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Abstract

Huikuri, Arttu
Thermal transport in PDMS; measurements and simulations
Master’s thesis
Department of Physics, University of Jyväskylä, 2021, 72 pages.

Thermal transport in polydimethylsiloxane (PDMS), which is used to fabricate
microfluidic platforms, was modelled with finite element method (FEM) simulations
and the results of the simulations were compared to experimental results measured
from a PDMS sample. In steady-state heating simulations all of the results were
within 0.81K of each other and most of the results were within 0.2K of each other.
In time-dependent heating measurements and simulations the temperature of the
PDMS was found to change faster in the simulations than the experiments. FEM was
then used to simulate the heating of PDMS microfluidics with two different heaters.
Using a hot plate heater the temperature gradient over the PDMS microfluidic was
simulated. With point heaters FEM simulations were used with the bisection method
optimization algorithm to find optimal heating power values with an error tolerance
of 0.1mW.

Keywords: Finite element method, negative temperature coefficient thermistor,
polydimethylsiloxane
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Tiivistelmä

Huikuri, Arttu
Thermal transport in PDMS; measurements and simulations
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2021, 72 sivua

Lämmön siirtymistä polydimetyylisiloksaanissa (PDMS), jota käytetään mikrofluidis-
ten alustojen valmistuksessa, mallinnettiin elementtimallinnussimulaatioilla (FEM)
ja simulaatioiden tuloksia verrattiin kokeellisiin tuloksiin, jotka mitattiin PDMS
-näytteestä. Pysyvän tilan kuumennussimulaatioissa kakki tulokset olivat 0.81K
sisällä toisistaan ja useimmat tulokset olivat 0.2K sisällä toisistaan. Ajasta riippu-
vissa kuumennusmittauksissa ja -simulaatiossa PDMS:n lämpötila muuttui nopeam-
min simulaatioissa kuin kokeissa. Elementtisimulaatioita käytettiin myös PDMS
mikrofluidiikkojen simulaatioon kahdella kuumentimella. Lämpölevykuumennusta
käyttämällä simuloitiin lämpögradientti PDMS mikrofluidiikan yli. Pistelämmön-
lähteiden kanssa FEM simulaatioita käytettiin optimisaatioalgoritmin bisektiome-
todin kanssa optimaalisen lämmitystehon löytämiseksi 0.1mW virhetoleranssilla.

Avainsanat: Elementtimenetelmä, termistori, polydimetyylisiloksaani
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1 Introduction

In the process of developing solutions to physical engineering problems, computational
modelling and simulations are often used as tools to help with design. In this work,
finite element method (FEM) simulations are used to aid in designing heaters for
VTT:s roll-to-roll printed microfluidic platforms. [1] These platforms are used in
nucleic acid amplification reactions such as the polymerace chain reaction (PCR)
and loop-mediated isothermal amplification (LAMP). LAMP requires a specific
temperature [2] and in PCR there are multiple reaction steps that require different
temperatures [3].

The platforms are modelled in the Comsol Multiphysics simulation program. In
the finite element method a geometry is modelled as a grid of elements and their
connections called a mesh. A system of partial differential equations is used to
calculate the values of the dependent variables in each grid node. The simulation
is therefore a discrete approximation of a continuous geometry. The accuracy of
the approximation depends on many factors, such as the size of the mesh elements,
boundary and initial conditions, material properties and choice of solver.

The main material of the microfluidics is polydimethylsiloxane (PDMS). In
order to validate the use of FEM simulations for heat transport in PDMS a set of
experimental measurements on a physical PDMS sample were made and their results
were compared to FEM simulations done with a model made to closely approximate
the physical sample. The sample was made with negative temperature coefficient
thermistors (NTCs) embedded inside the PDMS. The NTCs were calibrated using
a thermocouple and the Hoge-2 equation [4] in order to use them to measure
temperatures inside the PDMS.

The temperature gradient across the sample was measured with the NTCs as
the sample was heated with a hot plate. The heating was simulated and the results
of the experiments and simulations were compared to verify the accuracy of FEM
simulations for PDMS samples. Several steady-state measurements and simulations
were done with different hot plate temperatures. Time-dependent measurements and
simulations were also done both during the heating and cooling of the sample.
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In the simulation model, the heads of the NTCs were modelled inside PDMS in
positions measured from the physical sample. Simplifying approximations such as
leaving the wires of the NTCs out of the simulated model were made. The top of the
PDMS was modelled with a natural convection heat transfer boundary condition.
The temperature of the bottom of the model was set to a temperature measured
with an NTC from between the sample and the heater during the experiments. The
results of the simulation were the volume averages of the temperatures of the NTC
heads.

In the steady-state cases the simulation method was found to produce results
close to the experimental results. In the time-dependent cases the simulations had
the temperature of the PDMS to change faster than the measured data. In the
time-dependent case the end of the simulations corresponded closely to the steady
state case, showing a similar accuracy to the steady-state simulation. The difference
is therefore in the thermal diffusivity of the PDMS with different values in the
simulation and experiments. Therefore as the FEM simulation method is used for
simulations of the heatings of the microfluidic platforms this discrepancy should be
taken into account when using the results.

After the simulation method was validated two different heater designs for the
microfluidic platforms were simulated. In one the entire platform was heated from
below with a hot plate. These simulations were done with both steady-state and time-
dependent simulations. From the steady-state simulations the temperature gradient
across the platform was simulated. From the time-dependent simulations the time it
takes for the fluid to reach a desired temperature for the nucleic acid amplification
reactions was determined. Taking into account the discrepancy between the results
of the verification measurements and simulations the heating of an experimental
sample should be expectedted to take longer than the simulated time. The heating
time is a constraint on the amplification reactions because the reaction does not
start before the reaction temperature is reached.

In the other simulated heater design the platform was heated with point heaters
below the microfluidic wells were the amplification reactions occur. A series of
steady-state simulations was done and the bisection method optimization algorithm
was used in order to find a heater power that would raise the temperature of the
fluid to the desired temperature. This power value can then be used to design a
heater circuit where the heating power of the point heaters heats the fluid in the
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wells.
The simulations represent a step in the design process and additional work and

revisions are required to produce a working heater solution. The results of the FEM
simulations can be used to inform initial heater designs but the heaters will need to
be tested experimentally to ensure that the temperature of the fluid is optimal for
the nucleic acid amplification reactions.
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2 Theory

In sections 2.1-2.3 the theory of thermal transport is discussed. The equations that
govern thermal transport are used in the finite element simulations for which theory
is discussed in section 2.5. Section 2.4 discusses negative temperature coefficient
thermistors, their calibration and error propagation in temperature measurements
with them.

2.1 Thermal conduction

In both solids and fluids Thermal conduction is the transport of heat in the material
without the movement of the material itself. The conductive thermal flux q′′ per
unit area and unit time is given by Fourier’s law [5, 6]:

q′′ = −k∇T, (1)

where k is the thermal conductivity of the material and the temperature gradient
∇T (r, t) is the vector normal of the isothermal surface. Thermal conductivity is pos-
itive and scalar for homogeneous, isotropic materials, but does vary by temperature.
The negative sign ensures that the direction of the thermal flux is the direction of
decreasing temperature. [5, 6]

Equation (1) can describe steady-state thermal conduction through a stationary
material, but for solutions to time-dependent problems and moving materials, a more
complicated heat transfer equation has to be used. [5, 6] If the thermal conductivity
is constant, conduction heat transfer can be modelled with equation

∇2T + g

k
= ρc

∂T

∂t
, (2)

where ρ is the density of the material, t is time, c is the specific heat, and g is the
volumetric rate of internal energy generation, with a SI unit of W/m3. [5, 6] A
positive g denotes increasing internal energy and a negative g denotes a decreasing
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internal energy. [6] Thermal diffusivity α is defined as [5, 6]

α = k

ρc
. (3)

Thermal diffusivity is associated with the speed of propagation on heat caused by a
perturbation of temperature. [5, 6]

2.2 Thermal convection

In fluids, heat is transported both through conduction and with the movement of
the fluid itself. The transport with the movement of the fluid is called convection.

2.2.1 Fluid flow

In order to characterize convection, it is important to characterize the fluid flow. In
laminar flow, fluid flows in parallel layers, which do not disturb each other. [6] In
turbulent flow, chaotic changes in velocity and pressure occur, causing the fluid to
flow in vortices and eddies and causing fluid layers to mix. [6] Transitional flow has
characteristics from both of the aforementioned flow regimes.

Several dimensionless numbers are used to help characterize fluid flow. The
Reynolds number is interpreted as the ratio of inertia to viscous forces in the fluid
[6]

Re = ρ||U ||L
µ

, (4)

where ρ, µ are the density, and the the dynamic viscosity of the fluid and U = (u, v, w)
is the vector velocity of the fluid in Cartesian coordinates and L is the characteristic
length. A low Reynolds number indicates laminar flow while a high Reynolds number
indicates turbulent flow. [6]

The Prandtl number can be used to characterize the fluid [6, 7]

Pr = ν

α
= cpµ

k
, (5)

where α is the thermal diffusivity defined in section 2.1 and ν = µ/ρ is the kinematic
viscosity of the fluid. [6]

In the laminar regime, fluid flow can be modelled with conservation equations for
mass, momentum and energy. The mass equation for a viscous, compressible fluid is
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[8]
∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
. (6)

The corresponding momentum equations are [8]

∂ρu

∂t
+ ρu

∂u

∂x
+ ρu

∂v

∂y
+ ρu

∂w

∂z
=− ∂p

∂x
+ µ

∂2u

∂x2 + µ
∂2u

∂y2 + µ
∂2u

∂z2 ± S
′
u

∂ρv

∂t
+ ρv

∂u

∂x
+ ρv

∂v

∂y
+ ρv

∂w

∂z
=− ∂p

∂x
+ µ

∂2v

∂x2 + µ
∂2v

∂y2 + µ
∂2v

∂z2 ± S
′
v

∂ρw

∂t
+ ρw

∂u

∂x
+ ρw

∂v

∂y
+ ρw

∂w

∂z
=− ∂p

∂x
+ µ

∂2w

∂x2 + µ
∂2w

∂y2 + µ
∂2w

∂z2 ± S
′
w,

(7)

where the terms S ′u, S ′v and S ′w are the source or sink terms. [8] The energy
equation is [8]

∂(ρH)
∂t

+ ∂(ρuH)
∂x

+ ∂(ρvH)
∂y

+ ∂(ρwH)
∂z

= ∂

∂x

[
k
∂T

∂x

]
+ ∂

∂y

[
k
∂T

∂y

]
+ ∂

∂z

[
k
∂T

∂z

]

+ ∂p

∂t
+ Φ + ST

(8)

where H is enthalpy, k is the thermal conductivity of the fluid, ST is the heat
source or sink term and Φ is the dissipation function [8]

Φ =∂(uτxx)
∂x

+ ∂(uτyx)
∂y

+ ∂(uτzx)
∂z

+ ∂(vτxy)
∂x

+ ∂(vτyy)
∂y

+ ∂(vτzy)
∂z

+ ∂(wτxz)
∂x

+ ∂(wτyz)
∂y

+ ∂(wτzz)
∂z

,

(9)

where τ are the normal and tangential viscous stresses. [8]

2.2.2 Convective cooling

Newton’s law of convective cooling states that the heat power transferred between a
solid surface and fluid is [6]

Q

A
= h∆T, (10)

where Q is the thermal power transported through a surface with area A, h is the
convective heat transfer coefficient and ∆T is the difference in temperature between
the fluid and the solid.
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In order to characterize h, the geometry of the surface needs to be known. The
Nusselt number is defined as [6, 7]

NuL = hL

k
(11)

where L is the characteristic length that depends on the surface geometry and k is
the thermal conductivity of the fluid.

The Rayleigh number is defined as [6, 7]

RaL = gβ∆TL3

αν
, (12)

where α is the thermal diffusivity defined in section 2.1, g is the acceleration of
gravity, ∆T is the temperature difference between the surface and the surrounding
fluid, ν is the kinematic viscosity and β is the coefficient of thermal expansion. [7]

The magnitude of the convective heat transfer coefficient also depends on the
characteristics of the fluid flow. In natural convection the fluid flows past the surface
driven by buoyancy and gravitation effects that are caused by internal differences
in the temperature of the fluid. [6] In forced convection the fluid moves past the
surface driven by an external force such as a fan. [6]

For a horizontal hot plate, the characteristic length L is defined as the area of
the plate divided by the perimeter of the plate. [7] In the case natural convection
from a horizontal hot plate facing upward with turbulence taken into account, there
is a relationship between the Nusselt and Rayleigh numbers if the Prandtl number is
greater than 0.5: [7]

NuL =


0.54Ra1/4

L , 104 < RaL < 107

0.15Ra1/3
L , 107 < RaL < 109,

(13)

where NuL is the time-averaged Nusselt number. Time-averaging is used to describe
turbulent flows. [6, 7] By solving h from equation (11) and substituting equations
(13) and (12) into it, The heat transfer coefficient for the horizontal hot plate can
be solved. This heat transfer coefficient can then be substituted into equation (10)
to make a Robin boundary condition described in equation (16) between a hot,
horizontal solid and naturally convecting fluid on top of it.
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2.3 Boundary conditions

In order to solve the temperature distribution with equation (2) initial conditions and
boundary conditions must be set. [5, 6] Boundary conditions are used in simulations to
model the interaction of the simulation model with its environment. Initial conditions
represent the initial values of the dependent variable which in the case of thermal
transport is temperature. Therefore the initial condition to conduction problems is
the temperature distribution T (r, t = 0) in the medium. [5, 6] Boundary conditions
can be divided into several categories. In homogeneous boundary conditions, all non-
zero terms contain the dependent variable or its derivative. [5] Boundary conditions
of the first type are Dirichlet boundary conditions, where the dependent variable
is prescribed a constant value. [5, 6] In the case of temperature as the dependent
variable [5]

T |surface = f(r̂, t), (14)

where f(r̂, t) is the surface temperature distribution. If f(r̂, t) = 0, the boundary
condition is homogeneous. Boundary conditions of the second type are Neumann
boundary conditions, where the derivate of the dependent variable is prescribed.
Here, this is represented by a prescribed thermal flux [5]

−k∂T
∂n
|surface = g(r̂, t) (15)

where g(r, t) is the surface thermal flux distribution and n is the outward-drawn
norm of the surface. [5] If the heat flux is zero, that surface is perfectly insulated and
the boundary condition is homogeneous. Boundary conditions of the third type are
Robin boundary conditions. In these, both the dependent variable and its derivative
appear [5, 6]. Here, this type of boundary conditions represent heat conduction from
a surface to ambient fluid

−k∂T
∂n
|surface = h [T |surface − Tinf(r̂, t)] , (16)

where Tinf(r̂, t) represents the ambient fluid temperature and h is the heat transfer
coefficient between the surface and the fluid.

Other boundary conditions also exist. In an interface between two solids imperfect
thermal contact means the materials only make physical contact in some places.
Small gaps filled with air or other interfacial fluid occur between these spots of
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contact. Heat transfers by conduction through the contact spots and by convection
over the gaps but the thermal conductivity is generally much lower than in the solids.
[5] Due to the conservation of energy, the thermal fluxes in the surfaces and between
them must be equal. The boundary condition is

q′′i = −k1
∂T

∂x
|i = hc (T1 − T2)i = −k2

∂T

∂x
|i, (17)

where hc is the contact conductance of the interface. [5] If there is perfect thermal
contact between the materials, equations [5]

T |1 = T |2 (18)

−k1
∂T

∂x
|i = −k2

∂T

∂x
|i (19)

are used instead.

2.4 Thermal measurements

There are numerous ways to measure temperature and other thermodynamic vari-
ables [9, 10]. In this section the focus is temperature measurements with negative
temperature coefficient thermistors which were used in the experimental portion of
this study.

2.4.1 Negative temperature coefficient thermistors

Negative temperature coefficient thermistors (NTCs) are temperature detectors. In
these detectors electrical resistance through the detector decreases with increasing
temperature. An electrical measurement of the resistance in used to measure the
temperature. [9, 10] NTCs are usually made from ceramic semiconductors, such as
metal oxides. [9, 10] The NTCs used in this work are also surrounded by a glass
casing used to protect the ceramics inside. [11]

Measuring the resistance of the NTC can be done by measuring the voltage over
the NTC using a voltage divider circuit. The circuit is shown in figure 1. The
resistance of the NTC is

RNTC = Rref
V

Vin − V
, (20)

where Rref is the resistance of a reference resistor, V is the measured voltage over
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the NTC and Vin is the input voltage of the circuit.

Figure 1. A simple voltage divider circuit that can be used to measure the
resistance of the NTC by measuring the input voltage and the voltage over the
NTC.

In order to convert the measured resistance into an accurate temperature value
the NTC needs to be calibrated. [9, 10, 12] To minimize errors, the NTC should be
calibrated with its interface circuit. [10] The interface circuit measures the resistance
of the NTC. Calibration is done by placing the NTC in several known temperatures
and the resistance values of the NTC are measured in these temperatures [10]. These
calibration points are then used to characterize the transfer function of the NTC by
fitting the transfer function numerically to the calibration points. [10]

The calibration should be done over the entire measurement temperature range
and for each NTC seperately. [10] Outside the calibration range the uncertainty
of the calibration increases significantly. [13] The transfer functions for NTCs are
discussed in section 2.4.2.
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2.4.2 NTC transfer functions and calibration

A simple transfer function for NTCs is [9, 10, 12]

RT = RT0e
β

(
1
T
− 1

T0

)
, (21)

where RT is the NTCs resistance in temperature T , with T0 being a specific reference
temperature, usually 25oC [12] and β is the calibration coefficient.

Equation (21) gives the resistance of the NTC as a function of the measured
temperature. In temperature measurement, the temperature is measured as a function
of the resistance and therefore a transfer function which represents this relationship
is needed. There are several functions that can be used for this purpose [12–14] such
as the functions proposed by Hoge. [4] Liu et al. find the Hoge-2 equation to be the
best for high-accuracy temperature measurement. [12, 13] The Hoge-2 equation is
[4]

1
T

= A1 + A2 ln(RT ) + A3 (ln(RT ))2 + A4 (ln(RT ))3 , (22)

where RT is the resistance of the NTC at temperature T and A1, A2, A3 and A4 are
the calibration coefficients.

White [15] suggests using a slightly modified verison of the Hoge equations for
calibration where RT is divided by one of the calibration points, RT0 . The modified
Hoge-2 equation is

1
T

= A1 + A2 ln
(
RT

RT0

)
+ A3

(
ln
(
RT

RT0

))2

+ A4

(
ln
(
RT

RT0

))3

. (23)

The values of the calibration coefficients are solved by least-squares fitting [16]
equation (23) to calibration points that are resistance-temperature value pairs. At
least as many calibration points as calibration coefficients are needed, but the
accuracy of the calibration increases significantly with a higher amount of calibration
points. [13]

After the calibration is done equation (23) can be solved for temperature.

T = 1

A1 + A2 ln
(

R
RT0

)
+ A3

(
ln
(

R
RT0

))2
+ A4

(
ln
(

R
RT0

))3 , (24)

Where R is the measured NTC resistance and T is the temperature value measured
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by the NTC. By substituting R and RT0 in equation (24)with equation (20) the
temperature measured by the NTC in a voltage divider circuit shown in figure 1 is

T = 1

A1 + A2 ln
(
V (Vin0−V0)
V0(Vin−V )

)
+ A3

(
ln
(
V (Vin0−V0)
V0(Vin−V )

))2

+ A4

(
ln
(
V (Vin0−V0)
V0(Vin−V )

))3 , (25)

where V is the measured voltage over the NTC, Vin is the input voltage of the circuit
and V0 and Vin0 the measured and input voltages of the calibration point RT0 . This
removes the effect of Rref from the equation as it is the same for both R and RT0 .

2.4.3 Error propagation

In an NTC temperature measurement the temperature reading is affected by the
errors of the measured NTC resistance, but also by the accuracy of the calibration.
Therefore the error propagation through the measurement should be considered. Liu
et al. [13] proposed a method for determining the error propagation in a temperature
measurement using least-squares fitting calibration and the Hoge [4] equations. [13]
The uncertainty of a NTC temperature reading according to them is [13]

∆T =

√√√√ m∑
i=1

(
∂T

∂Ri

)2

∆R2
i +

m∑
i=1

(
∂T

∂Ti

)2

∆T 2
i +

(
∂T

∂R

)2

∆R2, (26)

where (Ri,Ti) are the calibration points used, R is the measured NTC resistance, and
T (R,R1,...Rm;T1,...,Tm) is the temperature value measured with the NTC with m
being the amount of calibration points. ∆T,∆R,∆Ti and ∆Ri are the uncertainties
of the variables. [13]

If equations (23), (24) and (25) are used, uncertainty should be calculated from
the variables that were measured. The calibration points are (Ri(Vi, Vini

);Ti), where
Vi and Vini

are the measured voltages from the voltage divider circuit in equation
(20) at temperature Ti. Equation (26) becomes

∆T =
{

m∑
i=1

(
∂T

∂Vi

)2

∆V 2
i +

m∑
i=1

(
∂T

∂Vini

)2

∆V 2
ini

+
m∑
i=1

(
∂T

∂Ti

)2

∆T 2
i

+
(
∂T

∂V

)2

∆V 2 +
(
∂T

∂Vin

)2

∆V 2
in +

(
∂T

∂V0

)2

∆V 2
0 +

(
∂T

∂V in0

)2

∆V 2
in0

} 1
2

,

(27)



24

According to the chain rule

∂T

∂Vi
= ∂T

∂Ri

∂Ri

∂Vi
,

∂T

∂Vini

= ∂T

∂Ri

∂Ri

∂Vini

,

∂T

∂V0
= ∂T

∂R0

∂R0

∂V0
,

∂T

∂Vin0

= ∂T

∂R0

∂R0

∂Vin0

,

(28)

and therefore equation (27) can be written as

∆T =
{

m∑
i=1

(
∂T

∂Ri

∂Ri
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∆V 2
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} 1
2

,

(29)

The partial derivatives of T in equation (29) are [13]

∂T

∂Ri

=
n∑
j=1

[
BH−1

]
i,j

∂T

∂Aj
,

∂T

∂Ti
=

n∑
j=1

[
CH−1

]
i,j

∂T

∂Aj

(30)

where Aj are the calibration coefficients and [M ]i,j is the (i,j)th element of matrix
M . [13]

The matrices B and C in equations (30) are (m x n) matrices, where m is the
amount of calibration points used in the least-squares fit and n is the amount of
calibration coefficients Aj in the fitting equation. H is a square (n x n) matrix. The
elements of these matrices are [13]

Bi,j = −
(
∂T

∂R

∂T

∂Aj

) ∣∣∣∣
R=Ri

+ (Ti − T (Ri))
∂2T

∂R∂Aj

∣∣∣∣
R=Ri

, (31)

Ci,j = ∂T

∂Aj

∣∣∣∣
R=Ri

(32)

and
Hi,j =

m∑
k=1

[(
∂T

∂Ai

∂T

∂Aj

)
− (Tk − T (Rk))

∂2T

∂Ai∂Aj

∣∣∣∣
R=Ri

]
. (33)



25

The calibration equation used in this work is the Hoge-2 equation (22) which has
4 calibration coefficients. Equation (24) is the Hoge-2 equation solved for T and can
also be written with a sum notation

T = 1∑n
k=1 Ak

(
ln( R

R0)
)k−1 . (34)

Now, the first-order partial derivatives of T are

∂T

∂Aj
= −

(
ln( R

R0)
)j−1

(∑n
k=1 Ak

(
ln( R

R0)
)k−1

)2 , (35)

∂T

∂R
= −

∑n
k=1 Ak(k − 1)

(
ln( R

R0)
)k−2

R
(∑n

k=1 Ak
(
ln( R

R0)
)k−1

)2 (36)

and
∂T

∂R0
=
∑n
k=1 Ak(k − 1)

(
ln( R

R0)
)k−2

R0

(∑n
k=1 Ak

(
ln( R

R0)
)k−1

)2 (37)

while the second-order partial derivatives or T are
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= 2

(
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and
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(39)
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The partial derivatives of Ri are

∂Ri

∂Vi
= Vini

(Vini
− Vi)2 ,

∂Ri

∂Vini

= Vi

(Vini
− Vi)2

(40)

By substituting equations (35), (36), (38) and (39) to equations (31), (32) and (33)
and those equations and equations (36),(37) and (40) to equation (29) the error of
the temperature reading given by equation (25) is solved for measured voltages V
and Vin.

If a measured quantity is gained from averaging independently measured data
points, the error of the average is [17, 18]

δ〈x〉 =
√√√√ 1
n(n− 1)

n∑
i=1

(xi − 〈x〉)2, (41)

Where 〈x〉 is the average, xi are the data points and n is the amount of data points.
If weighed averaging is used on experimental data with errors, the data points

are xi ± σi, the weighed average is [17, 18]

〈x〉 =
∑
iwixi∑
iwi

, wi = 1
σ2
i

. (42)

The error of the weighed average is [17, 18]

σ〈x〉 = 1√∑
iwi

. (43)

2.5 Finite element method simulations

The Finite element method (FEM) [19, 20] is a method that is used to simulate
various problems in the fields of structural analysis, thermal transport, fluid flow and
many others. [20] In FEM simulations continuous geometries such as rods, surfaces
or 3D geometries are divided into a finite number of elements. The behaviour of
these elements is described by a finite number of parameters. [19] The elements form
a model where a continuous object is modelled with a finite system of parameters.
This model is an approximation of the physical system and its accuracy depends on
several factors that are explored in this section. The behaviour of the model can
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then be simulated by forming a system of equations that govern the interactions
between the elements and solving the equations numerically.

The process of dividing a geometry into a mesh of nodes and their connections is
called meshing. For 3D-problems tedrahedral or hexahedral elements are generally
used. [20] Generally, smaller mesh elements are used for important details to make
the simulation more accurate. [20] In large uniform areas or areas of less importance,
a wider mesh is sufficient. More elements and degrees of freedom increase the
computational requirements. The amount of degrees of freedom can often be reduced
by simplifying the model and by using symmetries. [20] The meshing is usually at
least partially automated. [20] Different meshes or sizes of mesh elements can be
used in different areas in a single model.

For field problems such as thermal conduction, a general form of the partial
differential equations used with FEM is [19]

−
(
∂q

∂x
+ ∂q

∂y
+ ∂q

∂z

)
+Q = C

∂φ

∂t
, (44)

where φ is the field variable describing a physical quantity, q = −D∇φ is the flux
of the quantity, Q is the source/sink therm describing the rate with which the quantity
is generated or destroyed and D and C are material properties. [19] In section 2.1
equation (1) can be used for thermal conduction simulations by substituting φ with
T , D with thermal conductivity k and C with density multiplied by specific heat ρc
in equation (44). In steady-state simulations the equations can be simplified to their
time-independent forms while time-dependent simulations require the time-dependent
forms of the equations.

Partial differential equations have two forms. The "strong" form, which requires
strong continuity on the dependent field variables. [20] The equations discussed
in sections 2.1 and 2.2 are the strong forms. Weak forms do not require as strong
continuity of the dependent variables. Using the weak forms of equations makes it
easier to obtain an approximate solution. [20] There are multiple different ways to
create a weak form of a partial differential equation from the strong form. Widely
used methods include energy principles an weighted residual methods. [20]

Thermal conductivity, density and specific heat are the material properties used
in thermal conduction simulations. In different FEM simulations different material
properties are used, such as Young’s Modulus and poisson’s ratio for stress simulations
[20]. Different areas of the model could consist of different materials, and therefore
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have different values of material properties. [20]

Boundary conditions are set on the edges of the model and initial conditions
for the field variables are given. Improper selections of these conditions cause the
simulation to produce inaccurate results or cause there to be no convergence. The
kinds of boundary conditions used in thermal transport simulations are discussed in
section 2.3. The initial condition in thermal transport simulations is the temperature
in each region of the model.

In models where multiple physical phenomena are simulated, coupling these
physical phenomena are required if these phenomena can not be solved independently.
[19] Section 4.3 presents a model where both thermal transport and fluid flow
are simulated. As the fluid transports heat with conduction and differences in
temperature cause fluid flow, the phenomena need to be coupled. There are generally
two classes of coupled systems: those where coupling occurs on domain interfaces
via boundary conditions, and those where the physical phenomena overlap, where
coupling is done through the differential equations used in the simulation. [19] In a
model with thermal transport in both fluid and solid both of these couplings exist:
an interface coupling in between the fluid and solid, and the coupling of thermal
transport to the fluid flow in the fluid to simulate convection.

The equations from all the individual elements are collected into a global finite
element equation. The assembly at a particular node is done by adding all the
contributions of elements connected at a node. [20] A global coordinate system is
established for the model. The assembly results in a matrix equation containing the
equations from the individual elements.

After the model and global equations are established a solver is used to solve
the global equation. Two common types of methods for solving these equations
are direct methods and iterative methods. [19, 20] Direct methods operate on
fully assembled systems of equations and therefore work well on small equation
systems. They demand large storage space. [20] Iterative solver methods work well
on larger equation systems and generally avoid fully assembling the equations and
therefore save storage space. [20] Improper selections of simulation settings or model
parameters can cause the solver to not converge to a solution.

For time-dependent simulations time-stepping is used. The simulation begins
with the initial conditions and a new solution is calculated for each time step. There
are two common methods of time stepping: explicit and implicit. This is continued
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until the set end time is reached. A time history of the solution is established from
the solutions at the time steps. [20]
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3 Experimental Methods

In this work the temperature gradient over a sample of polydimethylsiloxane (PDMS)
was measured using negative temperature coefficient (NTC) thermistors. A tempera-
ture gradient over the sample was created by heating the sample from the bottom.
The results of the measurements were compared to a simulated model of the same
sample that is discussed in section 4.2. The experimental results are shown in sections
5.1 and 5.2 and compared to the simulation results in section 5.4.

3.1 Sample preparation

Seven EPCOS B57541G1103F005 10kΩ NTC thermistors [11] were moulded inside of
a disk of Sylgard184 PDMS [21]. The PDMS mould was made into a 14cm diameter
plastic petri dish. The mould was made with 149.2 ± 1g of Sylgard184 PDMS
base and 14.8± 0.5g of Sylgard184 PDMS curing agent. The curing was done in a
Memmert UFE-400 oven in 50oC for 80 minutes. Sari Pohjola aided in the PDMS
moulding process. The thermistors were held in place during the moulding process
by a 3D-printed plastic frame designed by Sanna Aikio. The frame was made to
have a top with a large amount of holes both to make the frame less obstructive to
air flow and also to hold the wires of the NTCs in place during moulding and the
experiments. The frame was also used to place the NTCs at different distances from
the bottom of the mould. This allowed the temperature gradient across the mould to
be measured. The sample with the frame and the thermistors is shown in figure 2 A.

The plastic petri dish was broken and the NTCs were connected to an interface
circuit shown in figure 3. The circuit was designed by Rami Aikio. The interface
circuit is made up of a voltage divider circuit for each NTC as discussed in section
2.4. The circuit has Bourns CR0603 10kΩ resistors [22] as the reference resistors and
amplifiers with a gain of 1. The voltages were measured with a NI USB6002 DAQ
USB device [23].

The NTCs are labelled in this work with numbers from 1 to 7. Their positions
inside the mould were measured with a ruler through the translucent PDMS. In
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Figure 2. A: The PDMS mould with the white 3D-printed plastic frame, used
for holding the NTCs in place during the moulding process. The heads of the
NTCs are moulded inside the PDMS. The coloured wires connect the NTCs to
the interface circuit. B: An image of the calibration measurement. The PDMS
mould sample is in the open Memmert UFE-400 oven and the interface circuit
and USB-6002 outside of the oven.

order to measure the NTCs distances from the bottom of the PDMS mould after
the measurements detailed in sections 3.2 and 3.3 the PDMS mould was cut into
pieces near the NTCs. This way, the measurement could be done closer to the
NTC with less distortion from the PDMS material. The thickness of the mould was
also measured near each NTC to ensure the mould was uniform in thickness. The
mould was found to be 1.00±0.05cm thick in all NTC positions. The measured NTC
positions are shown in table 1.

An eight NTC (’NTC 8’) was not moulded inside PDMS but was instead used
to measure temperature between the mould and a hot plate. One of the NTCs
moulded inside the PDMS (’NTC 5’) was not used in the measurements because the
measurement circuit only had space for seven NTCs. NTC 5 was selected as the one
left out because it is the closest in depth to another NTC, NTC 2.

3.2 NTC calibration measurements

The theory of calibrating NTC thermistors is discussed in section 2.4. The calibration
was done in a Memmert UFE-400 oven where the temperature was measured by a
NI USB-TC01 temperature input device with a K-type thermocouple [24]. Figure 2
B shows the calibration measurement setup with the oven door open.

Voltage over the NTC was measured for each NTC separately and the input
voltage was measured jointly for each calibration temperature. LabView [25] was
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Figure 3. Interface circuit board for NTC temperature measurements, designed
by Rami Aikio.

used to record the results. The LabView program used in all the measurements
was designed by Eero Hietala. Ten calibration points were measured for each NTC
and one of them was chosen as the reference point needed in equation (23). The
calibration coefficients were solved with MATLAB by least-squares fitting equation
(23) to the calibration points. The results are discussed in section 5.1

The calibration coefficients and the voltages of the reference calibration point
were used in LabView to directly calculate temperature from the measured voltage
values with equation (25). The calibration errors were calculated with the method
discussed in section 2.4.3 for each thermistor over the calibration range which was
between 294.70K and 337.72K. The error curves are shown in figure 12. The accuracy
of the calibration was deemed appropriate for the verification measurements.
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Table 1. NTC locations in the PDMS mould. The z-coordinate was measured
from the bottom of the mould to the bottom of each NTC. The x and y axes
intersect in the centre of the plastic frame holding the NTCs in place. The
thickness of the mould was measured at each NTC location with every result
being 1.00±0.05cm, showing that the mould was uniform in depth. NTC 7
touches the top of the mould.

NTC distance from bottom [cm] x [cm] y [cm]
1 0.05±0.05 -0.30±0.05 -0.10±0.05
2 0.35±0.05 -0.80±0.05 1.80±0.05
3 0.50±0.05 -1.60±0.05 0.40±0.05
4 0.75±0.05 1.90±0.05 0.00±0.05
5 0.40 ±0.05 0.40±0.05 3.60±0.05
6 0.55 ±0.05 0.00±0.05 1.80±0.05
7 1.00 (at the top of mould) -0.60±0.05 -1.40±0.05

3.3 PDMS temperature measurements

In order to create a temperature gradient across the PDMS, the PDMS was heated
from below with a Präzitherm type PZ28-2 hot plate. The measurement had to
be done in a fume hood for safety reasons. In order to ensure natural convection
was cooling the top of the PDMS and not forced convection from the fume hood,
aluminium foil was used to make a cover for the experiment. The foil cover blocked
air flow to and from the the sample while still allowing space for natural convection to
cool the top of the sample. Figure 4 shows the foil cover over the sample. Appendix
A contains additional pictures of the experimental set-up.

Using the NTCs embedded into the PDMS mould, the temperature gradient
across the PDMS was measured. NTC 8 was used to measure the temperature from
between the hot plate and the PDMS mould. Thermal paste was used between the
sample and the heater to achieve a better thermal contact between the mould and
the heater. The calibration discussed in section 3.2 was used to get accurate results.

Common room temperature and humidity meters were used to measure the
temperature and humidity of the air near, but not on top of, the heater. Due to
availability a Traceable® 628-0031 was used for most measurements and for some
an iRox room temperature meter was used instead. The iRox meter showed the
temperature to one decimal place, while the Traceable meter showed no decimal
places. The air temperature slightly rose in some of the measurements likely due to
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Figure 4. An image of the foil cover used to block forced convection from the
laminar cabinet. The room air temperature and humidity meter is next to the
heater.

the heater being on for a long time during the experiment.

Two kinds of measurements were made: the steady-state temperature gradient of
the PDMS was measured in several different temperatures, and the transient temper-
ature gradient of the PDMS was measured during heating from room temperature
to several different temperatures.

During heating, the heater temperature rose linearly with time until it reached
the set temperature. After this, the temperature of the plate rose and fell cyclically,
staying in the proximity of the set temperature.

The power setting of the hot plate was set to 15% in all the measurements, as
a lower power caused the heating to take a long time and a higher settings caused
the temperature of the plate to vary more near the set temperature. The maximum
temperature setting on the hot plate was always set higher than the desired hot plate
temperature.

Six measurements were made with the temperature rising to the set temperatures
from room temperature. Measurements 1, 2 and 3 continued even after the heater
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Table 2. Verification measurements with NTC thermistors embedded into a
PDMS mould. In measurements 1, 2 and 3, data was also recorded as the hot
plate was turned off and the mould and hot plate cooled. In measurements 7
and 8, three different steady-states (a, b and c) were measured in series, without
cooling the mould to room temperature in between. The relative humidity of the
air decreased during measurements 1, 3 and 6 and increased during measurements
2, 5, 7b and 7c. A change in air temperature always means that air temperature
rose. An iRox temperature meter was used to measure air temperature and
humidity in measurements 5, 7a, 7b and 7c. In the other measurements a
Traceable 628-0031 was used.

Measurement Date set TH [K] Tair [oC] φ
1 3.9 313.15 22 51%-44%
2 4.9 318.15 22-23 44%-51%
3 2.9 323.15 24-25 55%-53%
4 2.9 328.15 23 56%
5 27.8 333.15 22.6-23.0 52%-54%
6 3.9. 338.15 22-23 37%-36%
7a 23.8 318.15 23.1-23.3 46%
7b 23.8 328.15 23.4-23.5 46%-47%
7c 23.8 338.15 23.6-23.8 47%-48%
8a 5.9. 313.15 23 48%
8b 5.9 323.15 23 48%
8c 5.9. 333.15 23 49%

was turned off, measuring the cooling of the PDMS in addition to the heating. In two
measurements three different steady states were measured in series. Table 2 shows
the measured temperatures, air temperatures and humidities. Measurements 4 and 6
were made after measurements 3 and 1 respectively on the same days. The hot plate
was allowed to cool for hours but there was still some heat left in the hot plate from
the previous measurements. In the simulations corresponding to measurements 4
and 6, this was compensated by slightly changing the initial value of the temperature
of the model to match the measured values.

The voltages over the NTCs and the calibrated temperatures were measured with
the same measurement set-up as in sections 3.1 and 3.2. The results are shown in
figures 13 and 14 and table 6. The results are further discussed in section 5.2.
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4 Simulation Methods

4.1 Comsol Multiphysics

The Comsol Multiphysics [26] simulation program was used to complete the finite
element method simulations in this work. Version 5.6 was used for the steady-state
verification simulations and version 5.4 was used for all the other simulations. Comsol
Multiphysics uses the finite element method discussed in section 2.5 to solve partial
differential equations for the simulation. The set of finite differential equations used
is dependent on the physics model and boundary conditions set for the simulation.
In Comsol Multiphysics, different physical phenomena are divided into interfaces,
and multiphysics interfaces are used to couple these when needed. The interfaces
used in this work are the heat transport in solids and fluids interface, the single-
phase flow interface, the microfluidics interface and the multiphysics interface is the
nonisothermal flow interface. The heat flux module was used to create the newton
cooling boundary condition.

In the Comsol Multiphysics 5.4 interfaces the partial differential equations used
in the simulations are always the weak forms of the equations. [26] In strong form
equations the differential equations must be satisfied in every point of the geometry.
The weak form has a less stringent continuity requirement. Weak form equations
are commonly used in FEM simulations. In Comsol Multiphysics 5.4. the strong
form of the equations used are converted to the weak forms by multiplying them
with an arbitrary test function and integrating the result over the domain [26]. The
equations referred to in sections 4.2-4.5 are used by Comsol Multiphysics 5.4. in
their weak forms instead of the strong forms.

Comsol multiphysics also has 3D design tools that can be used to make the
model geometry that were used in this work, libraries for material properties, and
automated tools to create a mesh. The model geometries in this work were made
using these tools. The material property libraries were used if the manufacturer
provided datasheets did not include relevant material properties. The automated
meshing tools were used to create the meshes in used in this work. The size of the
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mesh elements can be set and the program automatically creates a mesh based on
them. In the 3D models that were used in this work, the free tetrahedral mesh
provided by Comsol Multiphysics was used most often.

The "Comsol Multiphysics LiveLinkTM for MATLAB" [26] was used in this work
to set model variables, extract results, define functions and run models. LiveLink for
MATLAB allows the user to run models in loops changing some variable between
runs. In time-dependent simulations, it made possible to set variables as a function
of time by defining a function in MATLAB and setting the value of the variable to
the MATLAB function.

4.2 PDMS verification simulation

In order to validate the use of Comsol Multiphysics in the simulation of PDMS-
based microfluidics, verification simulations that compare simulated results with
experimental data is needed. This kind of verification has been used with Comsol
Multiphysics in different applications, such as heat transfer in buildings [27], hot disc
temperature sensors [28] and in food engineering [29]. The experimental methods
and measurements are discussed in section 3.3. The simulation model was designed
to closely match the physical sample while being simple and allowing reasonably
short simulation times.

Figure 5. The Comsol Multiphysics geometry used in the verification simulations.
The PDMS (grey, translucent) has the glass heads of the NTCs (red) embedded
into it.

To create a model that would match closely to the physical sample, the sample
dimensions were measured and replicated in the simulated geometry. The PDMS
mould was done in a cylindrical petri dish and therefore the PDMS was simulated as
a cylinder. The dimensions of the PDMS mold were measured and the values used
in the simulation were 14cm as the PDMS diameter and 1.0cm as the PDMS height.
The wires and plastic frame shown in figure 2 were not modelled in order to reduce
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the complexity of the model. The glass heads of the thermistors were modelled as
spheres with a radius of 0.7mm to mach the value given in the NTC datasheet [11].
The NTCs were placed into the model at their measured physical locations. The
locations are shown in table 1 and the method they were measured is discussed in
section 3.1. The wire-frame geometry of the model is shown in figure 5.

The temperature measured from the hot plate by an NTC in section 3.3 was used
as a heat bath temperature below the model. This Dirichlet boundary condition
was modelled with equation (14). The vertical walls of the model were modelled
to be insulated with no thermal flux through them. This homogeneous Neumann
boundary condition was modelled with equation (15). As forced convection of air to
and from the sample was blocked in the measurement, the top of the sample and
the upper part of the highest NTC were modelled as a boundary heat flux between
a horizontal hot plate and naturally convecting, moist air. In the simulation, the
air temperature and humidity were from values measured near the experimental
set-up. The boundary condition was modelled using the heat flux boundary condition
provided in the heat transfer module in Comsol Multiphysics. Moist air was selected
as the fluid and the measured values shown in table 2 temperature of the air and
the relative humidity were used. Comsol Multiphysics uses equations (11), (12) and
(13) to calculate the heat transfer coefficient for a Neumann boundary condition.

The thermal conductivity and density of the PDMS used for the simulation are
from the manufacturer’s product data sheet [21]. The density was given as the
specific gravity of the material. The manufacturer did not specify the temperature
of the water used as reference in the specific gravity. The density of water at 25oC,
997.05kg m−3 [30] was chosen and the density calculated as

ρPDMS = SGPDMS · ρH2O = 1.03 · 997.05 kg
m3 = 1027 kg

m3 . (45)

The specific heat capacity was not specified by the manufacturer. [21] Therefore
the default value used by Comsol was used [26, 31]. The product data sheet values
were used instead of the Comsols built-in PDMS material properties in order to
make the simulation more accurate to the experimental case. The NTC heads are
glass-coated, so they were simulated as glass spheres. The Comsol built-in glass
(quartz) properties were used. For the PDMS-air interface, the built-in moist air
setting was used to calculate fluid properties. The relevant material properties for
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Table 3. Material properties used in the verification simulations. k is the thermal
conductivity, ρ is density and Cp is the heat capacity in constant pressure.

Material k [W/(m·K)] ρ [kg/m3] Cp [J/(kg·K)]
PDMS 0.27 [21] 1027 [21] 1461 [31]
glass 1.4 2210 730
PET 0.19 [32] 1403.5 [33] 1143.8 [32]

the simulation are shown in table 3.
The mesh was an automatically generated physics-controlled mesh with an element

size of "extremely fine". With these settings Comsol generates a 3-dimensional free
tetrahedral mesh where the mesh element size decreases near objects and edges
with small dimensions. In this model, This causes the areas near the NTC heads to
have a tighter mesh than areas away from them. A simulation was also done with
a significant decrease in mesh size with both the maximum and minimum element
sizes multiplied with 0.5. This increases the computation time but did not relevantly
change the simulation results, as shown in table 8. Therefore the "extremely fine"
mesh size is deemed appropriate for the simulation. Figure 6 shows an image of the
meshed model.

Figure 6. Comsol Multiphysics mesh plot of the PDMS mould model showing
the automatically generated free tetdrahedral mesh

Two different kinds of simulation were made: steady-state and time-dependent.
In the steady-state simulations, the temperature of the hot bath was fixed at a
value of TH and the air temperature fixed at a value of Tair. Equations (2) (12) and
(13) were used in their time-independent forms where the terms including time or
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time derivative are given the value of 0. Several steady-state simulations were made
with different values of TH . The values of TH , Tair and φair used in the simulations
are given in table 2, where φair is the relative humidity of the air. Figure 7 shows
an isothermal contours plot of the simulated temperature across the mould. The
steady-state simulations were run with the aid of Jarno Petäjä.

Figure 7. Comsol Multiphysics isosurface plot of the temperature across the
PDMS mould in simulation 4, at 15 minutes.

In order to have the hot plate temperature be as accurate as possible in the
time-dependent simulation, a least-squares fit to the measured data of NTC 8 was
made for each time-dependent measurement. Because the heating has several distinct
phases the data was separated into sections: before heater was turned on, during
the heating phase, after heater reached the set temperature, and after the heater is
turned off. Each section was fitted separately. For the first two sections, 3rd-degree
polynomial fits were used and for the third section a power function

y = a · xb + c, (46)

was used. The final section was only measured in measurements 1, 2 and 3 due
to time constraints. The equation used for it was the second-degree exponential
function

y = a · eb·x + c · ed·x. (47)

The fits were done in MATLAB:s curve fitting tool, using the default values of all
of the fitting settings. The coefficients calculated by the least-squares fit were then
used to define a MATLAB function that returned the hot plate temperature as a
function of time.

In order to reduce simulation time and memory needed for the simulation and
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results, the results of the time-dependent solver was set to generate values for the
simulation once per minute. To improve accuracy, the time-stepping of the solver
was set to ’intermediate’ which mandates the solver to calculate the values of the
dependent variables at least once every time step. [26] Equations (2), (12) and (13)
were used in their time-dependent forms.

The results of the simulations are comprised of the volume averages of the
temperatures of the NTC glass heads calculated in the Comsol software and extracted
to MATLAB. For the time-dependent case, the temperature averages are evaluated
every minute. The results of the simulations are discussed and compared to the
experimental measurements in section 5.2.

4.3 Microfluidic channel simulations

The results of the verification measurements and simulations showed good agreement
as discussed in section 5.4. Therefore, the simulation tools used in section 4.2
can reasonably be expected to produce useful results. New simulations were made
with a geometry that includes microfluidic channels. These channels were modelled
according to designs used in microfluidic nucleic acid amplification reactions [1].
As the operating temperature of nucleic acid amplification methods such as the
polymerace chain reaction (PCR) [3] and LAMP [2] needs to be accurately controlled,
the aim of these simulations is to provide a starting point for heater design and
temperature control.

PCR and LAMP require different operating temperatures. PCR reactions require
cycling between different temperatures at a range of 323.15 to 363.15K. [3] Efficient
heating and cooling can reduce the time it takes to go between the temperature steps,
shortening the time needed for the amplification process. In LAMP, the reaction is
isothermal [2] and the heating only needs to quickly reach the operating temperature
and maintain it during the reaction.

The model includes two layers of PDMS: a bottom layer in which the microfluidic
channels have been printed and a thicker lid enclosing the channels inside PDMS.
There is also a polyethene terephthalate (PET) substrate as the bottom layer of
the model. The PET material properties used in the simulation are shown in table
3. As the producers material data sheet did not include thermal conductivity or
specific heat capacity [33] values measured for the material by Lopes and Felisberti
[32] were used instead. In order to calculate the density of the PET used, the area
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yield value for the 125µm film was multiplied by the layer thickness of 125µm and
the result was inverted to arrive at the value shown in table 3. The thickness of the
PET substrate is 125µm, the PDMS bottom layer 300µm and the thickness of the
lid 5mm. The microfluidic channels are 100µm high and 400 µm wide and connected
to four microfluidic chambers that are 2mm in diameter and their centers are 5mm
apart from each other. The Comsol Multiphysics geometry of the model is shown in
figure 8.

Figure 8. The Comsol Multiphysics geometry of the PDMS microfluidic platform.
The PDMS (white, translucent) is divided into the thin base and the thicker lid.
the microfluidic channels and chambers (blue) are printed into the top of the
PDMS base. A thin PET wafer (gray) is the bottom layer of the model.

Adding the microfluidic channels necessitates modelling fluid flow in the channels.
In order to keep the simulations as simple as possible the creeping (stokes) flow
interface was used in the fluid flow modelling. Water was used as the fluid, as the
liquids used in the microfluidic channels are mostly water. The Comsol Multiphysics
default water properties were used. [26] A point at the end of the channel was chosen
as the constant pressure point needed in order for the simulation to converge. [26]

As in section 4.2 the bottom of the PDMS was set to a constant temperature
boundary condition and the top to a horizontal hot plate and naturally convecting
moist air boundary condition. The room air temperature was set to 298.15K and the
moisture to 50%. The end of the microfluidic channel was set to the open boundary
condition, allowing fluid flow in and out of the model area. The initial speed of the
fluid was set to 0 and the initial pressure to 1 atm. The pressure of the fluid outside
the open boundary condition was set to 1 atm. Initial temperature for the entire
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Figure 9. Simulated isotherms in the steady-state simulation with a 363.15K
heating at the bottom of the model

model was set to 298.15K. Coupling the fluid flow and heat transfer interfaces was
done using the nonisothermal flow multiphysics coupling. The mesh was done by
Comsol Multiphysics with a "normal" mesh size set for the PDMS and PET and a
"finer" mesh size for the microfluidic channel.

Again, both steady-state and time-dependent simulations were made. For the
steady-state simulations, equations (2), (6), (7), (8), (12) and (13) were used in
their time independent forms. A comsol multiphysics isothermal contours plot of
the steady-state measurement in shown in figure 9. The temperature of the bottom
of the model was set to 323.15K, 343.15K and 363.15K. In the time-dependent
simulations the change in the temperature of the bottom was considered to happen
instantaneously. The same temperatures of 323.15K, 343.15K and 363.15K were
used. 180 seconds were simulated, with a simulation step of 5 seconds. The results
consist of the volume averages of the temperatures on the microfluidic chambers and
the surface average of the top of the model.

A test for mesh convergence was also done with a tighter mesh with the mesh
size "extra fine" for the microfluidic channel and "fine" for everything else. These
results are discussed in section 5.5. In the time-dependent simulations, the results
are recorded between time steps every five seconds. From the time dependent
measurements the time needed to reach the steady-state temperature in the chambers
is of interest. However the results of the verification showed in section 5.4 showed
that the simulation is not completely accurate in this regard and a longer time can
be expected than what the simulation shows.
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4.4 The bisection method with Comsol Multiphysics and
MATLAB

One of the most reliable root-finding algorithms is the bisection method. It finds a
root of a function f that is continuous in the interval [a,b], where f(a)f(b) < 0, and
therefore f(a) and f(b) have different signs. [34, 35] As f is continuous and f(a)
and f(b) have different signs, and therefore there must be at least one root between
a and b due to the intermediate value theorem. [34]

To find one of the roots of f , the bisection method divides the interval in two,
placing the midpoint c as [34, 35]

c = a+ 1
2(b− a). (48)

Now, if f(a)f(c) < 0 at least one root exists in the interval [a,c]. If f(a)f(c) > 0 at
least one root exists in the interval [c,b]. Now this second interval can be bisected as
the second iteration of the bisection method algorithm. [34, 35]

If [an−1, bn−1] is the interval after n− 1 iterations, xn = cn is the midpoint of that
interval and α ∈ [a,b] is a root of f, |xn − α| ≤ ε if [34]

(1
2

)n
(a0 − b0) ≤ ε, (49)

where ε is the tolerance for error. The number of iterations needed to reach this
accuracy is [34]

n = log(b− a)− log(ε)
log(2) . (50)

If a variable in a Comsol Multiphysics model affects a result of a steady-state
simulation the bisection method can be used in order to look for an optimal value of
the variable. The bisection method has been used with comsol multiphysics to look
for optimal simulation variables in several studies [36–38].

In the context of designing heaters for a specific reaction in a microfluidic platform
the operating temperature of the reaction can be thought of as optimal. Therefore
function f is

f(x) = Ts(x)− TO, (51)

where TO is the operating temperature of the reaction and Ts(x) is the simulated
temperature in the fluid. In this case, x is the variable that is changed in the
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Figure 10. The Comsol Multiphysics isothermal contours plot of the power
heating simulation, with the power of each point heater being 0.24804W.

simulation to find the value closest to the physical case. In this work this method was
used to find the power needed to heat up a microfluidic channel to a set temperature.
These simulations are discussed in section 4.5.

4.5 Microfluidic channel power heating simulations

In addition to the simulations presented in section 4.3 the same microfluidic chip
geometry shown in figure 8 was used in a simulation of point heating. In this
simulation the top of the model was set to the same natural convection boundary
condition than in section 4.3. Below each of the four round microfluidic chambers,
a point on the bottom surface of the model was set as a point heat source. The
simulation did not converge without a set temperature somewhere in the model.
Therefore the bottom surface of the model was set to 298.15K to simulate the chip
laying on a table with a very large heat capacity.

In this model the heating is not done by a hot plate that is much larger than the
sample itself, and therefore the effect of the sides of the model should be taken into
account. These sides are given the Comsol Multiphysics default naturally convection
from a vertical hot plate heat flux boundary condition that is similar to the natural
convection from a horizontal hot plate boundary condition used on the top of the
model. Each point heater is set to the same power. The point heaters are also given
a radius of the diameter of the microfluidic chamber divided by 4. In the simulation,
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the heat flux in the model formed spherical isotherms around the point heat sources,
shown in figure 10.

After initial tests to see that the power values needed to heat the average
temperature of the fluid in the microfluidic channels to 323.15K, 343.15K and
363.15K showed that the power needed was somewhere between 0.1W and 1W. The
bisection method outlined in section 4.4 was used to find the values of power with
higher accuracy. The function with which power P affects the average temperature of
the fluid, Tf (P ), is unknown but because it is a physical function it can be assumed
to be continuous. It is also evident that a higher heater power should result in a
higher temperature. For each fluid operating temperature function (51) was used as
the function for which the root needs to be found.

The error tolerance Pε was set to 0.0001W. Using equation (50) the number of
iterations needed to reach this accuracy was found to be 14. As a higher heating
power means a higher temperature of the fluid, the condition to find on which side
of the midpoint was simplified to if

TO < Ts(Pci
), (52)

then
Pbi+1 = Pci

, (53)

else
Pai+1 = Pci

, (54)

Where Pci
is the midpoint of [Pai

, Pbi
]. The algorithm written in MATLAB was also

given a maximum number of iterations of 20 to end the simulation if there was an
error in the code and to not cause infinite loops. The results of this simulation are
discussed in section 5.6.
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5 Results

5.1 NTC calibration results

Figure 11. Hoge 2 fit for NTC 1. The dots signify the measured calibration
points while the line shows the Hoge 2 equation fit to the calibration points.

The Hoge-2 function (23) used to calibrate the NTCs and the error propagation
in calibration are discussed in section 3.3. In order to reduce the effect of the random
fluctuations of the reading, each calibration point was the average of the set of
measured voltages at the corresponding calibration temperature. The errors for the
averages were calculated with equation (41). The calibration points for NTCs 1-7
were measured at the same time and the calibration points for NTC 8 were measured
separately from the others. Therefore NTC 8 has different calibration temperatures
compared to the other NTCs. Ten calibration points were measured for all of the
NTCs.
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Table 4. Calibration coefficients for each calibrated NTC rounded to 5 decimal
places.

NTC A1 A2 A3 A4
1 3.24662e-3 2.87360e-4 7.80148e-6 -8.18540e-7
2 3.24699e-3 2.85111e-4 6.50138e-6 -9.29824e-7
3 3.24720e-3 2.85277e-4 7.60065e-6 3.37398e-7
4 3.24804e-3 2.85482e-4 9.03174e-6 3.27219e-6
5 3.24716e-3 2.83962e-4 5.05444e-6 -1.58852e-6
6 3.24743e-3 2.84961e-4 7.01707e-6 3.76925e-7
7 3.25007e-3 2.85698e-4 1.68327e-5 1.46013e-5
8 3.23083e-3 2.83412e-4 5.28301e-6 1.73681e-6

The Hoge 2 fit generated by MATLAB:s fitting tool for one of the NTCs is
shown in figure 11. In order to generate the fit according to equation (23) one of
the calibration points, in this case the third point that was at the temperature of
307.90K was chosen as the reference point for each the first seven NTCs. NTC 8
was calibrated separately but the third point was also selected as the reference point
for it. Table 4 shows the calibration coefficients for each NTC.

The measurement errors for each used device were read from their manuals [11,
23, 24]. For the calibration temperatures, each measurement also had a reading
inaccuracy as the thermocouple reading fluctuated slightly during the measurement
and was recorded by hand. The temperature of the oven was never completely static,
instead cyclically fluctuating. Averaging was used in order to compensate for the
temperature fluctuation.

Figure 12 shows the error of the calibration for each NTC calculated according to
the method discussed in section 2.4.3. These errors stay under 1.4K in the calibration
area, but increase quickly outside of it. The calibration area is marked in figure 12
with dashed vertical lines. The calibration was determined to be accurate enough
for the verification measurements.
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Figure 12. The error curves of the calibrated NTCs. The dashed vertical lines
denote the area between the coldest and hottest calibration point.

5.2 Verification measurement results

In order to reduce the effect that the cycling of the hot plate near the set temperature
has on the readings of the NTCs and to reduce the effect of noise the readings
are averaged over a period of 30s for measurements 8a, 8b and 8c and 50s for
measurements 7a, 7b and 7c. As LabView was set to record a data point every
second and average 10 readings for each data point, 300 or 500 readings were averaged.
Because the errors of the calibration were known a weighted average was calculated
with equation (42) The error of the average was calculated with equation (43). The
averaged results in the steady-state measurements are shown in table 5.

The results of the steady-state measurements are plotted with the corresponding
simulation results in figure 14. The measured and simulated data sets are compared
in section 5.4. The hot plate temperatures measured with NTC 8 and the air
temperatures and humidities are shown in table 6.

In the time-dependent measurements 1-6 the same LabView settings were used as
in the steady-state measurements. Therefore a data point is recorded every second,
with 10 values being averaged to each data point. However, sometimes LabView
did not record a data point, leaving a one-second gap in the recorded data. This
was mitigated by having LabView also record a time stamp for each data point
and plotting according to the time stamp and not the index of the temperature
values. Figure 13 shows the data from measurement 4, where the hot plate was set
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Table 5. Steady-state measurement results in the verification measurements.
The unit of the measured results is Kelvin.

NTC 1 NTC 2 NTC 3 NTC 6 NTC 4 NTC 7
7a 318.18± 317.38± 316.96± 316.75± 316.24± 315.00±

0.12 0.12 0.12 0.12 0.12 0.13
7b 327.94± 326.71± 326.37± 325.63± 324.49± 323.80±

0.13 0.13 0.13 0.13 0.13 0.13
7c 337.5± 335.9± 335.58± 334.55± 333.13± 332.37±

0.2 0.2 0.15 0.14 0.13 0.13
8a 313.2± 312.7± 312.3± 312.4± 311.9± 310.5±

0.2 0.2 0.2 0.2 0.2 0.2
8b 323.13± 322.24± 321.66± 321.55± 320.94± 319.21±

0.13 0.13 0.12 0.12 0.12 0.12
8c 332.79± 331.54± 330.84± 330.56± 329.74± 327.41±

0.13 0.13 0.13 0.13 0.13 0.13

Table 6. Steady-state hot plate temperatures measured with NTC 8. The
hot plate temperature values are weighted averages rounded and shown with
their errors from the raw data points given in the data points column. Tair has
the measured air temperature values during the measurement and φair has the
measured relative humidity values.

TH [K] Tair[oC] φ Data points
7a 318.29 ± 0.12 23.1-23.3 46% 2080-2130
7b 328.33 ± 0.13 23.4-23.5 46%-47% 3910-3960
7c 338.37 ± 0.13 23.6-23.8 47%-48% 7590-7640
8a 313.3 ± 0.2 23 48% 1950-1980
8b 323.37 ± 0.11 23 48% 3700-3750
8c 333.38 ± 0.14 23 49% 6020-6070
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Figure 13. Temperatures measured with the NTCs embedded into the PDMS
mould, measurement 4.

to 328.15K.
Measurements 1-3 also measured a cooling period after the heater was turned off,

while measurements 4-6 measured only the heating to steady-state. During the cooling
period as the temperature of the PDMS became closer to the air temperature, the
cooling became slower. The temperature of the heater influenced the temperature
of the mould during the cooling, and the temperature gradient over the mould
diminished quickly. Figure 16 shows the results of measurement 2 with the simulated
values.

5.3 PDMS verification simulation results

The results of the Comsol Multiphysics simulations are the volume average tempera-
tures of the simulated glass NTC heads. In the steady-state simulations, a single
value was extracted from each NTC. These values are shown in table 7 and plotted
with corresponding measured values in figure 14. For the time-dependent simulation
one set of temperature values was generated for every minute of the simulation.

In both the steady-state and time-dependent cases, the temperature gradient
across the simulation formed almost flat isotherms. In figure 7 these isotherms are
shown in a Comsol Multiphysics isosurface plot of the sample during the heating
phase of simulation 4.

A set of steady-state simulations with a denser mesh were also made. This
increased simulation time significantly but the results as shown in table 8 change less
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Table 7. Simulated steady-state results with the verification model. The units
for the values are Kelvin. Each value is the volume average of the temperature
of the NTCs in the simulation model. The values are rounded to two decimal
places.

NTC 1 NTC 2 NTC 3 NTC 6 NTC 4 NTC 7
7a 318.02 317.24 316.86 316.74 316.24 315.50
7b 327.92 326.68 326.09 325.90 325.11 323.96
7c 337.79 336.06 335.24 334.97 333.88 332.27
8a 313.13 312.55 312.27 312.18 311.80 311.26
7b 323.02 322.00 321.51 321.34 320.69 319.74
7c 332.88 331.37 330.65 330.41 329.45 328.05

Table 8. The difference between the simulated values with a 0.5 times smaller
mesh to the ordinary simulated results. Calculated as simulated value with
normal mesh - value with smaller mesh. The unit for each value is Kelvin. The
values are rounded to two significant digits.

NTC 1 NTC 2 NTC 3 NTC 6 NTC 4 NTC 7
7a -0.00030 0.00064 0.00054 0.00032 -0.00062 -0.0025
7c -0.0050 0.00012 0.0057 0.0070 0.015 0.025
8b -0.00058 0.00085 0.00089 0.00065 -0.00036 -0.0024

than 25mK for each datapoint. As the inaccuracy of the measured values is much
higher the less dense mesh was used in order to save computation time.

5.4 Comparison between measured and simulated values

The steady-state simulated and measured results are shown in the same plot in figure
14. For each hot plate temperature, the measured and simulated results are very
close to each other though the difference increases near the top of the mould. The
difference between the measured and simulated values are shown in table 9.

As discussed in section 4.2 the air flow around NTC 7 was not fully simulated but
instead approximated with the same boundary condition as the top of the PDMS
mould. Therefore, there is unknown air flow around this NTC. It is reasonable that
the simulation would be more inaccurate than with the NTCs fully encased in the
mould where the air flow does not directly affect them.
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Figure 14. Measured and simulated results for the verification measurements.
Each pair of lines represents a different measurement and simulation with the
hot plate temperatures shown in table 6.

Table 9 and figure 14 show that in steady-state the simulated and measured
values are in close agreement with six different hot plate temperatures. For all NTCs
and measurements the values are within 0.81K of eachother. Most of the values are
within 0.2K of each other and many of the simulation values fall within the error
bounds of the measured values shown in table 2. The differences seem to increase
towards the top of the PDMS.

The results of measurement and simulation 4 are shown in figure 15. Similarly
to the steady-state simulations, the end of the simulation closely matches the
measurement results. However, during the heating phase the simulated results rise
much faster than the measured ones as a result of the heater temperature rising.

Figure 16 shows the results of measurement and simulation 2. These included a
cooling period during which the PDMS mould cooled steadily after the heating had
been turned off. The result is similar to the heating measurements as the measured
values lag behind from the simulated values.

A possible reason for this is the heat capacity of the PDMS. As discussed in
section 4.2 the heat capacity in the simulation was the default heat capacity for
PDMS in the Comsol Multiphysics material library [26] because the manufacturer
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Table 9. Measured temperature - Simulated temperature in the steady-state
verification measurements. Each value is rounded to 2 decimal places. The unit
of each value is kelvin.

NTC 1 NTC 2 NTC 3 NTC 6 NTC 4 NTC 7
7a 0.16 0.14 0.10 0.01 0.005 -0.50
7b 0.02 0.03 0.28 -0.27 -0.62 -0.16
7c -0.28 -0.12 0.34 -0.42 -0.74 0.10
8a 0.10 0.18 0.04 0.20 0.05 -0.81
8b 0.11 0.25 0.15 0.20 0.24 -0.53
8c -0.09 0.17 0.19 0.14 0.29 -0.64

of the PDMS did not include a value in their data sheet. [21] The accuracy of the
steady-state simulation is not affected by the thermal capacity of the PDMS as the
time-independent form of equation (2) does not include it. Increasing the thermal
capacity of the simulated PDMS could slow the conduction of heat through the
PDMS as shown in equation 3.

For the purposes of this work, the time-dependent simulation also produces results
that are close to the measured results. However, when using this simulation method
in subsequent work, it is important to take into account that heat propagates through
the PDMS slower than the simulation would predict and the steady state is achieved
later.

5.5 Microfluidic simulation results with hot plate heating

After the verification process, a set of simulations of a microfluidic PDMS chip were
made. The simulation settings and methods are discussed in section 4.3. Steady-
state and time-dependent simulations were made. The results consist of the average
temperature of fluid in the microfluidic channel, the temperature of the PDMS and
the average temperature of the surface at the top of the model. The average and
maximum magnitudes of the velocity of the fluid in the microfluidic channels was
also evaluated.

The results of the steady-state simulations are shown in table 10. Figure 9
shows the isotherms over the simulated model in the steady-state heating with
363.15K. Table 10 shows a large increase in the thermal gradient over the model
when the temperature at the bottom increases. Importantly, the temperature of the
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Figure 15. Measured and simulated temperatures, measurement 4 and simula-
tion 4.

microfluidic channel differs from the temperature at the bottom by 0.2363K with
TH=323.15K while hot plate temperature of TH=363.15K increases this difference to
0.7704K. The total thermal gradient over the model also increased from 3.0951K to
10.1043K.

Tests for mesh convergence with the microfluidic simulation model were also
made. With the Comsol Multiphysics predefined mesh size of extra fine for the
microfluidic channels and fine for the rest of the model, the simulation time tripled
from around one minute to around three. The change in the results of the simulation
is shown in table 11. The change in temperatures between the mesh is negligible as
it is at least two orders of magnitude smaller than the difference between the hot
plate and fluid temperatures shown in table 10. While the tighter mesh seems to
allow slightly faster fluid movement the difference is at least an order of magnitude
smaller than the fluid velocity itself and does not seem to affect the temperatures
that are the focus of the simulation. Therefore the wider mesh can be used in the
simulations.

In the time dependent heating simulations, the temperature changes from the
initial value of 25oC towards the temperature gradient of the steady-state. As
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Figure 16. Measured and simulated temperatures, measurement 2.

discussed in section 5.4, these simulations should be considered with care, as the
simulation results reached the steady-state faster than the measured results in the
verification process. The simulation can still be expected to give a rough estimate
of the time required to reach the steady-state. Figure 17 shows the simulated
temperatures for three different hot plate temperatures.

Figure 17 shows that for every temperature, the average temperature of the fluid
rises very quickly while the temperature of the top of the chip is much slower to

Table 10. Steady-state simulation results with the microfluidic chip model. TF
is the average temperature of the fluid in the channels and Ttop is the average
temperature of the top of the model. The average and maximum magnitudes of
velocity of the fluid in the channels is also shown. The unit of the temperatures
and their differences is kelvin.

TH TF Ttop TH − TF TH − Ttop |v| [m/s] |v|max [m/s]
323.15 322.9137 320.0549 0.2363 3.0951 0.1804·10−7 0.3344·10−4

343.15 342.6636 336.7743 0.4864 6.3757 0.4847·10−7 0.8936·10−4

363.15 362.3794 353.0457 0.7706 10.1043 1.0072·10−7 1.8504·10−4
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Table 11. The effect of a tighter mesh size to the results in Steady-state
simulation with the microfluidic chip model. The values are calculated as normal
mesh - tighter mesh. The values for normal mesh are shown in table 10

TH [K] TF [K] Ttop [K] |v| [m/s] |v|max [m/s]
323.1500 0.0889·10−3 0.0295·10−3 -1.3094·10−9 -0.4036·10−5

343.1500 0.1906·10−3 0.0627·10−3 -3.4760·10−9 -1.0786·10−5

363.1500 0.3102·10−3 0.1008·10−3 -7.1681·10−9 -2.2334·10−5

Table 12. The results of the point heat source simulations for the microfluidic
platform model. TO is the optimum temperature, P is the heating power setting
found with the optimization algorithm and Ts is the temperature simulated with
the heating power.

TO [K] P [W] Ts [K] Ts − TO [K] iterations
323.15 0.2480 323.1464 -0.0036 14
343.15 0.4476 343.1487 -0.0013 14
363.15 0.6474 363.1446 -0.0054 14

respond. In the simulated time of three minutes the temperatures reach values very
close to the steady-state values in table 10.

5.6 Microfluidic simulations with point heat sources

The results of the simulation with the point heaters are shown in table 12. Each
bisection took the predicted 14 iterations and achieved convergence with no issues.
As the simulation time for a single simulation was approximately 1 minute, each run
with the bisection algorithm took approximately 15 minutes.

The accuracy of finding a power suitable for each temperature is also shown in
table 12. For each temperature, a power was found where the temperature was well
within one degree of the operating temperature.
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Figure 17. Simulated hot plate heatings of the microfluidic chip model from
298.15K to 323.15K (A), 343.15K (B) and 363.15K. (C)
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6 Discussion

In this work, finite element method (FEM) simulations were used in order to predict
the thermal transport properties of microfluidic platforms made of polydimethyl-
siloxane (PDMS) during different heating processes. The validity of the simulation
method was verified by comparing the results of a FEM simulation to experiments
with a PDMS mould where the thermal gradient and transient thermal transport
properties were measured with negative temperature coefficient thermistors (NTCs).
The NTCs were used to measure the temperature in the PDMS mould at different
distances from the heater, establishing a measured thermal gradient across the mould.
A FEM simulation model was made to match the experiment as closely as possible.

Measurements and FEM simulations in both the steady-state and time-dependent
heating cases were made with the verification mould. The steady-state measurement
and simulation results were similar as seen in figure 14 and table 9. The time-
dependent simulations and measurements were close to each other, but it became
clear that the changes in temperature occur faster in the simulation than in the
experimental sample. Figures 15 and 16 show this behaviour both during heating
and cooling. The steady states reached at the ends of these simulations again showed
an agreement between the simulated and experimental cases.

There are multiple factors that can affect the rate of heat transfer in the model.
Thermal diffusivity, discussed in section 2.1 is affected by the thermal conductivity,
density and specific heat capacity of the material. In the manufacturer data sheet
of the PDMS used in this work, Sylgard 184, [21] there was no mention of the heat
capacity of the material and the density was given as the specific gravity with no
mention how that specific gravity was calculated. Therefore I used an another source
for the heat capacity of the PDMS and solved the density using water at 25oC as the
reference material. This solution is functional but not does not appear to be exact.
The source used for the heat capacity [26, 31] did not specify the manufacturer of
the PDMS. There was a discrepancy in the thermal conductivity values between the
source (0.19) [26, 31] and the Sylgard 184 manufacturer datasheet (0.27) [21]. It is
therefore possible the heat capacity of Sylgard 184 differs from the value used in the
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simulation.

Other factors that change the rate of heat transfer in the FEM simulation model
include the thermal contact resistance between the heater and the mould and the
characteristics of the air flow in the vicinity of the mould. Altering these factors would
also have changed the steady-state simulation. Because the results of the steady state
measurements and simulations were very close to each other, it seems these factors
are accurate in the FEM simulation and the material properties are the reason for the
disparity in the time-dependent case. In the future, calorimetric measurements on
the PDMS could be used to obtain more accurate material properties of the Sylgard
184 PDMS used.

FEM simulations using the same boundary conditions and material properties
as in the verification process were made on the PDMS microfluidic chip design. In
addition, simulations with point heat sources underneath the microfluidic channels
were made where the heating power of the point heat source was found using the
bisection method. These simulations included fluid flow in the microfluidic channels
and were intended to aid in designing heating methods for nucleic acid amplification
reactions. Again, both steady-state and time-dependent simulations were made.

The results of the steady-state simulations show a large increase in the thermal
gradient over the model when the temperature of the heater is increased. The time-
dependent measurements give an indication about how long reaching the steady state
would take. With the time-dependent FEM simulation the result of the verification
should be considered. The experimental sample will likely take more time to reach the
steady state than the simulated model as changes to the temperature of the sample
were slower in the experimental sample than in the FEM simulation during the
verification. This problem can be mitigated by first setting the heater temperature
higher than the desired temperature, causing a larger gradient and therefore a higher
thermal flux and a faster change of temperature.

In the samples with very small dimensions some of the boundary conditions
used in the FEM simulation can be expected to be less accurate when compared
to experimental results. For example in these simulations the sides of the model
were set to an insulated boundary condition. In the verification measurements this
was justifiable because the area of the top of the mould was much larger than the
sides. In addition, the mould is large enough that the NTCs were far away from the
sides. In the printed microfluidic samples that may not always be the case. In the
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work of Hiltunen et al. [1], figure 2h shows a sample with microfluidic channels that
are close to the sides of the sample. The effects caused by the border depend on
the type of heater and how far away from the border the microfluidic channels are.
Generally, the temperature in experiments is lowered because of these effects. As the
required fluid temperature increases, so too should the compensation between the
heater temperature and the required fluid temperature as the temperature gradient
across the PDMS becomes larger.

Even with the limitations to the accuracy of the FEM simulation method it was
shown in this study to be accurate enough to use in designing heater components for
PDMS microfluidics. Optimization algorithms such as the bisection method can be
used with the simulations to find optimal heater designs customized to the microfluidic
platform. Verification of the FEM model with experimental measurements gives
confidence to the validity of using the simulation in the design of samples.
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7 Conclusion

Heat transport over polydimethylsiloxane microfluidic platforms was simulated using
finite element method simulations in order to investigate two possible heater designs
for the microfluidics. The use of the simulation method was validated by a set of
experimental measurements on a PDMS sample and simulations on a model made of
the sample. The temperature gradient across the sample was measured with negative
temperature coefficient thermistors as it was heated from below with a hot plate.
Both steady-state and time-dependent measurements were made.

The results of these experiments and simulations closely matched each other in
the steady-state. At all the measured datapoints the results of the measurements
and simulations were within 0.81K of each other. Most of the results were within
0.2K of each other. In the time-dependent results the temperature of the PDMS
changed faster in the simulations than in the measurements. This disparity can be
caused by inaccurate material properties of the PDMS in the simulation model.

After verifying the simulation results corresponded with the experimental results
the same simulation method was used to simulate PDMS microfluidics. Two different
possible heating systems were simulated. In the first model the microfluidics were
heated from below with a hot plate and in the second model it was heated with
point heat sources below the microfluidic chambers inside the PDMS. With the first
model, steady-state temperature gradients and heating times were simulated. The
second model was used with the bisection method optimization algorithm to find an
optimal heating power with an error tolerance of 0.1 mW for the point heat sources
to reach an optimal temperature within the microfluidic chambers. The results of
the simulations can be used as a step in the process of designing heater systems for
these microfluidics.
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A Experiment photographs

Figure 18. An image of the mould used in the verification measurements with
thermal paste below it
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Figure 19. An image of the heater used in the verification measurements
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