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SELF-IMPROVEMENT OF POINTWISE HARDY INEQUALITY

SYLVESTER ERIKSSON-BIQUE AND ANTTI V. VÄHÄKANGAS

Abstract. We prove the self-improvement of a pointwise p-Hardy inequality.

The proof relies on maximal function techniques and a characterization of the
inequality by curves.

1. Introduction

Let X = (X, d, µ) be a metric measure space and let 1 ≤ p < ∞. In this
paper we are interested in the self-improvement properties of the pointwise p-Hardy
inequality

(1) |u(x)| ≤ CH d(x,Ωc)(Mp,κd(x,Ωc)g(x)) .

We say that an open set Ω ( X satisfies pointwise p-Hardy inequality, if there
are constants CH and κ such that inequality (1) holds for all x ∈ Ω whenever u
is a Lipschitz function such that u = 0 in Ωc = X \ Ω and g is a bounded upper
gradient of u; we refer to Section 2 for the definition of Mp,κd(x,Ωc)g(x) and the
standing assumptions on X. By Hölder’s inequality, we see that increasing p will
result in a weaker inequality (1). Self-improvement is concerned with the opposite,
and far less intuitive, possibility of lowering the exponent p slightly. Our main
result reads as follows. Let 1 ≤ p0 < p < ∞ and assume that X supports a p0-
Poincaré inequality. Assume that Ω satisfies a pointwise p-Hardy inequality. Then
there exists q ∈ (p0, p) such that Ω satisfies a pointwise q-Hardy inequality; we refer
to Theorem 5.1. In this paper we provide a direct proof of this self-improvement
result with transparent and quantitative bounds for the quantity p − q > 0 of
self-improvement; see Remark 5.2.

The pointwise p-Hardy inequality was first independently studied by Haj lasz in
[6] and by Kinnunen–Martio in [10]. Korte et al. proved in [11] that a pointwise
p-Hardy inequality characterizes the so-called uniform p-fatness of the complement
Ωc; we note that uniform p-fatness is a uniform p-capacity density condition that
appears often in potential theory and PDE’s, see e.g. [7]. Consequently, our proof
can be used to show the deep self-improvement property of uniform p-fatness. This
result was first discovered in Euclidean spaces by Lewis [15] using potential theoret-
ical arguments. Subsequently Mikkonen generalized Lewis’ result to the Euclidean
weighted setting in his PhD-thesis [17]. Mikkonen’s approach, in turn, was adapted
to metric spaces by Björn et al. in [2]. This adaptation relies on the impressive
theory of differential structures on complete (or at least locally complete) metric
spaces, established by Cheeger in [3].
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2 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

An alternative approach to the self-improvement of uniform p-fatness was re-
cently provided by Lehrbäck et al. in [13]. Their proof builds upon a localization
of the argument due to Koskela–Zhong [12] which, in turn, is concerned with the
self-improvement of integral p-Hardy inequalities. Consequently, either one of the
papers [2] or [13] together with the mentioned characterization in [11] can be used
to provide an indirect proof of our main result. In comparison, our approach is
more direct with the additional benefit of yielding transparent and quantitative
bounds for the self-improvement. Our approach is new even in the classical setting
of Euclidean space equipped with the Euclidean metric and the Lebesgue measure.
For a survey on Hardy inequalities, and their connections to uniform p-fatness, we
refer to [9] and references therein. See also [16].

The outline of this paper is as follows. Notation and maximal function techniques
are presented in Section 2. The pointwise p-Hardy inequality is characterized by
using curves in Section 3. The actual work for self-improvement via curves is
done in Section 4 and our main results are stated and proved in Section 5. The
main line of our proof is adapted from the paper [4] of the first author, where
the self-improvement of a p-Poincaré inequality is proved with the aid of maximal
functions and a characterization by curves; this result was originally obtained in [8]
by a different method. Curiously, the present approach simultaneously explains the
self-improvement property of both p-Poincaré inequality and pointwise p-Hardy
inequality. We also remark that Lerner–Pérez [14] established self-improvement
properties of Muckenhoupt weights by a similar approach to maximal functions.
It is an open question, to what extent these ideas can be taken to unify proofs of
various self-improvement phenomena that are ubiquitous in analysis and PDE.

Acknowledgements. The authors would like to thank Juha Kinnunen and Juha
Lehrbäck for their valuable comments. The first author is partially supported by the
grant DMS#-1704215 of NSF(U.S.). The first author also thanks Enrico Le Donne,
Riikka Korte and Juha Kinnunen for hosting and supporting visits at University of
Jyväskylä and Aalto University during which this research was completed.

2. Notation and auxiliary results

Here, and throughout the paper, we assume that X = (X, d, µ) is a CQC-
quasiconvex proper metric measure space equipped with a metric d and a positive
complete D-doubling Borel measure µ such that #X ≥ 2, 0 < µ(B) <∞ and

(2) µ(2B) ≤ Dµ(B)

for some D > 1 and for all balls B = B(x, r) = {y ∈ X : d(y, x) < r}. Here we use
for 0 < λ <∞ the notation λB = B(x, λr). The space X is separable under these
assumptions, see [1, Proposition 1.6]. Moreover, the measure µ is regular and, in
particular for every Borel set E ⊂ X and every ε > 0, there exists an open set
V ⊃ E such that µ(E) ≤ µ(V ) + ε; we refer to [5, Theorem 7.8] for further details.

We denote by Lip(X) the space of Lipschitz functions on X. That is, we have
u ∈ Lip(X) iff there exists a constant λ > 0 such that

|u(x)− u(y)| ≤ λd(x, y) , for all x, y ∈ X .

We let Ω ⊂ X be an open set. We denote by Lip0(Ω) the space of Lipschitz
functions on X that vanish on Ωc = X \Ω. The set of continous functions on X is
denoted by C(X), and C0(Ω) ⊂ C(X) consists of those continuous functions that
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 3

vanish on Ωc. We denote by LC(X) the set of lower semicontinuous functions on
X, and by LC0(Ω) we denote the set of those functions in LC(X) that vanish on
Ωc.

By a curve we mean a nonconstant, rectifiable, continuous mapping from a com-
pact real interval to X. By Γ(X) we denote the set of all curves in X. The length
of a curve γ ∈ Γ(x) is written as len(γ). We say that a curve γ : [a, b]→ X connects
x ∈ X to y ∈ X (or a point x ∈ X to a set E ⊂ X), if γ(a) = x and γ(b) = y
(γ(b) ∈ E, respectively). If x, y ∈ X, E ⊂ X and ν ≥ 1 we denote by Γ(X)νx,y the
set of curves that connect x to y and whose lengths are at most νd(x, y), and by
Γ(X)νx,E we denote the set of curves that connect x to E and whose lengths are at

most νd(x,E).
We say that a Borel function g ≥ 0 on X is an upper gradient of a real-valued

function u on X if, for any curve γ connecting any x ∈ X to any y ∈ X, we have

(3) |u(x)− u(y)| ≤
∫
γ

g ds .

We use the following familiar notation:

uE =

∫
E

u(y) dµ(y) =
1

µ(E)

∫
E

u(y) dµ(y)

is the integral average of u ∈ L1(E) over a measurable set E ⊂ X with 0 < µ(E) <
∞. Moreover if E ⊂ X, then 1E denotes the characteristic function of E; that is,
1E(x) = 1 if x ∈ E and 1E(x) = 0 if x ∈ X \ E. If 1 ≤ p <∞ and u : X → R is a
µ-measurable function, then u ∈ Lploc(X) means that for each x0 ∈ X there exists
r > 0 such that u ∈ Lp(B(x0, r)), i.e.,

∫
B(x0,r)

|u(y)|p dµ(y) <∞.

For 0 ≤ r <∞ and 1 ≤ p <∞, and every f ∈ Lploc(X), we define the r-restricted
maximal function Mp,rf(x) at x ∈ X by

Mp,rf(x) :=


|f(x)| , r = 0 ,

sup
B

(∫
B

|f(z)|p dµ(z)

) 1
p

, r > 0 ,

where the supremum is taken over all balls B = B(y, t) in X such that x ∈ B and
0 < t < r.

The definition of a pointwise p-Hardy inequality is as follows; recall that Ωc =
X \ Ω.

Definition 2.1. Let 1 ≤ p < ∞. An open set ∅ 6= Ω ( X is said to satisfy a
pointwise p-Hardy inequality if there exists constants CH > 0 and κ ≥ 1 such that
for every Lipschitz function u ∈ Lip0(Ω), every bounded upper gradient g of u and
every x ∈ Ω, we have

(4) |u(x)| ≤ CH d(x,Ωc)(Mp,κd(x,Ωc)g(x)) .

Clearly by Hölder’s inequality, a pointwise p-Hardy inequality implies a pointwise
q-Hardy inequality for every 1 ≤ p < q <∞.

The following p-Poincaré inequality has a corresponding property.

Definition 2.2. Let 1 ≤ p <∞. We say that X supports a p-Poincaré inequality,
if there are constants CPI > 0 and λ ≥ 1 such that for any ball B of radius r > 0
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4 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

in X, any u ∈ Lip(X) and any bounded upper gradient g of u, we have

(5)

∫
B

|u(x)− uB | dµ(x) ≤ CPI r

(∫
λB

g(x)p dµ(x)

)1/p

.

Here uB =
∫
B
u dµ.

We remark that the p-Poincaré inequality has a self-improving property. More
specifically, a p-Poincaré inequality for any 1 < p < ∞ implies a p0-Poincaré in-
equality for some p0 < p; see [4] and [8]. For a self-contained exposition, we will
explicitly assume such an improved Poincaré inequality. The following characteri-
zation from [4, Theorem 1.5] will be useful.

Lemma 2.3. Let 1 ≤ p <∞. Then X supports a p-Poincaré inequality if and only
if there are constants CA > 0, ν > CQC and κ ≥ 1 such that, for any non-negative
and bounded g ∈ LC(X) and any x, y ∈ X, we have

(6) inf
γ∈Γ(X)νx,y

∫
γ

g ds ≤ CA d(x, y)
(
Mp,κd(x,y)g(x) +Mp,κd(x,y)g(y)

)
.

We need a few auxiliary results involving maximal functions. We begin with the
following scale invariant weak-type estimate that is originally from [4, Lemma 2.3].

Lemma 2.4. Fix 1 ≤ q < ∞ and 0 < r, s < ∞. Let f ∈ Lqloc(X), let Λ > 0, and
define

Eq,s,Λ = {x ∈ X | Mq,sf(x) > Λ} .
Then, for every x ∈ X,

(7) M1,r1Eq,s,Λ(x) ≤ D5(Mq,r+3sf(x))q

Λq
.

Proof. Fix x ∈ X and 0 < t < r. Let B = B(y, t) be a ball in X such that x ∈ B.
It suffices to prove that

(8)

∫
B

1Eq,s,Λdµ ≤
D5(Mq,r+3sf(x))q

Λq
.

The proof of (8) is based upon a covering argument. For each z ∈ Eq,s,Λ ∩ B we
fix a ball Bz of radius 0 < rBz < s such that z ∈ Bz and

(9)

(∫
Bz

|f |q dµ
) 1
q

> Λ .

Suppose that t < rBz for some z ∈ Eq,s,Λ ∩B. Then x ∈ 3Bz and, therefore,∫
B

1Eq,s,Λdµ ≤ 1 <

∫
Bz
|f |q dµ
Λq

≤
D2
∫

3Bz
|f |q dµ

Λq
≤ D2(Mq,3sf(x))q

Λq
.

Since Mq,3sf(x) ≤Mq,r+3sf(x) and D > 1, we thus obtain inequality (8). Hence
in the sequel, we can assume that rBz ≤ t for all z ∈ Eq,s,Λ ∩B.

By using the 5r-covering lemma [1, Lemma 1.7], we obtain a countable and
disjoint family B ⊂ {Bz | z ∈ Eq,s,Λ∩B} of balls such that Eq,s,Λ∩B ⊂

⋃
B′∈B 5B′.

Hence, by (9),∫
B

1Eq,s,Λdµ ≤
1

µ(B)

∑
B′∈B

µ(5B′) ≤ D3

µ(B)

∑
B′∈B

µ(B′) ≤ D3

Λqµ(B)

∑
B′∈B

∫
B′
|f |q dµ .

9 Feb 2019 01:21:04 EST

Version 2 - Submitted to Trans. Amer. Math. Soc.

GeomAnal+PDEThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 5

Since rB′ ≤ min{s, t}, we have that B′ ⊂ B′′ := B(y, t + 2 min{s, t}) for every
B′ ∈ B. Also, B ⊂ B′′ ⊂ 3B, so µ(B′′) ≤ D2µ(B). We can conclude that∫

B

1Eq,s,Λdµ ≤
D5

Λq

∫
B′′
|f |q dµ ≤ D5(Mq,t+3sf(x))q

Λq
.

Since Mq,t+3sf(x) ≤Mq,r+3sf(x), we thus obtain inequality (8) also in this case.
�

The following approximation lemma is originally from [4, Lemma 3.7]. For the
convenience of the reader, we provide a proof. We remark that the regularity of
the measure is needed in the proof. A Borel function g : X → [0,∞) is simple, if

g =
∑k
j=1 aj1Ej for some real aj > 0 and Borel sets Ej ⊂ X, j = 1, . . . , k.

Lemma 2.5. Let 1 ≤ p < ∞. Let g : X → [0,∞) be a simple Borel function.
Then, for each x ∈ X and every ε > 0, there exists a non-negative and bounded
gx,ε ∈ LC(X) such that g(y) ≤ gx,ε(y) for all y ∈ X \ {x} and Mp,rgx,ε(x) ≤
Mp,rg(x) + ε if r > 0.

Proof. We prove the claim, while assuming that diam(X) =∞. The case diam(X) <
∞ is similar, and we omit the modifications. Fix x ∈ X and ε > 0. In the first
step, we prove an auxiliary statement for a Borel set E ⊂ X. Namely, we will show
that there exists an open set U ⊂ X such that 1E ≤ 1U in X \ {x} and

(10) Mp,r(1U − 1E)(x) < ε , if r > 0 .

To prove this auxiliary statement, for each m ∈ Z, we write

Am = {y ∈ X : 2m−1 < d(x, y) < 2m+1} .
Observe that each y ∈ X belongs to at most two annuli. We also have that µ(Am) >
0, since X is connected and unbounded. Hence, if m ∈ Z then by regularity of the
measure µ, there is an open set Um ⊂ Am such that

(11) Am ∩E ⊂ Um and µ(Um \E) = µ(Um \ (Am ∩E)) <
εp

2D4
µ(Am) .

Define U =
⋃
m∈Z Um. Then

(12) E \ {x} ⊂
⋃
m∈Z

(Am ∩ E) ⊂
⋃
m∈Z

Um = U .

As a consequence, we then have 1E(y) ≤ 1U (y) for every y ∈ X \ {x}. To prove
(10), we let r > 0 and let B(y, t) ⊂ X be a ball in X such that x ∈ B(y, t) and
0 < t < r. Then 1U − 1E = 1U\E almost everywhere, and therefore by (11) we get∫

B(y,t)

|1U − 1E |p dµ =

∫
B(y,t)

1U\E dµ

≤ 1

µ(B(y, t))

∫
X

dlog2(2t)e∑
m=−∞

1Um\E dµ

=
εp

2D4µ(B(y, t))

dlog2(2t)e∑
m=−∞

µ(Am)

≤ εp

D4

µ(B(x, 8t))

µ(B(y, t))
≤ εp µ(B(x, t))

µ(B(y, 2t))
≤ εp .
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6 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

By raising this estimate to power 1
p and then taking supremum over all balls B(y, t)

as above, we obtain inequality (10).

We now turn to the proof of the actual lemma. Let g =
∑k
j=1 aj1Ej be such that

aj > 0 and Ej ⊂ X is a Borel set for each j = 1, . . . , k. By the auxiliary statement,
for each j = 1, . . . , k, there exists a non-negative and bounded gx,ε,j ∈ LC(X) such
that 1Ej ≤ gx,ε,j in X \ {x} and

(13) Mp,r(gx,ε,j − 1Ej )(x) ≤ ε

kmaxj aj
.

Now we define gx,ε =
∑k
j=1 ajgx,ε,j . Then g ≤ gx,ε in X \ {x}. Moreover, by the

subadditivity and positive homogeneity of the maximal function, and inequalities
(13), we have

Mp,rgx,ε(x) =Mp,r(g + gx,ε − g)(x)

≤Mp,rg(x) +Mp,r(gx,ε − g)(x)

≤Mp,rg(x) +

k∑
j=1

ajMp,r(gx,ε,j − 1Ej )(x) ≤Mp,rg(x) + ε .

This concludes the proof. �

3. Characterization by curves

We translate the pointwise p-Hardy inequality to an equivalent problem of ac-
cessibility. This problem can be phrased as a problem of finding a single curve with
a small integral. The standing assumptions concerning the space X are stated in
Section 2.

Lemma 3.1. Let 1 ≤ p < ∞. Then an open set ∅ 6= Ω ( X satisfies a pointwise
p-Hardy inequality if, and only if, there are constants CΓ > 0, ν > CQC and κ ≥ 1
such that for each non-negative and bounded g ∈ LC(X) and every x ∈ Ω, we have

(14) inf
γ∈Γ(X)ν

x,Ωc

∫
γ

g ds ≤ CΓ d(x,Ωc)
(
Mp,κd(x,Ωc)g(x)

)
.

Proof. Throughout this proof, we tacitly assume that curves are parametrized by
arc length. First suppose that an open set ∅ 6= Ω ( X satisfies a pointwise p-Hardy
inequality (4) with constants CH > 0 and κΓ > 1. Fix a non-negative and bounded
function g ∈ LC(X). Fix x ∈ Ω and let δ > 0.

Define a function u : X → [0,∞) by setting

(15) u(y) = inf
γ

∫
γ

h ds , y ∈ X ,

where h = g+Mp,κΓd(x,Ωc)g(x)+δ, which is a non-negative bounded Borel function,
and the infimum is taken over all curves γ in X connecting y to Ωc. Let us remark
that these curves are not subject to any distance conditions. Clearly, we have that
u = 0 in Ωc. Fix y, w ∈ X and consider any curve σ connecting y to w. We claim
that

(16) |u(y)− u(w)| ≤
∫
σ

h ds .

From this it follows, in particular, that h is an upper gradient of u. Moreover, since
X is quasiconvex and h is bounded, it follows from (16) that u ∈ Lip0(Ω).
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 7

In order to prove (16), we may assume that u(y) > u(w). Fix ε > 0 and let γ be
a curve in X such that connects w to Ωc and satisfies inequality u(w) ≥

∫
γ
h ds− ε.

Let σγ be the concatenation of σ and γ. Then

|u(y)− u(w)| = u(y)− u(w)

≤
∫
σγ

h ds−
∫
γ

h ds+ ε =

∫
σ

h ds+ ε .

The desired inequality (16) follows by taking ε→ 0+.
Now, applying the assumed pointwise p-Hardy inequality (2.1) to the function u

and to its bounded upper gradient h yields

u(x) ≤ CH d(x,Ωc)(Mp,κΓd(x,Ωc)h(x)) <∞ .

Since u(x) ≥ δd(x,Ωc) > 0, by (15) there is a curve γ in X connecting x to Ωc such
that

∫
γ

g ds+ (Mp,κΓd(x,Ωc)g(x) + δ) len(γ) =

∫
γ

h ds ≤ 2u(x)

≤ 2CH d(x,Ωc)(Mp,κΓd(x,Ωc)h(x))

≤ 2CH d(x,Ωc)(2Mp,κΓd(x,Ωc)g(x) + δ) .

(17)

The last inequality follows from the sublinearity of maximal function. We can now
conclude from (17) that len(γ) ≤ 4CH d(x,Ωc). By taking δ → 0+, we obtain from
(17) that ∫

γ

g ds ≤ 4CH d(x,Ωc)(Mp,κΓd(x,Ωc)g(x)) .

Thus, inequality (14) holds with

CΓ = 4CH , κ = κΓ , ν > max{CQC, 4CH} .

For the converse implication, we assume that inequality (14) holds, for all non-
negative and bounded g ∈ LC(X), and for all x ∈ Ω. We need to prove that Ω
satisfies a pointwise p-Hardy inequality. To this end, we let u ∈ Lip0(Ω) and let g
be a bounded upper gradient of u. We also fix x ∈ Ω. Since g is not necessarily
lower semicontinuous, some approximation is first needed so that we can get to
apply (14) and thereby establish inequality (4).

Let (gN )N∈N be a pointwisely increasing sequence of non-negative simple Borel
functions such that limN→∞ gN = g uniformly in X. Fix ε > 0. By the uniform
convergence, there exists N ∈ N such that for all γ ∈ Γ(X)νx,Ωc we have∫

γ

g ds =

∫
γ

gN ds+

∫
γ

(g − gN ) ds

≤
∫
γ

gN ds+ sup
y∈X

(g(y)− gN (y)) len(γ)

≤
∫
γ

gN ds+ sup
y∈X

(g(y)− gN (y))νd(x,Ωc) ≤
∫
γ

gN ds+ ε .

(18)

Let gN,x,ε ∈ LC(X) be the non-negative bounded approximant of gN given by
Lemma 2.5. By inequality (14) and Lemma 2.5, there exists γN ∈ Γ(X)νx,Ωc such
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8 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

that ∫
γN

gN,x,ε ds ≤ CΓd(x,Ωc)
(
Mp,κd(x,Ωc)gN,x,ε(x)

)
+ ε

≤ CΓd(x,Ωc)
(
Mp,κd(x,Ωc)gN (x) + ε

)
+ ε

≤ CΓd(x,Ωc)
(
Mp,κd(x,Ωc)g(x) + ε

)
+ ε .

Without loss of generality, we may assume that γN (t) = x only if t = 0. On the
other hand, by Lemma 2.5, we have gN ≤ gN,x,ε in X \ {x}. Inequality (18), with
γ = γN , implies that∫

γN

g ds ≤
∫
γN

gN ds+ ε ≤
∫
γN

gN,x,ε ds+ ε

≤ CΓd(x,Ωc)
(
Mp,κd(x,Ωc)g(x) + ε

)
+ 2ε .

Since g is an upper gradient of u ∈ Lip0(Ω), we get

|u(x)| = |u(γN (0))− u(γN (len(γN )))|

≤
∫
γN

g ds ≤ CΓd(x,Ωc)
(
Mp,κd(x,Ωc)g(x) + ε

)
+ 2ε ,

and letting ε → 0 gives the pointwise p-Hardy inequality (4) with CH = CΓ and
κ ≥ 1. �

While seemingly technical, the task of infimizing in (14) is often reduced to
constructing an explicit curve, for which the upper bound holds. In particular, our
proof for self-improvement of pointwise Hardy inequalities is based on establishing
the existence of such a single curve for some exponent q < p.

Next we define a convenient α-function that condenses the pointwise p-Hardy
inequality, or inequality (14) to be more specific, in a single function at the expense
of abstraction. Indeed, the following definition looks complicated at first sight,
but for our purposes the quantity αp,Ω is precisely the correct way to express the
pointwise p-Hardy inequality.

Definition 3.2. Let ∅ 6= Ω ( X be an open set. If τ ≥ 0, κ, p ≥ 1 and x ∈ Ω, we
write

Eκ,τp,x,Ω = {g ∈ LC(X) | Mp,κd(x,Ωc)g(x) ≤ τ and g(y) ∈ [0, 1] for all y ∈ X} .

If also ν > CQC, then we write

(19) αp,Ω(ν, κ, τ) := sup
x∈Ω

sup
g∈Eκ,τp,x,Ω

infγ∈Γ(X)ν
x,Ωc

∫
γ
g ds

d(x,Ωc)
.

Concerning definition (19), the parameter ν is related to the maximum length
of the curves γ that are used so that len(γ) ≤ νd(x,Ωc). The parameters κ and τ
measure the non-locality and size of the maximal functionMp,κd(x,∂Ω)g(x), respec-
tively.

The fundamental connection between inequality (14) and the α-function is es-
tablished in the following lemma.

Lemma 3.3. Let ∅ 6= Ω ( X be an open set, and let κ, p ≥ 1 and ν > CQC. Let
g ∈ LC(X) be such that g(y) ∈ [0, 1] for every y ∈ Ω. Then, for every x ∈ Ω, we
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 9

have

(20) inf
γ∈Γ(X)ν

x,Ωc

∫
γ

g ds ≤ d(x,Ωc)αp,Ω
(
ν, κ,

(
Mp,κd(x,Ωc)g(x)

))
.

Proof. Fix g ∈ LC(X) such that g(y) ∈ [0, 1] for all y ∈ X. Let x ∈ Ω and write

τ =Mp,κd(x,Ωc)g(x) ≥ 0 .

Then g ∈ Eκ,τp,x,Ω, and hence

infγ∈Γ(X)ν
x,Ωc

∫
γ
g ds

d(x,Ωc)
≤ sup
h∈Eκ,τp,x,Ω

infγ∈Γ(X)ν
x,Ωc

∫
γ
h ds

d(x,Ωc)
≤ αp,Ω(ν, κ, τ)

Where the last step follows, since x ∈ Ω. �

In particular, from Lemma 3.3 we now obtain the following sufficient condition
for the pointwise p-Hardy inequality in terms of a τ -linear upped bound for the
α-function.

Lemma 3.4. Let 1 ≤ p < ∞ and let ∅ 6= Ω ( X be an open set. Suppose that
there are constants ν > CQC, κ ≥ 1 and Cα > 0 such that, for any τ ≥ 0, we have

αp,Ω(ν, κ, τ) ≤ Cατ .
Then Ω satisfies a pointwise p-Hardy inequality.

Proof. By Lemma 3.1, it suffices to find a constant CΓ > 0 such that inequality (14)
holds for each non-negative bounded g ∈ LC(X) and every x ∈ Ω — the remaining
constants ν and κ are given in the assumptions of the present lemma. Fix such a
function g and a point x ∈ Ω. Since g is bounded and inequality (14) is invariant
under multiplication of g with a strictly positive constant, we may further assume
that g(y) ∈ [0, 1] for all y ∈ X.

Then the desired estimate (14), with CΓ = Cα, follows immediately from Lemma
3.3 and the assumptions. �

The converse of Lemma 3.4 is also true, as we will see in Section 4. Therein the
following inequalities for the α-function become useful.

Lemma 3.5. Let ∅ 6= Ω ( X be an open set. Let 0 ≤ τ < τ ′, κ, p ≥ 1 and
ν > CQC. Then

αp,Ω(ν, κ, τ) ≤ αp,Ω(ν, κ, τ ′) , αp,Ω(ν, κ, τ) ≤ ν ,
and, for every M ≥ 1,

αp,Ω(ν, κ,Mτ) ≤Mαp,Ω(ν, κ, τ) .

Proof. These inequalities are clear from the definition (19). In this connection, it
is important to observe that g is bounded by 1 and len(γ) ≤ νd(x,Ωc). �

4. Key theorem for self-improvement

In this section we formulate and prove our key Theorem 4.1. In the light of
Lemma 3.4, Theorem 4.1 implies self-improvement of pointwise p-Hardy inequal-
ities; see Theorem 5.1. This theorem also provides a converse of Lemma 3.4 for
p > 1; see Theorem 5.3.

Lemmata 2.3 and 3.1 give us the proper tools for the proof of Theorem 4.1.
We assume that X supports a better p0-Poincaré inequality for some p0 < p.
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10 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

This assumption allows us to focus on the new phenomena that arise especially in
connection with the self-improvement of pointwise p-Hardy inequalities.

Theorem 4.1. Let 1 ≤ p0 < p < ∞. Assume that X supports a p0-Poincaré
inequality. Let ∅ 6= Ω ( X be an open set that satisfies a pointwise p-Hardy
inequality. Then there exists an exponent q ∈ (p0, p) and constants N > CQC,
K ≥ 1 and Cα > 0 such that

(21) αq,Ω(N,K, τ) ≤ Cατ

whenever τ ≥ 0.

Proof. By Hölder’s inequality, we can assume that max{1, p/2} ≤ p0. This as-
sumption allows us to choose M below independent of p. This property, in turn,
is beneficial in Remark 5.2, where a quantitative analysis is performed. Since Ω
satisfies a pointwise p-Hardy inequality, by Lemma 3.1 it satisfies inequality (14)
with constants CΓ > 0, νΓ > CQC and κΓ ≥ 1. Also, let CA > 0, νA > CQC

and κA ≥ 1 be the constants from inequality (6) in Lemma 2.3, for the exponent
p0 < p. Without loss of generality, we may assume that κΓ = κA =: κ and that
νΓ = νA =: ν.

It suffices to prove that there exists k ∈ N, K,S ∈ [1,∞), N ∈ (CQC,∞), M > 1
and δ ∈ (0, 1) such that, for each q ∈ (p0, p) and every τ > 0, we have

(22) αq,Ω(N,K, τ) ≤ Sτ + δ max
i=1,...,k

(
M−iq/pαq,Ω(N,K,M iτ)

)
.

Indeed, from this inequality and Lemma 3.5, we get

αq,Ω(N,K, τ) ≤ Sτ + δMk p−qp αq,Ω(N,K, τ) for all q ∈ (p0, p) and τ > 0 .

In order to absorb the last term on the right to the left, we need δMk p−qp < 1. This
can be ensured by choosing q ∈ (p0, p) so close to p that

0 < p− q <
p ln( 1

δ )

k ln(M)
.

With this choice of q we find for all τ > 0 that

αq,Ω(N,K, τ) ≤
(

S

1− δMk p−qp

)
τ =: Cατ .

Then, this inequality holds also for τ = 0, which is seen by using monotonicity
property of the α-function, see Lemma 3.5. Thus, the desired inequality (21) follows
from (22). Hence, we are left with proving inequality (22).

At this stage, we fix the auxiliary parameters

K = 4κ , N = 3ν , M = 4 , δ =
1

4
.

We also fix k ∈ N so large that CpΓ
2pD5

kp−1 < δp, that is, k > (2pδ−pCpΓD
5)

1
p−1 . The

last auxiliary parameter is defined to be S = 1 + Mkν + 3CAM
k. We also let

q ∈ (p0, p) and τ > 0. Now, the overall strategy is as follows: we will construct, for

any x ∈ Ω and any g ∈ EK,τq,x,Ω, a curve γ ∈ Γ(X)Nx,Ωc such that

(23)

∫
γ

g ds ≤ Sτd(x,Ωc) + δ max
i=1,...,k

(
M−iq/pαq,Ω(N,K,M iτ)

)
d(x,Ωc) .
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 11

Dividing both sides of this estimate by d(x,Ωc), and then taking the supremum
over x and g as above, proves inequality (22).

Let us fix x ∈ Ω and g ∈ EK,τq,x,Ω. For each i ≥ 1, we write

Ei : = {z ∈ Ω | Mq,κd(x,Ωc)g(z) > M iτ} ,

and define a bounded function h : X → [0,∞) by setting

h =
1

k

k∑
i=1

1EiM
iq/p .

Since Ej ⊃ Ei if j ≤ i and p/2 ≤ p0 < q < p, we have

hp ≤ 1

kp

k∑
j=1

( j∑
i=1

M iq/p

)p
1Ej ≤

2p

kp

k∑
j=1

1EjM
jq .

In the final estimate, we also use the equation M = 4 to obtain the factor 2p.
Observe that 1Ei ∈ LC0(Ω) since Ei is open, for each i = 1, . . . , k. Hence, we have
h ∈ LC0(Ω) ⊂ LC(X). By sublinearity and monotonicity of the maximal function,

Lemma 2.4, and the assumption that g ∈ EK,τq,x,Ω, where K = 4κ, we obtain

(
Mp,κd(x,Ωc)h(x)

)p ≤ 2p

kp

k∑
j=1

(M1,κd(x,Ωc)1Ej (x))M jq

≤ 2pD5

kp

k∑
j=1

(Mq,4κd(x,Ωc)g(x))q

M jqτ q
M jq ≤ 2pD5

kp−1
.

(24)

Then, by the choice of k and estimate (24), we obtain that CΓMp,κd(x,Ωc)h(x) < δ,
and therefore from Lemma 3.1 with exponent p we obtain a curve γ0 ∈ Γ(X)νx,Ωc ,
which is parametrized by arc length, such that

(25)

∫
γ0

1

k

k∑
i=1

1EiM
iq/p ds =

∫
γ0

h ds ≤ δd(x,Ωc) ,

and

(26) len(γ0) ≤ νd(x,Ωc) .

Clearly, without loss of generality, we may also assume that γ0([0, len(γ0))) ⊂ Ω.
By inequality (25), there exists i0 ∈ {1, . . . , k} such that

(27)

∫
γ0

1Ei0 ds ≤ δM
−i0q/pd(x,Ωc) .

Let O = γ−1
0 (Ei0) and denote T = [0, len(γ0)] \ O. By the lower semicontinuity of

g and the definition of Ei0 we have, for all t ∈ T \ {len(γ0)},
(28) g(γ0(t)) ≤Mq,κd(x,Ωc)g(γ0(t)) ≤M i0τ .

Since Ei0 is open in X, the set O is relatively open in [0, len(γ0)]. Observe that

0 6∈ O since g ∈ EK,τq,x,Ω and K > κ. Likewise len(γ0) 6∈ O since γ0(len(γ0)) ∈ Ωc.
There are now essentially two different cases to be handled; the remaining cases of
corresponding finite unions are treated in a similar way. Namely, the two cases are:

(29) O =
⋃
i∈N

(ai, bi) or O = (a0, b0) ∪
⋃
i∈N

(ai, bi) ,
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12 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

where the interval (a0, b0) has a certain special property, to be shortly explained,
that distinguishes it from the intervals (ai, bi), i ∈ N = {1, 2, . . .}. The second
case takes place, if there exists 0 < t0 < len(γ0) such that γ0(t) ∈ Ei0 for every
t0 < t < len(γ0). In both cases the intervals (called ‘gaps’) are pairwise disjoint
and ai < bi < len(γ0) for each i ∈ N, and in the second case a0 < b0 = len(γ0).
Moreover, in both cases γ0(ai), γ0(bi) ∈ Ω \ Ei0 for each i ∈ N, and in the second
case γ0(a0) ∈ Ω \Ei0 . We remark that in the second case γ0(b0) 6∈ Ω \Ei0 , and this
special property of the ‘final gap’ (a0, b0) distinguishes it from the remaining gaps.
Write di := d(γ0(ai), γ0(bi)) for each i. Then, by inequality (27), we have
(30)∑
i

di ≤
∑
i

len(γ0|[ai,bi]) =
∑
i

∫
γ0|[ai,bi]

1Ei0 ds ≤
∫
γ0

1Ei0 ds ≤ δM
−i0q/pd(x,Ωc) .

There are now two cases to be treated in a case study.
Let us first consider the case O =

⋃
i∈N(ai, bi). Fix i ∈ N. Since γ0(ai), γ0(bi) ∈

Ω \ Ei0 , there holds

(31) Mq,κd(x,Ωc)g(γ0(ai)) ≤M i0τ and Mq,κd(x,Ωc)g(γ0(bi)) ≤M i0τ .

Lemma 2.3 applied to the p0-Poincaré inequality, and to the two points γ0(ai)
and γ0(bi), provides us with a curve γi : [ai, bi] → X such that γi(ai) = γ0(ai),
γi(bi) = γ0(bi),

(32) len(γi) ≤ νd(γ0(ai), γ0(bi)) = νdi ,

and, by using also the fact that p0 < q and Hölder’s inequality,

∫
γi
g ds

≤ CAd(γ0(ai), γ0(bi))
(
Mq,κd(γ0(ai),γ0(bi))g(γ0(ai)) +Mq,κd(γ0(ai),γ0(bi))g(γ0(bi))

)
+ CAd(γ0(ai), γ0(bi))M

i0τ︸ ︷︷ ︸
>0

.

(33)

We observe that κd(γ0(ai), γ0(bi)) ≤ κd(x,Ωc), which follows from (30) since

d(γ0(ai), γ0(bi)) = di ≤
∑
i

di ≤ d(x,Ωc) .

This estimate together with (31) and (33) yields∫
γi
g ds ≤ 3CAd(γ0(ai), γ0(bi))M

i0τ = 3CAM
i0τdi .(34)

Let us now define a curve γ : [0, len(γ0)] → X by setting γ(t) = γ0(t) if t ∈ T and
γ(t) = γi(t) if t ∈ (ai, bi) for some i ∈ N that is uniquely determined by t. Then,
by the length estimates (26) and (32), followed by inequality (30), we obtain that

len(γ) ≤ len(γ0) +
∑
i∈N

len(γi)

≤ νd(x,Ωc) + ν
∑
i∈N

di ≤ 2νd(x,Ωc) ≤ Nd(x,Ωc) .
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 13

From this it follows that γ ∈ Γ(X)Nx,Ωc ; we remark that the required continuity and
connecting properties of γ are straightforward establish, and we omit the details.
Also, by inequalities (26), (28), (30) and (34), we have∫

γ

g ds =

∫
T

g(γ0(t)) dt+
∑
i∈N

∫
γi
g ds

≤M i0τνd(x,Ωc) + 3CAM
i0τδM−i0q/pd(x,Ωc)

≤ (M i0ν + 3CAM
i0)τd(x,Ωc) ≤ Sτd(x,Ωc) .

In the present case, we have now constructed a curve γ such that inequality (23)
holds, even without the absorption term. We are done in the first case of (29).

Next we consider the slightly more complicated case O = (a0, b0) ∪
⋃
i∈N(ai, bi),

in which there is also a final gap (a0, b0) such that b0 = len(γ0) and γ0(b0) ∈ Ωc. As
in the previous case, for each i ∈ N, we can first construct curves γi : [ai, bi] → X
such that

(35) len(γi) ≤ νd(γ0(ai), γ0(bi)) = νdi ,

and

(36)

∫
γi
g ds ≤ 3CAd(γ0(ai), γ0(bi))M

i0τ = 3CAM
i0τdi .

For i = 0 we have to be more careful, since γ0(b0) 6∈ Ω \ Ei0 . We now proceed as
follows. By using (30) and the equality Kδ = κ, we first observe that

Kd(γ0(a0),Ωc) ≤ Kd(γ0(a0), γ0(b0)) = Kd0 ≤ Kδd(x,Ωc) = κd(x,Ωc) .

On the other hand, we still have that γ0(a0) ∈ Ω \ Ei0 , and thus

Mq,Kd(γ0(a0),Ωc)g(γ0(a0)) ≤Mq,κd(x,Ωc)g(γ0(a0)) ≤M i0τ .

From this it follows that g ∈ EK,M
i0τ

q,γ0(a0),Ω. By definition (19) of αq,Ω(N,K,M i0τ), we

obtain a curve γ0 : [a0, b0]→ X connecting γ0(a0) ∈ Ω to Ωc such that

(37) len(γ0) ≤ Nd(γ0(a0),Ωc) ≤ Nd(γ(a0), γ(b0)) = Nd0

and ∫
γ0

g ds ≤ d(γ0(a0),Ωc)αq,Ω(N,K,M i0τ) + τd(x,Ωc)︸ ︷︷ ︸
>0

≤ d0αq,Ω(N,K,M i0τ) + τd(x,Ωc) .

(38)

Now we define γ as in the first case but using also the final gap (a0, b0) by setting
γ(t) = γ0(t) for every t ∈ (a0, b0]. Then by (26), (30), (37), and our choice of N
and δ, we obtain

len(γ) ≤ len(γ0) + len(γ0) +
∑
i∈N

len(γi) ≤ (ν + δN + ν)d(x,Ωc) ≤ Nd(x,Ωc) .

9 Feb 2019 01:21:04 EST

Version 2 - Submitted to Trans. Amer. Math. Soc.

GeomAnal+PDEThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



14 S. ERIKSSON-BIQUE AND A.V. VÄHÄKANGAS

Thus, we find that γ ∈ Γ(X)Nx,Ωc . Finally, by inequalities (26), (28), (30), (36), and

(38) we have∫
γ

g ds =

∫
T

g(γ0(t)) dt+
∑
i∈N

∫
γi
g ds+

∫
γ0

g ds

≤M i0τνd(x,Ωc) + 3CAM
i0τd(x,Ωc) + d0αq,Ω(N,K,M i0τ) + τd(x,Ωc)

≤ Sτd(x,Ωc) + δM−i0q/pαq,Ω(N,K,M i0τ)d(x,Ωc) .

Recall that i0 ∈ {1, . . . , k}. Hence, the desired estimate (23) for γ follows and thus
the proof is complete. �

5. Main results

As a consequence of Theorem 4.1 and Lemma 3.4, we obtain the following the-
orem. It is the main result of the present paper.

Theorem 5.1. Let 1 ≤ p0 < p < ∞. Assume that X supports a p0-Poincaré
inequality (5). Let ∅ 6= Ω ( X be an open set that satisfies a pointwise p-Hardy
inequality (4). Then there exists an exponent q ∈ (p0, p) such that Ω satisfies a
pointwise q-Hardy inequality.

Remark 5.2. The conclusion of Theorem 5.1 reads as follows: there exists q ∈
(p0, p) such that Ω satisfies a pointwise q-Hardy inequality. We can establish a more
quantitative result. Indeed, by examining the proof of Theorem 4.1, we see that it
runs through if p, p0 and q satisfy the following inequalities

max{1, p/2} ≤ p0 < q < p and δMk p−qp < 1 ,

where M = 4, δ = 1
4 and N 3 k > (2pδ−pCpΓD

5)
1
p−1 . Here CΓ > 0 is the constant

appearing in inequality (14). This inequality characterizes the pointwise p-Hardy
inequality. Thus, we can choose

k := d(8CΓ)
p
p−1D

5
p−1 + 1e > (8CΓ)

p
p−1D

5
p−1 = (2pδ−pCpΓD

5)
1
p−1 .

Then δMk p−qp < 1 ⇔ 4k
p−q
p < 4 ⇔ p − q < p

k . On the other hand, by examining
the proof of Lemma 3.1, we have CΓ = 4CH, where CH > 0 is the constant in the
assumed pointwise p-Hardy inequality (4). All in all, we find that if the assumptions
of Theorem 5.1 hold,

max{1, p/2} ≤ p0 < q < p and p− q < p

d(32CH)
p
p−1D

5
p−1 + 1e

,

then Ω satisfies a pointwise q-Hardy inequality. Rather similar quantitative bounds
for the self-improvement of p-Poincaré inequalities can be found in [4].

Theorem 5.3. Let 1 ≤ p0 < p < ∞. Assume that X supports a p0-Poincaré
inequality. Let ∅ 6= Ω ( X be an open set. Then the following conditions are
equivalent:

(A) The open set Ω satisfies a pointwise p-Hardy inequality;
(B) There are constants ν > CQC, κ ≥ 1 and Cα > 0 such that, for any τ ≥ 0,

we have

αp,Ω(ν, κ, τ) ≤ Cατ .
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SELF-IMPROVEMENT OF THE POINTWISE HARDY INEQUALITY 15

(C) There are constants CΓ > 0, ν > CQC and κ ≥ 1 such that for each non-
negative and bounded g ∈ LC0(Ω) and every x ∈ Ω, we have

inf
γ∈Γ(X)ν

x,Ωc

∫
γ

g ds ≤ CΓ d(x,Ωc)
(
Mp,κd(x,Ωc)g(x)

)
.

Proof. The implication from (A) to (B) follows from Theorem 4.1 and the pointwise
estimate αp,Ω ≤ αq,Ω that trivially is valid if p ≥ q. The converse follows from
Theorem 3.4. The implication from (A) to (C) is a consequence of Lemma 3.1.
On the other hand, by inspecting the proof of Theorem 4.1, we find that condition
(C) implies (A). In particular, the test function h that is constructed in the proof
actually belongs to LC0(Ω). �

Remark 5.4. By combining Theorem 5.1 and Theorem 5.3 one obtains self-
improvement of further inequalities (B) and (C) in Theorem 5.3; these inequali-
ties are both equivalent with the pointwise p-Hardy inequality. We remark that
inequality (C) differs from the characterizing condition appearing in Lemma 3.1
in that the test functions g in (C) are required to vanish outside Ω. The self-
improvement results for the conditions (B) and (C) are naturally also subject to a
better p0-Poincaré inequality; we omit the explicit formulations.
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