to the K-LCHF diet, glycogen declined 
dramatically in muscle [4]. It remains to be studied whether long-term K-LCHF adapta-
tion can restore the muscle glycogen to a comparable level [30]. Even though the ability to 
utilize fat was theoretically increased after the K-LCHF diet, no positive training effect 
was found on TTE, which may be related to the combination of diet and training. 

Figure 7. Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on rating of perceived exertion (RPE) during
graded exercise test (GXT); CI: confidence interval; SMD: standardize mean difference.

4. Discussion

After reviewing the limited literature on the K-LCHF diet in endurance athletes,
10 eligible studies were included in the meta-analysis. Based on the outcomes of aerobic
capacity, exercise performance and substrate oxidation in endurance athletes, we only
found a significant effect of K-LCHF on RER, but not on VO2max, HRmax, TTE and RPE.
This finding aligns with those of previous studies [18,41,43–49] that found that the K-LCHF
diet had little effect on maximal aerobic capacity.

Under normal circumstances, glycogen stores in the liver and muscle cells need to
break down to generate energy, and endogenous carbohydrates are stored mainly in the
liver and muscle as a primary energy source in distance races [50–55]. In a previous study,
Heatherly et al. [46] found that adaptation to a high-fat diet had a negative effect on
VO2max owing to body mass reduction in middle-aged male runners. However, Helge
et al. [56] found an increased VO2max after a fat-rich diet in untrained healthy males, and
Phinney et al. found no change in endurance-trained athletes [4]. The K-LCHF diet might
alter the maximal aerobic capacity through weight loss [45], but might not change VO2max
as weight loss was not the primary objective in those studies, and is not the objective for
endurance athletes generally. In another study, the K-LCHF diet was effective in extending
some older athletes’ professional life by controlling or losing weight [9]. Another study
analyzed gender differences after adopting the K-LCHF diet for four weeks and found a
reduction in VO2max in women after the intervention, which was not observed in men [31].
We found that body mass was significantly decreased after the K-LCHF diet intervention
in seven studies, but no significant changes in VO2max were observed. Of note, most
studies have only reported on absolute VO2max. Absolute values indicate the total quantity
of oxygen being used during exercise, while relative values indicate how aerobically fit
someone is compared with their peers. In this report, two studies reported both absolute
and relative VO2max, but neither showed a significant change after intervention [45,48].
Therefore, the interpretation of a K-LCHF diet strategy should be cautiously considered
for athletic prowess in endurance sports if VO2max has not changed but body weight
has decreased.

Moreover, no significant effect of K-LCHF diet was found on TTE. However, caution
should be paid as only three studies with limited available data were used to examine
the impact of the K-LCHF diet on the TTE. A reasonable explanation is that, during
adaptation to the K-LCHF diet, individuals still had sufficient muscle glucose stores to
sustain high-intensity exercise [57]. A high-fat diet significantly enhanced subsequent
prolonged exercise at approximately 60% of VO2max, but, at the beginning of the workout,
they only had 50% muscle glycogen content stored compared with the high-CHO-diet
group [51]. In contrast, high-level athletes showed higher rates of fat oxidation, and their
bodies utilized fat to replace part of the muscle glycogen for energy at a higher intensity [4].
This study also showed that after the body adapted to the K-LCHF diet, glycogen declined
dramatically in muscle [4]. It remains to be studied whether long-term K-LCHF adaptation
can restore the muscle glycogen to a comparable level [30]. Even though the ability to
utilize fat was theoretically increased after the K-LCHF diet, no positive training effect was
found on TTE, which may be related to the combination of diet and training.
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Furthermore, no overall effect of the K-LCHF diet on HRmax was found. The potential
neurological effect of a high-fat diet is that ketone adaptation increases the metabolic
stress response during submaximal exercise. HR could be 7–9 bpm higher, potentially
because of increased sympathetic nervous system activity [58]. A previous study suggested
that the HR increases associated with obesity are caused by cardiac vagus nerve tension
reduction [49]. Helge et al. [59] reported that subjects consuming a high-fat diet had
significantly higher catecholamine and HR during submaximal exercise. Those changes
may be related to changes in the autonomic nervous system activity at rest and in response
to exercise after a short-term reduction in CHO intake (increased sympathetic and possibly
decreased parasympathetic response) [59,60]. However, in our analysis, we did not find a
significant effect of the K-LCHF diet on HRmax, which implies there is no evidence of a
significant performance advantage after the K-LCHF diet (ketogenic or not). The ability to
exercise at high intensity may be impaired by the K-LCHF diet.

The RER can indirectly indicate the ability of muscle to obtain energy [61]. A high
RER indicates that carbohydrates are mainly used, while a low RER indicates that more
fat is oxidized [61]. In our study, we found that the RER was significantly reduced after
the adoption of the K-LCHF diet, indicating that more fat is involved in energy supply
(Figure 6). In a study that simulated mountaineering after 4 h of cycling, eight out of nine
participants improved their exercise ability during the climb after switching to a K-LCHF
diet [62]. Throughout the study, five of the nine subjects enhanced their exercise ability
by switching to the K-LCHF diet. Interestingly, comparing the high-CHO diet with the
LCHF diet, RER improved. Exercise performance increased by an average of 375 s when
climbing the mountain [62], indicating that a K-LCHF diet may be more advantageous to
RER improvement in athletes. In addition, a study by Durkaleck-Michalski et al. [63] found
males were more prone to switch macronutrient use from carbohydrate to more fat after the
K-LCHF diet, reaching significance at the lower VO2 max levels. Conversely, females did
not significantly decrease carbohydrate oxidation at any volume of VO2max. Our finding
agrees with that of a previous report [62] suggesting that decreased RER after the K-LCHF
diet may involve an energy supply drawing more from fat in endurance athletes.

RPE may decrease after a K-LCHF diet. Some studies have shown that ketones provide
most of the fuel for the brain when CHO availability is insufficient and circulating β-HB
concentrations are in the 1–5 mmol/L range (ketosis) [9,64,65]. However, not all K-LCHF
diets may lead to ketosis [66]. Moreover, to a large extent, even minor dietary abnormalities
can lead to an increase in the concentration of ketones in the body even though the diet is
still LCHO [67]. After K-LCHF adaption, exercise may improve the brain center’s fatigue
and cognitive function. This may be caused by the oxidation of β-HB, which provides
a continued stable energy supply for the brain, delays the time of fatigue in the central
nervous system and improves exercise performance [68–70]. However, no significant
changes were found in RPE in this meta-analysis.

There was a large variation in the duration of the diet interventions among the
included studies. However, when excluding the study by Burke et al. [41], with a five-day
intervention, the results remained the same. Of note, the process of metabolic remodeling
may initially take two weeks, with further adaptation in the following months to years [30].
In our report, most of the studies used interventions that were longer than two weeks.
Even though we do not know the long-term adaptations, the results derived from these
moderate lengths of interventions hint at the direction of the effect of K-LCHF on the
aerobic capacity and exercise performance in endurance athletes.

4.1. Future Research

Different training strategies and study designs may explain the different impacts of the
outcomes. Future studies should focus on developing an appropriate diet for endurance
exercise and proposing guidelines for the intervention duration and intensity of training
sessions for various groups of athletes. Furthermore, high-quality trials are required to
prove the precise influence of different nutritional strategies.
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4.2. Limitations

This study had some limitations. First, most of the studies only reported absolute
VO2max, and TTE in the increment GXT was chosen as the primary outcome of exercise
performance rather than the race time of real competitions. Second, only articles published
in English were included, and gray literature and articles in other languages were not
included. Third, we did not have CHO/fat oxidation data, so future study on analyses of
CHO/fat oxidation would be useful. Finally, the subjects selected were all endurance ath-
letes and almost all male, which is not representative of the general population. Moreover,
there was no analysis of gender differences.

5. Conclusions

In summary, we found no significant overall effect of a ketogenic low-carbohydrate,
high-fat diet on VO2max, HRmax, TTE and RPE, but a significant overall effect on RER.
The K-LCHF diet did not lead to a positive change in aerobic capacity, possibly because the
expected improvement was not achieved during the training period. Therefore, a K-LCHF
diet is unlikely to change the aerobic capacity and exercise performance of endurance ath-
letes, and there is a need to conduct high-quality intervention studies to assess the impact
of different diet treatments for enhancing exercise performance in endurance athletes.
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