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Abstract

Objective. Heart rate (HR) monitoring provides a convenient and inexpensive way to predict

energy expenditure (EE) during physical activity. However, there is a lot of variation among

individuals in the EE-HR relationship, which should be taken into account in predictions. The

objective is to develop a model that allows the prediction of EE based on HR as accurately as

possible and allows an improvement of the prediction using calibration measurements from the

target individual. Approach. We propose a nonlinear (logistic) mixed model for EE and HR

measurements and an approach to calibrate the model for a new person who does not belong to

the data set used to estimate the model. The calibration utilizes the estimated model parameters

and calibration measurements of HR and EE from the person in question. We compare the re-

sults of the logistic mixed model with a simpler linear mixed model for which the calibration is

easier to perform. Main results. We show that the calibration is beneficial already with only one

pair of measurements on HR and EE. That is an important benefit over an individual-level model

fitting which requires a larger number of measurements. Moreover, we present an algorithm for

calculating the confidence and prediction intervals of the calibrated predictions. The analysis

was based on up to eleven pairs of EE and HR measurements from each of 54 individuals of

a heterogeneous group of people, who performed a maximal treadmill test. Significance. The

proposed method allows accurate energy expenditure predictions based on only a few calibra-

tion measurements from a new individual without access to the original dataset, thus making

the approach viable for example on wearable computers.

Keywords: energy expenditure, heart rate monitoring, individual calibration, logistic mixed

model, physical activity
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Introduction

The importance of physical activity (PA) for humans is generally recognized due to numerous

accompanying positive health effects (Biswas et al., 2015; Kesaniemi et al., 2001). Muscle

work during physical activity increases energy expenditure (EE), and measuring the PA-induced

energy cost is possible with several methods. In laboratory settings, indirect calorimetry is an

accurate and broadly applied method where aerobic EE is calculated from oxygen consumption

VO2 measurements (Levine, 2005), whilst in free-living conditions double-labelled water is

considered to be the gold standard method (Ainslie et al., 2003; Levine, 2005). However, both of

these methods are costly, require expertise, and are impractical to perform outside experimental

settings. In comparison, heart rate (HR) monitoring provides a convenient, inexpensive, and

practical way to estimate EE using a prediction equation that can be used to approximate the

EE during exercise or free living based on an estimated EE-HR relationship. However, there

is a lot of variation among individuals in the EE-HR relationship, which needs to be taken into

account in model fitting and HR-based prediction of EE.

Traditionally, the relationship between EE and HR is determined for an individual by record-

ing VO2 and HR simultaneously when the individual performs activities with gradually increas-

ing intensities. It is well-known that at moderate activity levels, EE increases linearly with a

positive slope as a function of HR (Livingstone, 1997; Booyens and Hervey, 1960; Oja et al.,

1982; Christensen et al., 1983; Haskell et al., 1993). At low levels of activity, the slope is almost

zero as the other factors may affect HR without a meaningful change in EE (Ainslie et al., 2003;

Achten and Jeukendrup, 2003). To model the discrepancy in slopes, a popular choice has been

a piecewise linear model called Flex HR, where EE stays constant at low HR values and in-

creases linearly above a certain HR knot point, which needs to be estimated (Spurr et al., 1988;

Livingstone et al., 1990, 2000; Ceesay et al., 1989). A nonlinear model, such as the S-shaped

logistic function, provides a smooth curve for the whole range of HR (Li et al., 1993; Moon

and Butte, 1996; Dauncey and James, 1979; Schulz et al., 1989; Davidson et al., 1997), which

theoretically expresses the relationship between energy expenditure and heart rate quite well,

especially at low and moderate intensity levels. It has also been supported empirically (Li et al.,

1993; Moon and Butte, 1996; Dauncey and James, 1979).
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To date, only individual-level nonlinear models for EE have been presented by fitting a lo-

gistic model to each individual’s data separately. The strength of the individual regression curve

approach is the reasonable accuracy of the predictions (Li et al., 1993; Moon and Butte, 1996).

However, a lot of measurements per individual are needed, individual prediction curves cannot

be used in predicting EE for individuals without measurements, and the variability among in-

dividuals is not quantified in such models. In large epidemiological studies, population-based

prediction equations for EE have been developed (Rennie et al., 2001; Hiilloskorpi et al., 2003;

Schrack et al., 2014; Keytel et al., 2005; Charlot et al., 2014). In these works, a linear (mixed)

model is used to predict EE using HR and some background variables (e.g. sex, age) as pre-

dictors. In mixed models, individual-level random effects are used to model variability among

individuals that is not explained by the background variables. This approach allows an accu-

rate prediction of EE for individuals whose measurements were used in the modelling (Schrack

et al., 2014), with less measurements needed than for individual-level model. Prediction is

possible also for the individuals not included in the original data, but the accuracy can be low

because their random effects are unknown.

The nonlinear mixed model of the current work is based on the logistic curve

EE = g(φ, HR) =
φ1

1 + exp[(φ2 −HR)/φ3]
, (1)

where φ = (φ1, φ2, φ3) define the S-shape of the curve (Fig. 1). Consequently, the correspond-

ing nonlinear mixed model is called a logistic mixed model. In the mixed model, the three pa-

rameters are further written as functions of individual-level random effects and population-level

fixed effects related to covariates such as age and sex. The mixed model combines the benefits

and overcomes the weaknesses of the population-based and individual-level approaches. The

model can be used as a population-based prediction equation by replacing the random effects by

their expected value, which is zero. It can be further improved by utilizing measurements of EE

and HR from the target individual through random-effect calibration, where the random effects

of the target individual are predicted so that the curve moves towards the calibration measure-

ments. The adjustment is the stronger the more measurements are available. The estimated

variance-covariance parameters are used in determining the optimal degree of adjustment. No
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lower limit for the measurements per individual exists; even one measurement can be utilized

in an efficient and robust way. Similar approaches have been used in forest sciences (e.g. Lappi,

1991; Hall and Bailey, 2001). In physiology and sports, Schrack et al. (2014) evaluated the

calibration using a linear mixed model. However, their approach required that the modelling

data set is available for calibration, which is impractical. Our approach requires only that the

parameter estimates of the fitted model and calibration measurements from the target individual

are available.

EE

HR

φ1

φ1

2

φ2

0.73φ1

φ3

Figure 1. The interpretations of the logistic model parameters demonstrated. A S-shape
logistic curve represents EE as a function of HR. A parameter φ1 is the asymptotic maximal
energy expenditure, a parameter φ2 is the heart rate value at which EE reaches half of its
maximum, and a parameter φ3 is the change in the heart rate when EE increases from the
half-maximum to the value of approximately 73% of its maximum.

In this study, the above-described logistic mixed model is fitted and compared with a linear
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mixed model. A calibration procedure based on a fitted model and measurements of the target

individual is presented and its benefit is evaluated with a various number of EE measurements

at different calibration loads. An approach to estimate the accuracy of the obtained individual-

level curve is also presented. We show that the logistic model provides better predictions than

the linear model, and these predictions can be significantly improved with a very small number

of calibration measurements from the new individual.

Materials and methods

Data

The data is a part of the EMG24 study ”Muscle loading during physical activity and normal

daily life: correlates with health and well-being” previously studied in (Tikkanen et al., 2013,

2014; Finni et al., 2016; Tikkanen et al., 2016). The study was approved by the ethics com-

mittee of the University of Jyväskylä, and followed the declaration of Helsinki and national

guidelines for research integrity. Participants signed a written informed consent prior to the

study. All participants of the original dataset are included in our study, but we have omitted

some variables not relevant to this study. The description of individuals, test protocol, measure-

ments and processing of data are presented in detail in (Tikkanen et al., 2014) and are repeated

here only for the relevant parts. Briefly, a heterogeneous group of 54 individuals carried out a

maximal treadmill test with various loads and inclinations. The group consisted of 28 men and

26 women. Mean ± SD of age (yr), BMI (kg×m−2) and Resting HR (kg×m−2) were for men

39.2 ± 13.7, 24.4 ± 3.19 and 53.2 ± 10.5 and for women 39.6 ± 14.2, 22.5 ± 2.46 and 57.8

±9.39, respectively. The non-standard protocol was chosen to reflect locomotion in free-living

conditions better than level loads. In the treadmill test, individuals performed 3-min loads with

various walking and running speeds and treadmill inclinations. After rest (load 1), the first six

treadmill loads were 2) 4 km×h−1, 3) 5 km×h−1, 4) 5 km×h−1 with 4 ◦ descent, 5) 5 km×h−1

with 4 ◦ ascent, 6) 6 km×h−1, and 7) 7 km×h−1. With a few exceptions, the individuals under

the age of 30 performed load 8) 10 km×h−1 for females and 12 km×h−1 for males. After per-

forming load 9) 5 km×h−1 with 8 ◦ ascent for 3 minutes, the maximality of oxygen uptake was
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evaluated individually. If two out of three of the following criteria were achieved, individuals

continued with the same treadmill adjustment (load 10): a) VO2max > 85% of the estimated

maximum, b) HR > 90% of the estimated maximum, and c) Borg RPE > 16. Otherwise, in-

dividuals continued to the load 11) 7 km×h−1 with 10 ◦ ascent. Individuals performed the last

load (10 or 11) until exhaustion.

During the treadmill test, respiratory gases were measured breath-by-breath by with Jaeger

Oxycon Pro with the LabManager 3.0 software (Viasys Healthcare Gmbh, Hoechberg, Ger-

many). HR was monitored with a Suunto T6 wrist computer and HR belt (Suunto Oy, Vantaa,

Finland). Ventilatory gases and HR were measured constantly and simultaneously during the

test. The last 60 seconds at each load were averaged for further analysis. With this averag-

ing we wanted to capture the steady-state values for both heart rate and energy expenditure.

We consider that 60 second average from the last minute of each load gives sufficiently accu-

rate presentation of this especially as energy expenditure has some delay in its measurement

compared to fast responding heart rate (Hiilloskorpi et al., 2003; Schrack et al., 2014; Keytel

et al., 2005). EE was estimated from oxygen consumption (VO2) and respiratory exchange ratio

(RER) with the equation (Lusk, 1924):

EE (kcal/min) = (1.2× RER + 3.85)(VO2/1000).

The measurements of EE and HR variables used in the analysis for all 54 persons are illus-

trated in Fig. 2.

Linear and logistic mixed model for EE prediction

As the data included up to eleven repeated measurements from each individual, a mixed model

approach was chosen to take account of the inter-individual variation. Both linear and nonlin-

ear (logistic) mixed models were fitted to the data. Also, the calibration of both models was

performed.

A linear mixed model with EE as a response variable can be written for an individual i as:

EEi = Xiβ + Ziui + εi, εi ∼ N(0,Ri), ui ∼ N(0,D),
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Figure 2. A plot of individual measurements of energy expenditure (EE) and heart rate (HR)
with few randomly samples individuals highlighted.

where the error term εi and the random effects ui are defined to be mutually independent. Here

Ri and D are positive-definite covariance matrices of εi and ui, respectively. The parameters of

both matrices are denoted by an parameter vector θ which is unknown. Moreover, in our study,

the fixed part Xiβ contains HR and some of the candidate background variables (e.g. sex and

age). The fixed effects β are common to the population. Some covariate effects on EE may

vary across individuals which is represented as a random part Ziui of the model.

The logistic mixed model applied to the EE in relation to HR can be presented for an indi-

vidual i as follows

EEij = g(φi, HRij) + εij =
φ1i

1 + exp[(φ2i −HRij)/φ3i]
+ εij, (2)

where shape parameters φi = (φ1i, φ2i, φ3i) contain both fixed and random effects for k =

1, 2, 3,

φki = a′kiβk + uki. (3)

Above, the errors εij and random effects uki follow the normal distribution as in a linear mixed

model. The shape parameters have a linear connection to covariate vectors aki assembled in
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matrix Ai, the regression coefficients β and the random effects ui, see Lindstrom and Bates

(1990) for details. Note that the linear submodels for the three logistic function parameters are

estimated jointly, which ensures efficient use of the data and allows realistic modelling of the

joint behavior of the submodels through random effects, which can be correlated across models.

The expected value of EE made with the model based on the logistic curve cannot be negative

which is an improvement over the traditional linear model. At low and high EE levels, the slope

of the logistic curve is almost horizontal, whereas at moderate activity levels the relation is

linear and positive. The shape of the curve and interpretations of the model parameters are

illustrated in Fig. 1. All the parameters have physical interpretations: A parameter φ1 is the

asymptotic maximal aerobic energy expenditure, a parameter φ2 is the heart rate value at which

EE reaches half of its maximum, and a parameter φ3 is the change in the heart rate when EE

increases from the half-maximum to the value of approximately 73% of its maximum (Pinheiro

and Bates, 2000).

Model selection based on RMSE

As we aimed at good out-of-sample predictive accuracy, we used cross-validation based on

the root mean square error (RMSE) as a measure for selecting an optimal set of background

covariates for the models (see, e.g, Hastie et al. (2009, Chapter 7.10) for details on cross-

validation).

As potential predictors in the candidate models, we used HR (always present), age, sex,

height, weight, BMI, and resting HR, which are easy and inexpensive to measure. For a linear

mixed model, we considered models with HR and all main effects and pairwise interactions

with HR, with an individual-level random intercept and regression coefficient for HR. For a

logistic mixed model, in order to keep the search-space of potential models reasonable, we

considered only the main effects of all predictors for each of the three shape parameters. For

random effects of the logistic model, we used only intercepts and tested different correlation

structures for these (i.e., a full covariance matrix of three intercept terms, all combinations of

a single pairwise correlation, and fully uncorrelated intercepts). For both linear and logistic

models, we allowed the residual variance to depend on sex. The parameters were estimated by
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REML (restricted maximum likelihood) with the Lindstrom-Bates algorithm (Lindstrom and

Bates, 1990) by using functions lme and nlme of R (R Core Team, 2020) package nlme

(Pinheiro et al., 2020) for linear and logistic models, respectively.

For the variable selection, we used leave-one-individual-out cross-validation as follows.

Given a candidate model, we estimated the model parameters for each subset of data where

one individual was left out, and then computed the RMSE for the leave-out individual using

the prediction based on fixed part of the model. While in theory predictions at the population-

level using nonlinear mixed models such as logistic mixed models requires integrating over the

random effects of the mixed model, here we followed the common approach where population-

level predictions are computed by zeroing-out the random effects. The overall cross-validation

error for the candidate model was then obtained by averaging these RMSE values over all indi-

viduals, and the model with the lowest average RMSE was selected for further analysis. This

approach differs from the one used in Tikkanen et al. (2014), where the selection of the back-

ground variables age and sex was based on statistical significance (no other variables than age

and sex were tested).

Calibration of prediction equations for new individuals when original data

not available

The idea behind the calibration of a mixed model is to provide improved predictions for individ-

uals who have not been a part of the original data used for fitting the prediction model. Without

having any information from a new individual’s EE values, a general prediction can be made

using the fixed part of the mixed model. However, if simultaneous measurements on EE and

HR can be collected similarly as for the original data, predictions of EE can be improved by

using these measurements and parameter estimates for the original model. When there are only

few measurements from the new individual, the mixed model borrows strength from other par-

ticipants’ measurements by shrinking the predictions towards the population average, an effect

which decreases when the number of measurements of the new individual is increased.

In calibration the random effects are predicted for a new individual. In the linear case, this

is relatively straightforward. The prediction of u is calculated as when fitting a linear mixed
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model (Laird and Ware, 1982), except for the fact that the new measurements do not contribute

to original parameter estimates. In the nonlinear case, the procedure is more complicated, and

the prediction of u must be done numerically (see Appendix A). The iterative algorithm used

for the calibration of the nonlinear model was first introduced by Meng and Huang (2009) in the

forestry context, see Mehtätalo and Lappi (2020) for discussion and examples. The calibration

code for the logistic mixed model, written in R language (R Core Team, 2020), can be found in

supplementary materials.

Calibration protocol and evaluation

Estimated linear and logistic mixed models were calibrated for a new individual as follows:

Since all individuals performed the loads 1, 3, 5 and 7, they were used as calibration loads. The

rest of the loads were left as a test set. As for the model selection, we used the cross-validation

approach to evaluate the benefits of the calibration for the EE prediction. First, one individual’s

measurements were excluded from the data and a model was fitted to this partial data consisting

of the rest 53 individuals’ measurements. Second, the prediction model was calibrated for

the left-out individual using the chosen calibration load(s). Third, the EE predictions were

performed with this calibrated model using the predictor values of the individual’s test set loads,

and the corresponding RMSE was recorded. The process was repeated for each individual,

which gave us the average RMSE for the particular calibration load(s). This procedure was then

repeated for each combination of calibration loads.

For illustrating the uncertainty accompanying the predictions, using logistic and linear mixed

models with and without calibration, a parametric bootstrap method (Efron and Tibshirani,

1994) was used (see Appendix B) to compute prediction curves and intervals for an individual

who benefitted from the calibration.

Results

Using the variable selection based on cross validation, the final model equations for the logistic

and linear mixed models are presented in Table 1 and the corresponding estimated parameters

and their confidence intervals in Table 2. In addition to HR, candidate covariates for the models
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were age, sex, height, weight, BMI and resting HR, which are easy and inexpensive to measure.

Before estimating the final models, the covariates weight, resting HR and age were centred in

70 kg, 56 bpm and 39 years, respectively. The final logistic mixed model included, in addition

to individual random intercept terms, covariates sex and weight, resting HR, and age, which

were used in modelling parameters φ1, φ2, and φ3, respectively. According to RMSEs for the

model selection, a correlation parameter between the random intercepts of φ2 and φ3 was also

required. In the case of the linear mixed model, the final model used sex, resting HR, weight

and HR, as well as the interaction of weight and HR as fixed effects.

Variables that ended up in the logistic model seem rather logical: the sub-model for φ1 in-

cludes weight and sex which are highly correlated with the energy expenditure of an individual,

whilst the sub-model for φ2 includes resting HR, which is rather variable between individuals

and mainly dependent on fitness level of an individual. Fitness level also affects the maxi-

mal energy expenditure of an individual, so for individuals with higher fitness levels the whole

‘heart rate – energy expediture’ curve is more to the left and up compared to individuals with

lower fitness level. Furthermore, the sub-model for φ3 includes age, which is associated with

decreased maximum heart rate. Thus, for older individuals the whole ‘heart rate – energy expe-

diture’ curve is more down compared to younger individuals thus making it rather logical that

age is in the φ3 part of the equation.

TABLE 1. The model equations for the logistic and the linear mixed model.

The logistic mixed model

φ1i = (β10 + u1i) + β11 ×Malei + β12 ×Weighti

φ2i = (β20 + u2i) + β21 ×RestHRi

φ3i = (β30 + u3i) + β31 × Agei

EEij = g(φi, HRij) + εij

The linear mixed model

EEij = (β0 + u0i) + (β1 + u1i)×HRij + β2 ×Malei+

β3 ×RestHRi + β4 ×Weighti + β5 ×HRijWeighti + εij

In the model equations, βs and us represent the fixed and the random effects, respectively.
A dummy variable Malei has a value 1 if the individual i is male, otherwise 0.
A residual εij ∼ N(0, σ2γ2malei

) where γmalei is estimated if the individual is male, otherwise 1.
Using average values, Weighti was centred by 70 kg, RestHRi by 56 bpm, and Agei by 39 years.
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TABLE 2. The parameter estimates for the logistic and linear mixed models.

Fixed part for the logistic model

φ1 Estimate 95% CI

β10 14.90 (13.99, 15.82)

β11 1.87 (0.53, 3.22)

β12 0.18 (0.12, 0.23)

φ2

β20 122.08 (117.27, 126.89)

β21 0.45 (0.10, 0.79)

φ3

β30 28.97 (26.64, 31.30)

β31 0.09 (-0.03, 0.20)

Random part

SD(u1i) 0.90 (0.34, 2.35)

SD(u2i) 14.10 (11.21, 17.73)

SD(u3i) 5.39 (3.89, 7.48)

corr(u2i, u3i) 0.54 (0.20, 0.77)

Residual

σ 0.84 (0.76, 0.93)

γmalei 1.35 (1.17, 1.56)

σ and γmalei are the parameter estimates of the vari-
ance function.
γmalei takes the estimated value if the individual i is
male, 1 otherwise.

Fixed part for the linear model

Estimate 95% CI

β0 -5.33 (-5.95, -4.71)

β1 0.11 (0.10, 0.11)

β2 0.49 (-0.35, 1.34)

β3 -0.06 (-0.09, -0.02)

β4 -0.06 (-0.11, -0.02)

β5 1.5×10−3 (1.1 × 10−3, 2.0 ×

10−3)

Random part

SD(u0i) 1.38 (0.98, 1.94)

SD(u1i) 0.02 (0.01, 0.02)

corr(u0i, u1i)-0.67 (-0.84, -0.37)

Residual

σ 0.93 (0.85, 1.03)

γmalei 1.40 (1.22, 1.61)

σ and γmalei as in the logistic model.

More precisely, according to the logistic mixed model, weight has a positive effect on max-

imal EE and men had on average higher maximal EE than women (φ1) (Table 1). Resting HR

had a positive effect on the half of the maximum EE. Age had a positive impact on the change

in heart rate when EE increases from the half-maximum to the value of approximately 73 % of

its maximum (φ3). In the case of a linear mixed model, men had on average higher EE than

women, high resting HR decreased EE, HR had a positive effect, weight negative, and inter-
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action term between HR and weight positive. The model assumptions about expected value,

variance and normality, were fulfilled quite well both in linear and nonlinear cases.

When the fixed part of the logistic mixed model was used for population-level prediction,

i.e. without predicted random effects, the RMSE of prediction was 1.67 kcal/min (Table 3).

As expected, the individual-level predictions based on random-effect calibration were better,

with up to 40% decrease in average RMSE compared to the population-level prediction. The

single most beneficial calibration load was the load 7, which alone improved the results almost

as much as all four loads. The rest load did not improve the prediction accuracy when used in

calibration. The logistic mixed model outperformed the linear mixed model in every case.

14



TABLE 3. Calculated average (over participants) RMSEs and their standard errors for different
combinations of calibration loads when using the calibrated linear and logistic models.

Rest Load 3 Load 5 Load 7 Logistic

RMSE

(kcal/min)

Linear

RMSE

(kcal/min)

1 1.67 (0.13) 1.83 (0.14)

2 X 1.69 (0.13) 1.82 (0.14)

3 X 1.27 (0.08) 1.41 (0.09)

4 X 1.41 (0.15) 1.46 (0.10)

5 X 1.10 (0.07) 1.30 (0.09)

6 X X 1.32 (0.08) 1.45 (0.10)

7 X X 1.31 (0.10) 1.44 (0.09)

8 X X 1.13 (0.07) 1.34 (0.09)

9 X X 1.25 (0.10) 1.34 (0.09)

10 X X 1.01 (0.07) 1.21 (0.08)

11 X X 1.05 (0.07) 1.23 (0.08)

12 X X X 1.22 (0.09) 1.35 (0.09)

13 X X X 1.03 (0.07) 1.26 (0.08)

14 X X X 1.06 (0.07) 1.26 (0.08)

15 X X X 1.02 (0.07) 1.19 (0.07)

16 X X X X 1.01 (0.07) 1.21 (0.08)
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We now illustrate the practical application of the proposed method in case of the logistic

mixed model. The general workflow is as follows. Note that first two steps are only performed

once using the original study data, and steps (3)-(5) are performed when calibrated predictions

for a new individual are needed.

1. Using the original data, estimate and store the parameters β̂ and θ̂ of the logistic model

defined in Table 1.

2. Optionally, if there is a need for prediction and/or confidence intervals, obtain and store

bootstrap samples of the model parameters using steps (1)–(4) of the bootstrap algorithm

of Appendix B.

3. With measured background covariates and at least one measurement pair of EE and HR

for a new target individual i, estimate the individual’s random effects ûi using the param-

eters from step (1) and the calibration algorithm of Appendix A.

4. Predict EE values for the new individuals at given HR values using the logistic function

g(Aiβ̂ + ûi,HR).

5. Optionally, using the bootstrap samples from step (2), compute prediction and/or confi-

dence intervals using steps (5)–(10) of the bootstrap algorithm of Appendix B.

Fig. 3 shows 90 % prediction intervals, with and without calibration using both linear and

logistic model, for an example individual (the male of age 28, weighting 54 kilograms with

resting HR 88) who benefited from the calibration. The confidence and prediction intervals

were much narrower when calibration was performed. This happens because majority of the

uncertainty in the population-level predictions is attributed to the variability between individu-

als, which is remarkably decreased by the prediction of the random effects using the calibration

measurements.

Discussion

The purpose of this study was to show the feasibility of using the logistic mixed model in

representing the HR effect in relation to EE and of using calibration of the model for a new
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Figure 3. Prediction and confidence intervals for an individual without (left panel) and with
calibration (right panel), when using a linear mixed model (A and B) and a logistic mixed
model (C and D), respectively. The inner band seen on the figures represents the 90 %
confidence interval for the prediction and the outer band is the prediction interval for a new
measurement of EE. The used calibration loads 3 and 7 are marked with a cross in the figures,
while the individual’s other measurements are marked with black dots. Additionally, the solid
line represents the point estimates (the mean of predictions).

individual to increase the accuracy of the prediction. We found that the logistic mixed model

performed better than the linear mixed model when predicting EE, both at population-level and

with calibration. In addition, the accuracy of the EE predictions can be improved remarkably

through individual calibration even when based only on one load (Table 3) and the related

prediction interval for an individual-level EE-HR curve is remarkably narrower (Fig. 3, orange

bands) compared with the population-based EE-HR curve.

Several population-based EE prediction equations with HR have been presented in the past,

however, none of them are nonlinear (Hiilloskorpi et al., 2003; Schrack et al., 2014; Keytel

et al., 2005; Charlot et al., 2014). Some researchers (Li et al., 1993; Moon and Butte, 1996;

Dauncey and James, 1979) have used the nonlinear, logistic model in modelling EE vs HR rela-

tion but fitting every individual’s data separately. Li et al. (1993) concluded that the individual

EE vs HR curves may differ vastly within the same individual at different times. The mixed

model approach may overcome this difficulty to some extent as coefficients of the fixed part
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are determined by all data and changes in the predictor variables (e.g. age, weight and resting

HR) also change the prediction equation. In our study, the estimated models included weight

as a fixed effect, hence the changes in weight within the individual can be taken into account

in the curve shape. In the same way, the effect of ageing on maximal EE is considered in the

model. As observed in several studies (e.g. Spurr et al., 1988; Livingstone et al., 1990; Luke

et al., 1997), EE is linearly related to HR except for the lowest and the highest level of physical

stress in which cases EE vs HR curve is almost horizontal. Factors independent of physical

activity (e.g. caffeine, insufficient sleep, humidity, smoking, emotional stress) may affect HR at

rest or under low physical strain. Also in our study the largest discrepancies between observed

values of EE and predictions of EE were at low HR values: As shown the left-hand side of Fig.

2, there were few cases with relatively large EE values compared to small HR values. However,

the majority of data followed the logistic model well.

In this study, we applied the statistical method called the calibration of mixed models to

determine how measurements of a new individual (not included in the original data) enhance

the prediction accuracy of EE. The method is the most useful when collecting new data is time-

consuming and/or expensive but still some increment in accuracy is desired. The method is

extensively applied in forest sciences for instance in the estimation of tree heights for a given

forest stand (Mehtätalo and Lappi, 2020).

The results of calibration (Table 3) shows the measurements taken at rest will not improve

the prediction accuracy. This is not surprising, as mentioned above, factors other than physical

activity may have an impact on HR at rest, and thus, the measurements taken at rest will not be

informative when the physical strain increases. It can also be seen in Table 3 that the logistic

model outperforms the linear model both at the population-level and at every level of calibration.

Again, this was anticipated as the logistic model is well-supported physiologically at low and

moderate activity levels. At the high activity level, the energy expenditure could theoretically

increase instead of being horizontal as in logistic curve (McArdle et al., 2015). However, with

our data, the logistic model seems to work quite well also at high levels, when few calibration

points at a low or moderate level is used.

According to the results, the most beneficial calibration load was load 7 (7 km×h−1) which

was the most demanding among the calibration loads. This raises the question if using even
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more demanding loads in calibration could be worthwhile. An experimental design to study

this question would be more time-consuming as breaks between performing the loads would

be needed. Furthermore, performing the more demanding loads without carrying out the less

demanding ones first could increase the risk for injury.

Calculating the prediction intervals was done numerically with using a parametric bootstrap

method. It can be seen in Fig. 3b that the precision of predictions was increased near the

observations used for calibration. The figure also shows how the calibrated curves (the linear

and logistic) are shifted downwards giving a better fit for the data and eventually more accurate

predictions of EE.

The introduced method for predicting EE by HR is a combination of the individual regres-

sion approach and the population-based approach. If there are no measurements available for

an individual whose EE predictions are of interest, the predictions can be performed with the

fixed part of the model, which provides a population-based prediction equation. On the other

hand, if improved accuracy is desired but resources are limited, a single pair of simultaneous

measurements of EE and HR could lead to a sufficient improvement in accuracy.

In conclusion, the developed nonlinear logistic mixed model and its calibration provides a

superior estimation method for energy expenditure based on HR recordings, compared with

linear mixed models, especially during activities of daily life that typically are submaximal in

nature and occur in varying terrain.
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Tikkanen, O., Sipilä, S., Kuula, A.S., Pesola, A., Haakana, P., and Finni, T. 2016. Muscle

activity during daily life in the older people. Aging Clinical and Experimental Research 28:

713–720.

Appendix A: Calibration of the logistic mixed model

The description of the calibration process of the logistic mixed model for an individual i who

has not been a part of the original data (Hall and Bailey, 2001; Meng and Huang, 2009). After

fitting the logistic model for the original data, estimates of the fixed effects and parameters

related to the covariance matrices are marked by β̂ and θ̂, respectively. The prediction of ûi

is performed by an algorithm where random effect values are updated iteratively. Denote the

iteration number by ω and the derivative of the logistic function g(Aiβ̂+ui, HRij) with respect

to ui at iteration ω by

Ẑ
(ω)

i =


∂g
∂u1

(Aiβ̂ + ui, HRi1)
∂g
∂u2

(Aiβ̂ + ui, HRi1)
∂g
∂u3

(Aiβ̂ + ui, HRi1)

...
...

...

∂g
∂u1

(Aiβ̂ + ui, HRis)
∂g
∂u2

(Aiβ̂ + ui, HRis)
∂g
∂u3

(Aiβ̂ + ui, HRis)

 ,

where the number of rows in a matrix equals the number of observations (denoted by s) used in

calibration.

In the following algorithm EEi stands for the observed energy expenditures at chosen cali-

bration loads. The iterative algorithm consists of four steps:

1. Let ω = 0. Define u0
i = 0 and calculate Ẑ

(0)

i .

2. Let ω = 1. Predict random effects with equation

u1
i = D̂Ẑ

(0)ᵀ

i (R̂i + Ẑ
(0)

i D̂Ẑ
(0)ᵀ

i )−1(EEi − g(Aiβ̂,HRi)).
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3. Calculate Ẑ
(ω)

i and g(Aiβ̂ + u(ω)
i ). Update random effects with equation

u(ω+1)
i = D̂Ẑ

(ω)ᵀ

i (R̂i + Ẑ
(ω)

i D̂Ẑ
(ω)ᵀ

i )−1(EEi − g(Aiβ̂ + u(ω)
i ,HRi) + Ẑ

(ω)

i u(ω)
i ).

4. Repeat step 3 until a chosen convergence criterion is fulfilled:

for instance max(|u(ω+1)
i1 − û(ω)i1 |, |u

(ω+1)
i2 −u(ω)i2 |, |u

(ω+1)
i3 −u(ω)i3 |) < 0.00001. Let us denote

the last value by ûi.

EE can now be predicted at HR value x using function g(Aiβ̂ + ûi, x).
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Appendix B: A parametric bootstrap algorithm

An algorithm for computing confidence and prediction intervals for logistic and linear mixed

models, by using a general parametric bootstrap algorithm (Efron and Tibshirani, 1994). In the

following let us denote the logistic function by g, data without individual i by y(−i) and other

symbols similarly, and individual i’s observations used in calibration by y(cal)
i . The prediction

and confidence intervals of EE for individual i were computed using the following algorithm:

1. Estimate parameters β and θ based on data y(−i) and mark the estimates with symbols β̂

and θ̂.

2. Sample randomly ε∗(−i) ∼ N(0,R(θ̂)) and u∗(−i) ∼ N(0,D(θ̂)).

3. Form new data y∗(−i) = g(A(−i)β̂ +u∗(−i),HR(−i))+ε∗(−i) in the logistic case or y∗(−i) =

X(−i)β̂ + Z(−i)u∗(−i) + ε∗(−i) in the linear case.

4. Fit the model for data y∗(−i) and mark the stored model parameters as β̂
∗

and θ̂
∗
.

5. Predict u∗∗i at individual level for individual i using the calibration measurements y(cal)
i

and sample randomly u∗∗i ∼ N(0,D(θ̂
∗
)) at population-level, instead.

6. Predict EE at individual and population-level for an individual i at required HR values xi

using g(Aiβ̂
∗ + u∗∗i , xi) or Xiβ̂

∗ + Ziu∗∗i .

7. Add simulated error term ε∗i ∼ N(0,Ri(θ̂
∗
)) to the predictions.

8. Repeat steps 2 - 7 K times.

9. Report the mean prediction given HR at individual and population-level.

10. Report the confidence and prediction intervals given HR at individual and population-

level taking, for example, the 5th and 95 the percentiles of the realisations.
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