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ABSTRACT 

Zhang, Guanghui 
Methods to extract multi-dimensional features of event-related brain activities 
from EEG data 
Jyväskylä: University of Jyväskylä, 2021, 75 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 404) 
ISBN 978-951-39-8746-6 (PDF) 

Cognitive processes are studied, among others, by analyzing event-related poten-
tials/oscillations (ERPs/EROs) with various signal processing techniques. The 
commonly used processing techniques have, however, various limitations. For 
example, temporal principal component analysis (t-PCA) assumes, contrary to 
the actual situation, that waveforms of the PCA-extracted component for all sub-
jects are the same. Also, several PCA-extracted components cannot be analyzed 
simultaneously since their amplitudes and polarities are diversiform. Moreover, 
conventional time-frequency analysis (TFA) can not effciently d istinguish be-
tween evoked EROs mixed in temporal and spectral domains. Additionally, in-
duced EROs are usually investigated using TFA, which ignores the interactions 
of induced EROs in temporal, spectral, and spatial domains. 

This thesis develops some EEG analysis algorithms and provides novel frame-
works to investigate the cognitive mechanisms of ERPs/EROs. Specifcally, in the 
frst study, to address the problems in t-PCA, we introduce back-projection theory 
into t-PCA for solving the problem that several extracted components fail to be 
analyzed simultaneously. ERPs are extracted from single-trial EEG of an individ-
ual subject to address the unreasonable hypothesis in the group PCA analysis. In 
the second study, we explore evoked EROs to study some cognitive process stages 
that have not been explained accurately before. This is achieved by frst extract-
ing the ERPs of interest in the time domain using t-PCA and then transforming 
the reconstructed waveforms of ERPs into time-frequency representations (TFRs). 
In the third study, we exploit canonical polyadic tensor decomposition to analyze 
the multi-domain features of induced EROs from the fourth-order tensor formed 
by TFRs of single-trial EEG data. This enables us to reveal potential interactions 
of different modes in induced EROs. 

In conclusion, the thesis introduces some new signal processing techniques 
and novel frameworks to study the dynamics of ERPs/EROs effciently, which 
are validated using actual and synthetic EEG/ERP data. 

Keywords: Event-related potentials/oscillations, principal component analysis, 
time-frequency analysis, tensor decomposition. 



   

 
      

 
       

 
  
  

      
          

      
       

            
       

       
         

        
      

      
        

          
     

       
         

        
        

         
         

      
      

       
       

        

      
       

      

    

TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Zhang, Guanghui 
Menetelmiä moniulotteisten piirteiden tunnistamiseen herätevasteisiin littyvien 
aivotoimintojen EEG-mittauksista 
Jyväskylä: University of Jyväskylä, 2021, 75 s. (+artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 404) 
ISBN 978-951-39-8746-6 (PDF) 

Kognitiivisia prosesseja tutkitaan muun muassa analysoimalla signaalinkäsitte-
lyn keinoin erilaisia EEG:ssä havaittuja vasteita ulkoisiin ärsykkeisiin (ns. ERP/ERO, 
event-related pontetial/oscillation). Yleisimpiin menetelmiin liittyy kuitenkin sel-
keitä rajoitteita. Esimerkiksi ajallinen pääkomponenttianalyysi (t-PCA) olettaa, 
vastoin todellisuutta, että eri yksilöillä vasteajat ja -muodot ovat samat ja vain 
amplituudi vaihtelee. Pääkomponenttianalyysi ei myöskään sovellu usean rin-
nakkaisen vasteen analysointiin, koska vasteiden polariteetit vaihtelevat. Perin-
teinen aika-taajuusanalyysi (TFA) ei puolestaan tunnista ajan ja taajuuden suh-
teen sekottuneita herätevasteita. Sama pätee myös herätevasteiden indusoimien 
vasteiden analyysiin. Vasteiden useampiulotteisia vuorovaikutuksia ajan, taajuu-
den ja paikan suhteen ei voida eritellä. 

Tässä työssä kehitetään EEG analyysimenetelmiä ja uusia viitekehyksiä, joil-
la voidaan tutkia ERP ja ERO signaaleihin liittyviä kognitiivisia mekanismeja. En-
simmäisessä osatutkimuksessa sovelletaan takaisinprojisoinnin tekniikkaa ajalli-
seen pääkomponenttianalyysiin (t-PCA) ja mahdollistetaan näin useamman sa-
manaikaisen vasteen erottelu. Lisäksi osoitetaan, että menetelmää voi soveltaa 
ilman rajoittavaa oletusta vasteiden samankaltaisuudesta eri yksilöiden välillä. 
Toisessa tutkimuksessa yhdistettiin t-PCA menetelmä ja sen avulla rekonstruoi-
dut vasteet aika-taajuus analyysiin (TFR). Näin pystyttiin saamaan tarkempaa 
tietoa herätteen aiheuttaman värähtelyn (ERO) dynamiikasta ja edelleen tämän 
taustalla olevista kognitiivisista prosesseista. Kolmannessa tutkimuksessa sovel-
lettiin moniulotteista tensorihajotelmaa (canonical polyadic tensor decomposi-
tion) neliulotteiseen aika-taajuus muotoiseen EEG-dataan. Näin pystyttiin ana-
lysoimaan herätteiden indusoimia värähtelyjä (ERO) yhtäaikaisesti useamman 
tekijän suhteen ja tunnistamaan eri tekijöiden yhteisvaikutuksia aiempaa parem-
min. 

Yhteenvetona työssä esiteltiin uusia signaalinkäsittelytekniikoita ja lähesty-
mistapoja ERP/ERO signaalien dynamiikan tehokkaaseen analyysiin. Uudet me-
netelmät validoitiin sekä synteettisellä että todellisella EEG-datalla. 

Avainsanat: Aika-taajuusanalyysi, pääkomponenttianalyysi, herätepotentiaali, he-
rätevärähtely, tensorihajotelmat 
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1 INTRODUCTION 

Electroencephalogram (EEG) can be categorized into three different types based 
on the types of external stimuli: (a) the frst type is spontaneous EEG recorded 
without any external stimuli, for example, in the open/close eye resting state; (b) 
the second one is event-related potential (ERP), which is elicited by the controlled 
stimuli, such as repeated pictures (Luck, 2014; Handy, 2005); (c) the third one 
is ongoing EEG, which is elicited by natural stimuli, e.g., watching movies and 
listening music (Rogenmoser et al., 2016; Zhu et al., 2020). 

Compared with the other two types of EEG, ERP brain signals collected 
by the controlled stimuli enable researchers to study specifc cognitive processes 
of event-related brain activities effciently (Luck, 2014; Handy, 2005). Therefore, 
ERP signals have been widely used to investigate the specifc cognitive functions 
of brain activities for both neuropsychiatric disease patients and normal people 
(Luck, 2014; Handy, 2005). In order to effciently extract event-related brain ac-
tivities and study related mechanisms of brain activities better, different signal 
processing techniques have been developed. 

The following sections briefy introduce some widely used signal process-
ing techniques (see Figure 1), such as conventional time-domain analysis (Luck, 
2014), spectral analysis (Bruns, 2004; Başar et al., 2016a), time-frequency analy-
sis (TFA) (Tallon-Baudry and Bertrand, 1999; Herrmann et al., 2014; Roach and 
Mathalon, 2008), principal/independent component analysis (PCA/ICA) (Hus-
ter and Raud, 2018; Dien, 2012; Eichele et al., 2011; Onton et al., 2006), tensor 
decomposition (Cong et al., 2015a), etc, to extract the properties of event-related 
brain activities in different dimensions. 

1.1 Single-way component analysis techniques 

Either temporal or spectral amplitudes of event-related brain activities are mea-
sured from the single-way representatives (i.e., time-series or frequency-series). 
The related procedures are correspondingly named conventional time-domain 
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ERP/ERO

Temporal property

Spectral property

Spatial property

Time domain analysis

Spectral analysis

PCA/ICA

Time frequency analysis

Tensor decomposition

/ms

/Hz

FIGURE 1 Some widely used techniques for the extraction of event-related poten-
tial/oscillation (ERP/ERO). PCA/ICA: principal/independent component 
analysis. 

analysis and spectral analysis. 
The following contents briefy introduce the applications of both single-way 

component analysis techniques and then discuss about their limitations in current 
ERP/EEG data analysis. 

1.1.1 Conventional time-domain analysis 

Since magnitudes of ERPs (e.g., several microvolts) are signifcant smaller than 
those of artifacts (e.g., tens or hundreds of microvolts), some preprocessing steps 
are performed on the raw EEG data to improve the signal-to-noise ratio (SNR) 
for measuring ERPs of interest better. The preprocessing procedure commonly 
contains the following steps: re-reference (Yao et al., 2019; Hu et al., 2019), flter-
ing (de Cheveigné and Nelken, 2019; de Cheveigné, 2020; Widmann et al., 2015), 
using ICA to remove eye activity artifacts (Winkler et al., 2011; Mognon et al., 
2011; Jung et al., 2000), segmentation, and baseline correction (Alday, 2019), and 
so forth. 

Hereinafter, ’EEG data’ represents the preprocessed single-trial signals and 
’ERP data’ are the preprocessed trial-averaged signals. 

Based on the preprocessed EEG data, the waveforms of ERPs, which are 
related to the specifc events (i.e., different stimuli), are obtained by averaging 
the single-trial EEG data (Luck, 2014; Handy, 2005). This averaging procedure is 
based on the three following assumptions: (a) Artifacts, such as sensor noise, eye 
activities, muscle movement, are signifcantly removed during the preprocessing 
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procedure; (b) Spontaneous brain activities are signifcantly canceled out since 
they are uncorrelated between samples of different trials; (c) The numbers and 
the orders of sources for all single-trial EEG data are the same. 

Usually, there are several different ERPs in the trial-averaged waveforms, 
and those ERPs are characterized by their polarities, peak latencies, and topo-
graphical distributions (Luck, 2014; Handy, 2005). For instance, N100 (or N1) 
is a negative-going ERP which is mainly found in fronto-central regions about 
80-120 ms (Vogel and Luck, 2000; Näätänen and Picton, 1987). N2 is a negative-
going ERP and its peak latency occurs within time window from 200-350 ms after 
stimulus-onset at anterior sites (Patel and Azzam, 2005; Folstein and Van Pet-
ten, 2008). P3 is a positive-going ERP whose peak latency locates in about 250 -
500 ms, and it is primarily found in parietal lobe sites (van Dinteren et al., 2014; 
Polich, 2007). 

Different ERPs might be used to explain different cognitive processes. For 
example, the changes of N2 in amplitude, topography, latency obtained by us-
ing conventional time-domain analysis are used to study the executive cogni-
tive functions (Folstein and Van Petten, 2008). Likewise, the related cognitive 
functions in decision-making processes based on the amplitude, topography, and 
latency of P3 can also be studied (Polich, 2007). Some researchers have investi-
gated the functions of inhibitory control defcits in schizophrenia by comparing 
the amplitude of N100 obtained from EEG data of schizophrenia patients and 
control health people (Hughes et al., 2012). The N100 reduction is used to study 
the infuence of medicine on schizophrenia patients (Rosburg et al., 2008). 

When using conventional time-domain analysis, the amplitudes of ERPs 
are frstly measured from the averaged ERP data within an experimenter-defned 
time window at the selected electrodes. The identifcation of the time window 
and the selection of electrodes are often based on both the fndings in previous 
reports and the visual inspection of the grand averaged waveforms for ERPs of 
interest. Afterwards, the differences between/among different experimental con-
ditions for the measured amplitudes of ERPs are identifed by means of statistical 
analysis techniques, for example, repeated-measurement analysis of variances 
(rm-ANOVA), t-test, and non-parametric permutation test (see Figure 2 (a) → 
(b)). 

1.1.2 Spectral analysis 

Similar to the measurement of ERPs (the salient part within a short defned time 
window) in the time domain, spectral analysis measures the amplitudes of salient 
parts in specifc frequencies (see Figure 2 (a) → (c) → (d)) (Gross, 2014; Başar et al., 
2016a). In principle, one desired ERP can be considered as a superposition of sev-
eral oscillations in different frequencies. The term of event-related oscillations 
(EROs) is used to represent the salient parts at specifc frequency bands elicited 
by controlled stimuli (or cognitive tasks) (Başar et al., 2016a; Başar, 2013; Gün-
tekin and Başar, 2016; Başar et al., 2001; Karakaş et al., 2000). Therefore, like the 
defnition of an ERP in time-domain, the salient part in a specifc frequency band 
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FIGURE 2 Illustrations of conventional time-domain analysis ((a) → (b)) and spectral 
analysis ((a) → (c) → (d)). (a) The grand averaged waveforms for two exper-
imental conditions at some typical electrodes. (b) The amplitudes of ERPs 
(i.e., N2) for different individual subjects within time window from 220 to 
270 ms. (c) The grand averaged power spectral density (PSD) of two dif-
ferent experimental conditions at typical electrodes. (d) The energies of dif-
ferent individual subjects of higher evoked delta (2-4 Hz) oscillation. The 
details of data used in current fgure are avaliable in (Lu et al., 2017) 

(e.g., theta band: 4-8 Hz) is interpreted as the preferred ERO. 
EROs are classifed into varied frequency bands, namely, delta (1-4 Hz), 

theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-70 Hz) (Başar 
et al., 2016a; Başar, 2013; Başar et al., 2001; Başar and Güntekin, 2008). EROs can 
be obtained by performing spectral analysis techniques on the trial-averaged ERP 
data, and these are called evoked EROs that are strictly phase-locked and time-
locked to events. Based on spectral analysis, EROs can also be generated from 
single-trial EEG data and they are named induced EROs which are non-phase 
locked and time-locked to events, and they are the automatic responses to cogni-
tive tasks (Başar et al., 2016a; Başar, 2013). 

Several techniques, such as fast Fourier transform (FFT), Hilbert transform, 
and wavelet transform, have been developed and widely used to transform the 
time-domain signals of either trial-averaged ERP or single-trial EEG into contents 
in frequency domain (amplitude-frequency characteristics, i.e., AFCs) (Başar et al., 
2016a; Başar, 2013). Bruns (2004) has demonstrated that there are no differences 
among the results of the three techniques in practical applications on actual neu-
ronal datasets. With those techniques, the cognitive mechanisms can be inves-
tigated based on event-related activities for cognitive disorder patients, such as 
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attention-defcit hyperactivity disorder (ADHD), bipolar disorders, Alzheimer’s, 
mild cognitive impairment, schizophrenia, and alcoholism patients (Başar, 2013; 
Başar and Güntekin, 2008; Başar et al., 2016a,b) 

1.1.3 Limitations 

For both the conventional time-domain analysis and spectral analysis, the statis-
tical analysis results are usually infuenced by the experimenter-determined time 
window/frequency range, which tends to be a subjective method. Additionally, 
the characteristic of ERPs/EROs is merely interpreted in one dimension. There-
fore, for conventional time-domain analysis, it is challenge to know how the ERPs 
of interest change along with frequencies. Likewise, the temporal characteristic 
of EROs is inevitably neglected in spectral analysis. Furthermore, ERPs/EROs of 
interest are generally mixed with others of non-interest in temporal, spatial, and 
spectral domains. As a result, the features of EROs/ERPs might not be explored 
entirely using single-way component analysis techniques. 

To tackle the problem in the selection of time window for ERPs, some re-
searchers (Michel and Koenig, 2018; Murray et al., 2008; Mahini et al., 2020) have 
attempted to use clustering analysis to determine an optimal time window for 
ERPs of interest. However, the overlapping between components might prevent 
the proper clustering of the components in this types of technique. For example, 
unrelated time points may be classifed as a part of the desired ERPs when to-
pographies corresponding to those time points (which do not belong to the time 
range of ERPs in the time domain) are highly similar to that of ERPs of interest. 
Such a bias selection may also happen when performing clustering analysis on 
the yields of spectral analysis to determine a frequency range for EROs. 

In order to address the other problems in single-way component analysis 
techniques, different advanced techniques are available, for example, TFA (Her-
rmann et al., 2014; Roach and Mathalon, 2008), PCA/ICA (Huster and Raud, 
2018; Dien, 2012; Barry and De Blasio, 2018; Eichele et al., 2011), and tensor de-
composition (Cong et al., 2015a). In the following section, the applications and 
limitations of those advanced techniques are separately discussed. 

1.2 Two-way component analysis techniques 

To address the problem that ERPs of interest are mixed with others, PCA and ICA 
(Huster and Raud, 2018; Dien, 2012; Eichele et al., 2011) can be employed to ex-
tract ERPs of interest from the mixed ERP/EEG data. Additionally, the brain ac-
tivities can also be extracted from time-frequency representations (TFRs) to study 
their temporal and spectral dynamics (Tallon-Baudry and Bertrand, 1999; Roach 
and Mathalon, 2008; Cohen, 2014; Herrmann et al., 2014). 

In the following, the applications of PCA/ICA and TFA on the ERP/EEG 
data are frstly discussed, and then the shortcomings of these two-way compo-



20 

nent analysis techniques are clarifed. 

1.2.1 Principal/Independent component analysis 

The recorded EEG data are often represented by a matrix (i.e., channels are in 
rows and time points are in columns) in some popular toolboxes, like EEGLAB 
(Delorme and Makeig, 2004). In an ERP experiment, the preprocessed multiple 
EEG/ERP datasets can also be arranged into a big-size matrix along either time 
samples or channels (see Figure 3) (Dien, 2012; Dien et al., 2005, 2007). Conse-
quently, matrix decomposition algorithms, like PCA and ICA, can be conducted 
to extract and preserve the shared characteristics of ERPs of interest among dif-
ferent subjects. Meanwhile, ERPs of non-interest and artifacts can be removed 
(Dien, 2012; Dien et al., 2005, 2007). 

In PCA technique, there are two different ways to extract ERPs of interest. 
Herein, the application of group PCA on the trial-averaged ERP data is taken as 
an example (see Figure 3). In the frst way, ERPs are extracted from temporal-
stacked matrix (i.e., electrodes × (time samples × conditions × subjects) ) and 
the related PCA-decomposition is called as spatial-PCA (see Figure 3 (a)) (Dien, 
2012; Dien et al., 2005). In the spatial-PCA, electrodes are variables, and the prod-
ucts of time samples, conditions, and subjects are observations. Spatial-PCA as-
sumes that the spatial components (i.e., factor loadings) for all subjects share the 
same topography but different in amplitudes of temporal components (i.e., factor 
scores, see the waveforms of extracted components in Figure 3 (a)) (Dien, 2012). 
For the other one, the PCA decomposition of spatial-concatenation matrix (i.e., 
time samples × (electrodes × conditions × subjects) ) is named as temporal-PCA 
(see Figure 3 (b)). The underlying idea is that the waveforms of temporal com-
ponents (i.e., factor loadings) for all subjects are the same and the amplitudes of 
spatial components are different (i.e., topographies, which are also called factor 
scores) (Dien, 2012). 

Noticeably, due to volume conduction, all ERPs and artifacts are mixed in 
spatial domain to some degree (Dien, 2012). It is, therefore, usually recommended 
to use temporal-PCA to obtain the desired ERPs rather than spatial-PCA (Dien, 
2012). The previous study also confrmed that temporal-PCA yields better overall 
results than those of spatial-PCA (Dien, 1998). 

To capture the temporal and spatial characteristics of ERPs of interest, most 
researchers have obtained ERPs from the trial-averaged ERP data of all subjects 
(Widmann et al., 2018; Bonmassar et al., 2020; Steele et al., 2016; Gentsch et al., 
2013). Moreover, others have attempted to extract the ERPs of interest from the 
single-trial EEG data of all subjects at the group level (Rushby et al., 2005; Mac-
Donald et al., 2015; MacDonald and Barry, 2017; Rushby and Barry, 2009). 

The main difference between ICA and PCA is that ICA ensures the extracted 
components are independent but rotated principal components (PCs) obtained 
by PCA plus rotation method are related. Moreover, the applications of ICA can 
also be categorized into temporal-ICA and spatial-ICA based on the forms of the 
matrices (see Figure 3) (Huster and Raud, 2018; Eichele et al., 2011). Addition-
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ally, the features of ERPs of interest in temporal and spatial domains can also be 
extracted from both the single-trial EEG data and trial-averaged ERP data of all 
subjects via ICA decomposition (Cong et al., 2010; Van Dinteren et al., 2018; Hus-
ter et al., 2020). Rissling et al. (2014) had attempted to use ICA to extract ERPs of 
interest from individual subject’s data. 
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FIGURE 3 Illustrations of the applications of PCA and ICA on EEG data. (a) Spatial 
PCA/ICA analysis. (b) Temporal PCA/ICA analysis. 

1.2.2 Time-frequency analysis 

After the time-domain EEG/ERP data are transformed into time-frequency sig-
nals (i.e., TFRs), the dynamics of event-related brain activities in temporal and 
spectral domains can be captured simultaneously (see Figure 4) (Cohen, 2014; 
Herrmann et al., 2014; Tallon-Baudry and Bertrand, 1999). As in spectral analysis 
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of event-related brain activities, the temporal and spectral dynamics response to 
events are also named as EROs. Those EROs are divided into varied frequency 
bands, e.g., delta, alpha, theta, gamma, and beta bands (Başar et al., 2001). 
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FIGURE 4 Illustration of time-frequency analysis based on the complex Morlet continu-
ous wavelet transform. (a) Complex Morlet mother wavelets. (b) The wave-
form of one-epoch EEG data at one channel. (c) The time-frequency repre-
sentation of the time-domain signal in (b). (d) The power of ERO of interest 
(marked by black rectangle) in (c). 

There are two different strategies to compute EROs (Herrmann et al., 2014; 
Tallon-Baudry and Bertrand, 1999). In the frst strategy, TFRs are obtained from 
the trial-averaged ERP data using some TFA algorithms, and the obtained EROs 
in such TFRs are time-locked and phase-locked to event onset (i.e., evoked EROs). 
In the second strategy, TFRs of single-trial EEG data are frstly calculated, and 
then the TFRs of single-trial EEG data are averaged to obtain total brain activi-
ties that consist of both evoked and induced EROs. Induced EROs are non-phase 
locked to stimulus onset, and they will be signifcantly canceled out during the 
averaging procedure in the time domain (Tallon-Baudry and Bertrand, 1999; Her-
rmann et al., 2014). 

To obtain EROs and study the temporal-spectral dynamics of EROs, dif-
ferent TFA algorithms, e.g., short-time Fourier transform (STFT), complex Morlet 
continuous wavelet transform (CMCWT), Hilbert-Huang transform, Z-transform, 
and Wigner-Ville distribution, have been developed (Roach and Mathalon, 2008; 
Wacker and Witte, 2013; Cohen, 2014). Some algorithms have been nested in free 
available toolboxes, for example, EEGLAB (Delorme and Makeig, 2004), ERP-
WAVELAB (Mørup et al., 2007), and Brainstorm (Tadel et al., 2011), which allow 
researchers to study EROs easily. Compared with other algorithms, CMCWT is 
frequently used to investigate EROs because it provides superior time resolution 
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and frequency resolution of TFRs. 

1.2.3 Limitations 

Regarding the current applications of temporal-PCA, there are two main chal-
lenges. Since the latencies and phases of the waveforms of an ERP for all in-
dividuals are vary to some degree, the waveform of an ERP of interest is often 
decomposed into several components by PCA (Zhang et al., 2020a; Cao et al., 
2020; Li et al., 2019). The biggest challenge is that those PCA-extracted compo-
nents decomposed from the waveforms of an ERP for different subjects cannot be 
analyzed simultaneously since their polarities and amplitudes may be different. 
This limitation means that only the partial information of one desired ERP is in-
volved and analyzed if not all of PCA-extracted components, which come from 
the same ERP, are not considered. The other limitation of group temporal-PCA is 
that the waveforms of one ERP of interest for all subjects are assumed to be the 
same, and this assumption is contrary to actual waveforms of ERPs. 

For ICA, two issues need to be concerned. The frst issue is that the ex-
tracted independent components (ICs) are assumed to be independent of each 
other, which are not in accord with the actual ERP sources, and those ERP sources 
are correlated to some extent due to volume conduction. The second issue is that 
the extracted ICs may be variant in different runs (Cong et al., 2011b). 

Concerning the applications of TFA, the TFRs are usually obtained from the 
original preprocessed ERP/EEG data, and the desired EROs in the obtained TFRs 
may still be highly blended or mixed with others of non-interest. Consequently, 
the properties of EROs cannot be fully explored and some cognitive functions 
cannot be accurately explained. To tackle this, Bernat and colleagues suggested 
that applying PCA on the TFRs to extract the EROs (Bernat et al., 2005, 2007; 
Harper et al., 2014; Bowers et al., 2018), the core step is to calculate weightings 
between the PCA-extracted components obtained from TFRs with the original 
TFRs. In such a technique, the weighted TFRs are still compound demonstrated 
by using synthetic data in our recent work (Zhang et al., 2020a). It should be 
noted that a mother wavelet needs to be frstly defned by a set of bandwidth 
and center frequency before using CMCWT. Setting of bandwidth and center fre-
quency directly affects on the time resolution and frequency resolution of the ob-
tained TFRs (Zhang et al., 2018a, 2020b). Therefore, different sets of bandwidth 
and center frequency need to be attempted to obtain relative optimal TFRs. 

1.3 Multi-way component analysis techniques 

After time-domain EEG/ERP data are converted into time-frequency signals, in 
a typical ERP experiment, at least fve modes (i.e., dimensions) are included, 
namely, time sample, electrode, frequency, condition, and subject modes. There-
fore, TFRs of multi-condition and multi-subject can be presented by a multi-array 
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(i.e., tensor, the size of its dimensions is more than two). Figure 5 shows an exam-
ple of two-component nonnegative canonical polyadic decomposition (NCPD) 
for a third-order tensor. 
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FIGURE 5 Example of two-component NCPD for a third-order tensor. 

Canonical polyadic and Tucker are two widely used models in the tensor 
decomposition (Cong et al., 2015a), which bring us a new sight to investigate the 
dynamics of brain activities in temporal, spectral, and spatial domains, and study 
the potential interactions of EROs among those modes. Similar to the assumption 
in the applications of PCA/ICA, brain activities corresponding to event onset 
for all subjects share the spectrum in the frequency domain, the waveform in 
the time domain, and the topographical distribution in the space domain. The 
differences of EROs among all subjects are expressed in the features of subject-
condition mode. 

According to different study purposes, different forms of tensors with var-
ied dimensions can be organized. For example, to extract the multi-mode features 
of evoked EROs in temporal, spatial, and spectral domains, a fourth-order tensor 
with temporal, spatial, spectral, and subject-condition modes is generated (Cong 
et al., 2013b, 2014; Yu et al., 2020; Zhang et al., 2020b). Some researchers tried 
to dig out potential interaction of EROs from some merged modes (e.g., subject 
and condition are merged into one mode in a fourth-order tensor) using tensor 
decomposition to decompose a ffth-order tensor (time samples × frequency bins 
× electrodes × subjects × conditions) (Wang et al., 2018; Mørup et al., 2006). 

However, these applications of tensor decomposition mainly focused on 
studying the dynamics of the evoked EROs; the investigations of induced EROs 
by using tensor decomposition are seldom carried out. 

1.4 Research aims/solutions 

This thesis aims to develop essential signal processing techniques and introduce 
novel frameworks to study the cognitive dynamics of brain activities in temporal, 
spatial, and spectral domains from the EEG/ERP data. Specifc solutions are pro-
vided to overcome the shortcomings in the two-way (Articles I, II, and III) and 
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multi-way component analysis techniques (Article IV) as described in Subsections 
1.2.3 and 1.3. 

The detailed object and solution of each included article are listed as below: 
Article I: We conduct the back-projection theory into temporal-PCA appli-

cation to analyze several PCA-extracted components, which are derived from the 
waveforms of the same ERP, simultaneously. In order to address the unreason-
able hypothesis of temporal-PCA that all subjects’ waveforms of ERPs are the 
same, we extract the ERPs of interest from the individual subject’s EEG data col-
lected from an emotional ERP experiment with two factors. The results of the 
proposed techniques are also compared with other alternative techniques (con-
ventional time-domain analysis and group temporal-PCA [single-trial and trial-
averaged] analysis). 

Article II: To investigate how the complex Morlet mother wavelet affects on 
the time-frequency results, we frstly calculate TFRs of the same ERP data using 
80 different complex Morlet mother wavelets (determined by a set of bandwidth 
and center frequency). Afterwards, we compute the statistical analysis results of 
the same evoked EROs for TFRs of different mother wavelets. 

Article III: To fll the gap that evoked EROs may fail to be explored en-
tirely since they overlap with others in temporal and spectral domains, a novel 
framework that combines temporal-PCA and TFA is proposed to extract evoked 
EROs objectively. We frstly extract ERPs of interest in the time domain using 
temporal-PCA plus Promax rotation and reconstruct the waveforms of the inter-
esting ERPs. Next, the reconstructed waveforms of ERPs of interest are converted 
into time-frequency signals via the CMCWT algorithm. The proposed technique 
is validated by a set of synthetic ERP data and an actual EEG of a simple gambling 
task. The comparable methods are conventional TFA and TFA-PCA. 

Article IV: To address the problem that the interactions of induced EROs 
among different modes are inevitably lost in conventional TFA, tensor decompo-
sition is conducted to extract the temporal, spatial, and spectral characteristics of 
induced EROs from fourth-order tensor in a go/nogo paradigm task. The con-
ventional TFA is also conducted to extract induced EROs. 

Article V: During the study we notice that there is no systematic source 
that would have covered the various signal processing techniques used for ERP 
analysis. To fll in this gap, we summarize the theories and procedures of the 
techniques related to extraction of ERPs/EROs more widely than is needed to 
explain the methods used in this thesis. This article grew out from preparing the 
Study 3 but will not be discussed independently in the following section. 

This thesis consists of three studies. Study 1: Measuring temporal and spa-
tial properties of the desired ERPs from individual subject’s data by temporal-
PCA (article I). Study 2: Objectively measuring temporal and spetral properties of 
evoked EROs via temporal-PCA and TFA (articles II and III). Study 3: Measuring 
multi-domain properties of induced EROs using tensor decomposition (article 
IV). The details of the used methods and data types in different studies are de-
scribed in Figure 6. 

Additionally, the developed PCA algorithm is used in both articles I and 
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III. In the articles III and IV, the selected set of bandwidth and center frequency 
is used to defne the mother wavelet for calculating evoked and induced EROs, 
respectively, based on the work in the article II. 

Study 1 Study 2 Study 3

PCA TFA
Tensor

decomposition
Time domain 

analysis

Single-trial Trial-averaged Individual level Group level

FIGURE 6 Methods and data types are used in three studies. PCA: principal component 
analysis; TFA: time-frequency analysis. 

1.5 Dissertation structure 

The details of the dissertation structure are described as following: 
Chapter 1 briefy introduces the applications and limitations of some widely 

used techniques, and the aim of this dissertation is also clarifed. 
Chapter 2 describes the mathematical theories and procedures on extracting 

ERPs/EROs for the some techniques. 
Chapter 3 briefy summarizes the contents of the included articles and lists 

the authors’ contributions in each article. 
Chapter 4 summarizes the conclusions and limitations in current thesis, and 

potential directions for future investigation are also discussed. 



2 METHODS TO MEASURE CHARACTERISTICS OF 
EVENT-RELATED POTENTIALS/OSCILLATIONS 

This chapter frstly introduces the fundamental theories of PCA/ICA, CMCWT, 
and tensor decomposition. Afterwards, it describes the basic steps of these tech-
niques for the extraction of ERPs/EROs. 

2.1 Theory and procedure of PCA/ICA to extract ERPs 

The recorded EEG signals are considered as the sum of products between source 
signals in cortex and weighting factors, and the model is called blind source sep-
aration (BSS) model (see Figure 7). PCA/ICA aims to estimate the underlying 
source signals and weighting factors. 

In this section, the model and applications of PCA/ICA are detailed in or-
der. 

2.1.1 Mathematical model for PCA 

The application of temporal-PCA is frstly described using BSS model, and the 
difference between temporal-PCA and spatial-PCA under this model is discussed. 

In application of temporal-PCA, for a spatial concatenated matrix X ∈ <N×M 

(see Figure 3 (b)). N and M respectively represent the number of time samples 
and the number of electrodes by subjects by conditions. The matrix can be ex-
pressed by using the linear transformation model as below (Cong et al., 2011a,c; 
Zhang et al., 2020a, 2021). 

X = HS1 + E = H(S1 + S2) = HS. (1) 

In the above equation, H denotes a mixing matrix with full ranks and its 
th each column is the weighting value from rth source in the brain cortex to m 

electrode along the brain scalp; S = S1 + S2(S ∈ <R×M), E = HS2, S1 is the 
unknown source matrix in brain cortex, and S2 is the sensor-noise source matrix. 
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Usually, the model in Eq. 1 is regarded as an over-determined model (Cong 
et al., 2011a) since the number of the observed signals N is considered to be larger 
than that of the source signals R. Therefore, some approaches, such as cumula-
tive explained variance (Huster and Raud, 2018; Van Dinteren et al., 2018; Huster 
et al., 2020; Zhang et al., 2020a), can be use to estimate the number of sources 
(i.e., R). Afterwards, the overdetermined model in Eq. 1 is transformed into de-
termined one as below: 

D = VTX = VTHS = AS, (2) 

where D ∈ <R×M; VT ∈ <R×N is dimensionality reduction matrix obtained by 
applying PCA on XT; A ∈ <R×R is regarded as the mixing matrix. 

Both A and S are unknown. Therefore, BSS algorithm is used to seek an 
unmixing matrix W (Comon and Jutten, 2010). In detail, in the applications of 
PCA on EEG, W is usually obtained by using some rotation algorithms, e.g., Pro-
max, Infomax, etc (Abdi and Williams, 2010; Richman, 1986). And then, through 
this unmixing matrix, the related component matrix can be linearly estimated as 
below (Cong et al., 2011a; Zhang et al., 2020a, 2021): 

Y = WD = WAS = CS, (3) 

where Y represents the estimation of unknown source matrix in Eq. 2 and its rows 
are the topographical distributions of the estimated components; The amplitudes 
and polarities of the estimated components are indeterminate and C = WA is the 
global matrix. The inverse matrix B = W−1 of the unmixing matrix is used to 
estimate the mixing matrix A (Cong et al., 2011a). 

Under the determined model condition in Eq. 2, in order to analyze those 
extracted components of interest in microvolts, the component of interest is pro-
jected back to the electrode felds. This procedure is described as following ( i.e., 
back-projection) (Makeig et al., 1997, 1999; Cong et al., 2011a,c; Onton et al., 2006). 

Qr = br ◦ yr, (4) 

herein, Qr ∈ <R×M represents the projected waveforms of ERPs of interest at all 
electrodes for rth component; br is the relative projection strength of rth compo-
nent onto all electrodes, and yr is the rth row of the estimated component matrix 
Y; ‘◦’ is the outer product between two vectors. 

In practice, we pursue an ideal solution (i.e., global optimization condition) 
that uses one estimated component to uniquely represent the information of one 
source in Eq. 2. That is to say, only one nonzero element in each row and each 
column of C can be obtained. Thus, the procedure, i.e., using an estimated com-
ponent to unique denote one source in Eq. 2, can be defned as: 

Qr = br ◦ yr = aj ◦ sj, (5) 

here, aj is jth column of the mixing matrix A, and sj is jth row of the source matrix 
S in Eq. 2. ‘◦’ denotes the outer product of two vectors. 
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Back to the original overdetermined model in Eq. 1, the back-projection of 
the rth component generated from the matrix X is expressed as: 

Xr = ur ◦ y , (6)r 

U = VB, (7) 

where ur represents the rth column of U and it is the time course (i.e., waveform) 
for rth extracted component. The outer product between the inverse matrix B and 
the dimensionality reduction matrix V is conducted to denote U, which is the 
estimation of the weighting matrix H in Eq. 1. 

In the applications of PCA on EEG/ERP data to extract ERPs of interest, sev-
eral PCA-extracted components derived from the waveforms of one ERPs need 
to be selected to project to all electrodes simultaneously for correcting their am-
plitude and polarity indeterminacies so that they can be analyzed in microvolt 
level (Comon and Jutten, 2010). The procedure of back-projection of several com-
ponents is implemented as following: 

� �� �T 

X = ur1 , · · · , uri y , · · · , yr1 ri (8) 
= ur1 ◦ y + · · · + uri ◦ y ,r1 ri 

where, r1, · · · , ri−1, and ri (1 ≤ ri < R) are used to represent the sequences of the 
selected components; The size of the matrix X is the same to X. 

Noticeably, for spatial-PCA (see Figure 7), the rows and columns of X are 
channels and time samples, respectively. Here, X is used to represent the matrix, 
which is to be decomposed, for avoiding confusion with that in temporal-PCA. 
The ur and y are the topography and waveform of rth estimated component,r 
respectively. 
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matrix X = x1, · · · , xm, · · · , xM = ∑m
M 
=1 ∑r

R 
=1 hmrsr (i.e., electrode × time 

sample). xm is collected waveform at mth electrode; sr is the rth source signal; 
hmr is the weighting value from rth source to mth electrode. 
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2.1.2 PCA procedure for ERPs extraction 

This subsection introduces the procedure of PCA for extracting ERPs of interest 
from the preprocessed EEG/ERP data. Herein, the following steps are involved 
in the ERP extraction: arranging ERP/EEG data into a matrix, estimating the 
number of sources, selecting the rotation method, identifying the components of 
interest, and analyzing the identifed components. 

2.1.2.1 Arranging ERP/EEG data into a matrix 

In multi-subject and multi-condition ERP experiments, two different strategies 
are usually used to extract ERPs of interest when using PCA. 

On the one hand, ERPs of interest are usually extracted from the waveforms 
of all subjects simultaneously and this strategy is referred to as group PCA anal-
ysis. In the group PCA analysis, all subjects’ data are connected to form a matrix, 
i.e., X = [X(1), · · · , X(p), · · · , X(P)] (here, P is used to represent the number of 
subjects). As a results, the mixing matrices in Eq. 1 are considered to be the same 
for different subjects: H = H(1) = · · · = H(p) = · · · = H(P). Moreover, both the 
sequences (Sr = S(1) = · · · = S(p) = · · · = S(P) , r is the source order which r r r 
is smaller than M) and the numbers (R = R(1) = · · · = R(p) = · · · = R(P)) of 
the sources for different subjects are also invariable. 

On the other hand, the interesting ERPs can be explored from single-trial 
EEG data of individual subject (i.e., individual-subject PCA analysis). In such a 
strategy, to obtain a better performance of PCA, the channels of single-trial EEG 
for each subject under different exprimental conditions are concatenated to form 
a matrix separately (Zhang et al., 2021). By contrast with the assumptions in the 
frst strategy, the mixing matrices for different subjects are allowed to be var-
ied in this strategy. Moreover, the orders and the numbers of the sources for 
different subjects might be different (Zhang et al., 2021). Furthermore, the wave-
forms/topographies (corresponding to temporal-PCA and spatial-PCA, respec-
tively) of ERPs of interest for different single trials within one subject’s EEG data 
are assumed to be the same. 

For both group and individual-subject PCA analysis strategies, there are 
at least four modes for multi-subject and multi-condition ERP datasets, namely, 
time sample (S), electrode (E), experimental condition (C), and subject (P). There-
fore, two different types of matrices (see Figure 3) can be formed, both of which 
contain variables and observations (Dien, 2012; Dien et al., 2007, 2005). Herein, 
the application of PCA on trial-averaged ERP data is taken as an example. For 
the frst type of matrix, the averaged ERP data are stacked over electrodes of all 
subjects of all conditions to generate a matrix X with the size of S × (E × P × C). 
In such a matrix, the variables are time samples, and observations are the prod-
ucts of electrodes, conditions and subjects. For the second type of matrix, the 
matrix X with the size of E × (P × C × S) can be organized over time samples 
for all subjects under differen conditions. In this type of matrix, the electrodes are 
considered to be variables and the waveforms (the combinations of time samples, 
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conditions, and subjects) at all electrodes are the observations. 
In conclusion, before using PCA, we have to confront two questions. One is 

how to extract ERPs of interest from all subjects’ or individual subject’s EEG/ERP 
data. The other is how to form a matrix connecting EEG/ERP data across elec-
trodes or time samples. The suggested solution is to extract ERPs of interest from 
the spatial-stacked matrix of an individual EEG data separately. One reason for 
the solution is that it is challenging to keep all the waveforms of the interest-
ing ERPs for different subjects are unvaried, even those data are strictly recorded 
under the same experimental environment. For the other reason, ERPs of inter-
est overlap with others of non-interest to some extent in the spatial domain (i.e., 
their topographies are mixed) because of volume conduction. As a result, it is 
challenging to separate ERPs of interest from the temporal-concatenated matrix 
(i.e., by using spatial-PCA). 

2.1.2.2 Estimating the number of sources 

This step aims to use fewer variables to represent the whole information of the 
original matrix and convert the original over-determined model into the deter-
mined model (i.e., from Eq. 1 to Eq. 2). 

Typically, the number of sources can be estimated based on the eigenvalues 
of the extracted components. The eigenvalues are obtained from the covariance 
matrix CX = XXT or CX = XTX in a descending order (one eigenvalue corre-
sponds to one PCA-extracted component). 

λ1 ≥ · · · ≥ λl = · · · = λL = σ2. (9) 
LIn above equation, {λl }l=1 represent the eigentvalues of matrix CX and 

L = min {M, N}. It is noted that the frst PCA-extracted component explains 
the largest percentage ratio of total variance because its eigenvalue is highest (as 
shown in Figure 8 (a)). 
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FIGURE 8 The example of estimating source number (PCA). (a) Eigentvalues for the 
frst 70 PCA-extracted components. (b) The cumulative explained variance. 

Several approaches, for example, Parallel test (Dien, 2010a; Horn, 1965), cu-
mulative explained variance (Huster and Raud, 2018; Van Dinteren et al., 2018; 
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Huster et al., 2020; Zhang et al., 2020a), and gap measure (Cong et al., 2013a; He 
et al., 2010), have been developed to assess the source number. Here, the theory 
of the cumulative explained variance is supplemented. In practice, the cumula-
tive explained variance is obtained by computing the percentage ratio (PR) of the 
sums of the frst R eigenvalues over the sums of all eigenvalues. 

∑R 
r=1 λrPR = × 100%, (10)

∑L 
l=1 λl 

where R denotes the estimated source number; L is the number of variables, L ≥ 
R. Once PR is defned by using a specifc value, such as 90%, 95%, and 99%, the 
number of sources will be estimated. For example, if PR is defned as 99% and 
the frst 29 components explain this ratio of the total variance, these components 
are then chosen for next procedure (see Figure 8 (b)). 

2.1.2.3 Selecting the rotation method 

The rotation method is targeted at rearranging the structures of the original ex-
tracted components into simple and interpretable structures (Dien, 2012). Two 
different types of rotation are widely used in the applications of ERP analysis. 
The frst type is orthogonal rotation and it requires the PCA-decomposed com-
ponents to be orthogonal to each other. The second one, i.e., oblique rotation, 
allows different PCA-decomposed components to be correlated with each other 
(Dien, 2012). Although the orthogonal rotation (e.g., Varimax) has been applied 
to extract ERPs of interest, and could yield better results (Dien et al., 2005; Dien, 
1998), many previous studies more agreed that Promax rotation is most suited for 
t-PCA, Infomax rotation is most effcient for spatial-PCA (Dien, 2012; Dien et al., 
2007; Dien, 2010b). 

2.1.2.4 Identifying the PCA-extracted components of interest 

Even artifacts are signifcantly removed during the preprocessing procedure, the 
PCA-extracted components can be categorized into four different types at least, 
namely, components of interest, spontaneous brain activities, components of non-
interest, and noise activities. Noticeably, only several PCA-extracted compo-
nents, which are considered to be separated from the waveforms of ERPs of in-
terest, are selected and used for the following procedure. 

Commonly, only the properties of the PCA-extracted components in the 
temporal and spatial domains conform to the ERPs of interest, those components 
are then used for next procedure. The following two aspects are served as criteria 
for selecting the PCA-extracted components of interest (Zhang et al., 2020a; Barry 
et al., 2020; Karamacoska et al., 2019): (1) The polarity and peak latency of tem-
poral component; (2) The polarity and topographical distribution of the spatial 
component. 

Figure 9 shows an example for the extraction of N2 by using temporal-PCA. 
Herein, N2 is primarily found in the frontocentral sites within the time window 
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220 ms to 270 ms (see Figure 9 (a)). For the 2nd temporal component, the peak 
latency is about 262 ms and the polarity is positive. And the active area in the 
corresponded spatial component is found in frontocentral sites and the polarities 
in those sites are negative. These features reveal that this PCA-extracted compo-
nent is decomposed from the waveform of N2. Likewise, the 6th component is 
regarded to be separated from the waveform of N2 (see Figure 9 (b)). 
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2.1.2.5 Analyzing the identifed PCA-extracted components 

After the PCA-extracted components are identifed, the differences between dif-
ferent experimental conditions are evaluated based on the selected components. 

In some previous studies (Male and Gouldthorp, 2020; Delplanque et al., 
2005; Widmann et al., 2018; Leue et al., 2009; Hsu et al., 2014), the factor scores ob-
tained by PCA are often fed into statistical analysis methods to examine the differ-
ences between/among experimental conditions. In detail, in terms of temporal-
PCA, different subjects under different experimental conditions have the com-
mon waveform (i.e., factor loadings UtPCA), but the differences are observed in 
the amplitudes in the related topographies (i.e., factor scores YtPCA). Therefore, 
statistical analysis methods are applied to examine the discriminations of the am-
plitudes for different conditions at some typical electrodes obtained from the se-
lected spatial components. Similarly, in the application of spatial-PCA, a com-
mon spatial component is used for spatial characteristic of an ERP for all subjects 
under different conditions (i.e., refer to factor loadings YsPCA), whereas the am-
plitudes of waveforms (i.e., factor scores UsPCA) for all subjects differ from each 
other. Thus, based on the selected factor score(s), the mean/peak amplitudes 
within a predefned time window are used as input for statistical analysis meth-
ods. 

In other investigations, the amplitudes of the interesting ERPs are obtained 
by calculating the product of factor scores, factor loadings, and standard devia-
tions of the original waveforms (MacDonald and Barry, 2020, 2017; Dien, 2012). 
However, the latencies of the analyzed ERPs for different subjects in those studies 
are assumed to be invariant, contrary to actual ERP waveforms. They also do not 
discuss the situation that how to analyze two or more PCA-extracted components 
simultaneously, especially for the PCA-extracted components are highly similar 
in time and space domains. 

To fll these gaps, back-projection theory, which has been used in ICA ap-
plications (Makeig et al., 1997, 1999; Cong et al., 2011a,c), is conducted to the 
application of PCA on ERP datasets in our previous studies (Zhang et al., 2020a; 
Li et al., 2019; Cao et al., 2020; Zhang et al., 2021). The back-projection is to covert 
the estimated source components into signals at the microvolt level (i.e., electrode 
felds) by computing the sums of the outer products of the selected temporal 
and spatial components, as described in Eq. 8. Additionally, there are two main 
advantages when applying back-projection theory to PCA (Zhang et al., 2020a). 
First, with the back-projection theory, several PCA-extracted components can be 
analyzed simultaneously. Second, the indeterminacies of the PCA-extracted com-
ponents in the polarity and the amplitude can be corrected so that the amplitudes 
of PCA-extracted components can be quantifed at the microvolt level. 

Furthermore, since one-step PCA (i.e., either temporal-PCA or spatial-PCA) 
may fail to separate the ERPs, which are highly mixed in temporal and spatial 
domains, some researchers have attempted to perform two-step PCA on the ERP 
signals (Dien, 2010b; Spencer et al., 2001; Kamp, 2020; Severo et al., 2020). Two-
step PCA is divided into two different types, namely, spatiotemporal and tem-
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porospatial. The obtained factor scores from the frst step are submitted to the 
other complementary PCA, for example, spatial-PCA is employed after an ini-
tial temporal-PCA. The temporospatial PCA produces better overall results than 
those of spatiotemporal PCA (Dien, 2012, 2010b). 

Herein, an example is given to show how to perform PCA on the trial-
averaged ERP data to extract an ERP (i.e., N2) of interest (see Figure 9). Noted that 
the conventional time-domain results for N2 have been reported in this paper (Lu 
et al., 2017). Moreover, the amplitudes of N2 for four different conditions were 
measured within the time window 220-270 ms at Fz, FCz, and Cz electrodes (i.e., 
two factors: Arousal [High vs. Low] × Valence [Negative vs. Positive] within-
subject experimental design). When using temporal-PCA to extract the N2 of in-
terest, the averaged ERP datasets for all subjects are frstly arranged into a matrix 
with 1000 × 2600, i.e., time samples × (electrodes × subjects × conditions) . Af-
ter that, according to the cumulative explained variance method, the percentage 
ratio is set to be 99%, 29 components are retained and rotated (see Figure 8 (b)). 
Next, based on the characteristics of N2 in the temporal and spatial domains, the 
2nd and 6th components are believed to come from the original waveforms of N2 
(see Figure 9 (b)). Specifcally, the peak latencies of the 2nd and 6th temporal com-
ponents are at 262 ms (positive) and 226 ms (negative) separately. Meanwhile, the 
polarities in frontocentral sites of the related spatial components for both selected 
components are positive and negative separately. Finally, both components are 
back-projected to electrode felds see (Figure 9 (c)), and the amplitudes of pro-
jected N2 are measured at electrode sites Fz, FCz, and Cz. 

2.1.3 Model of ICA and its application 

ICA also follows the BSS model as described in Subsection 2.1.1, while an adap-
tive iteration learning algorithm (Hyvarinen, 1999; Hyvärinen and Oja, 2000) is 
used to obtain unmixing matrix W in the application of ICA. The extracted com-
ponents by ICA are independent of each other compared with those that are re-
lated to each other in PCA and rotation method. 

Although ICA has been used to extract ERPs of interest from either spatial-
or temporal-stacked trial-averaged/single-trial data (Van Dinteren et al., 2018; 
Huster et al., 2020; Cong et al., 2010), most researchers would like to use it to 
remove artifacts from EEG data during the preprocessing procedure (Dimigen, 
2020; Winkler et al., 2011; Mognon et al., 2011; Jung et al., 2000). Generally, the 
raw EEG data of an individual subject (X with electrode by time sample) are frst 
decomposed into R ICs. It should be noted that the number of electrodes is used 
as the number of the estimated ICs (Onton et al., 2006). This means that the model 
of BSS in ICA decomposition is a determined model so that only Eqs. 1 - 5 are 
involved. In the following, artifacts are identifed based on their temporal (i.e., 
waveform yk) and spatial (i.e., topography wk) properties, and then, they are 
projected back to electrode felds (X̂ = wk1 ◦ yk1 + · · · + wki ◦ yki ; k1, · · · , ki−1, 
and ki are sequences of ICs associated with artifacts). Finally, ICs associated with 
artifacts are removed from the raw EEG data (Xcorrected = X − X̂ ). 
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2.2 Theory and procedure of complex Morlet continuous wavelet 
transform to extract EROs 

As mentioned in Subsection 1.2.2, the temporal and spectral modulations of EROs 
can be explored simultaneously from TFRs (Herrmann et al., 2014; Gross, 2014; 
Tallon-Baudry and Bertrand, 1999). In reality, each ERP can be regarded to be 
either an ERO in a specifc frequency or a mixture of multiple EROs with varied 
frequencies (Herrmann et al., 2014). 

Many techniques, for instance, STFT, S-transform, CMCWT, and Hilbert 
transform, have been developed and widely used to calculate TFRs of EEG/ERP 
data (Roach and Mathalon, 2008; Wacker and Witte, 2013; Gross, 2014). CMCWT 
is frequently used compared with other techniques since its yields provide an op-
timal trade-off between time resolution and frequency resolution. That is to say, 
in the CMCWT technique, the wavelets with shorter length of the time window 
are conducted at high frequencies and longer wavelets are used at low frequen-
cies (see Figure 4 (a)). Consequently, the obtained TFRs have better frequency-
resolution at low frequency bands, and better time resolution at high frequency 
bands (Cohen, 2019; Gross, 2014). Moreover, the TFRs obtained by CMCWT seem 
to more satisfy the temporal and spectral properties of ERPs of interest because 
the EROs for the late ERPs (e.g., P300, LPP) are usually located at lower frequency 
bands, while higher frequency EROs corresponding to some early ERPs (e.g., P1, 
N1). 

In the following, the theory and application of CMCWT on EEG/ERP data 
are presented. 

2.2.1 The theory of complex Morlet continuous wavelet transform for ERP 
data analysis 

In the CMCWT, the underlying idea for the calculation of TFRs is to compute the 
convolutions between ERP signals and complex Morlet wavelets (CMWs or Ga-
bor wavelet) with different lengths derived from the mother wavelet (see Figure 
4 (a) → (b) → (c)). The convolutions yield the complex-valued series at each 
frequency band results in the energy (the square of the convolution results) and 
phase angle (the tangent values between the real part and imaginary part) for 
EROs can be investigated (Herrmann et al., 2014; Gross, 2014; Makeig et al., 2002; 
Lachaux et al., 1999; Stam et al., 2007). 

As discribed in Subsection 1.2.2, two different types of EROs, i.e., evoked 
and induced EROs, which response to the stimulus onset, can be obtained from 
EEG/ERP signals (Herrmann et al., 2014; Roach and Mathalon, 2008; Gross, 2014; 
Tallon-Baudry and Bertrand, 1999). Evoked EROs are obtained by calculating 
TFRs of the averaged ERP data (i.e., averaging over single trials, see Figure 10 
(a) → (b) → (c)). Regarding induced EROs, they are the subtractions between 
the total brain activities that obtained by averaging TFRs of single trials and the 
evoked EROs (see Figure 10 (a) → (d) → (e)). 
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during averaging procedure. (c) The time-frequency representations (TFRs) 
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on the continous wavelet transform (CWT). (d) The TFRs of the waveforms 
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In the following contents, the calculation of the energies for both types of 
EROs is described. 

For a time series x(t) with N points, the related TFRs based on continuous 
wavelet transform are considered to be the convolutions between time-domain 
signal x(t) and the scaled and shifted mother wavelet ψ( t−t0 ). And the related a 
procedure is expressed as below (Herrmann et al., 2005; Zhang et al., 2020b): 

1 N−1 t − t0X(a, t0) = p ∑ x(t)ψ( ), (11)
| a | t=0 a 

where x(t) is the waveform at a specifc channel; a and t0 represent the scaling 
and shifting parameters, respectively. 

Since CMW can govern the trade-off between temporal resolution and fre-
quency resolution, it has been widely used as a mother wavelet (Gross, 2014). The 
defnation of the scaled and unshifted CMW is expressed as (Herrmann et al., 
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2005; Zhang et al., 2020b; Tallon-Baudry and Bertrand, 1999): 

−t21 i2π f t ψCMW = √ e e 2σ2 , (12)
πσ2 

f0where f = ( f0 is the center frequency and f is the frequency range of interest, a 
e.g., 1-30 Hz) and σ is bandwidth. 

A constant ratio (i.e., number of wavelet cycles) is generally used to charac-
terize CMW family and it can be defned as (Zhang et al., 2020b; Tallon-Baudry 
and Bertrand, 1999): 

f
K = = 2π f σ, (13)

σf 

1where, σf = 2πσ . In practice, this constant ratio is often set to be greater than 5 
(Zhang et al., 2020b; Li et al., 2019; Tallon-Baudry and Bertrand, 1999; Xia et al., 
2018). Bandwidth σ is inversely proportional to frequency range f (i.e., σ ∼ 1/ f ). 
As a result, the CMWs have longer lengths at low frequencies and shorter lengths 
at high frequencies. 

Aiming at calculating the energies of evoked EROs, the EEG datasets of sin-
gle trials for each experimental condition are frstly averaged and then CMCWT 
is performed on the averaged ERP signal to obtain TFRs. The following equation 
denotes both steps: 

1 N−1 t − t0X(t, f )Evoked = | p ∑ x(t)ψ( ) |2, (14)
| a | t=0 a 

1where x(t) = J ∑j
J 
=1 x(t)j, and x(t)j is waveform for jth single-trial EEG data; J is 

the number of single trials. 
Likewise, in order to obtain the induced EROs, the total brain activities are 

frstly computed. In detail, the single-trial EEG data are initially transformed into 
the time-frequency signals, and then TFRs of single-trial EEG data are averaged. 
The related procedure is expressed as: 

J N−11 1 t − t0X(t, f )Total = ∑ | p ∑ x(t)jψ( ) |2. (15)
J j=1 | a | t=0 a 

Afterwards, induced EROs are obtained by subtracting evoked brain activ-
ities from the total brain activities. 

(16)X(t, f )Induced = X(t, f )Total − X(t, f )Evoked. 

Noted that the similar computation to that of total brain activities is named 
with different notations in other studies, for example, event-related desynchro-
nization or synchronization (ERD/ERS) (Pfurtscheller and Da Silva, 1999), and 
event-related spectral perturbation (ERSP) (Delorme and Makeig, 2004). 
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2.2.2 CMCWT procedure for EROs extraction 

TFA is targeted at analyzing the energies of prominent parts related to EROs of 
interest in temporal and spectral domains. In order to realize this purpose, the 
applications of CMCWT are classifed into two main procedures: TFR calculation, 
and ERO identifcation and analysis here. 

2.2.2.1 TFR calculation 

To calculate the TFRs of the preprocessed EEG/ERP data, the following steps 
are involved: selection of the analyzed ERO type, the defnition of the mother 
wavelet, and baseline correction. 

The frst step is to select the type of the analyzed ERO. As described in 
Subsection 2.2.1, two strategies are employed to calculate the event-related brain 
oscillations, and both strategies directly govern which types of EROs will be ob-
tained. Moreover, the selection of the analyzed ERO types also infuences the set-
ting of the frequency range to some degree. For example, for evoked oscillations, 
they are regarded as the responses to events and usually located at frequencies 
below 30 Hz. Generally, the frequency range is set from 1 Hz to 30 Hz before 
obtaining evoked EROs (Tallon-Baudry et al., 1996; Villena-González et al., 2018; 
Musacchia et al., 2017). 
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FIGURE 11 Example for the time-frequency representations (TFRs) using different 
mother wavelets. 

The second step is to defne the mother wavelet. As displayed in Eqs. 11 
and 12, the time resolution and frequency resolution of TFRs are affected by the 
mother wavelet. The mother wavelet is defned by a set of bandwidth σ and cen-
ter frequency f0. Moreover, the fndings in previous studies (Zhang et al., 2020b, 
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2018a) indicated that different parametric settings of center frequency and band-
width result in divergent time-frequency results (See Figure 11). Therefore, we 
need to select an appropriate set of center frequency and bandwidth from many 
sets to obtain suboptimal time-frequency results so that the energies of EROs can 
be observed in a relatively limited time window and a short frequency range. 

The third step is to correct baseline effect. Similar to the measurement of 
ERPs that are seen as the increased or decreased defections compared with am-
plitudes in a pre-stimulus time interval, EROs are also considered as the relative 
changes to a defned baseline in the pre-stimulus period (Gross, 2014; Hu et al., 
2014; Grandchamp and Delorme, 2011). Therefore, a relatively appropriate base-
line correction approach is needed to help us easily identify and observe EROs 
in whole frequencies, especially in high frequencies. There are several commonly 
used approaches for baseline correction, such as the decibel method, the subtrac-
tion method, and the percentage method (Roach and Mathalon, 2008) (see Figure 
12). 

Usually, after the TFRs of trial-averaged ERP data are computed (i.e., evoked 
brain activities X(t, f )Evoked) or the TFRs of single-trial EEG data are averaged (i.e., 
total brain activities X(t, f )Total), the baseline correction step is then achieved by 
means of subtraction correction approach. In principle, the subtraction method is 
to calculate the subtractions between the original obtained evoked or total brain 
activities and the mean power of the defned baseline interval (e.g., from -200 ms 
to 0 ms) (Li et al., 2016; van den Broeke et al., 2017; Hu et al., 2014). 

X(t, f ) = X(t, f ) − X( f )b, (17)s 

where X( f )b is the averaged baseline activities within the defned pre-stimulus 
baseline interval. 

Similarly, in order that EROs can be easily observed, percentage method can 
also be applied to compute the percentage ratio between the baseline-subtracted 
TFRs and the mean power of the baseline interval after the TFRs are initially 
calculated. This approach is expressed as below (Li et al., 2018; Hu et al., 2014): 

X(t, f ) − X( f )bX(t, f ) = × 100%. (18)p X( f )b 

For the decibel method, it is frst to compute percentages between the base-
line subtracted TFRs and the mean power within the predefned time window at 
a specifc frequency. Afterwards, these percentages are converted into decibels 
(dB) and this approach is implemented as (Roach and Mathalon, 2008): 

X(t, f ) − X( f )b= 20 log10 . (19)X(t, f )dB X( f )b 

Hu et al. (2014) argued that some bias estimations of EROs are introduced 
using the percentage baseline correction method but not for subtraction base-
line correction method, especially for single-trial analysis. However, there is no 
specifc recommendation which baseline correction approaches enable the EROs 
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more easily to be identifed and visualized, and this is more likely to rely on the 
specifc experimental paradigms and time window length of single trial EEG data 
(Gross, 2014). 
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FIGURE 12 The example for the applications of three common used baseline correction 
techniques on TFRs. 

2.2.2.2 ERO identifcation and analysis 

Similar to the measurement of an ERP of interest in the time domain, the energies 
of the desired EROs under different experimental conditions are obtained within 
a defned region determined by both in time and frequency domains. Generally, 
according to both the previous fndings and the inspection of TFRs in the current 
study, the region of an ERO are subjectively determined by means of a pre-set 
time window and a frequency range. This approach is named as conventional 
rectangle method because of the rectangle-like shape of the predefned region for 
an ERO of interest. 

Noticeably, there are at least two shortcomings in this conventional rectan-
gle method (Zhang et al., 2020a). For the frst one, this is a subjective and arbi-
trary method. For the other one, the features of the other EROs may be involved 
if the predefned region is too large. Conversely, the partial characteristics of the 
desired EROs may be neglected. 

To solve both problems, different advanced approaches have been attempted 
in the previous studies. For example, Jia et al. (2015) conducted clustering anal-
ysis which was based on similarities of topographies for different frequency bins 
and time points, to identify the regions of EROs; However, this approach may 
introduce some features of non-interest when the spatial property (i.e., topogra-
phy) of the analyzed EROs is highly similar to others. Some researchers have 
attempted to use PCA to decompose the original TFRs to obtain the EROs of in-
terest and then analyzed the factor scores which were related to EROs of interest 
(Roach et al., 2021) or analyzed the weightings between factor loadings and the 
original TFRs (Bernat et al., 2007, 2005; Hu et al., 2015). Noted that the weighted 
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EROs obtained by the approaches mentioned-above may be still mixture. To fur-
ther study, Zhang et al. (2020a) frstly employed PCA on the waveforms of ERPs 
to extract temporal-spatial features of ERPs of interest and then transformed the 
extracted signals into the time-frequency signals (which is investigated in Study 
2, see Section 3.2). 

Figure 13 is an example of the analysis of evoked theta EROs from a two-
factor (Arousal [High vs. Low] × Valence [Negative vs. Positive]) emotional ERP 
experiment based on CMCWT method (the details about experiment can refer to 
(Lu et al., 2017)). To obtain the theta EROs of interest, the mother wavelet is frstly 
defned by a set of the bandwidth σ and center frequency f0, both of which are 
equal to 1. Secondly, TFRs are obtained by computing the square of the convo-
lutions between the mother wavelet and preprocessed ERP signals (the values of 
convolutions are complex numbers). Thirdly, after baseline correction is achieved 
by using the subtraction method, the grand averaged TFRs are obtained from all 
subjects under each condition at Fz, FCz, and Cz electrodes (see Figure 13 (a)). 
Finally, according to the inspections of grand averaged TFRs and previous stud-
ies, the energies of evoked theta oscillations of different conditions are calculated 
within the time window of 150 - 450 ms, and the frequency band is range 3 Hz to 
7 Hz (see Figure 13 (b)). 
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FIGURE 13 An example for the application of TFA on ERP data. (a) The grand averaged 
time-frequency representations (TFRs) of different experimental conditions 
at Fz, FCz, and Cz electrodes. (b) The energies of evoked theta oscillation 
(time window is from 150 ms to 450 ms and frequency range is 3-7 Hz) for 
different subjects under different conditions. 

2.3 Theory and procedure of tensor decomposition to extract EROs 

In a multi-subject and multi-condition ERP experiment, there exist four modes at 
least, namely, time, channel, condition, and subject. After the time-domain sig-
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nals are transformed into the time-frequency signals, the frequency mode is also 
included. For the time-frequency results of single-trial EEG data in a between-
subject experimental design (at least two groups), seven modes are contained: 
time, channel, condition, subject, trial, and group. Traditionally, the features of 
ERPs/EROs are measured in partial modes which result in the interactive effects 
among all modes that may not be explored. For example, in single-way compo-
nent analysis techniques, the amplitudes of ERPs/EROs are merely quantifed in 
either time mode or frequency mode. 

According to the naturally high-dimensional characteristic of EEG/ERP data, 
tensor decomposition algorithms, which are based on two commonly used mod-
els of canonical polyadic (Hitchcock, 1927) and Tucker (Tucker, 1966), can be used 
to study the interactive effects among all modes of event-related brain activities. 

In this section, only the basic concepts of both models are introduced. The 
details of mathematical algorithms for both models can be refer to (Cichocki et al., 
2009, 2015). Also, their applications in the extraction of event-related brain activ-
ities are presented. 

2.3.1 Mathematical models for tensor decomposition 

2.3.1.1 The defnition of canonical polyadic decomposition 

As described in Section 2.1, when using PCA and ICA, the matrix X can be de-
composed into the sum of R rank-one matrices, which is expressed as below: 

R R 
(t) (c) 

+ E = ∑ X̂ r + E, (20)X = ∑ a ◦ ar r 
r=1 r=1 

where, X̂ r is a rank-one matrix and it is the outer product of rth temporal compo-
(t) (c)nent ar and spatial component ar ). 

Similarly, when using canonical polyadic decomposition (CPD), for a multi-
array (i.e., tensor) X ∈ <I1×I2×···×IM with multiple modes, it is decomposed into 
R tensors (the rank of any tensor is one) plus the error tensor (Cong et al., 2015a, 
2013b): 

R R 
(1) (2) (M) 

+ E = ∑ X̂ r + E = X̂ + E ≈ X̂ . (21)X = ∑ a ◦ a ◦ · · · ◦ ar r r 
r=1 r=1 

Eq. 21 is also seen as BSS model (Cichocki et al., 2009; De Lathauwer, 2012), 
(1) (2) (M)X̂ r = ar ◦ ar ◦ · · · ◦ ar (r = 1, 2, . . . , R) is considered as the rank-one tensor; h i 

(m) (m) (m)X̂ is used to estimate the original tensor X; A(m) = a , a , . . . , a ∈ <Im×R 
1 2 R 

is regarded as the component matrix in mth mode. 
Herein, two-component CPD of the third-order tensor, which contains time 

(a(t)), frequency (a(s)), and space (a(c)), is used as an example to clarify the in-
teractions among the three modes and the relations between two components. 
When the third-order tensor is decomposed into two components by CPD, the 
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related decomposition can be expressed (Cong et al., 2015a): 

(t) (s) (c) (t) (s) (c)X ≈ a ◦ a ◦ a + a ◦ a ◦ a = X̂1 + X̂ 2, (22)1 1 1 2 2 2 

(t) (s) (c)where, a , a , and a are characteristics of the frst components in the tem-1 1 1 
poral, spectral, and spatial modes, respectively. The three subcomponents of the 
frst components are related to each other and their outer product is the rank-one 

(t) (s)tensor X̂ 1. Likewise, for the second components X̂ 2, its temporal a , spectral a ,2 2 

and spatial a2 
(c) subcomponents are also associated with each other. However, all 

the subcomponents for the second component are not related to the frst compo-
(t) (s) (c)nent in three modes (i.e., a , a , and a ) (Cong et al., 2015a). 1 1 1 

For Eq. 21, in the tensor-matrix product form, it can be converted as below: 

X̂ = I ×1 A(1) ×2 A(2) ×3 · · · ×M A(M) + E = X̂ + E, (23) 

where I is an identity tensor and the values of all elements in its super-diagonal 
line are equal to 1. 

In the tensor decomposition, according to the properties of different modes, 
different additional constraint methods can be applied to some or all modes. For 
example, after the time-domain ERP signals are converted to time-frequency sig-
nals, the absolute or square of convolutions are calculated to obtain evoked or 
all brain activities (see Eqs. 14 and 15). Consequently, the values of all elements 
in different frequency bins and time points are non-negative, and thus, the non-
negative constraint can be added to all modes. 

2.3.1.2 The defnition of Tucker decomposition 

Regarding the application of Tucker decomposition on the Mth-order tensor X ∈ 
<I1×I2×···×IM , the related decomposition can be described as below (Cong et al., 
2015a, 2013b): 

R1 R2 RM 
(1) (2) (M)X = ∑∑ · · · ∑ gr1r2...rM u + E◦ u ◦ · · · ◦ ur1 r2 rM 

r1=1 r2=1 rM=1 
(24)

R1 R2 RM 

∑∑ · · · ∑ ˆgr1r2...rM Xr1r2...rM + E,= 
r1=1 r2=1 rM=1 

here, u is used to represent the component of each mode in the Tucker decom-
position rather than a used in the CPD for avoiding confusion; X̂ r1r2...rM = ur 

( 
1
1) ◦ 

(2) (M)ur2 ◦ · · · ◦ urM is the outer product of M subcomponents from M component 
matrices in M modes and it is also a rank-one tensor; gr1r2···rM is considered as the 
core tensor G ∈ <R1×R2×···×RM . The values of R1, R2, · · · , RM−1, and RM can be 
variant when M is more than 3. 

In terms of Tucker decomposition, Eq. 24 can also be expressed in the form 
of tensor-matrix as below: 

X = G ×1 U(1) ×2 U(2) ×3 · · · ×M U(M) + E = X̂ + E, (25) 
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h i 

(m) (m) (m)where U(m) = u , u , . . . , u ∈ <Im×Rm is used to denote the component 1 2 R 

matrix in mth mode. 

2.3.1.3 The differences between CPD and Tucker decomposition 

As described in (Cong et al., 2015a), the key difference between CPD and Tucker 
decomposition is whether different components are allowed to be related or not. 
In detail, in the CPD, the sequences of the subcomponents from component ma-
trix Ar 

(m) in different modes (e.g., temporal component, spatial component, spec-
tral components, and so forth) are the same. For instance, as described in Eq. 
22, the frst component matrix A must be constituted by the frst temporal a1 

(t) , 
(s) (c)spectral a , and spatial a components that are frst component of A(1), A(2),1 1 

and A(3) respectively. However, for Tucker decomposition, there is no require-
ment that the sequences of the subcomponents for different modes in the same 
component matrix should be the same. This means that the orders of the selected 
component in different modes from the component matrices A(m) are allowed to rm 

be variant. That is, r1, r2, . . . , rM−1, and rM can be different. 

There are also some other differences between CPD and Tucker decomposi-
tion. For example, the numbers of the reserved components for different modes 
are the same in the CPD but the numbers of components in different modes can 
be variant for Tucker decomposition. Moreover, the core tensor is the identify 
tensor in the CPD, and any tensor with compatible sizes can be used as the core 
tensor in Tucker decomposition. Furthermore, the yields obtained by CPD can be 
unique under mild additional assumptions, while the results for Tucker decom-
position can not be unique without applying any additional constraints (Cong 
et al., 2015a; Zhou and Cichocki, 2012). 

2.3.2 Applications of tensor decomposition on ERP datasets 

Tensor decomposition aims to obtain the multi-domain features of event-related 
brain activities and use the interacted signatures of subjects under different ex-
perimental conditions to explore the differences in their cognitive processes. Con-
dition, subject, and group modes are often merged as one mode in the last dimen-
sion of the formed tensor (Cong et al., 2015a). 

For both CPD and Tucker decomposition, four steps are mainly involved in 
the extraction of event-related activities, namely, component number identifca-
tion, component extraction, component selection, and component analysis (the 
last three steps are introduced simultaneously in one subsection for the applica-
tions CPD and Tucker decomposition, separately). Notation of sample is used 
to represent the combinations of subject, condition, and group in the following 
contents. 
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2.3.2.1 Determining the number of extracted components for tensor decom-
position 

Similar to the applications of PCA and ICA, when applying either CPD or Tucker 
decomposition, which are also seen as the BSS algorithms, on the tensor of TFRs 
of EEG/ERP data, the number of sources should be estimated. Specifcally, re-
garding CPD, one parameter needs to determine for different modes since the 
extracted component numbers in different modes are invariant. However, the 
numbers of the parameters are same to the number of modes for Tucker decom-
position. 

To estimate the numbers of sources in different modes for tensor decom-
position, several existing techniques can be used to determine these parameters, 
for example, the cross-validation of component models (Bro and Kiers, 2003; Bro 
et al., 2008), model order selection (He et al., 2010), and the difference of ft (DIF-
FIT) (Timmerman and Kiers, 2000; Mørup and Hansen, 2009). Compared with 
other techniques, DIFFIT has been widely used in the applications of tensor de-
composition on EEG/ERP signals (Cong et al., 2013b, 2012; Zhang et al., 2020b; 
Wang et al., 2018; Yu et al., 2020; Wang et al., 2020). 

DIFFIT is the trend of the ft with the increase of the estimated component 
number under either the canonical polyadic model or Tucker model (Timmerman 
and Kiers, 2000). Herein, the estimation of source number by means of DIFFIT 
under CP model is taken as an example. The ft under canonical polyadic model 
is implemented: 

kX − X̂ kkFf it(k) = 1 − , (26)kXkF 

where, X̂ k roughly represents the original tensor X ( k plays the same role as r in 
Eq. 21), k = 1, · · · , K; k·kF denotes the Frobeniu norm. 

In practice, DIFFIT is to calculate the ratio between the adjacent difference 
fts, which is descried as below: 

DIF(k)
DIFFIT(k) = , (27)

DIF(k + 1) 

where k = 2, · · · , K − 1. Usually, the number r with the largest DIFFIT value will 
be used as the estimation of source number. To gain a more accurate results, the 
same data are often decomposed many times by CPD (e.g., L = 100 times) for each 

1k, and thus, the averaged ft value of L times f it(k) = L ∑l
L 
=1 f it(k) to compute 

the difference ft of the adjacent fts (Cong et al., 2015a; Wang et al., 2018): 

DIF(k) = f it(k) − f it(k − 1), (28) 

where k = 2, · · · , K. 

2.3.2.2 Canonical polyadic decomposition of tensor of ERP datasets 

For the TFRs of multi-subject and multi-condition EEG/ERP data, besides sam-
ple mode, the other modes are also included, such as temporal mode, spatial 
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mode, spectral mode, etc. Thus, the problem needs to solve that how to organize 
those modes to form a tensor. Generally, the samples are arranged into the last 
dimension of tensor and the other modes are organized into other dimensions. 
Consequently, the Mth-order tensor X ∈ <I1×I2×···×IM (IM is equal to the size of 
samples) can be expressed as below when using CPD (Cong et al., 2015a): 

R 
(1) (2) (M−1)X = ∑ a ◦ fr + E◦ a ◦ · · · ◦ ar r r 

(29)r=1 

= I ×1 A(1) ×2 A(2) ×3 · · · ×M−1 A(M−1) ×M F(M) + E, 

(m) (m)where ar ∈ <Im×1 denots the kth component for mth mode (kar k2 = 1); the 
component fr in the last mode represents the signatures of samples and it is 
named as feature component. Statistical analysis methods can be performed on 
the signatures of samples for the selected components to obtain the differences be-
tween/among different conditions. Following the line with the underlying idea 
in Eq. 29, many investigations have done to study the multi-domain character-
istics of EROs of interest using tensor decomposition (Cong et al., 2014, 2013b, 
2012; Zhang et al., 2020b; Wang et al., 2018; Yu et al., 2020). 

According to different study purposes, different types of tensor with dif-
ferent modes from the TFRs of the ERP datasets can be formed. For example, 
a fourth-order tensor can be formed to study the interactions among time, fre-
quency, and space modes. The related decomposition of the fourth-order tensor 
by using CPD is defned as (Cong et al., 2015a): 

R 
(t) (s) (c)X ≈ I ×1 A(t) ×2 A(s) ×3 A(c) ×4 F = ∑ a ◦ fr, (30)◦ a ◦ ar r r 

r=1 

h i 
(t) (t) (t)where A(t) = a , a , . . . , a ∈ <It×R is seen as temporal component ma-1 2 R 

trix andh it contains the iwaveforms in time domain for different components; 
(s) (s) (s)A(s) = a , a , . . . , a ∈ <Is×R is considered as the spectral component ma-1 2 R 

trix and the spectrums in frequency domain for different components; Likewise, h i 
(c) (c) (c)A(c) = u , a , . . . , a ∈ <Ic×R is the spatial component matrix and it is to-1 2 R 

pography for each extracted components; F = [f1, f2, . . . , fR] ∈ <I×R is the multi-
domain feature component matrix and includes the features of samples for each 
component (Cong et al., 2015a). Note that all the elements in the above equation 
are non-negative since X is obtained by calculating the square of time-frequency 
results. 

Although the SNR of interesting ERPs can be signifcantly increased during 
the preprocessing procedure, for the decomposed components obtained by ten-
sor decomposition, four different types of signals are contained, namely, compo-
nents of interest, components of non-interest, spontaneous brain activities, and 
noise activities. Therefore, those components of interest need to be identifed 
from a number of the decomposed components. Usually, the extracted compo-
nents of interest are identifed based on prior knowledge. That is to say, when the 
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temporal, spectral, and spatial characteristics of the extracted components are in 
accordance with these of ERPs of interest, and then they are selected for the next 
step (Cong et al., 2015a). 

For instance, a fourth-order tensor (i.e., time samples × frequency bins × 
channel × (groups × subjects): 60 × 71 × 9 × (2 × 21)) is frst organized from 
the TFRs for the ERP datasets of two groups (21 subjects for each group) to in-
vestigate the discriminations between children with reading disability (RD) and 
children with attention defcit (AD) based on the multi-domain features of mis-
match negativity (MMN) (Cong et al., 2012). Secondly, based on the DIFFIT in Eq. 
27, the 36 components are obtained in all modes separately. Thirdly, the multi-
domain features of the 12th component are identifed for the next procedure (as 
shown in Figure 14) since the peak latency occurs within the time window of 
100-160 ms, the maximum amplitude of the spectral component is below 5 Hz, 
and the amplitudes in the left hemisphere for the spatial component are larger 
than those in the right hemisphere. In other words, the temporal, spectral, and 
spatial properties of the 12th component are satisfed with those of MMN. Finally, 
statistical analysis methods can be performed, for example, the paired t-test, on 
the signatures of all subjects for the 12th component in the last mode to test the 
difference between two groups. Noticeably, in NCPD, all subjects share the same 
temporal, spectral, and spatial components, but the differences among subjects 
can be founded in the signatures of 42 children (i.e., multi-domain features of the 
last mode of 12th component). 
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FIGURE 14 An example of NCPD for a fourth-order tensor of ERP data (Adapted from 
(Cong et al., 2015a)). The waveform in temporal domain, spectrum in spec-
tral domain, and topography in spatial domain for MMN are included. The 
features of MMN for different subjects are in last column and TFR is the 
outer product of temporal and spectral components . 
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2.3.2.3 Tucker decomposition of tensor of ERP datasets 

When forming a tensor for Tucker decomposition, the samples of conditions and 
subjects are also put in the last dimension, and other modes are assigned to the 
other dimensions of the Mth-order tensor X ∈ <I1×I2×···×IM . Noted that the fea-
tures of samples are expressed in core tensor G ∈ <R1×R2×···×RM or in the last 
mode (Cong et al., 2013b, 2012). 

Similar to the application of NCPD on ERP data analysis, the same proce-
dures, i.e., component number identifcation, component extraction, component 
selection, and component analysis, are also involved in Tucker decomposition. 

When using Tucker decomposition to decompose the fourth-order tensor 
(i.e., 60 × 71 × 9 × (2 × 21)) (Cong et al., 2012) (see in the last paragraph of 
Subsection 2.3.2.2), the related temporal, spectral, and spatial component matrices 
can be obtained as below: 

X ≈ G ×1 U(t) ×2 U(s) ×3 U(c). (31) 

(t) (s)th th th For r temporal component u , r spectral component u , and r spatialt rt s rs c 

component u(c) , the related multi-domain features of samples are expressed asrc 

f = G(rt, rs, rc, :). rt, rs, and rc are allowed to be different. 
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FIGURE 15 An example of Tucker decomposition with nonnegative constraint for a 
fourth-order tensor of ERP data (Adapted from (Cong et al., 2015a)). The 
waveform in temporal domain, spectrum in spectral domain, and topog-
raphy in spatial domain for MMN are included. The features of MMN for 
different subjects are in last column and TFR is the outer product of tempo-
ral and spectral components 

Based on Eq. 31, the temporal component number, the spectral component 
number, and the spatial component number are estimated to be 8, 4, and 6, re-
spectively, and the core tensor F = G ∈ <8×4×6×42 shows the features of all sub-
jects for the 192 extracted components (8 × 4 × 6) (Cong et al., 2012). As shown 
in Figure 15, the 1st temporal, the 4th spectral, and the 3rd spatial components are 
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selected because they are satisfed with the properties of MMN in those modes. 
Finally, the paired t-test is performed on the features of MMN for all samples 
f1,4,3 = G(1, 4, 3, :) to fnd the distinctions between RD and AD groups (see Figure 
15). 



3 SUMMARIES OF STUDIES AND AUTHOR 
CONTRIBUTIONS 

This chapter presents the overview of each study, including the motivation, meth-
ods, main results, and discussion. The author’s contributions to the attached ar-
ticles are also clarifed. 

3.1 Study 1: Measuring temporal and spatial properties of the de-
sired ERPs from individual subject’s data by temporal-PCA 

Publication I: Guanghui Zhang, Xueyan Li, Yingzhi Lu, Timo Tiihonen, Zheng 
Chang, and Fengyu Cong. Single-trial-based Temporal Principal Component 
Analysis on Extracting Event-related Potentials of Interest for an Individual Sub-
ject. To be submitted. 

3.1.1 Motivation 

As a BSS algorithm, temporal-PCA has been widely used to perform on the spatial-
stacked matrix (see Figure 3 (b)) obtained from the multiple subjects’ ERP data 
to explore the properties of ERPs at the group level. The group temporal-PCA 
analysis assumes that there are no differences among the waveforms (i.e., time 
courses of PCA-extracted components) of ERPs of interest for all subjects (Dien, 
2012). However, the waveforms of ERPs of interest for different subjects’ data are 
always varied in phases, peak latencies, etc. 

It should also be noted that several PCA-extracted components derived 
from the same ERP data cannot be analyzed simultaneously since the polarities 
and amplitudes of these PCA-extracted components are indeterminate. Such a 
problem also exists in other BSS algorithm named ICA (Makeig et al., 1997, 1999; 
Cong et al., 2011c,a). In order to tackle the problem, back-projection theory was 
conducted to the applications of ICA to EEG (Makeig et al., 1997, 1999) so that 
scales (i.e., polarity and amplitude) of ICA-extracted components could be cor-
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rected, and these ICA-extracted components were analyzed at the microvolt level. 
To address both defects in the previous group PCA analysis, PCA is per-

formed on the spatial-stacked matrix generated from the EEG data of an indi-
vidual subject to extract temporal and spatial properties of ERPs of interest. By 
applying back-projection theory, several PCA-extracted components can be ana-
lyzed simultaneously. 

3.1.2 Methods 

We use EEG data with two factors: Valence [Extreme vs. Moderate vs. Neutral] 
× Negative-category [Disgusting vs. Fearful] collected from a within-subject de-
signed emotional experiment (Lu et al., 2016) to evaluate the performances of the 
proposed technique and the three alternative techniques. 

More specifcally, for the proposed technique (individual-subject PCA), the 
components associated with ERP of interest (herein, N2) are frst obtained by per-
forming PCA on the spatial-concatenation matrix derived from the preprocessed 
single-trial EEG data of individual subject separately. Afterwards, we project the 
identifed PCA-extracted components back to the electrode felds for correcting 
their indeterminateness in polarity and amplitude, and the waveforms of N2 are 
then reconstructed. Similarly, the waveforms of N2 at all electrodes are recon-
structed by performing PCA on the matrices formed from the trial-averaged ERP 
data and the single-trial EEG data of all subjects separately. The former PCA 
category is named averaged group PCA, and the latter one is single-trial group 
PCA. 

Afterwards, the mean and peak amplitudes of N2 for the reconstructed sig-
nals obtained by three different PCA categories and the original preprocessed 
ERP data are separately measured within the time window from 190 to 290 ms at 
electrodes FC3, FCz, FC4, C3, Cz, and C4. 

Finally, we examine the effects of valence and negative-category using two-
way rm-ANOVA based on the measured amplitudes of N2 for the four techniques 
separately. Moreover, the similarities of N2’s topographies between any two dif-
ferent subjects (i.e., spatial similarities) are also computed to assess the perfor-
mances of the four used techniques. 

3.1.3 Results 

When using mean measurement, the statistical analysis results indicate that there 
are no differences among the four used techniques. In detail, both the main effect 
of valence and the interaction effect between valence and negative category are 
signifcant for all the used techniques. Whereas the main effect of negative cate-
gory do not reach a signifcant level. Regarding peak measurement, we observe a 
signifcant interaction effect between the two factors for the proposed technique 
but not for the other three techniques. 

With respect to the spatial similarities, we observe that the mean values of 
the spatial similarities under different experimental conditions for the proposed 
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technique are signifcantly higher than those of the other techniques. Meanwhile, 
the standard deviations of the spatial similarities for the proposed technique are 
lower than those of the other ones. Both trends demonstrated that, for the pro-
posed techniques, the spatial topographies of the estimated N2 for different sub-
jects are more similar across different conditions, and their reliability is higher 
than for the other alternative methods. 

3.1.4 Conclusion and discussion 

In this study, a new approach is presented based on the PCA and Promax rota-
tion plus back-projection theory to extract the properties of the interesting ERPs 
in temporal and spatial domains from the single-trial EEG data of an individual 
subject. Compared with the other techniques, when using the proposed tech-
nique, the statistical results of the mean and peak amplitudes for N2 could be 
more expected because the previous study also revealed similar statistical results 
(Lu et al., 2017). 

We strongly expect that ERPs of interest could be elicited from each subject. 
In other words, similar topographies of a desired ERP for different subjects could 
be observed, which means that a high correlation coeffcient between topogra-
phies of any two subjects could be obtained. Therefore, we use the similarities 
of topographies between any two different subjects to evaluate the performance 
of different techniques. Indeed, the similarities for the proposed technique sup-
ported that the proposed technique is an effcient way to extract ERP of interest 
from each subject’s EEG data compared with the other group analysis techniques. 

3.1.5 Author contributions 

Guanghui Zhang: Conceptualization; Data Curation; Methodology; Software; 
Visualization; Writing-original draft. Xueyan Li: Visualization; Writing-original 
draft. Yingzhi Lu: Data Curation; Data preprocessing; Writing-original draft. 
Timo Tiihonen: Supervision; Writing original-draft. Zheng Chang: Supervision; 
Writing-original draft. Fengyu Cong: Conceptualization; Project administration; 
Supervision; Writing original-draft. 

3.2 Study 2: Objectively measuring temporal and spectral proper-
ties of evoked EROs via temporal-PCA and TFA 

Publication II: Guanghui Zhang, Lili Tian, Huaming Chen, Peng Li, Tapani Ris-
taniemi, Huili Wang, Hong Li, Hongjun Chen, and Fengyu Cong (2018). Effect of 
parametric variation of center frequency and bandwidth of morlet wavelet trans-
form on time-frequency analysis of event-related potentials. Proceedings of 2017 
Chinese Intelligent Systems Conference. CISC 2017. Lecture Notes in Electrical 
Engineering, vol 459. Springer, Singapore. DOI: 10.1007/978-981-10-6496-8_63 

https://doi.org/10.1007/978-981-10-6496-8_63
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Publication III: Guanghui Zhang, Xueyan Li, and Fengyu Cong (2020). Objec-
tive Extraction of Evoked Event-Related Oscillation from Time-Frequency Rep-
resentation of Event-Related Potentials, Neural Plasticity, vol. 2020, Article ID 
8841354, 20 pages. DOI: 10.1155/2020/8841354 

3.2.1 Motivation 

Traditionally, evoked EROs are obtained from TFRs of the trial-averaged ERP 
data using some TFA algorithms (Tallon-Baudry and Bertrand, 1999; Herrmann 
et al., 2014; Makeig et al., 2004). Evoked EROs are often mixed with other oscilla-
tions of non-interest so that we may fail to accurately explain the related cognitive 
function. Moreover, the power of evoked EROs of interest is usually calculated 
within a predefned time window and a frequency range (i.e., rectangle method), 
which tends to be subjective. Although Bernat et al. (2005, 2007) had attempted 
to apply PCA to extract EROs of interest from TFRs (i.e., TFA-PCA), the core idea 
is to calculate the weightings between the extracted components and the original 
TFRs so that the yields obtained by TFA-PCA might be still mixtures. We have 
used the stimulated ERP signals to demonstrated that the yields of TFA-PCA are 
still mixtures that come from different EROs (Zhang et al., 2020a). 

These limitations give us motivation to propose a novel technique, which 
contains the following steps. Firstly, we extract ERPs of interest in the temporal 
and spatial domains by using temporal-PCA and Promax rotation. Afterwards, 
we compute TFRs of the extracted components based on the CMCWT (an optimal 
set of bandwidth and center frequency is set to defne the mother wavelet, which 
was based on the work in Publication II). The edge detection algorithm is fnally 
used to identify the regions of EROs. Please refer to Publications II and III for the 
details. 

3.2.2 Methods 

As shown in Publication III, the simulated data are used to demonstrate that 
the proposed technique can objectively obtain EROs (corresponding to differ-
ent ERPs) from the preprocessed mixed-ERP signals. Meanwhile, an actual ERP 
data with two-factor (Waiting time [Short × Long] vs. Feedback [Loss × Gain]) 
are used to validate the performance of the proposed technique. Moreover, the 
yields of the proposed technique are also compared with the other two compara-
ble techniques (i.e., conventional TFA and TFA-PCA). 

For the simulated datasets, the 65 subjects’ datasets are frstly generated by 
Besa Simulator 1, which differ from each other in the amplitudes and latencies 
of N2/P3. Secondly, the SNR of the simulated signals is set to 20dB, 10dB, 5dB, 
and 1dB separately. The noise-contaminated datasets are subsequently fltered 
by wavelet flter with suggested parameters (Cong et al., 2015b). Finally, the per-
formances of the three applied techniques are examined by calculating the cor-
relation coeffcients between waveforms/topographies/TFRs of any two signals 

1 https://www.besa.de/updates/tools 

https://doi.org/10.1155/2020/8841354
https://www.besa.de/updates/tools
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from source/mixed/extracted signals separately. 

Regarding the preprocessed actual ERP data, the proposed technique, con-
ventional TFA, and TFA-PCA are applied to extract P3-delta and N2-theta os-
cillations. The details of experimental materials and paradigm can be found in 
(Wang et al., 2014). The regions of evoked EROs corresponding to N2 and P3 are 
identifed by the rectangle method and the edge detection algorithm, separately. 
For the measured energies of N2-theta and P3-delta oscillations, we use within-
subject two-factor rm-ANOVA to examine the effects of the waiting-time and the 
feedback. 

3.2.3 Results 

For the simulated ERP datasets, the results reveal that all the correlation coef-
fcients between the waveforms/topographies/TFRs of the source signals (i.e., 
the sources for N2 and P3) and those of the extracted signals by the proposed 
technique are approximately equal to 1. However, the correlation coeffcients 
between TFRs of the source signals and those TFRs obtained by TFA-PCA are 
0.79/0.59 and 0.51/0.57. Additionally, only one ERO is found in the TFRs for the 
conventional TFA, whereas two ERPs of interest are analyzed in the time-domain. 

Regarding the actual ERP datasets, the statistical results indicated that N2-
theta oscillation shows a signifcant difference between the long and short waiting-
time conditions when using conventional TFA and the proposed technique, but 
not for TFA-PCA. In terms of P3-delta oscillation obtained by the proposed tech-
nique, the power of the loss condition is smaller than that of the gain condition 
associated with previous studies (Paul et al., 2020; Zhang et al., 2018b; Wu and 
Zhou, 2009) and the man effect of the waiting-time factor is signifcant. Likewise, 
the interaction effect between the waiting-time and the feedback factors reaches 
a signifcant level similar to the previous report (Höltje and Mecklinger, 2020). 

3.2.4 Conclusion and discussion 

Typically, two or more cognitive processes are involved in an ERP experiment 
refected by different ERPs/EROs. These ERPs/EROs are often mixed with each 
other in temporal, spatial, and spectral domains. As a result, the related informa-
tion cannot be thoroughly studied. To address this, a PCA-TFA-based framework 
is introduced to extract evoked EROs that corresponding to different ERPs of in-
terest. Through the yields of simulated datasets, we obtain that the temporal 
and spectral characteristics of evoked EROs could be extracted entirely from the 
mixed signals but not for the previously used techniques, such as conventional 
TFA and TFA-PCA. And then, the proposed technique is performed on an actual 
ERP data, which successfully extracted the information of P3-delta oscillation. In 
conclusion, the proposed technique provides new insight into exploring the tem-
poral and spectral properties of evoked EROs and enables us to understand brain 
mechanisms in each cognitive stage better. 

https://0.51/0.57
https://0.79/0.59
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3.2.5 Author contributions 

Publication II, Guanghui Zhang: Conceptualization; Data Curation; Methodol-
ogy; Software; Visualization; Writing-original draft; Writing-review & Edit. Lili 
Tian: Writing-original draft; Writing-review & Edit. Huaming Chen: Method-
ology;Visualization. Peng Li: Writing-original draft; Discussion. Tapani Ris-
taniemi: Writing-original draft. Huili Wang: Writing-original draft. Hong Li: 
Writing-original draft; Discussion. Hongjun Chen: Supervision;Writing original-
draft. Fengyu Cong: Conceptualization; Project administration; Supervision; 
Writing original-draft. 
Publication III, Guanghui Zhang: Conceptualization; Data Curation; Method-
ology; Software; Visualization; Writing-original draft; Writing-review & Edit. 
Xueyan Li: Visualization; Writing-original draft; Writing-review & Edit. Fengyu 
Cong: Conceptualization; Project administration; Supervision; Writing original-
draft; Writing-review & Edit. 

3.3 Study 3: Measuring multi-domain properties of induced EROs 
using tensor decomposition 

Publication IV: Guanghui Zhang, Chi Zhang, Shuo Cao, Xue Xia, Xin Tan, Lichengxi 
Si, Chenxin Wang, Xiaochun Wang, Chenglin Zhou, Tapani Ristaniemi, and Fengyu 
Cong (2020). Multi-domain Features of the Non-phase-locked Component of In-
terest Extracted from ERP Data by Tensor Decomposition. Brain Topography, 
33(1), 37-47. DOI: 10.1007/s10548-019-00750-8 
Publication V: Guanghui Zhang, Xueyan Li, Xiulin Wang, Wenya Liu, Yongjie 
Zhu, Xiaoshuang Wang, Reza Mahini, Rao Fu, Zheng Chang, Timo Tiihonen, and 
Fengyu Cong. Signal Processing Techniques for Event-related Potentials: from 
Single-way to Multi-way Component Analysis. To be submitted. 

3.3.1 Motivation 

There are two methods to obtain TFRs from the preprocessed ERP/EEG signals, 
namely, evoked and induced methods (Herrmann et al., 2014; Roach and Math-
alon, 2008; Tallon-Baudry and Bertrand, 1999). For the former method, we usu-
ally use some TFA algorithms to calculate the TFRs of the trial-averaged ERP data 
and evoked oscillations can be obtained, which are phase-locked to the stimulus 
onset. For the latter one, the TFRs of single-trial EEG are frst computed, and 
then the average procedure is conducted to the TFRs over trials result in both 
evoked and induced oscillations are included. Generally, induced EROs are stud-
ied using TFA, but the interactions of induced EROs among different modes are 
ignored. Furthermore, evoked EROs have been widely studied based on tensor 
decomposition algorithms (Wang et al., 2018; Cong et al., 2013b, 2014; Yu et al., 
2020), but induced EROs are poorly explored. In this study, we attempt to study 

https://doi.org/10.1007/s10548-019-00750-8
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induced EROs for the EEG data in a go/no-go task (experimental materials and 
paradigm refer to (Xia et al., 2018)). 

3.3.2 Methods 

The induced oscillation is explored from EEG data for no/nogo tasks of emo-
tional picture selection paradigm (Zhang et al., 2020b). In detail, the time-domain 
signals of single-trial EEG are frstly converted into TFRs based on the CMCWT 
(the mother wavelet is defned with an optimal set of bandwidth and center fre-
quency based on the work in Publication II). Secondly, TFRs are averaged across 
trials and the averaged TFRs are then arranged into a fourth-order tensor with 
temporal, spectral, spatial, and subject-condition modes. Next, multi-domain fea-
tures of induced ERO are obtained from the fourth-order tensor by using NCPD. 
Finally, two-way rm-ANOVA is employed to examine the differences among dif-
ferent conditions. Meanwhile, the energies of induced oscillation under different 
experimental conditions are also measured within the predefned time window 
and frequency range from the TFRs of the conventional TFA. 

3.3.3 Results 

For the conventional TFA, we observe a theta oscillation emerged in frontal-
central region about 400 ms stimulus onset which is considered as induced os-
cillation. The results reveal that the no-go task elicits more larger power than that 
of the go task. Although the power of the anger condition is also larger than that 
of the neural condition, there is no signifcant difference between them. It should 
be noted that the statistical results are infuenced by the defned time window 
and frequency range. 

Regarding the tensor decomposition, an interacted factor is in accordance 
with the properties of the induced oscillation of interest in temporal, spectral, 
spatial domains. By statistically analyzing the signatures of the related subject-
condition mode, the yields reveal that the power of the anger condition is sig-
nifcantly larger than that of the neural condition and a signifcant difference is 
obtained between go and nogo tasks which are consistent with the previous fnd-
ings (Benvenuti et al., 2017). 

3.3.4 Conclusion and discussion 

In this study, the multi-domain features of induced oscillation are investigated us-
ing tensor decomposition. Tensor decomposition allows to study the interactive 
properties of induced oscillation in multiple modes. By contrast, the widely used 
TFA only enables researchers to investigate the temporal and spectral properties 
of the interesting EROs. We validate both techniques in a go/nogo task under 
different emotional conditions and we successfully obtain a non-phase-locked os-
cillation by the tensor decomposition. It should be noted that we need to defne 
a region (determined by a time window and a frequency range) and select some 
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electrodes based on the previous studies before calculating the energies of EROs 
of interest, which is a subjective method. Conversely, for tensor decomposition, 
the statistical analysis results are not infuenced by both the experimenter-defned 
region and the selected electrodes. 

3.3.5 Author contributions 

Publication IV, Guanghui Zhang: Conceptualization; Data Curation; Methodol-
ogy; Software; Visualization; Writing-original draft; Writing-review & Edit. Chi 
Zhang: Writing-original draft; Writing-review & Edit; Discussion. Shuo Cao: 
Writing-original draft; Writing-review & Edit; Discussion. Xue Xia: Data Cura-
tion; Data Preprocessing; Xin Tan: Visualization; Writing-original draft. Lichengxi 
Si: Visualization; Writing-original draft. Chenxin Wang: Visualization; Writing-
original draft. Xiaochun Wang: Data Curation; Discussion. Chenglin Zhou: 
Data Curation; Discussion. Tapani Ristaniemi: Supervision; Writing original-
draft. Fengyu Cong: Conceptualization; Project administration; Supervision; 
Writing original-draft. 
Publication V, Guanghui Zhang: Conceptualization; Software; Visualization; 
Writing-original draft. Xueyan Li: Writing-original draft; Software; Visualiza-
tion. Xiulin Wang: Concluded ’coupled tensor decomposition’ section. Wenya 
Liu: Concluded the ’brain functional connectivity’ section. Yongjie Zhu: Con-
cluded ’brain connectivity based on tensor decomposition analysis’. Xiaoshuang 
Wang: Concluded ’EEG/ERP source localization’ section. Reza Mahini: Con-
cluded ’cluster analysis’ section. Rao Fu: Concluded the prepocessing procedure 
section. Zheng Chang: Supervision; Writing original-draft; Discussion. Timo 
Tiihonen: Supervision; Writing original-draft; Discussion. Fengyu Cong: Con-
ceptualization; Project administration; Supervision; Writing original-draft; Dis-
cussion. 



4 CONCLUSION AND DISCUSSION 

This chapter frstly presents the overview of this thesis. Afterwards, the limita-
tions in all studies are also discussed. Finally, some potential directions for future 
work are described. 

4.1 Overview 

In this dissertation, three studies are used to tackle the problems in the current ap-
plications of PCA, TFA, and tensor decomposition separately for studying char-
acteristics of event-related brain activities. 

Specifcally, in study 1, a developed PCA algorithm and a novel framework 
are introduced to address two problems in the existing PCA algorithms, e.g., PCA 
toolkit (Dien, 2010a) and Kayser’s erpPCA (Kayser and Tenke, 2003). For the 
frst problem, in the previous studies of group PCA analysis, it is impossible to 
analyze several PCA-extracted components simultaneously since their scales (i.e., 
amplitudes and polarities) may differ. For the other one, temporal-PCA analysis 
unreasonably supposes that the waveforms of one desired ERP for all subjects are 
constant. To solve both problems, the back-projection theory is used and ERPs 
of interest are extracted from EEG data of an individual subject. The results in 
publication I reveal that the proposed technique can yield better overall results 
than the other three commonly used techniques. 

In study 2, we propose a novel framework to solve the limitations of ex-
tracting evoked EROs when using CMCWT. The frst limitations is that how to 
select an optimal complex Morlet wavelet is poorly studied. The second one is 
that evoked EROs are usually mixed with others so that some cognitive functions 
cannot be accurately explained. These limitations are investigated separately in 
the following articles. Specifcally, for the frst problem, as shown in publication 
I I, the CMCWT with 80 sets of center frequency and bandwidth (which are used 
to defne the mother wavelet) are used to calculate the TFRs of the same ERP data 
with two factors. The results indicate that different variations of center frequency 
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and bandwidth might signifcantly effect on the time-frequency results, which is 
consistent with other report (Roach and Mathalon, 2008). 

For the second drawback, in publication I I I, synthetic datasets of 68 sub-
jects generated by using Besa Simulator are frstly used to validate the proposed 
approach could effciently obtain the delta and theta EROs corresponding to the 
ERPs (i.e., P3 and N2) in time domain, respectively. The results indicate that the 
delta and theta EROs obtained by the proposed technique can be extracted eff-
ciently but not with the other techniques. It should be noted that the center fre-
quency and bandwidth were selected based on the work in publication I I. Mean-
while, EEG data collected from a revised simple gambling task are also analyzed 
to study the evoked delta and theta EROs corresponding to P3 and N2, respec-
tively. Delta oscillation for the reconstructed waveforms of P3 (obtained by using 
temporal-PCA) reveal that the power of the long waiting-time condition is larger 
than that of the short waiting-time condition. The gain condition elicits a larger 
delta oscillation than the loss condition. Both mentioned results are in accordance 
with the fndings for P3 amplitude in previous studies (Zhang et al., 2018b; Paul 
et al., 2020; Höltje and Mecklinger, 2020). However, these trends are not observed 
in the delta oscillation obtained by conventional TFA and TFA-PCA. 

In study 3, we investigate the multi-domain features of induced EROs from 
a go/nogo task EEG data with two factors using tensor decomposition. Tradi-
tionally, the power of induced EROs is studied from the TFRs computed by av-
eraging TFRs of single-trial EEG data, but some potential interactions of induced 
EROs among different modes inevitably vanish in such an underlying idea. The 
yields of induced EROs in publication IV are more discriminative between dif-
ferent tasks than the conventional TFA. This trend seems to support that tensor 
decomposition can dig out some potential interactions of non-phase locked oscil-
lations. 

Overall, we employ the back-projection theory to the applications of PCA 
for extracting temporal and spatial properties of ERPs of interest in study 1. As 
a result, we have access to the synchronous analysis of several components de-
rived from the same ERP or different ERPs of either individual subject’s EEG data 
or all subjects’ EEG/ERP data. Moreover, with the recommendations in study 2, 
the characteristics of EROs in temporal and spectral domains corresponding to 
different ERPs can be objectively explored, which enables us to effciently and ac-
curately investigate the cognitive functions in different cognitive process stages. 
Furthermore, tensor decomposition allows us to study potential interactions of 
induced EROs among different modes simultaneously as described in study 3. 

4.2 Research limitations 

Although the proposed techniques in these three studies are well conducted and 
the yields of the proposed techniques are also compared with other alternative 
techniques, it still exists some shortcomings in each study. 
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Specifcally, in study 1, the selecting of PCA-extracted components associ-
ated with one ERP of interest is based on the prior knowledge and the correlation 
coeffcients between the templated topographies and PCA-extracted spatial com-
ponents. In other words, the experimenters decide how many PCA-extracted 
components to be used for the subsequent procedure. 

In study 2, aiming at accurately obtaining the energies of EROs relative to 
different ERPs, two main steps are involved. The frst step is to extract the ERPs of 
interest from the matrix formed by ERP datasets of all subjects by using temporal-
PCA. The fundamental assumptions of this group PCA analysis are that the ERPs 
of interest can be extracted from all subjects’ data and the source numbers and 
source sequences are also the same. However, those assumptions are not valid 
for actual EEG datasets as the cognitive processes of different subjects for the 
same task are different (different waveforms, reaction times). In the second step, 
the regions (determined by a time window and frequency range) of EROs are 
identifed based on the grand averaged TFRs over all subjects. That is to say, the 
same region is used for EROs of all subjects’ TFRs under the same experimental 
condition. However, the regions of EROs for different subjects are variant. 

In study 3, the fourth-order tensor (time samples × frequency bins× chan-
nels × subjects-conditions) is organized from the TFRs, which are obtained by 
averaging single-trial TFRs of all subjects under different experimental condi-
tions. The induced EROs are then extracted from the formed fourth-order tensor 
using tensor decomposition. The underlying idea is that the EROs can be ex-
tracted from the TFRs of all subjects’ data. For each decomposed component, the 
waveform in the temporal domain, spectrum in the spectral domain, and topo-
graphical distribution in the spatial domain for different subjects under different 
conditions are the same, and differences of different conditions are expressed in 
the signatures of subject-condition mode. These mean that we cannot investigate 
the differences of peak latencies for the desired EROs in either temporal or spec-
tral domains, and we also fail to study the distinctions of desired EROs among 
different trials under the same condition. 

It should also be noted that all three studies stay at the sensor level and due 
to the limited amount of sensors we can not explore the event related activities 
at the source level. Moreover, all the proposed techniques are merely applied to 
EEG data and are not employed to the other types of brain signals, for exam-
ple, magnetoencephalography (MEG). Besides, in both study study 2 and study 
3, the phase property of EROs is not taken into consideration, while the phase 
information of oscillations is also essential to investigate the related cognitive 
mechanisms. 

4.3 Future directions 

This dissertation develops some advanced signal processing techniques and in-
troduces some novel frameworks to study the characteristics of ERPs/EROs from 
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the different forms of representatives of EEG/ERP data at the sensor level. We 
can extend the techniques and frameworks to analyze MEG data (da Silva, 2013; 
Hansen et al., 2010) and examine the brain activities response to events at both 
sensor and source levels. 

To overcome the drawbacks in the determination of PCA-extracted compo-
nents (in study 1), two potential directions will be discussed below. In the frst 
direction, for all PCA-extracted components from individual subjects’ EEG data, 
we can use clustering algorithms, such as K-means, to classify the PCA-extracted 
components into several clusters based on the similarities of their topographies, 
spectrums, and dipoles as the application of ICA on individual subject’s data 
(Rissling et al., 2014). Afterwards, we select the desired cluster for further anal-
ysis. For the other direction, we can also classify all PCA-extracted components 
into several classifcations by using machine learning methods (Hosseini et al., 
2020), and then select the desired classifcation. 

Moreover, to fll the gap in the determination of regions for EROs (in study 
2), we can determine the regions of the same analyzed EROs based on the specifc 
distributions of EROs in the TFRs of individual subjects’ EEG data instead of the 
same region which is used for TFRs of all subjects’ data under the same condition. 

Furthermore, in order to study the variations of desired ERPs among trials, 
TFRs of single-trial EEG for an individual subject can be formed into a tensor 
including time, frequency, channel, trial, and condition. Afterwards, we can per-
form tensor decomposition on the formed tensor from the individual subject to 
explore the variations of EROs among trials. For the unreasonable assumption in 
conventional tensor decomposition, that is, the extracted components in multiple 
modes exist in data of all subjects, and another alternative approach called linked 
component analysis is available to solve such problems (Zhou et al., 2015, 2016). 
The linked component analysis can extract shared features of desired ERPs and 
individual features from multiple blocks (e.g., the tensors for TFRs of different 
subjects’ data). 

To study both energy and phase of EROs, we can feed the complex values of 
time-frequency results instead of the absolute values into some complex-valued 
algorithms (e.g., PCA (Bazin et al., 2019), ICA (Qiu et al., 2019), and tensor (Trouil-
lon et al., 2017)) to extract the meaningful information of interest. 



YHTEENVETO (SUMMARY IN FINNISH) 

Tässä työssä tarkasteltiin aivotoiminnan aiheuttamien heräte-vaste-signaalien ana-
lysointiin kehitettyjä menetelmiä ja erityisesti vakiintuneisiin menetelmiin, kuten 
pääkomponenttianalyysi (principal component analysis, PCA), aika-taajuusanalyysi 
(time-frequency analysis, TFA) ja tensorihajotelmat, liittyviä haasteita ja rajoittei-
ta. Näihin rajoitteisiin haettiin ratkaisuja kolmella eri tavalla. 

Ensimmäisessä osatutkimuksessa tarkasteltiin PCA algoritmin käyttöä ti-
lanteessa, jossa on tarve analysoida useita pääkomponentteja samanaikaisesti ja 
jossa vasteiden ajallinen käyttäytyminen on yksilöllistä. Perinteisten PCA me-
netelmien tuottamien pääkomponenttien amplitudeja ja polariteetteja ei voida 
hallita, jolloin usean pääkomponentin yhtäaikainen analysointi on mahdotonta. 
Vastaavasti perinteinen tapa keskiarvoistaa pääkomponentteja samaan ryhmään 
kuuluvien yksilöiden yli hävittää yksilölliset vaihtelut. Näiden puutteiden kor-
jaamiseksi työssä esitettiin PCA menetelmä, jossa pääkomponentit määritellään 
yksilöllisesti ja valittujen pääkomponenttien joukko projisoidaan takaisin signaa-
liavaruuteen. Julkaisun I tulokset osoittavat, että esitetty menetelmä antaa tar-
kempia tuloksia, kuin tutkitut kolme verrokkimenetelmää. 

Toisessa osatutkimuksessa keskityttiin herätteen synnyttämien oskillaatioi-
den analyysiin. Nämä oskillaatiot sekoittuvat käytännössä muiden kognitiivisten 
toimintojen aiheuttamiin samanaikaisiin oskillaatioihin, eikä niitä voida luotetta-
vasti analysoida perinteisellä aika-taajuusanalyysillä, joka käytännössä olettaa, 
että tarkasteltavassa aika-taajuusikkunassa esiintyy vain tutkittava vaste. Työssä 
kehitettiin uusi lähestymistapa aika-taajuusanalyysiin. Julkaisussa III osoitettiin 
synteettisen datan avulla, että uusi menetelmä pystyi tehokkaasti tunnistamaan 
tunnettuihin herätevasteisiin (ns. P3 ja N2) liittyviä delta ja theta oskillaatioita. 
Erottelutarkkuus oli selvästi parempi kuin verrokkimenetelmillä. Työssä käytetty 
aika-taajuusikkuna pohjautui julkaisun II tuloksiin. Menetelmää testattiin myös 
yksinkertaisesta pelitilanteesta mitattuihin EEG-signaaleihin. Näistä analysoitiin 
vastaavia theta ja delta oskillaatioita P3 ja N2 vasteisiin liittyen. Uusi menetel-
mä tunnisti odotetun delta oskillaation, toisin kuin verrokkeina käytetyt perin-
teisemmät TFA ja TFA-PCA menetelmät. 

Kolmannessa osatutkimuksessa keskityimme herätevasteen indusoimien vä-
rähtelyjen moniulotteiseen analyysiin. Aineistona oli yksinkertainen go/nogo teh-
tävä, jossa oli kaksi taustamuuttujaa (faktoria). Tarkastelemalla signaaleja tensori-
na ja soveltamalla tensorihajotelmia, pystyttiin tunnistamaan eri faktorien välisiä 
vuorovaikutuksia, jotka eivät tulleet näkyviin perinteisillä aika-taajuusanalyyseillä. 
Julkaisun IV keskeinen tulos onkin, että käytetyllä tensorihajotelmalla on perin-
teisiä menetelmiä tarkempi erottelukyky indusoitujen vasteiden analysoinnissa. 
Yhteenvetona voidaan todeta, että työssä kehitetyt kolme menetelmää parantavat 
kykyä analysoida herätevasteita. Uusien menetelmien avulla voidaan tutkia en-
tistä paremmin kognitiivisia toimintoja ja niiden aiheuttamia herätevasteita eri-
laissa neuropsykiatrisissa tilanteissa. 
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Abstract. Time-frequency (TF) analysis of event-related potentials (ERPs) using 
Complex Morlet Wavelet Transform has been widely applied in cognitive 
neuroscience research. It has been widely suggested that the center frequency (fc) and 
bandwidth (σ) should be considered in defining the mother wavelet. However, the 
issue how parametric variation of fc and σ of Morlet wavelet transform exerts 
influence on ERPs time-frequency results has not been extensively discussed in 
previous research. The current study, through adopting the method of Complex 
Morlet Continuous Wavelet Transform (CMCWT), aims to investigate whether time-
frequency results vary with different parametric settings of fc and σ. Besides, the 
nonnegative canonical polyadic decomposition (NCPD) is used to further confirm the 
differences manifested in time-frequency results. Results showed that different 
parametric settings may result in divergent time-frequency results, including the 
corresponding time-frequency representation (TFR) and topographical distribution. 
Furthermore, no similar components of interest were obtained from different TFR 
results by NCPD. The current research, through highlighting the importance of 
parametric setting in time-frequency analysis of ERP data, suggests that different 
parameters should be attempted in order to get optimal time-frequency results. 
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1 Introduction 

Electroencephalogram (EEG) has been extensively applied in cognitive neuroscience 
research. EEG, according to different experimental paradigms and external stimuli,  
can be divided into three categories: spontaneous EEG [1], event-related potentials 
(ERP) [2], and ongoing EEG [3]. The main methods employed in ERP data 
processing are as the following: 1) Time-domain analysis, 2) Frequency-domain 
analysis and 3) Time-frequency analysis [4-8]. As ERP signals are non-stationary and 
time-varying, neither the time-domain nor the frequency-domain analysis can be used 
to effectively reveal the time-frequency information of ERP data. Time-frequency 
analysis, by focusing on the time-varying features of ERP components, is conducted 
to transform a one-dimensional time signal into a two-dimensional time-frequency 
density function, which aims to reveal the number of frequency components and how 
each component varies over time. 
        In 1996, Tallon-Baudry et al. introduced the Morlet wavelet for time-frequency 
analysis of ERP data [9]. Since then, the Morlet wavelet has been widely applied by 
researchers in conducting time-frequency analysis, with its citations over 1100 times 
(From the Google scholar). However, a synthesis of previous research showed that in 
most cases the value of 𝐾 is fixed (e. g. , 𝐾 =  7) [9-12], therefore leaving the issue 
whether parametric variation of fc and σ has an impact on time-frequency results 
unresolved. This study is devoted to investigation of the issue.  

2 Method 

2.1 Data Description 

The data was collected to investigate whether a short delay in presenting an outcome 
affects brain activity. For the detailed information of experimental procedure, readers 
can refer to Wang et al. research [13]. Twenty-two undergraduates and graduate 
students participated in the experiment as volunteers. All the participants, aged from 
18 to 24, were right-handed with normal or corrected-to-normal vision and no one 
was reported to have neurological or psychological disorders. EEG was recorded 
using a 64-channel system (Brian Products GmbH, Gilching, Germany) with 
reference on the left mastoid. The vertical and horizontal electrooculogram (EOG) 
was recorded from electrodes placed above and below the right eye and on the outer 
canthi of the left and right eyes respectively. Electrode impedance was maintained 
below 10k Ohm. The EEG and EOG were sampled continuously at 500Hz with 0.01-
100Hz bandpass filtering.  

2.2 Complex Morlet Wavelet Transform 

The CMCWT method, based on the Complex Morlet Wavelets, was adopted for time-
frequency analysis in the present study.  
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If x(t) is a discrete sequence of length T, the definition of the Continuous Wavelet 
Transform (CWT) can be expressed as follows: 

                                     𝑋(𝑎, 𝑏) =
1

ඥ|𝑎|
෍ 𝑥(𝑡)𝛷 ൬

𝑡 − 𝑏

𝑎
൰ .

்ିଵ

௧ୀ଴

                                                (1) 

In the above formula, x(t) represents the signal to be transformed; a refers to the 
scaling and b the time location or shifting parameters; 𝛷(𝑡) stands for the mother 
wavelet. In this study, the Complex Morlet Wavelets is defined as the mother wavelet 
[9-12]: 

                                           𝛷(𝑡, 𝑓𝑐) =
1

√𝜋𝜎ଶ
𝑒௜ଶగ௧௙೎𝑒

ି௧మ

ଶఙమ .                                                     (2) 

According to the above formula, a Gaussian shape respectively in the time and 
frequency domain around its 𝑓௖ can be obtained.  
A wavelet family is characterized by a constant ratio: 

                                                 𝐾 =  
𝑓௖

𝜎௙
ൗ  =  2𝜋𝜎𝑓௖  .                                                           (3) 

In this formula, 𝜎௙ = 1
2𝜋𝜎ൗ  , K should be greater than 5 [9]. 

Taken together, this method (CMCWT) can be described as below: 

                                      CMCWT(𝑡, 𝑓) =  |𝛷(𝑡, 𝑓) ∗ 𝑥(𝑡)|ଶ.                                                (4) 

In the above formula, ‘*’ refers to convolution. 

2.3 Nonnegative Canonical Polyadic Decomposition  

Nonnegative Canonical Polyadic Decomposition (NCPD) has been widely applied to 
study time-frequency representation (TFR) of EEG [14, 15]. For example, given a 
third-order tensor including the modes of time, frequency and space,  X ∈ ℛ ୍భ×୍మ×୍య , 
the NCPD can be defined: 

                           X =  ෍ 𝑡௥

ோ

௥ୀଵ

∘ 𝑓௥ ∘ 𝑠௥ + 𝐸 =  ෍ 𝑋௥

ோ

௥ୀଵ

+ 𝐸 = X෡ + 𝐸 ≈ X෡ .                         (5) 

In this formula, the symbol ‘∘’ denotes the outer product of vectors. The  𝑡௥, 𝑓௥, and 𝑠௥  
correspond to the temporal component  ⋕ 𝑟 , the spectral component ⋕ 𝑟 ,  and the 
spatial component ⋕ 𝑟, and the three components reveal the properties of the multi-
domain properties of an ERP in the time, frequency and space domains [14]. 

For the same multi-channel EEG data, different parameters of CMCWT may 
produce different TFR (indeed, third-order tensors in this study) in terms of visual 
inspection. Then, the application of NCPD on those tensors can assist to investigate 
whether the similar components of interest can be extracted from different tensors 
resulting different TFR parameters of the same EEG data. For the detailed 
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information of the number of extracted components for each mode, and the criteria of 
selecting multi-domain features, readers can refer to Cong et al. research [15].  

3 Data Processing and Analysis 

The ERP data were pre-processed in MATLAB and EEGLAB [16], including the 
following steps: a 50Hz notch filter to remove line noise, a low-pass filtering of 
100Hz, segmentation of the filtered continuous EEG into single trials (each trial was 
extracted offline from 200ms pre-stimulus onset to 1000ms post-stimulus onset), 
baseline correction, artifact rejection and averaging. 

In CMCWT analysis, the frequency range was set from 1 to 30Hz, respectively 
in 0.1 Hz step ( fc = 9,10, respectively), in 0.2Hz step ( fc = 5,6,7,8,9,10, 
respectively), in 0.3Hz step ( fc = 3,4,5,6,7,8,9,10, respectively), in 0.4Hz step ( fc = 
3,4,5,6,7, 8,9,10, respectively), in 0.5Hz step ( fc = 2,3,4,5,6,7,8,9,10, respectively), in 
0.6Hz step ( fc = 2,3, 4,5,6,7,8,9,10, respectively), in 0.7Hz ( fc = 2,3,4,5,6,7,8,910, 
respectively), in 0.8Hz step ( fc = 2,3,4,5,6,7,8,9,10, respectively), in 0.9Hz step ( fc = 
1,2, 3,4,5,6,7,8, 9,10, respectively) and in 1Hz step ( fc = 1,2,3,4,5,6,7,8,9,10, 
respectively). All the above parametric settings met the requirement of constant ratio 
(greater than 5). 

To further investigate whether parametric variation of fc and σ has an impact on 
time-frequency results, four steps are carried out in the following sequence:  

(1) Select a typical topographical distribution of TFR results as the template. 
When 𝜎 ଴ = 1, the value of fc can be respectively set as 1,2,3,4,5,6,7,8,9 and 10. The 
topographical distribution of  𝑓𝑐ସ = 4 is finally chosen as the template 
T୲ୣ୫୮୪ୟ୲ୣ(𝜎 ଴, 𝑓𝑐ସ) in terms of the prior knowledge of the ERP of interest.   

(2) Define a 𝑓𝑐௡ , calculate the Correlation Coefficients (CCs) between the 
template (Y୲ୣ୫୮୪ୟ୲ୣ) and each spatial component 𝑠୰(𝜎 ଴, 𝑓𝑐௡) obtained by NCPD (R 
components were extracted in each mode), which can be described as: 
                         Y(𝜎 ଴, 𝑓𝑐௡ , r) =  𝜌൫𝑠௥(𝜎 ଴, 𝑓𝑐௡), 𝑇௧௘௠௣௟௔௧௘(𝜎 ଴, 𝑓𝑐ସ)൯.                            (6) 
In the above formula, r = 1, 2, ⋯ , 21, n = 1, 2, ⋯ , 10. Subsequently, the maximal CC 
is chosen as: 
            q(𝜎 ଴, 𝑓𝑐௡) = max൫𝑌(𝜎 ଴, 𝑓𝑐௡, 1), 𝑌(𝜎 ଴, 𝑓𝑐௡, 2), ⋯ , 𝑌(𝜎 ଴, 𝑓𝑐௡, 𝑅)൯.             (7) 
Then, the corresponding  rth components  with the maximum CC were obtained. 

(3) Based on the obtained components of each dimension and their 
corresponding TFR results, we need to judge whether the TFR results of different 
parameters are similar or not. The TFR results are different when the fc is respectively 
set as 1 and 9. Besides, the corresponding 16th components of 𝑓𝑐ଵ = 1  and 1th 

components of 𝑓𝑐ଽ = 9 are similar in the spacial dimension, but not the temporal and 
spectral dimension (as shown in the first and third row of Figure 4).  

(4) With the same procedure mentioned above, we can analyze the results of 
other σ and fc parameters to explore potential differences in the time-frequency 
results.   
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4 Results 

Results showed that parametric variations of σ and fc lead to different time-frequency 
representation and topographical distribution. The data results shown in Figure 1, 
Figure 2, Figure 3, Figure 4 and Figure 5 are all from one subject in one condition 
(short-gain condition), and the data used for statistical analysis (Figure 6) are from 22 
subjects in four conditions (waiting time (short, long)×feedback valence (loss, gain)). 
Due to the space limitation, only the results of  𝜎 = 1, fc = 1,2,3,4,5,6,7,8,9,10 are 
presented here. 

Figure 1 shows the waveform at Cz electrode in the left panel and the waveform 
of all channels in the right. From the waveform, certain ERP components can be 
recognized. As shown in Figure 2, the comparison of the TFR results of fc = 1,2,3,4,5 
with other parameters (fc = 6,7,8,9,10) shows differences in the time frequency 
resolution. In Figure 3, the topographical distributions are obtained by averaging the 
area of each rectangle. Within the time window of 100-400ms and frequency range of 
7-10Hz, it can be observed that the topographical distributions are highly similar 
among each other when fc = 1,2,3,4,5,6,7,8. 

 

Figure 1 Waveforms at Cz and all channels 

As shown in Figure 4, the topographical distribution of fc = 4 is selected as the 
template. The correlation coefficient values between the template and the three 
components of spatial dimension (the fourth column) are respectively 0.8495, 0.8947 
and 0.8915. A comparison of the waveform, spectrum, TFR and topographical 
distribution in first row (or the second row) with those of the third row shows 
commonalities only in the topographical distribution, but not waveform, spectrum and 
TFR. As shown in Figure 5, the time window is from 100 to 400ms and the frequency 
from 7 to 10Hz. In Figure 5(a), different lines represent different 𝜎; in Figure 5(b), 
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different lines represent different fc. The topographical distribution of 𝜎 = 1, fc = 4 is 
chosen as the template. Then, correlation analyses are conducted between the topo-
graphical distributions of each parameter and the template. When 𝜎 (or fc) is fixed, 
the correlation coefficient shows a decreasing tendency with the increasement of fc 
(or 𝜎). 

 

Figure 2 TFR results with CMCWT method at Cz electrode. 𝜎 = 1, the time window of the rectan-
gle area was from 100 to 400ms and its frequency range from 7 to 10Hz. 

 

Figure 3 The corresponding topographical distribution of rectangle areas in Figure 2  
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Figure 4  The corresponding temporal, spectral, and spatial components of different parameters.The 
third-order ERP tensor of the TFR for NCPD includes frequency (30 frequency bins), time (600 
samples), and feature modes (58 channels). 21 components were extracted from each mode for 
NCPD, the order and variance of each component for NCPD are not determined. The TFR is based 
on the outer product of the temporal and spectral components. 

 

Figure 5 The Correlation coefficients between topographical distributions of each parameter and the 
template (𝜎 = 1, fc = 4) 

In Figure 6, the power of the region of interest (time: 100-400ms, frequency: 7-
10Hz) of Cz with different parametric settings of fc and 𝜎  is analyzed. The 
first/second/third row respectively shows the p value of the waiting time condi-
tion/feedback condition/interaction. The figure shows how the p value changes with fc 
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(or σ), when σ (or fc) is a constant. When 𝜎 (or fc) is fixed, the p value shows an in-
creasing tendency with the increasement of fc (or 𝜎).The corresponding statistical 
analysis results may also differ with different settings of fc and 𝜎. 

 

Figure 6 Two-way repeated measurements ANOVA results of different fc and σ parameters. Two 
factors refer to waiting time (short, long) and feedback valence (loss, gain) 

5 Conclusion 

The current study, through employing the methods of CMCWT, explored the influ-
ence of fc and σ variation on the time-frequency and topographical results of ERP 
data. Besides, NCPD was used to further confirm the differences manifested in time-
frequency results. Results showed that parametric variation of σ and fc had an effect 
on time-frequency results. Moreover, it was found that different components would be 
obtained from different TFR results by NCPD. The current study therefore suggests 
that different parameters should be examined in order to get optimal time-frequency 
results. Meanwhile, the NCPD method is highly encouraged to be applied for the 
further confirmation of differences in time-frequency results. 
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Evoked event-related oscillations (EROs) have been widely used to explore the mechanisms of brain activities for both normal
people and neuropsychiatric disease patients. In most previous studies, the calculation of the regions of evoked EROs of interest
is commonly based on a predefined time window and a frequency range given by the experimenter, which tends to be
subjective. Additionally, evoked EROs sometimes cannot be fully extracted using the conventional time-frequency analysis
(TFA) because they may be overlapped with each other or with artifacts in time, frequency, and space domains. To further
investigate the related neuronal processes, a novel approach was proposed including three steps: (1) extract the temporal and
spatial components of interest simultaneously by temporal principal component analysis (PCA) and Promax rotation and
project them to the electrode fields for correcting their variance and polarity indeterminacies, (2) calculate the time-frequency
representations (TFRs) of the back-projected components, and (3) compute the regions of evoked EROs of interest on TFRs
objectively using the edge detection algorithm. We performed this novel approach, conventional TFA, and TFA-PCA to analyse
both the synthetic datasets with different levels of SNR and an actual ERP dataset in a two-factor paradigm of waiting time
(short/long) and feedback (loss/gain) separately. Synthetic datasets results indicated that N2-theta and P3-delta oscillations can
be stably detected from different SNR-simulated datasets using the proposed approach, but, by comparison, only one oscillation
was obtained via the last two approaches. Furthermore, regarding the actual dataset, the statistical results for the proposed
approach revealed that P3-delta was sensitive to the waiting time but not for that of the other approaches. This study manifested
that the proposed approach could objectively extract evoked EROs of interest, which allows a better understanding of the
modulations of the oscillatory responses.

1. Introduction

EEG has been widely used in neuroscience field to evaluate
the temporal, spectral, and spatial dynamics of cognitive pro-
cesses. One typical technique is event-related potential
(ERP), which is obtained by averaging multitrial EEG data,
and the other one is evoked event-related oscillation (ERO)
in the time, frequency, or time-frequency domains based on

the ERPs [1]. Evoked EROs have been applied for investigat-
ing the distinctions of cognitive functions between normal
and neuropsychiatric disordered people [2, 3], and different
approaches can be employed to obtain evoked EROs, such
as digital filtering (like 4-8Hz for theta band), power spectral
density-based spectral analysis, and time-frequency analysis
(TFA) [4]. It should be noted that the underlying ideas of cal-
culating evoked EROs by the first two approaches are similar,
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and the amplitudes are measured either in the time or fre-
quency domains. In terms of the digital filtering method,
evoked EROs are obtained by filtering the ERP waveforms
(i.e., the averaged EEG data over signal trials) with a band-
pass filter, and then, the power of the filtered signals is ana-
lysed in the time domain. However, it is difficult to see how
evoked EROs change with frequencies in each time point.
The approach of TFA can overcome this obstacle, allowing
the examination of evoked EROs both in time and frequency
domains simultaneously.

Nevertheless, TFA also has its drawbacks in exploring
evoked EROs of interest in multicondition ERP experiments.
In most previous investigations, the power of evoked EROs
was usually calculated in a predefined region with a particular
time window and a frequency range. This predefined region
was commonly settled down based on the visual inspection
of grand averaged time-frequency representation (TFR) dis-
tributions in computing the related energies [5–11] and was
conventionally computed in a rectangle region so that the
method was named as “conventional rectangle method.”
However, the shape of evoked EROs, in reality, was more like
a waterdrop than a rectangle. If the predefined rectangle
region was smaller than the real waterdrop shape of evoked
EROs, some useful information would be neglected. Simi-
larly, when the predefined region was larger than the real
boundary of evoked EROs, unrelated information would be
involved. As reported in these studies [5, 7, 12], the other
drawback should also be considered that the number of the
visible evoked EROs identified from the grand averaged
TFR was smaller than the number of the practical analysed
ERPs. Thus, it remains challenges that the expatiations of
some stages of cognitive processes would not be present. Ber-
nat et al. [13, 14] suggested that those EROs, which were
overlapped in the time and frequency domains, could be
effectively extracted by performing principal component
analysis (PCA) and Varimax rotation on the matrix of TFRs
(i.e., time and frequency domains were rearranged into col-
umns, and the other variables, such as channels, conditions,
and subjects, were integrated into rows) in a multicondition
ERP experiment (we called this method as “TFA-PCA” here).
One of his studies revealed that the decomposed delta and
theta oscillations by TFA-PCA were greatly associated with
the N2-P3 [15], whereas they merely explained the occurred
time course of the selected theta or delta was closest to that of
the N2-P3 complex and did not demonstrate which ERP
made the most contributions to theta or delta oscillations.
Importantly, the core idea of TFA-PCA was to weight the
extracted components with the original TFRs, which would
result in the decomposed EROs might be still mixtures.

To address these gaps, we proposed an approach to
objectively extract evoked EROs of interest (the illustration
of the proposed approach was displayed in Figure 1). More
specifically, temporal PCA (t-PCA) and Promax rotation
were conducted to extract the temporal and spatial compo-
nents. Afterward, the components of interest were selected
and projected to the electrode fields for correcting the vari-
ance and polarity indeterminacies. It was noted that the
back-projection procedure was also used to tackle the prob-
lem that several components could not be analysed together

in the previous PCA toolbox, like Dien’s PCA toolbox [16].
Next, a complex morlet continuous wavelet transform was
applied to compute the TFRs of the back-projected compo-
nent(s) in the electrode fields. Finally, an edge detection algo-
rithm based on Canny detector was introduced to calculate
the specific time and frequency positions of evoked EROs
from the associated TFRs for further statistical analysis. In
addition, correlation coefficients between the topographies
of any two participants were calculated to evaluate the homo-
geneity of ERPs/components/evoked EROs.

In order to evaluate the results of the proposed approach
and the other existing approaches, the proposed approach,
the conventional TFA, and TFA-PCA were performed on
the simulation datasets which were contaminated by differ-
ent levels of noise (i.e., 20 dB, 10 dB, 5 dB, and 1dB). As a
result, we could obtain the stably results from those simu-
lation datasets using our proposed approach. Meanwhile,
the results for the datasets with different levels of SNR,
all the extracted components in the time-space domain,
and the associated TFRs of evoked EROs in the time-
frequency domain were much closer to their sources. We
demonstrated this supposition with two aspects as below.
One aspect, for different levels of noise-contaminated sim-
ulation datasets, we separately calculated the correlation
coefficients between any two of the waveforms/topogra-
phies/TFRs of the source, mixed, and extracted signals;
We also computed the correlation coefficients between
the TFRs of the source signal and weighted TFRs obtained
by TFA-PCA. The other aspect was to illustrate TFRs
obtained by the conventional TFA, the proposed approach,

Temporal components

Temporal PCA and Promax
rotation on ERP matrix

Spatial components

Selecting component(s) of interest and
projecting it/them to the electrode field

Calculating the time-frequency representation
of the back-projected component(s)

Objectively determining the region of evoked
event-related oscillation via edge detection

Statistical analysis

Figure 1: The diagram for extracting evoked event-related
oscillations (EROs) from ERP datasets using the proposed
method. First, exploring the temporal and spatial components of
interest using temporal principal component analysis (t-PCA) and
Promax rotation and projecting them to the electrode fields.
Second, transforming the projection of the components of interest
into time-frequency representations (TFRs) using complex morlet
continuous wavelet transform. Third, determining the time and
frequency positions of evoked event-related oscillation objectively
using edge detection technique for statistical analysis.
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and TFA-PCA. The waveforms/topographies of the source,
mixed, and extracted signals were also displayed when
SNR is equal to 10 dB. Meanwhile, we also, respectively,
performed the proposed, TFA, and TFA-PCA approaches
on a real ERP dataset to extract evoked EROs of interest.

In this study, we used the notation of “component(s)” to
represent the results obtained by t-PCA and Promax rota-
tion. Likewise, the results gained by the back-projection pro-
cedure were considered to be “projected N2/P3”; N2 and P3
were labelled as “ERP” in the original signals; the time-
frequency results computed by the conventional TFA, the
proposed approach, and TFA-PCAwere, respectively, named
as “TFR,” “extracted TFR,” and “weighted TFR.” The related
codes for the proposed approach can be found from this link:
https://guanghuizhang0328.github.io/publications/.

2. Data Collections and Methods

2.1. EEG and Synthetic Dataset Collection and Analysis

2.1.1. Synthetic Dataset. The synthetic signal was generated
with “Dipole-Simulator” (BESA Tool version; it can be
downloaded from: http://www.besa.de/updates/tools). The
duration of the signal was 1000ms (from -200ms to
800ms). The sampling rate was 150Hz. There were four sim-
ulated ERPs (N1, P2, N2, and P3) whose maximum ampli-
tudes were measured at electrodes Fz, CPz, FCz, and Cz,
respectively. In this study, N2 and P3 were considered as the
interested ERPs and others were deemed concomitant ones.
The maximum negative peaks for N2 and P3 were located at
260-400ms and 370-580ms, separately. The details of their
associated waveforms, topographic maps in the time domain,
and TFR distributions could be found in Figure 2. Meanwhile,
we also displayed correlation coefficients between any two of
waveforms/topographic maps/TFRs of the four original
sources and their mixture to show the degree of overlap and
how much the four original sources contribute to the original
mixed signal (see the last row in Figure 2). In order to simulate
the signals as close to the actual ERP signals as possible, the
variations were set in latency and amplitude of P3 and N2 of
the original mixed signal (as illustrated in Figure 2), which
was applied to simulate the single trial dataset [17]. Following
this idea, the 68-set data were subsequently simulated. Differ-
ent levels of white Gaussian noise were, respectively, added to
the mixed 68-set signals (as shown in Figures 3 and 4; the fil-
tered mixed signal plays the role of a real preprocessed ERP
dataset), and the signal-noise-ratio (SNR) was set to 20dB,
10dB, 5dB, and 1dB separately.

2.1.2. Actual Dataset. Twenty-one undergraduate and gradu-
ate students were recruited to participate as paid volunteers
in the collection of the actual dataset. Nine were females
and twelve were males (mean age: 20.95 years old). All the
subjects were right-handed, with normal or corrected to nor-
mal visual acuity, and they did not know or see the experi-
mental paradigm before the experiment. The details of the
experiment materials and the paradigm can be found in this
research [18]. EEG recordings at 64 locations were collected
according to the standard 10-20 system (Brain Products

GmbH, Gilching, Germany). The EEG data were referenced
online against the left and right mastoids. Meanwhile, we also
collected the vertical and horizontal electrooculogram (EOG)
from four electrodes which were placed above and below the
right eye and on the outer canthus of the right and left eyes,
respectively. All impedances were less than 10 kΩ for each
electrode. The EEG and EOG for each participant were
recorded with a 500Hz sampling rate, and the data were fil-
tered between 0.01 and 100Hz using a band-pass filter. The
signals from six electrodes (i.e., “HEOL,” “VEOD,” “HEOR,”
“VEOU,” “M1,” and “M2”) were not involved in further
analysis.

2.1.3. Data Preprocessing and Analysis

(1) Synthetic Dataset. According to our previous study [19],
as for the frequency band of the components of interest, the
synthetic datasets with different levels of SNR were first fil-
tered, respectively, using wavelet filter with the following
parameters: the number of levels for decomposition was 8;
the selected mother wavelet was “rbio6.8”; the detail coeffi-
cients of the number of levels at 4, 5, 6, 7, and 8 were chosen
for signal reconstruction. Temporal PCA and Promax rota-
tion were then employed to extract the components of inter-
est and project them to the electrode fields for correcting
their variance and polarity indeterminacies. Sequentially,
TFRs were calculated by the wavelet transform for the source,
mixed, and projected signals separately. During this step,
aiming at obtaining better time resolution and frequency res-
olution of TFRs, the centre frequency and bandwidth were
set as 1, respectively, to define a mother wavelet as applied
in our previous study [20]. The frequency range of interest
was defined from 1 to 15Hz with 30 frequency bins in non-
linear distribution. For each frequency layer, the power
values were baseline corrected by subtracting the mean
power of the baseline (200ms before the stimulus onset) for
each point using the subtraction approach [21–23].

We also examined the noise-contaminated simulation
datasets by performing PCA on the matrix of TFRs of the
mixed signal with 4420 cases (65 channels by 68 subjects)
and 3600 variables (30 frequency bins by 120 time point, that
is, frequencies ranging from 1 to 15Hz and time ranging
from 0 to 800ms) using covariance matrix with Kaiser nor-
malization and Varimax rotation [13, 14, 24]. Then, we
selected the components of interest from the separated ones
and weighted them with the original TFRs based on the main
functions of the Bernat’s toolbox (http://www.ccnlab.umd
.edu/Psychophysiology_Toolbox).

To verify that the proposed approach could efficiently
extract the evoked EROs of interest from the noise contami-
nated with different SNR levels without changing their TFR
properties, the correlation coefficients between any two of
the waveforms/topographies/TFRs of the source, mixed,
and extracted signals were separately computed as illustrated
in Figures 5(a)–5(i). Likewise, the correlation coefficients
between the weighted TFRs of early/late theta and source
N2/P3 were also measured (see Figures 5(j) and 5(k)). Fur-
thermore, the related waveforms/topographies in the time
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domain and TFRs were also plotted for the source and mixed
signals (see Figures 3 and 4) when SNR was set to 10 dB.

(2) Actual Dataset. The actual datasets were first resampled
to 128Hz so that PCA and Varimax rotation could be per-
formed on the TFRs of the averaged signal with the compa-
rable sampling rate to the simulation datasets. The EEG
signals were then filtered offline using a notch FIR filter
with 45-55Hz and a low pass FIR filter with 30Hz. Sequen-
tially, the filtered continuous recordings were segmented
from 200ms before the stimulus onset to 1000ms after
the stimulus onset. Epochs whose magnitude exceeded ±
100μV were excluded (6.93% epochs were rejected), and
the remaining ones were baseline corrected. Next, the mul-
titrial datasets were averaged across every condition of each
participant, and the averaged datasets were then filtered by
the wavelet filter as used above to improve the SNR.

In order to extract the evoked EROs by the proposed
approach, temporal PCA and Promax rotation were per-

formed on the filtered signals to obtain the components
related to N2/P3 and project them to all electrodes. To obtain
the TFRs of the original averaged and projected signals sepa-
rately, the frequency range of interest was then set from 0.5 to
14.5Hz with 30 frequency bins. Additionally, the centre
frequency and bandwidth were also set as 1, respectively, as
used above for the noise-contaminated simulation datasets.

Another comparison method was also applied to extract
the delta and theta oscillatory responses from the TFRs
(obtained from the averaged ERP signals) with a frequency
range of 0.5-14.5Hz and time window of 0-1000ms. Namely,
PCA and Varimax rotation were first performed on the matrix
formed by TFRs of the original filtered signal with 4872 cases
(58 channels by 4 conditions by 21 subjects) and 3840 vari-
ables (30 frequency bins by 128 time points). Sequentially,
the weighting procedure was separately achieved between the
original TFR and the selected components.

The conventional rectangle method and edge detection
algorithm were, respectively, conducted to obtain the region
of ERO from the TFR of each condition for the conventional
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TFA (“M1”), the proposed approach (“M2”), and TFA-PCA
(“M3”). The power of theta oscillation for each condition was
measured in the averaged TFR at Fz, FCz, and Cz electrodes,
and the delta oscillation energy was computed at five
electrodes Fz, FCz, Cz, CPz, and Pz.

Briefly, with regard to the theta oscillation, when the con-
ventional rectangle method was applied to determine the
regions of the oscillatory responses, two regions were mea-
sured (“R1”: 100-300ms and 3-7Hz; “R2”: 200-400mms
and 3-7Hz) from the grand averaged TFRs. We also, respec-
tively, predefined “R3” (4-8Hz and 150-300ms) and “R5”
(100-400ms and 3-7Hz) in the TFRs of the proposed
approach and TFA-PCA to compute the related energies. In
addition, the determined regions of the evoked EROs for
the last two methods were named as “R4” and “R6” when
using the edge detection algorithm. The statistical results
were not computed for delta oscillation of the conventional
TFA because we did not find the region using the edge detec-
tion algorithm.

In terms of delta oscillation, using conventional rectangle
method, we also calculated two regions of every condition of
TFR obtained by the conventional TFA (“R7”: 200-600ms
and 0.5-2Hz; “R8”: 300-600ms and 0.5-2Hz). Likewise, we
used “R10” (1-3Hz and 200-600ms) and “R12” (200-

600ms and 0.5-2Hz) to calculate the power of delta oscilla-
tion obtained by the proposed approach and TFA-PCA,
respectively. The recognized regions of delta oscillations
using the edge detection algorithm for the conventional
TFA, the proposed approach, and TFA-PCA corresponded
to “R9,” “R11,” and “R13,” respectively.

Finally, two-way repeated-measurement-ANOVA (rm-
ANOVA) with waiting time (short/long) and feedback
valence (loss/gain) as within-subject factors was used for
analysing each determined region of delta and theta oscil-
lations separately. The correction of the number of degrees
of freedom would be carried out by the Greenhouse-
Geisser method if necessary. All displayed topographic
maps in the time domain for simulation and real datasets
were obtained using the mean values of the predefined
time window. Meanwhile, during PCA procedure, the sin-
gular value decomposition was used to decompose the
original matrix formed by ERP signals into the sum of
several principal components using Matlab function-pca
with default parameters (version 2018b, the Mathworks,
Inc., Natick, MA).

2.2. Proposed Approach for Data Processing. In order to
overcome the challenges that evoked EROs could not be
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topographies among subjects of the source/mixed/extracted N2 for the synthetic dataset when SNR is equal to 10 dB. (b) The associated
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extracted completely by the conventional TFA or TFA-
PCA approaches, we used the following steps to extract
evoked EROs of interest. Firstly, a matrix Ẑ = ZT ∈RN×M

was separately formed from the synthetic datasets with
different noise levels and real datasets separately to explore
the component(s) of interest [25–28]. Herein, it should be
noted that time samples were variables in columns of
matrix Ẑ, and the other factors, such as channels, condi-
tions, and subjects, were integrated into rows that were
labelled as observations. Then, t-PCA and Promax rotation
were fulfilled to decompose this matrix into R compo-
nents, and the components of interest were selected to

project to all of the scalp electrodes for correcting the var-
iance and polarity indeterminacies. Subsequently, the cal-
culation of the TFRs of the back-projected components
was carried out at all electrodes. Finally, the determination
of the regions of evoked EROs at the typical electrodes
was worked out using the edge detection algorithm.

2.2.1. Extracting the Components of Interest and Their Back-
Projection. The purpose of the t-PCA and Promax rotation
was to use a smaller set of nonredundant descriptive variables
(i.e., components) to represent the original ERP signal Ẑ and
then choose the interested components for back-projection
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grand averaged time-frequency representations (TFRs) at Cz of the source, mixed, and extracted (by the proposed approach) signals for
P3-delta oscillation separately. The mixed signal plays the role of the preprocessed ERPs with the consideration of a real ERP dataset. (c)
Weighted TFRs of early and late theta using TFA-PCA. The mixed signal plays the role of the preprocessed ERPs with the consideration
of a real ERP dataset.

6 Neural Plasticity



20dB 10dB 5dB 1dB

1.2

CCs between of waveforms of the source
and mixed signals

N2
P3

1.0
0.8
0.6
0.4
0.2

(a)

CCs between of waveforms of source
and extracted signals

20dB 10dB 5dB 1dB

N2
P3

(b)

CCs between of waveforms of mixed
and extracted signals

20dB 10dB 5dB 1dB
N2
P3

(c)

CCs between of topographies of source
and mixed signals

20dB 10dB 5dB 1dB

N2
P3

(d)

20dB 10dB 5dB 1dB

N2
P3

CCs between of topographies of source
and extracted signals

(e)

20dB 10dB 5dB 1dB

N2
P3

CCs between of topographies of mixed
and extracted signals

(f)

CCs between of TFRs of source 
and mixed signals

20dB 10dB 5dB 1dB

theta
delta

(g)

20dB 10dB 5dB 1dB

theta
delta

CCs between of TFRs of source 
and extracted signals 

(h)

Figure 5: Continued.

7Neural Plasticity



(see AppendixA and AppendixB for the details of the related
theories). Importantly, four steps needed to be done during
this procedure as below.

The first was about the determination of the number of
the remained principal components (PCs). The number of
the remained PCs was usually determined based on a prede-
fined percentage ratio, such as 95% or 99%. Such a regulation
has been widely applied in various fields. The calculation of
this percentage ration was achieved by the sum of a certain
number of lambda values over the sum of all lambda values
(i.e., L =∑R

r=1λr/∑
M
m=1λm, where R is the number of the

retained PCs; M is the number of the columns of the matrix
Ẑ, M > R; this percentage ratio was named as cumulative
explained variance here) [29, 30].

The second was about the selection of the rotation
method. Promax rotation could generate better results than
Varimax rotation [31], and it was more efficient for t-PCA
decomposition [32]. Hence, Promax rotation was also
applied to the study.

The third was about the selection of the temporal and
spatial components of interest. If the temporal and spatial
properties of the extracted components were consistent with
the interested ERPs and its correlation coefficients between
any two spatial components of subjects were higher (for
example, more than 0.4), the components were then consid-
ered for the next analysis. Overall, in terms of the following
three aspects, the projected components for ERPs of interest
were selected [25]: (a) the polarity and latency of temporal

component; (b) the polarity and location of the excitation
region of spatial component; (c) the correlation coefficients
between any two spatial components, herein spatial compo-
nents were topographies, of every condition.

The fourth was about the back-projection ðZÞT of the
selected components to the electrode fields. The components,
derived from blind separation algorithm [33], herein t-PCA
and Promax rotation, had the polarity and the variance inde-
terminacies, and the back-projection theory could be applied
to correct them [34–37]. In practice, ERPs were often decom-
posed into several temporal and spatial components due to
the fluctuation of the original waveforms of the interested
ERPs over different subjects. Thus, all of them should be
selected to project to the electrode fields for correcting their
indeterminacies.

2.2.2. Transforming the Back-Projected Components into
Time-Frequency Representations. For the back-projected
components ðZÞT from the original signal Ẑ, we turned this
time domain signal to time-frequency domain signal ZTF
using the complex morlet wavelet transform [20, 38–44].
Specifically, a mother wavelet was first defined using a set
of bandwidth and centre frequency. Then, the frequency
range of interest (e.g., 0.5-14.5Hz) and frequency bins were
set for calculation of TFR. Next, the baseline correction was
finished using the values of each point in the time-
frequency distribution subtracting the mean power of the
baseline (for instance, 200ms before the stimulus onset).

20dB 10dB 5dB 1dB

theta
delta

CCs between of TFRs of mixed
and extracted signals 

(i)

CC between TFRs of source N2
and weighted ones

20dB 10dB 5dB 1dB
Early theta
Late theta

(j)

20dB 10dB 5dB 1dB

CC between TFRs of source P3
and weighted ones

Early theta
Late theta

(k)

Figure 5: (a–i) The correlation coefficients (CCs) between any two waveforms/topographies/time-frequency representations (TFRs) of the
source, mixed, and proposed method extracted N2 (theta)/P3 (delta) for the synthetic datasets with different levels of SNR (i.e., 20 dB,
10 dB, 5 dB, and 1 dB), respectively. (j, k) The CCs between the weighted TFR of source N2/P3 and early/late theta oscillations (using
TFA-PCA method), respectively.
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2.2.3. Objectively Determining the Region of evoked EROs via
Edge Detection Algorithm. The conventional rectangle
method was widely used to determine the regions of evoked
EROs [5–10, 45]. As the demonstration in section 3.2.1, dif-
ferent statistical results could be displayed because the con-
ventional rectangle method was a subjective method to
calculate the region. To address this, an edge detection algo-
rithm, Canny detector [46], was used to objectively distin-
guish the shape of evoked ERO for each condition from the
TFR distribution, which can precisely and objectively mark
the position of the oscillatory responses in the TFR based
on their shapes (time and frequency positions) [47–49].

The displayed TFR was usually generated from ZTF by
calculating the mean values of the specific electrodes. In this
study, we used the symbol φf ,t,c,s to represent the value of any

point in TFR distribution for sth subject under cth condition.
As shown in Figures 6–9, the interested evoked ERO of each
condition had a boundary that clearly distinguished evoked
ERO from others in the TFR distribution. Following this
context, we can use a typical approach, Canny detection algo-
rithm, to determine the optimal boundary and then gain the
associated region of evoked ERO.

The procedure of the original Canny algorithm for the
determination of the boundary of a target can be approxi-
mately divided into the following steps [46, 50].

First, any noise was filtered out from the original image
using Gaussian filter before trying to use this detector to
detect any edges. Indeed, this step was to calculate the convo-
lution between the raw image and the mask.

Second, aiming to find the edge strength, the gradient
amplitude and direction at any pixel location were calculated.
The gradient amplitude was determined as the square root of
the sum of the square of the horizontal Gxði, jÞ and vertical
gradient Gyði, jÞ amplitudes.

G i, jð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx i, jð Þ2 +Gy i, jð Þ2

q
: ð1Þ

Then, the gradient direction at every pixel can be defined
as follows:

θG i, jð Þ = arctant
Gy i, jð Þ
Gx i, jð Þ

� �
: ð2Þ

Third, the nonmaxima suppression was applied to the
gradient amplitude to make the blurred edges sharper. In
other words, the gradient direction at every pixel was com-
puted to find the maximum magnitude. For one thing, when
the gradient direction of this pixel was considered as one of 8
possible primary directions (i.e., 0 degree, 45 degrees, 90
degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees,
and 315 degrees), the comparisons were made between the
gradient magnitude of this pixel and its two neighbours along
the gradient direction. If this value was the greatest one, it
was then remained and otherwise, it would be set to zero.
For another thing, if the gradient direction was not belonging
to any of these possible directions, it would be finished to cal-

culate the neighbouring gradients based on interpolation
theory [50].

Fourth, the edge map was determined via hysteresis
thresholding. It needed two thresholds to better recognize
the edges: a high threshold T1 and a low one T2. If the value
of any pixel was (i.e., the gradient amplitudes Gði, jÞ) greater
than T1 , it would be looked as strong edge and then recorded.
Meanwhile, if the gradient amplitudes of the pixels were
greater than T2 and connected to the strong edges, those
pixels would be selected as strong edges. Otherwise, they
were not included in the final edge image.

Practically, the region of interest needed to be determined
based on the recognized boundary for further statistical anal-
ysis. Any position (it was determined by a frequency bin- f1
and a time point - t1) within the marked boundary was first
calculated by performing on the frequency bins, time points,
and the pixels of the boundary. Each value ψf ,t,c,s of the point
within the determined boundary was remained for every sub-
ject s under each condition c at electrodes of interest as below.

ψf ,t,c,s =
φf ,t,c,s f = f1, t = t1

0 otherwise
:

(
ð3Þ

Last, the demanded value �ψc,s for each subject of each
condition was gained by computing the mean value of the
marked evoked ERO. Note that the parameters of T1 and
T2 were set with the default values in the Matlab function
(version 2018b, the Mathworks, Inc., Natick, MA).

3. Results

3.1. Synthetic Dataset Results. Figures 5(a)–5(i) show the
correlation coefficients between any two waveforms/topogra-
phies/TFRs of source, mixed, and projected N2 (theta)/P3
(delta) for the synthetic datasets with different levels of noise,
respectively. Meanwhile, Figures 5(j) and 5(k) show the
correlation coefficients between the weighted TFR of source
N2/P3 and early and late theta oscillations, respectively, for
different noise-contaminated simulated datasets using TFA-
PCA. Noticeably, all the correlation coefficients between the
waveforms/topographies/TFRs of source and extracted
N2/P3 for different noise-contaminated simulated datasets
were almost equal to 1 (see Figures 5(b), 5(e), and 5(f)),
whereas the unstable results were obtained when using
TFA-PCA (see Figures 5(j) and 5(k)). Those indicated that
evoked ERO for each ERP of interest could be stably and effi-
ciently extracted from low to high SNR-simulated datasets by
our proposed approach but not for TFA-PCA approach.

Afterward, we used the results of one simulated dataset
(i.e., SNR is 10 dB) to explain the application and assess the
performance of the proposed approach and TFA-PCA
approach.

In the application of the proposed approach, 17 compo-
nents were retained, which explained 99% of variance.
According to the temporal and spatial properties of P3 and
the similarity of the spatial components over all subjects
(we used “spatial similarity” to represent it in the following
parts), the 1st, 3rd, and 10th components were selected for

9Neural Plasticity



P3 and they explained 68.02% (spatial similarity: 0:89 ±
0:07), 3.86% (spatial similarity: 0:87 ± 0:07), and 1.39%
(spatial similarity: 0:41 ± 0:28) of variance, respectively.
Similarly, the 2nd and 5th components were chosen for
N2, and they accounted for 6.60% (spatial similarity:
0:73 ± 0:10) and 2.07% (spatial similarity: 0:36 ± 0:19) of
variance, respectively.

As shown in Figures 3(b) and 4(b), the power of source
N2-theta oscillation (about 0.3μV2/Hz) was much smaller
than that of source P3-theta oscillation (approximately
3μV2/Hz) so that the former easily disappeared in the
TFR of the mixed signal. This was confirmed in the TFR
of the mixed signal, and that is to say, only one oscillation
was observed. This was also proved by the correlation coef-
ficient method. Specifically, the correlation coefficient
between the TFRs of the mixed and source/extracted N2-
theta was roughly 0.74/0.69 while this value was approxi-
mately 0.95/0.96 for P3-delta (see Figures 5(g) and 5(i)).

The correlation coefficients between the waveforms of the
mixed and source/projected N2/P3 were about 0.52/0.95
(see Figures 5(a) and 5(c)). This meant that P3 made the
biggest contribution to the mixed signal that led to the
abovementioned situation, and consequently, N2 accounted
for a small part.

Two evoked EROs were obtained corresponding to N2
(see Figure 3(b)) and P3 (see Figure 4(b)), respectively, when
using the proposed approach. What is more, the similarity of
topographies across all subjects of the projected signal (espe-
cially for N2: from 0:64 ± 0:11 to 0:72 ± 0:09) was improved
using the proposed approach when compared with the simi-
larity of the mixed signal. Through the comparisons of the
waveforms/topographies/TFRs of the source, mixed, and
projected signals as shown in Figures 3 and 4, we could easily
obtain that they were almost identical with each other,
respectively. Regarding the correlation coefficients between
the waveforms/topographies/TFRs of the source and

–200 0 200 400 600 800 1000
Time (ms)

0
5

10
15

A
m

pl
itu

de
 (𝜇

V
)

SL

SL LG

–5

0

5

10

20
Subject #

Su
bj

ec
t #

–1

0

1

10 155

5
10
15
20

SG
LL
LG

SG LL

Conventional method: N2-theta oscillation 

(a)

–200 0 200 400 600 800 1000
Time (ms)

0.5
1
2
3
5
8

14.5

Fr
eq

ue
nc

y 
(H

z)

0
100
200
300

(b)

Figure 6: (a) The grand averaged waveform (at Fz, FCz, and Cz electrodes), topography (time window: 180-240ms), and similarity of
topographies across participants of each condition for the filtered real signal. (b) The associated grand averaged time-frequency
representation (TFR) of every condition. The region of evoked ERO of each condition is determined by the edge detection algorithm and
the conventional rectangle method (for the black dotted rectangle, the time window is 100-300ms and frequency range is 3-7Hz, “R1”;
the red solid rectangle: 200-400ms and 3-7Hz, “R2”) separately. SL: loss condition under short waiting time; SG: gain condition under
short waiting time; LL: loss of long waiting time; LG: gain of long waiting time.
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projected signals for N2-theta/P3-delta, obviously, they were
all roughly equal to 1.00 (see Figures 5(b), 5(e), and 5(h)).
Hence, we concluded that the proposed approach can effi-
ciently and objectively extract the ERPs of interest from the
mixed signals.

With regard to the results of TFA-PCA, 7 components
were retained, which was explained 99% of variance. Then,
the 2nd and 3rd components were, respectively, weighted
with the original TFRs and the weighted results, respectively,
corresponded to late and early theta oscillations. They were
just classified as one part of the theta oscillation of TFRs for
the mixed signal (Figure 4(c)) due to their time window
and frequency range were similar with the original theta
oscillation. This was demonstrated by the correlation coeffi-
cients (0.79/0.59 and 0.51/0.57) between the TFRs of the
weighted early/late theta oscillations and the source N2/P3
separately (see Figures 5(j) and 5(k)).

3.2. Actual ERP Dataset Results

3.2.1. Conventional Time-Frequency Analysis Results. For
N2-theta oscillation in Figure 6(b), the statistical results of
the two regions determined by the conventional rectangle
method demonstrated that no significant differences were
found for either the main effect of feedback or interaction
effect as shown in “R1” and “R2” of Table 1, whereas the
main effect of waiting time reached significant level. The
related region for LL condition was not recognized when
we used the edge detection algorithm, and thus, the statistical
analysis was not further processed.

As for the P3-delta oscillation in Figure 7(b), the statisti-
cal results of the determined regions obtained by the conven-
tional rectangle method indicated that the main effect of
feedback was significant but not for the waiting time. In addi-
tion, the interaction effect between waiting time and feedback
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Figure 7: (a) The grand averaged waveform (at Fz, FCz, Cz, CPz, and Pz electrodes), topography (time window: 300-600ms), and similarity
of topographies across participants of each condition for the filtered real signal. (b) The associated grand averaged time-frequency
representation (TFR) of every condition obtained by the conventional TFA. The region of evoked ERO of each condition was determined
by the edge detection algorithm and the conventional rectangle method separately (for the black dotted rectangle, the time window was set
from 200 to 600ms and frequency range was defined from 0.5 to 2Hz, “R7”; the red solid rectangle: 300-600ms and 0.5-2Hz, “R8”)
separately.
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was also insignificant (see Table 2, “R7” and “R8”). However,
we did not find any significant main or interaction effects for
the ANOVA results when using the edge detection algorithm
(Table 2, “R9”).

3.2.2. Proposed Approach Results. Figures 8 and 9 depict the
projected waveform at some typical electrodes, the topo-

graphic distribution in the time domain, associated similarity
of topographies across all subjects, and TFR of every condi-
tion for N2-theta and P3-delta, respectively. 20 components
were retained, and they accounted for 99% of the variance
when applying t-PCA and Promax rotation.

The 9th and 18th components were finally selected for
further analysis based on the properties of N2 in the temporal
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Figure 8: (a) The projected waveform (at Fz, FCz, and Cz electrodes), topography (180-240ms), and similarity of topographies across
participants of every condition for N2 which were extracted from the real mixed signal using t-PCA and Promax rotation. (b) The
associated grand averaged time-frequency representation (TFR) of every condition for N2-theta oscillation using the proposed approach.
The black dotted rectangle (the time window was defined as 150-300ms, and the frequency range was set as 4-8Hz, “R3”) for every
condition was marked using the conventional rectangle method, and the other (“R4”) was gained by the edge detection algorithm. (c) The
weighted N2-theta oscillation by TFA-PCA. The black dotted rectangle was 100-400ms and 3-7Hz (“R5”), and the other one (“R6”) was
gained by edge detection algorithm.
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and spatial and the similarity of spatial components across all
subjects (we used “spatial similarity” to represent it in the fol-
lowing parts), and they explained 0.91% (spatial similarity:
0:44 ± 0:30) and 0.15% (spatial similarity: 0:59 ± 0:28) of var-
iance, respectively. The evolution and the tendency of the
projected N2 waveform kept consistent with the conven-
tional grand averaged waveform. For the recognized regions
of the evoked theta for TFRs of the projected N2 by the edge

detection method (Table 1, “R4”), the related statistical
results indicated that the main effect was insignificant for
either waiting time (Fð1,20Þ = 3:122, p = 0:093, and η2p = 0:135)
or feedback (Fð1,20Þ = 0:382, p = 0:543, and η2p = 0:019).Mean-

while, the interactioneffect betweenwaiting timeand feedback
was also not significant (Fð1,20Þ = 0:633, p = 0:436, and η2p =
0:031). Thesefindings were consistent with the previous study
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Figure 9: (a) The projected waveform (at Fz, FCz, Cz, CPz, and Pz electrodes), topography (300-600ms), and similarity of topographies
across participants of every condition for N2 which were extracted from the real mixed signal using proposed approach. (b) The
associated grand averaged time-frequency representation (TFR) of every condition. The black dotted rectangle (the time window was 200-
600ms, and the frequency range was 1-3Hz, “R10”) for every condition was marked using the conventional rectangle method, and the
other (“R11”) was gained by the edge detection algorithm. (c) The weighted TFRs of P3-delta oscillation when using TFA-PCA. The black
dotted rectangle was 200-600ms and 0.5-2Hz (“R12”), and the other one (“R13”) was gained by edge detection algorithm.
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of the results for the time domain analysis [18]. Nevertheless,
when the conventional rectangle method was performed to
determine the region (“R3”: the time window is 150-300; the
frequency range is 4-8Hz) forTFRof eachcondition,we found
a significant main effect of waiting time factor (Fð1,20Þ = 8:92,
p = 0:009, and η2p = 0:298), whereas the othermain or interac-
tion effect did not reach a significant level.

Similarly, with regard to P3, the 1st, 5th, 13th, 14th,
16th, and 17th components (they explained 52.7% (spatial
similarity: 0:66 ± 0:20), 3.82% (spatial similarity: 0:46 ±
0:33), 0.31% (spatial similarity: 0:58 ± 0:25), 0.27% (spatial
similarity: 0:66 ± 0:20), 0.19% (spatial similarity: 0:70 ±
0:17), and 0.16% (spatial similarity: 0:54 ± 0:32) of the var-
iance, respectively) were selected and projected back to the
electrode fields. We then computed the TFRs of the back-
projection via wavelet transform. The results revealed that
the long waiting time (96:583 ± 21:773μV2/Hz) elicited a
larger power than short waiting time (76:251 ± 18:461
μV2/Hz). A larger power was also observed upon gain
condition (106:238 ± 26:993μV2/Hz) than lose condition
(66:596 ± 13:773μV2/Hz), which was similar with the pre-
vious investigations [51–53]. The statistical results of the
determined regions obtained by the edge detection algo-
rithm (Table 2, “R11”) displayed that there was a signifi-
cant interaction effect between waiting time and feedback
(Fð1,20Þ = 9:573, p = 0:006, and η2p = 0:324). However, this

significant interaction effect between them was not found
in the previous study [18]. In addition, the main effects
of both waiting time (Fð1,20Þ = 6:886, p = 0:016, and η2p =
0:256) and feedback (Fð1,20Þ = 5:886, p = 0:025, and η2p =
0:227) reached a significant level. Then, post hoc analysis
was used for further investigation. The results demon-
strated that a significant difference was found in the feed-
back factor under short waiting time condition (p = 0:007).
By contrast, there was an insignificant main effect of feed-
back under long waiting time condition (p = 0:172). How-
ever, when the rectangle method was applied to determine
the region (time window is from 200 to 600ms, and the
frequency range is 1-3Hz), only the significant main effect
was observed for feedback factor (Fð1,20Þ = 7:755, p = 0:011,
and η2p = 0:279).

3.2.3. TFA-PCA Results. Eight components were reserved
when TFA-PCA was performed on the TFRs of the averaged
ERP waveforms, which explained 99% of the total variances.
The 1st (75.15%) and 4th (1.76%) were selected to weight
with the original TFR, and the weighted TFRs were associ-
ated with delta and theta oscillation, respectively, as depicted
in Figures 8(c) and 9(c). The statistical results of all deter-
mined delta/theta oscillation obtained by the conventional
rectangle method and edge detection algorithm revealed that

Table 1: The statistical results of N2-theta oscillation for the conventional time-frequency analysis (“M1”), the proposed approach (“M2”),
and TFA-PCA (“M3”).

Method ROI
WT FB WT ∗ FB

F η2p p F η2p p F η2p p

M1
R1 6.067 0.233 0.023 0.72 0.035 0.406 0.206 0.01 0.655

R2 4.853 0.195 0.039 0.042 0.002 0.84 0.038 0.002 0.848

M2
R3 8.492 0.298 0.009 0.052 0.003 0.821 0.569 0.028 0.46

R4 3.122 0.135 0.093 0.382 0.019 0.543 0.633 0.031 0.436

M3
R5 3.255 0.14 0.086 0.084 0.004 0.775 0.006 <0.001 0.941

R6 0.393 0.019 0.0538 0.411 0.02 0.529 0.015 0.001 0.903

R1: 100-300ms and 3-7 Hz; R2: 200-400ms and 3-7 Hz; R3: 150-300ms and 4-8 Hz; R4: EDM; R5: 100-400ms and 3-7 Hz; R6: EDM. EDM: the edge detection
method; WT: waiting time; FB: feedback; ROI: region of interest.

Table 2: The statistical results of P3-delta oscillation for the conventional time-frequency analysis (“M1”), the proposed approach (“M2”),
and TFA-PCA(“M3”).

Method ROI
WT FB WT ∗ FB

F η2p p F η2p p F η2p p

M1

R7 0.997 0.048 0.33 13.236 0.398 0.002 0.25 0.012 0.622

R8 1.027 0.049 0.323 12.653 0.387 0.002 0.167 0.008 0.688

R9 0.064 0.003 0.802 2.634 0.116 0.12 0.004 <0.001 0.952

M2
R10 3.93 0.164 0.061 7.755 0.279 0.011 2.991 0.13 0.099

R11 6.886 0.256 0.016 5.886 0.227 0.025 9.573 0.324 0.006

M3
R12 1.007 0.048 0.328 12.299 0.381 0.002 0.274 0.014 0.607

R13 0.125 0.006 0.727 2.141 0.097 0.159 0.06 0.003 0.809

R7: 200-600ms and 0.5-2 Hz; R8: 300-600ms and 0.5-2 Hz; R9: EMD; R10: 200-600ms and 1-3 Hz; R11: EDM; R12: 200-600ms and 0.5-2 Hz; R13: EDM.
EDM: the edge detection method; WT: waiting time; FB: feedback; ROI: region of interest.
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either main or interaction effects did not reach a significant
level (see the statistical results of “M3” in Tables 1 and 2).

4. Conclusion and Discussion

We developed a novel approach to objectively explore
evoked event-related oscillations (EROs) of interest mainly
including three steps: (1) temporal principal component
analysis (t-PCA) and Promax rotation were performed
on the ERP waveform matrix to extract the temporal
and spatial components of interest simultaneously and
then the components of interest were projected to the
electrode fields to correct their indeterminacies in the var-
iance and the polarity. (2) The time-frequency representa-
tions (TFRs) of the back-projection waveforms were
computed using the complex morlet continuous wavelet
transform in the electrode fields. (3) The edge detection
algorithm based on the Canny detector was applied on
the TFRs to recognize the specific time and frequency
positions of evoked EROs at some typical electrodes for
the further statistical analysis.

As displayed in Figures 5(b), 5(e), and 5(f), all the cor-
relation coefficients between the waveforms/topogra-
phies/TFRs of source and extracted N2/P3 for different
noise-contaminated simulated datasets were roughly 1.
However, the correlation coefficients between TFRs of
weighted and source N2/P3 signals were easily influenced
by noise using TFA-PCA (see Figures 5(j) and 5(k)). These
mean that our proposed approach could efficiently extract
evoked EROs of interest from a series of SNR signals but
not for TFA-PCA approach. Hereafter, we use the results
of one noise-polluted simulation data (i.e., 10 dB) to
explain that the proposed approach outperformed and
TFA-PCA. Specifically, only one identifiable delta oscilla-
tion around 300-600ms can be recognized from the TFR
distribution for the mixed synthetic dataset by wavelet
transform method as shown in the second row in
Figures 3(b) and 4(b). In contrast, two oscillations were
obtained by the proposed approach which corresponded
to N2 and P3, respectively, as illustrated in Figures 3(b)
and 4(b). Early and late theta oscillations were gained by
TFA-PCA, but we categorized them as one part of the
theta oscillation of the mixed signals. Likewise, the statisti-
cal results of the real dataset for the proposed approach
were more satisfied with experimental purpose than TFA
and TFA-PCA approaches as follows. P3-delta statistical
results of the proposed approach revealed that the loss
condition reflected smaller power than the gain did, which
was similar to the results in the previous reports [51–54].
Besides, the interaction effect between the two factors was
significant, which was consistent with the findings in the
prior study [51]. However, when we applied the conven-
tional TFA method to the signals, only the distinction
between the two feedback conditions was found for delta
oscillation. Meanwhile, we did not find any significant
main or interaction effect when using the TFA-PCA
approach.

The proposed approach is an efficient and objective
method. Firstly, the results of three applied methods, which

were described in Tables 1 and 2, revealed that the statistical
results achieved by the edge detection algorithm were more
stable when compared with those of the conventional rectan-
gle method [5–10, 55]. Secondly, the statistical results of P3-
delta for the conventional TFA/TFA-PCA and the rectangle
method did not reflect that the feedback was sensitive to
the waiting time probably due to the following aspects. (a)
The evoked P3-delta was overlapped with other EROs and
artifacts to some degree in the temporal, spatial, and spec-
trum. (b) Information of each ERO for the projected signal
cannot be completely included or some useless information
was involved when using the rectangle method to determine
the region of interest, such as the region was marked as
shown in Figures 8(b) and 9(b). However, when using our
approach, we found that the power values of feedback for
the long and short waiting time were significantly different,
which was consistent with the previous study [51].

Furthermore, Promax rotation is used to rearrange the
initial principal components (PCs) such that PCs have a sim-
ple and more interpretable structure in the time domain. We
expect that one PC can interpret one ERP but the generated
PC will not have a simple relationship with ERP, for example,
one PC might be a part of the P2 plus a part of N2 and plus a
part of P3 and so forth. Several rotation approaches have
been developed for this purpose, and the key difference
between them is whether they are oblique or orthogonal, that
is, whether the PCs are forced to be correlated or not. Vari-
max and Promax are the typical algorithms for orthogonal
and oblique rotations, respectively, which the former forces
the PCs to be uncorrelated while the latter allows the PCs
to be related. The previous study revealed that Promax rota-
tion can yield much better results than Varimax rotation
both in real and simulated ERP datasets [31, 56–58], and Pro-
max rotation can give the improved results for t-PCA [32,
56]. Therefore, we applied Promax rotation during t-PCA
procedure to rotate the original extracted PCs in this study.

Moreover, the selection of the components in this study
also depends on the similarity of the topographies of different
subjects, and it is expected that different subjects’ topogra-
phies are as homogeneous as possible. Regarding one compo-
nent of the t-PCA plus Promax rotation, all subjects in one
group have the same temporal course and variant spatial
components (i.e., topographies here). This means that, for
t-PCA and Promax rotation, given an estimated ERP compo-
nent, the waveform is invariant for all subjects and its topog-
raphy is variant across all subjects. However, it is strongly
expected that the topographies across different subjects for
an ERP can be as similar as possible since we expect a homog-
enous ERP dataset for the repeatable and reliable data analy-
sis. For the results of synthetic and real datasets, the
similarities were improved for the projected components to
some extent after the proposed method was used (especially
for N2 of the extracted signal (0:72 ± 0:09) when compared
with the mixed signal (0:64 ± 0:11) as illustrated in the last
column the Figure 3(a)). This demonstrated that the homo-
geneity of the topographies of different subjects was better
than before with the proposed approach.

Another technique can also be used to identify the region
of evoked ERO of interest based on the subtle change for

15Neural Plasticity



their topographies as used in a previous study [59]. In order
to identify the precise region (i.e., uniquely topographic was
included in the identified region) for the ERO of interest,
two main stages were involved as below [59]. First, TFRs
were obtained from either averaged or sing-trial ERP signals.
Second, all time-frequency points were divided into time-
frequency features (i.e., regions) based on the correlation
coefficients of topographies between the time-frequency
points and templates using k-means cluster. Likewise, in this
study, we used the following steps to gain the “pure” regions
for evoked EROs of interest. The components of interest
corresponded to the EROs of interest were first extracted
from the averaged ERP dataset in the time domain using
t-PCA and Promax rotation. Next, we calculated the TFRs
of the extracted signals and identified the regions of
evoked EROs of interest using the edge detection algo-
rithm. Obviously, the former approach can be used to
explore the EROs from both averaged and single-trial
ERP datasets, but the proposed approach only extracts
the ERO from the averaged ERP datasets. Furthermore,
it should be noted that if the edge detection algorithm is
directly used to recognize the regions of EROs from the TFRs
of the original averaged ERP data, consequently, different
spatially distinct oscillations may be involved in one region
when those components are overlapped in time and fre-
quency domains. By contrast, this situation will not happen
for the results obtained by topographic segmentation analy-
sis. That is, the spatial distributions of all points in the same
region are highly similar to each other [59].

There are some potential drawbacks to the proposed
approach. Firstly, only the time-locked and phase-locked
information of the event-related responses can be explored
due to we first performed our proposed approach on the
averaged ERP datasets to extract components of interest
and then calculated the related TFRs to find the time-
frequency features. Secondly, the selection of the temporal
and spatial components obtained by t-PCA and Promax
rotation might be affected by the experimenters. Although
we give a criterion that the extracted components are chosen
for further analysis when the properties of components in the
time and space domains are consistent with ERPs, the exper-
imenters can still determine which component was involved
in the next stage. Thirdly, we have to define a mother wavelet
by a set of bandwidth and frequency centre (BWCF) before
we used morlet wavelet transformation to transform the
time-domain signals into time-frequency signals. According
to our previous study [20], different sets of BWCF could lead
to different time-frequency results; thus, the experimenters
have to attempt the number of BWCF for TFA and then
select an optimal one from them for the TFA of ERP signals.

Regarding the future investigations, it can be carried out
from the following aspects. Firstly, we merely focused on
the extraction of evoked oscillations from the averaged ERP
as mentioned above in this study. It should be noted that
some important information like induced oscillation was
cancelled out by the averaging procedure over trials in the
time domain [60, 61]. In addition, the induced oscillatory
response was probably generated by nonlinear and possibly
autonomous mechanisms, and it would belong to high-

order processes. Whereas evoked oscillation was related to
stimulus-locked time [17]. In past decades, the induced oscil-
lation had been widely used to investigate the neural mecha-
nisms of attention modulation [62], the functions of the
alcohol use disorder patients [63], and so on. Our proposed
approach used for the single-trial level analysis will be helpful
to explore the mechanisms of the induced oscillation in
the mentioned fields. Secondly, regarding the selection of
components of interest from the extracted ones obtained
by t-PCA and Promax rotation, one strategy can be used
based on the absolute of the correlation coefficients
between any two extracted spatial components and the
peak time points for the extracted component. For exam-
ple, there are two extracted components, their spatial cor-
relation coefficient is 0.9 and the peak time points are
190ms and 220ms. As a result, they are considered as
one thing and are projected together onto electrode fields
for further analysis. Thirdly, some TFA techniques with
free parameter settings, like the combination of Wigner-
Ville distribution and Gabor transform with the matching
pursuit decomposition, can provide an appropriate time-
frequency resolution in all frequencies [64], which can also
be applied to the ERO analysis as the alternatives to the
proposed approach in our study.

Appendix

A. The Explanation of Temporal PCA and
Promax Rotation from the View of Blind
Source Separation

When applying temporal PCA and Promax rotation [65] to
decompose an ERP dataset ZT ∈RN×M (N and M, respec-
tively, represent the number of sensors of all subjects under
all conditions and the number of time points within one
epoch), the related procedures can be interpreted via the lin-
ear model as below [34, 35].

Z =HS1 + E =H S1 + S2ð Þ =HS, ð4Þ

where H is the mixing matrix with full rank; S = S1 + S2 ðS
∈RR×NÞ, E =HS2, and they are the unknown correlated
source signals and the sensor noise, respectively.

As described in [34], the assumption of the model in Eq.
(4) is overdetermined and it means that the number of the
observed signals M is larger than that of the source signals
R. Once the estimation of the number of the sources is done
(the determination can be based on the model order selection
algorithms, and here, it is the cumulative explained variance
as mentioned in Section 2.2.1 in this study), the overdeter-
mined model can be changed to the determined one as
follows

X =VTZ =VTHS =AS, ð5Þ

where X ∈RR×N ; VT ∈RR×M represents the dimension
reduction matrix generated from performing PCA on ZT ,A
∈RðR×RÞ is also named the mixing matrix.
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Aiming to separate the mixture in Eq. (5), the blind
source separation algorithm can be applied [33]. Here, Pro-
max rotation [65] is used to obtain an unmixing matrix W
in this study. The algorithm of Promax rotation is described
in Appendix B and the inverse matrix B =W−1 represents the
estimation of A [34].

And then we use this unmixing matrix W to turn the
mixture in Eq. (5) into a matrix of estimated components
as below [34].

Y =WX =WAS =CS: ð6Þ

In the above formulation, Y is the estimation of S and its
each row can be assembled to the topographic map of each
source; C =WA is the global matrix.

Under this determined model condition in Eq. (5),
aiming to solve the issue that different components, which
are derived from the matrix X, cannot be statistically fur-
ther analysed together because their polarities and ampli-
tudes are indeterminates [33], and we project the
component(s) of interest back to the electrode fields in
this study which is always used in many other blind
source separation for EEG, for example, independent com-
ponent analysis procedures [34–37]. The back-projection
can be illustrated as [34–36].

Qr = br ∘ yr , ð7Þ

here,Qr ∈R
R×N is the projection of rth component at all

virtue time points in this study; br is the rth column of
the inverse matrix B, and yr is the rth row of the estimated
matrix Y; “∘” denotes the outer product of vectors.

Under the global optimization, there exists only one non-
zero element in each row and each column of C. In other
words, the rth extracted component is unknown scaled ver-
sion of the jth source signal. Hence, the projection in Eq.
(7) can be described as [34, 35].

Qr = br ∘ yr = aj ∘ sj, ð8Þ

where aj is the jth column of the mixing matrix A, and sj is
the jth row of the source matrix S in Eq. (5).

To the original overdetermined model in Eq. (4), the rth

component derived from the matrix Z can be projected to
the all electrodes as below

Zr = ur ∘ yr ,

U =VB,
ð9Þ

where ur is the rth column of U and denotes the time course
or waveform of multisubject of multicondition. We use com-
bination of the inverse matrix B and the dimension reduction
matrix V to represent U, which is achieved to estimate the
mixing matrix H in Eq. (4) [34]. This has been illustrated
by Figures 3 and 4.

In most cases, several components need to be projected
back to electrodes simultaneously [35, 66]; hence, the

related projection of several components can be imple-
mented as follows

Z = uk1 ,⋯,ukr
h i

yk1 ,⋯,ykr
h i

= uk1 ∘ yk1 +⋯+ukr ∘ ykr ,
ð10Þ

where k1,⋯, kr ð1 ≤ kr < RÞ are the number of selected
components; “∘” denotes the outer product of vectors.
The size of each dimension of the matrix Z is the same
with that of Z. This has been illustrated by Figures 3, 4,
8, and 9.

B. Oblique Procrustes Transformation

Mathematically, Procrustes equation can be defined as [65, 67].

P =VW + E, ð11Þ

where P is called as the pattern matrix;W is the transformation
matrix; E is the residual matrix. The satisfactory result is that we
can find a transformation matrix to make the value of ETE as
close zero as possible.

Specifically, the pattern matrix P is first generated from
the matrix of unrotated factor loadings V by the target Pro-
crustes transformation, and the determination of V is based
on PCA here, and it is used in the Eq. (5).

p i, jð Þ =
v i, jð Þk+1
���

���
v i, jð Þ , ð12Þ

where k > 1. The matrix P stands for the matrix V raised to
the kth power, and its original sign is unchanged.

Next, the least squares method is performed to calculate
the fit of the orthogonal matrix V of the factor loadings to
the pattern matrix so that ETE is a minimum.

W = VTV
� �−1VTP, ð13Þ

whereW is called the transformation matrix in Promax rota-
tion [67]; VT is the transpose matrix of the orthogonal
rotated matrix V; (.)-1 is the inverse of a matrix.

Data Availability

The datasets used for supporting the findings in this study are
available from the corresponding author on reasonable
request.

Disclosure

The draft version of the manuscript has been submitted as a
preprint according to the following link: https://www.biorxiv
.org/content/10.1101/2020.05.17.100511v1.

Conflicts of Interest

All authors declare no conflicts of interest.

17Neural Plasticity



Authors’ Contributions

GZ performed the experiments and wrote the article; XL
wrote the article; FC proposed the idea, supervised the study,
and wrote the article.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 91748105), the National
Foundation in China (No. JCKY2019110B009 & 2020-
JCJQ-JJ-252), the Fundamental Research Funds for the
Central Universities (DUT2019, DUT20LAB303) in Dalian
University of Technology in China, and the scholarships from
China Scholarship Council (No. 201806060165). This study is
to memorize Prof. Tapani Ristaniemi for his great help to the
three authors, and Prof. Tapani Ristaniemi has supervised this
study very much. The authors also would like to thank Profes-
sor Peng Li who works at Shenzhen University for sharing
their ERP datasets with us and helping us in ERP study.

References

[1] E. Başar, M. Schürmann, T. Demiralp, C. Başar-Eroglu, and
A. Ademoglu, “Event-related oscillations are ‘real brain
responses’—wavelet analysis and new strategies,” Interna-
tional Journal of Psychophysiology, vol. 39, no. 2-3, pp. 91–
127, 2001.

[2] E. Başar, “A review of gamma oscillations in healthy subjects
and in cognitive impairment,” International Journal of Psycho-
physiology, vol. 90, no. 2, pp. 99–117, 2013.

[3] E. Başar, B. T. Gölbaşı, E. Tülay, S. Aydın, and C. Başar-Eroğlu,
“Best method for analysis of brain oscillations in healthy sub-
jects and neuropsychiatric diseases,” International Journal of
Psychophysiology, vol. 103, pp. 22–42, 2016.

[4] B. Güntekin and E. Başar, “Review of evoked and event-related
delta responses in the human brain,” International Journal of
Psychophysiology, vol. 103, pp. 43–52, 2016.

[5] M. Ergen, S. Saban, E. Kirmizi-Alsan, A. Uslu, Y. Keskin-
Ergen, and T. Demiralp, “Time–frequency analysis of the
event-related potentials associated with the Stroop test,” Inter-
national Journal of Psychophysiology, vol. 94, no. 3, pp. 463–
472, 2014.

[6] S. Her, K. S. Cha, J. W. Choi et al., “Impaired visuospatial
attention revealed by theta- and beta-band cortical activities
in idiopathic REM sleep behavior disorder patients,” Clinical
Neurophysiology, vol. 130, no. 10, pp. 1962–1970, 2019.

[7] K. A. Jones, B. Porjesz, D. Chorlian et al., “S-transform time-
frequency analysis of P300 reveals deficits in individuals diag-
nosed with alcoholism,” Clinical Neurophysiology, vol. 117,
no. 10, pp. 2128–2143, 2006.

[8] N. Lally, P. G. Mullins, M. V. Roberts, D. Price, T. Gruber, and
C. Haenschel, “Glutamatergic correlates of gamma-band oscil-
latory activity during cognition: a concurrent ER-MRS and
EEG study,” NeuroImage, vol. 85, pp. 823–833, 2014.

[9] A. Sandre and A. Weinberg, “Neither wrong nor right: theta
and delta power increase during performance monitoring
under conditions of uncertainty,” International Journal of Psy-
chophysiology, vol. 146, pp. 225–239, 2019.

[10] Z. Zhang, G. Guo, J. Zhang et al., “Do theta oscillations explain
the somatosensory change detection mechanism?,” Biological
Psychology, vol. 143, pp. 103–112, 2019.

[11] E. Erdogdu, E. Kurt, A. D. Duru, A. Uslu, C. Başar-Eroğlu, and
T. Demiralp, “Measurement of cognitive dynamics during
video watching through event-related potentials (ERPs) and
oscillations (EROs),” Cognitive Neurodynamics, vol. 13, no. 6,
pp. 503–512, 2019.

[12] R. J. Barry, “Evoked activity and EEG phase resetting in the
genesis of auditory Go/NoGo ERPs,” Biological Psychology,
vol. 80, no. 3, pp. 292–299, 2009.

[13] E. M. Bernat, W. J. Williams, and W. J. Gehring, “Decompos-
ing ERP time–frequency energy using PCA,” Clinical Neuro-
physiology, vol. 116, no. 6, pp. 1314–1334, 2005.

[14] E. M. Bernat, S. M. Malone, W. J. Williams, C. J. Patrick, and
W. G. Iacono, “Decomposing delta, theta, and alpha time–fre-
quency ERP activity from a visual oddball task using PCA,”
International Journal of Psychophysiology, vol. 64, no. 1,
pp. 62–74, 2007.

[15] J. Harper, S. M. Malone, and E. M. Bernat, “Theta and delta
band activity explain N2 and P3 ERP component activity in
a go/no-go task,” Clinical Neurophysiology, vol. 125, no. 1,
pp. 124–132, 2014.

[16] J. Dien, “The ERP PCA toolkit: an open source program for
advanced statistical analysis of event-related potential data,”
Journal of Neuroscience Methods, vol. 187, no. 1, pp. 138–
145, 2010.

[17] O. David, J. M. Kilner, and K. J. Friston, “Mechanisms of
evoked and induced responses in MEG/EEG,” NeuroImage,
vol. 31, no. 4, pp. 1580–1591, 2006.

[18] J. Wang, J. Chen, Y. Lei, and P. Li, “P300, not feedback error-
related negativity, manifests the waiting cost of receiving
reward information,” Neuroreport, vol. 25, no. 13, pp. 1044–
1048, 2014.

[19] F. Cong, T. Ristaniemi, and H. Lyytinen, “Wavelet filter design
based on frequency responses for filtering ERP data with dura-
tion of one epoch,” in Advanced Signal Processing on Brain
Event-Related Potentials, 2015World Scientific.

[20] G. Zhang, C. Zhang, S. Cao et al., “Multi-domain features of
the non-phase-locked component of interest extracted from
ERP data by tensor decomposition,” Brain Topography,
vol. 33, no. 1, pp. 37–47, 2020.

[21] S. M. Benvenuti, G. Buodo, and D. Palomba, “Appetitive and
aversive motivation in dysphoria: a time-domain and time-
frequency study of response inhibition,” Biological Psychology,
vol. 125, pp. 12–27, 2017.

[22] L. Hu, P. Xiao, Z. G. Zhang, A. Mouraux, and G. D. Iannetti,
“Single-trial time–frequency analysis of electrocortical signals:
baseline correction and beyond,” NeuroImage, vol. 84,
pp. 876–887, 2014.

[23] W. Peng, Z. Y. Tang, F. R. Zhang et al., “Neurobiological
mechanisms of TENS-induced analgesia,” NeuroImage,
vol. 195, pp. 396–408, 2019.

[24] L. Hu, Z. G. Zhang, A. Mouraux, and G. D. Iannetti, “Multiple
linear regression to estimate time-frequency electrophysiolog-
ical responses in single trials,” NeuroImage, vol. 111, pp. 442–
453, 2015.

[25] R. J. Barry et al., “Components in the P300,” Don’t forget the
Novelty P3! Psychophysiology, , Wiley Online Libraryp. e13371,
2019.

18 Neural Plasticity



[26] J. F. Cavanagh, P. Kumar, A. A. Mueller, S. P. Richardson, and
A. Mueen, “Diminished EEG habituation to novel events effec-
tively classifies Parkinson’s patients,” Clinical Neurophysiol-
ogy, vol. 129, no. 2, pp. 409–418, 2018.

[27] J. Dien, “Applying principal components analysis to event-
related potentials: a tutorial,” Developmental Neuropsychology,
vol. 37, no. 6, pp. 497–517, 2012.

[28] J. S. Fogarty, R. J. Barry, and G. Z. Steiner, “Sequential process-
ing in the classic oddball task: ERP components, probability,
and behavior,” Psychophysiology, vol. 56, no. 3, p. e13300,
2019.

[29] F. Artoni, A. Delorme, and S. Makeig, “Applying dimension
reduction to EEG data by principal component analysis
reduces the quality of its subsequent independent component
decomposition,” NeuroImage, vol. 175, pp. 176–187, 2018.

[30] R. J. Huster and L. Raud, “A tutorial review on multi-subject
decomposition of EEG,” Brain Topography, vol. 31, no. 1,
pp. 3–16, 2018.

[31] J. Dien, D. J. Beal, and P. Berg, “Optimizing principal compo-
nents analysis of event-related potentials: matrix type, factor
loading weighting, extraction, and rotations,” Clinical Neuro-
physiology, vol. 116, no. 8, pp. 1808–1825, 2005.

[32] J. Dien, W. Khoe, and G. R. Mangun, “Evaluation of PCA and
ICA of simulated ERPs: Promax vs. Infomax rotations,”
Human Brain Mapping, vol. 28, no. 8, pp. 742–763, 2007.

[33] P. Comon and C. Jutten, “Handbook of Blind Source Separa-
tion,” in Independent component analysis and applications,
Academic press, 2010.

[34] F. Cong, I. Kalyakin, Z. Chang, and T. Ristaniemi, “Analysis on
subtracting projection of extracted independent components
from EEG recordings,” Biomedizinische Technik/Biomedical
Engineering, vol. 56, no. 4, pp. 223–234, 2011.

[35] F. Cong, I. Kalyakin, and T. Ristaniemi, “Can back-projection
fully resolve polarity indeterminacy of independent compo-
nent analysis in study of event-related potential?,” Biomedical
Signal Processing and Control, vol. 6, no. 4, pp. 422–426, 2011.

[36] S. Makeig, T. P. Jung, A. J. Bell, D. Ghahremani, and T. J.
Sejnowski, “Blind separation of auditory event-related brain
responses into independent components,” Proceedings of the
National Academy of Sciences, vol. 94, no. 20, pp. 10979–
10984, 1997.

[37] S. Makeig, M. Westerfield, T. P. Jung et al., “Functionally inde-
pendent components of the late positive event-related poten-
tial during visual spatial attention,” Journal of Neuroscience,
vol. 19, no. 7, pp. 2665–2680, 1999.

[38] O. Bertrand and C. Tallon-Baudry, “Oscillatory gamma
activity in humans: a possible role for object representa-
tion,” International Journal of Psychophysiology, vol. 38,
no. 3, pp. 211–223, 2000.

[39] C. S. Herrmann, M. Grigutsch, and N. A. Busch, “11 EEG
oscillations and wavelet analysis,” Event-related potentials: A
methods handbook, p. 229, 2005.

[40] C. S. Herrmann, S. Rach, J. Vosskuhl, and D. Strüber,
“Time–frequency analysis of event-related potentials: a brief
tutorial,” Brain Topography, vol. 27, no. 4, pp. 438–450,
2014.

[41] S. J. Kiebel, C. Tallon-Baudry, and K. J. Friston, “Parametric
analysis of oscillatory activity as measured with EEG/MEG,”
Human Brain Mapping, vol. 26, no. 3, pp. 170–177, 2005.

[42] C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier,
“Stimulus specificity of phase-locked and non-phase-locked

40 Hz visual responses in human,” Journal of Neuroscience,
vol. 16, no. 13, pp. 4240–4249, 1996.

[43] S. Glim, Y. O. Okazaki, Y. Nakagawa, Y. Mizuno,
T. Hanakawa, and K. Kitajo, “Phase-amplitude coupling of
neural oscillations can be effectively probed with concurrent
TMS-EEG,” Neural Plasticity, vol. 2019, Article ID 6263907,
13 pages, 2019.

[44] A. Ahnaou, R. Biermans, and W. H. I. M. Drinkenburg, “Cho-
linergic mechanisms of target oddball stimuli detection: the
late “P300-like” event-related potential in rats,” Neural Plastic-
ity, vol. 2018, Article ID 4270263, 15 pages, 2018.

[45] E. Mas-Herrero, P. Ripollés, A. HajiHosseini, A. Rodríguez-
Fornells, and J. Marco-Pallarés, “Beta oscillations and reward
processing: coupling oscillatory activity and hemodynamic
responses,” NeuroImage, vol. 119, pp. 13–19, 2015.

[46] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 6, pp. 679–698, 1986.

[47] C. Hory, N. Martin, and A. Chehikian, “Spectrogram segmen-
tation by means of statistical features for non-stationary signal
interpretation,” IEEE Transactions on Signal Processing,
vol. 50, no. 12, pp. 2915–2925, 2002.

[48] Ž. Milanović, N. Saulig, and I. Marasović, “Signal feature rec-
ognition in time-frequency domain using edge detection algo-
rithms,” in 2019 4th International Conference on Smart and
Sustainable Technologies (SpliTech), Split, Croatia, 2019IEEE.

[49] N. Saulig, Ž. Milanović, and C. Ioana, “A local entropy-based
algorithm for information content extraction from time–fre-
quency distributions of noisy signals,” Digital Signal Process-
ing, vol. 70, pp. 155–165, 2017.

[50] Q. Xu, S. Varadarajan, C. Chakrabarti, and L. J. Karam, “A dis-
tributed canny edge detector: algorithm and FPGA implemen-
tation,” IEEE Transactions on Image Processing, vol. 23, no. 7,
pp. 2944–2960, 2014.

[51] G. Höltje and A. Mecklinger, “Feedback timing modulates
interactions between feedback processing and memory encod-
ing: evidence from event-related potentials,” Cognitive, Affec-
tive, & Behavioral Neuroscience, vol. 20, no. 2, pp. 250–264,
2020.

[52] M. Paul, C. Bellebaum, M. Ghio, B. Suchan, and O. T. Wolf,
“Stress effects on learning and feedback-related neural activity
depend on feedback delay,” Psychophysiology, vol. 57, no. 2,
p. e13471, 2020.

[53] X. Zhang, Y. Lei, H. Yin, P. Li, and H. Li, “Slow is also fast:
feedback delay affects anxiety and outcome evaluation,” Fron-
tiers in Human Neuroscience, vol. 12, p. 20, 2018.

[54] Y. Wu and X. Zhou, “The P300 and reward valence, magni-
tude, and expectancy in outcome evaluation,” Brain Research,
vol. 1286, pp. 114–122, 2009.

[55] T. Aktürk, Ü. İşoğlu-Alkaç, L. Hanoğlu, and B. Güntekin, “Age
related differences in the recognition of facial expression: evi-
dence from EEG event-related brain oscillations,” Interna-
tional Journal of Psychophysiology, vol. 147, pp. 244–256, 2020.

[56] J. Dien, “Evaluating two-step PCA of ERP data with geomin,
infomax, oblimin, promax, and varimax rotations,” Psycho-
physiology, vol. 47, no. 1, pp. 170–183, 2010.

[57] J. Dien, “Addressing misallocation of variance in principal
components analysis of event-related potentials,” Brain
Topography, vol. 11, no. 1, pp. 43–55, 1998.

[58] J. Dien, K. M. Spencer, and E. Donchin, “Localization of the
event-related potential novelty response as defined by

19Neural Plasticity



principal components analysis,” Cognitive Brain Research,
vol. 17, no. 3, pp. 637–650, 2003.

[59] H. Jia, W. Peng, and L. Hu, “A novel approach to identify
time-frequency oscillatory features in electrocortical signals,”
Journal of Neuroscience Methods, vol. 253, pp. 18–27, 2015.

[60] C. Tallon-Baudry and O. Bertrand, “Oscillatory gamma activ-
ity in humans and its role in object representation,” Trends in
Cognitive Sciences, vol. 3, no. 4, pp. 151–162, 1999.

[61] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related
EEG/MEG synchronization and desynchronization: basic
principles,” Clinical Neurophysiology, vol. 110, no. 11,
pp. 1842–1857, 1999.

[62] C. S. Herrmann and R. T. Knight, “Mechanisms of human
attention: event-related potentials and oscillations,” Neurosci-
ence & Biobehavioral Reviews, vol. 25, no. 6, pp. 465–476,
2001.

[63] W. Mumtaz, P. L. Vuong, A. S. Malik, and R. B. A. Rashid, “A
review on EEG-based methods for screening and diagnosing
alcohol use disorder,” Cognitive Neurodynamics, vol. 12,
no. 2, pp. 141–156, 2018.

[64] M. Wacker and H. Witte, “Time-frequency techniques in bio-
medical signal analysis,” Methods of Information in Medicine,
vol. 52, no. 4, pp. 279–296, 2013.

[65] A. E. Hendrickson and P. O. White, “Promax: a quick method
for rotation to oblique simple structure,” British Journal of Sta-
tistical Psychology, vol. 17, no. 1, pp. 65–70, 1964.

[66] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including indepen-
dent component analysis,” Journal of Neuroscience Methods,
vol. 134, no. 1, pp. 9–21, 2004.

[67] M. B. Richman, “Rotation of principal components,” Journal
of Climatology, vol. 6, no. 3, pp. 293–335, 1986.

20 Neural Plasticity



 

 
 
 

 
 
 

  
   

 
 
 
 
 

 
 

   
   

 
 

 
 
 

 

PIV 

MULTI-DOMAIN FEATURES OF THE NON-PHASE-LOCKED 
COMPONENT OF INTEREST EXTRACTED FROM ERP DATA 

BY TENSOR DECOMPOSITION 

by 

Guanghui Zhang, Chi Zhang, Shuo Cao, Xue Xia, Xin Tan, Lichengxi Si, Chenxin 
Wang, Xiaochun Wang, Chenglin Zhou, Tapani Ristaniemi, and Fengyu Cong 

2020 

Brain Topography 33, 37–47, https://doi.org/10.1007/s10548-019-00750-8 

Reproduced with kind permission of Springer Nature. 

https://doi.org/10.1007/s10548-019-00750-8


Vol.:(0123456789)1 3

Brain Topography (2020) 33:37–47 
https://doi.org/10.1007/s10548-019-00750-8

ORIGINAL PAPER

Multi‑domain Features of the Non‑phase‑locked Component 
of Interest Extracted from ERP Data by Tensor Decomposition

Guanghui Zhang1,2   · Chi Zhang1 · Shuo Cao3 · Xue Xia4 · Xin Tan1 · Lichengxi Si1 · Chenxin Wang1 · 
Xiaochun Wang4 · Chenglin Zhou4 · Tapani Ristaniemi2 · Fengyu Cong1,2

Received: 22 June 2019 / Accepted: 10 December 2019 / Published online: 26 December 2019 
© The Author(s) 2019

Abstract
The waveform in the time domain, spectrum in the frequency domain, and topography in the space domain of component(s) 
of interest are the fundamental indices in neuroscience research. Despite the application of time–frequency analysis (TFA) 
to extract the temporal and spectral characteristics of non-phase-locked component (NPLC) of interest simultaneously, the 
statistical results are not always expectedly satisfying, in that the spatial information is not considered. Complex Morlet 
wavelet transform is widely applied to TFA of event-related-potential (ERP) data, and mother wavelet (which should be 
firstly defined by center frequency and bandwidth (CFBW) before using the method to TFA of ERP data) influences the 
time–frequency results. In this study, an optimal set of CFBW was firstly selected from the number sets of CFBW, to further 
analyze for TFA of the ERP data in a cognitive experiment paradigm of emotion (Anger and Neutral) and task (Go and 
Nogo). Then tensor decomposition algorithm was introduced to investigate the NPLC of interest from the fourth-order ten-
sor. Compared with the TFA results which only revealed a significant difference between Go and Nogo task condition, the 
tensor-based analysis showed significant interaction effect between emotion and task. Moreover, significant differences were 
found in both emotion and task conditions through tensor decomposition. In addition, the statistical results of TFA would be 
affected by the selected region of interest (ROI), whereas those of the proposed method were not subject to ROI. Hence, this 
study demonstrated that tensor decomposition method was effective in extracting NPLC, by considering spatial information 
simultaneously as the potential to explore the brain mechanisms related to experimental design.
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Introduction

Electroencephalogram (EEG) has been extensively used 
in neuroscience since Berger Hans first recorded it from 
the human cerebral cortex in 1929 (Berger 1929). In early 
studies, most researchers mainly focused on the ampli-
tude of an individual waveform in the time domain. With 
the introduction of computers, besides waveform, spectral 
and spatial characteristics of the component(s) of inter-
est (COI) for group-averaged EEG/event-related-poten-
tial (ERP) data are analyzed (Luck 2014). They found 
that ERP components could be evoked from the related 
experiments, and have specific temporal, spectral and spa-
tial characteristics. For instance, when words and other 
meaningful (or potentially meaningful) excitations include 
visual and auditory words, sign language signs, pictures, 
faces, environmental sounds, and smells are used for 
experimental stimuli, N400, a negative waveform which 
reaches a peak around 400 ms after stimulus onset and 
can extend the time window from 250 to 500 ms, can be 
discovered (Kutas and Federmeier 2000, 2011; Kutas and 
Hillyard 1980). Meanwhile, it is typically maximal over 
centro-parietal electrodesites. Therefore, all the tempo-
ral, spectral and spatial properties of ERP component(s) 
are useful for the investigation of brain mechanisms in 
cognitive processes and these properties may be coupled. 
Several techniques have been developed for ERP data pro-
cessing and analyze to dig out the potential information in 
the cognitive processes, such as time domain analysis and 
time–frequency analysis (TFA).

Most previous studies focus on time domain analysis. The 
conventional method averages several single-trial data of the 
same stimulus in the time domain to obtain ERP compo-
nents. The advantage of this method is that the energy of 
ERP is enhanced, with the amplitude of spontaneous EEG 
and noise extremely reduced (Cohen 2014). Some advanced 
signal processing and analyze methods also have been devel-
oped to extract COI from group-averaged ERP data such 
as Independent Component Analysis (ICA) (Hyvärinen 
2013; Jung et al. 2000) and Principal Component Analysis 
(PCA) (Dien 2010a, b, 2012; Dien et al. 2005; Möcks and 
Verleger 1985; Kawaguchi et al. 2013). However, the main 
drawback of the time domain analysis is that it cannot reveal 
COI changes in the frequency domain over time so that the 
pivotal rhythm (or oscillation) information is neglected.

To extract the temporal and spectral characteristics of 
ERP component(s) simultaneously, some researchers use 
short-time Fourier transform (STFT) or wavelet trans-
form algorithm (WTA) to convert time domain signals 
into time–frequency domain signals. There are two strate-
gies for TFA of ERP data. One is evoked method in which 
multi-trial data are averaged before the computation of 

the time–frequency transforms of averaged ERP data. The 
event-related oscillations (EROs) obtained by this type of 
TFA are extremely phase-locked to stimulus onset because 
of the simultaneous co-occurrence of enhanced EROs. The 
time locked and phase locked component (TLPLC) can be 
obtained and it is called evoked brain activity. The other 
one is based on averaging the time–frequency transforms of 
every single-trial. Both TLPLC and non-phase-locked com-
ponent (NPLC) are summed up so that it refers to all-brain 
activities. And this strategy is considered as the induced 
method (Herrmann et al. 2004, 2014; Tallon-Baudry and 
Bertrand 1999). The induced method has two superiorities 
over time domain analysis or evoked method. The first one is 
that it can simultaneously exploit the temporal and spectral 
properties of an ERP component and reveal additional NPLC 
activity. For the other one, the results are non-negative, 
which means that it can avoid the amplitude of COI being 
cancelled out in the averaged ERP data, if they are randomly 
distributed for each single-trial in the time domain (Cong 
et al. 2015b). The TLPLC can be obtained by time domain 
analysis and evoked method, whereas NPLC is generated 
by averaging the time–frequency transforms of every trial 
and this type ERO is evoked by some high-order processes 
(David et al. 2006; Singer and Gray 1995). Meanwhile, as 
described in the study (David et al. 2006), TLPLC reflects 
some stimulus locked event related response, while NPLC 
might be evoked by nonlinear and autonomous mechanisms. 
In short, the neuronal processes and mechanisms of TLPLC 
and NPLC are different (David et al. 2006).

Since Tallon Baudry et al. proposed the NPLC-oriented 
TF method in 1996 (Tallon-Baudry et al. 1996), it has been 
widely used in the fields of cognitive neuroscience and med-
icine, such as Parkinson’s disease (Wiesman et al. 2016), 
depression (Shaw et al. 2013), children sleep (Piantoni et al. 
2013), and language cognition (Araki et al. 2016; Kielar 
et al. 2015; Wang et al. 2012). Hence, NPLC includes sig-
nificant information of all-brain activities. However, the 
spatial information is still not utilized in TFA and some-
times statistically significant results cannot be obtained by 
TFA, which poses some challenges for the exploration of 
brain mechanisms. In such a context, we propose a NPLC-
oriented tensor decomposition analysis of ERP data. Tensor 
decomposition exploits the interaction among modes. Firstly 
defined in the mathematics field (Hitchcock 1927), it has 
been extensively applied in the fields of psychometrics and 
chemometrics for multi-mode data analysis (Kroonenberg 
2008; Smilde et al. 2004).

Aiming to overcome the shortcomings of time domain 
analysis and TFA, some researchers have attempted to use 
Canonical Polyadic decomposition (CPD) (Hitchcock 1927) 
to extract multi-domain features of COI simultaneously from 
high-order tensor composed of time–frequency results. Here, 
the high-order tensor is a fourth-order tensor. The order of 
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the fourth-order tensor represents the number of its “ways”, 
“dimensions”, “domains”, or “modes”, which includes four 
modes: frequency, time, channels/space, and subjects-stim-
uli/conditions (Zhou et al. 2016). The component is selected 
if its temporal, spectral, and spatial components are con-
sistent with characteristics of COI in the time, frequency, 
and space domains, and then its multi-domain feature mode 
(the last mode) is applied to statistical analysis (Cong et al. 
2012c, 2013, 2014). Despite the use of tensor decomposition 
algorithm to extract TLPLC of interest (Cong et al. 2012c), 
NPLC from all brain activities has not been investigated with 
tensor-based multi-mode analysis (more than three modes).

There are two problems to be solved before extracting 
NPLC. For one thing, when referring to TFA of ERP data, 
it is typically calculated by WTA (Herrmann et al. 2014; 
Tallon-Baudry and Bertrand 1999; Tallon-Baudry et al. 
1996, 1997, 1998). Some researchers also use STFT for 
TFA of ERP data, but the central idea is similar to WTA 
(Hu et al. 2014). When WTA is used for TFA of ERP 
data, a mother wavelet should be firstly defined by a set 
of center frequency and bandwidth (CFBW). Since the 
differences of CFBW may result in divergent time–fre-
quency results, different CFBW should be attempted for 
an optimal time–frequency result (Zhang et al. 2017). For 
another, NPLC is mixed together with other components 
(Jung et al. 2000). The key problem is how to separate 
NPLC from mixed signals. This study is dedicated to the 

investigation of these issues and the following steps are 
used for implementing the idea of NPLC-oriented tensor 
decomposition analysis. After ERP data preprocessing, 
CFBW are optimized by selecting from 80 sets of CFBW 
to define a mother wavelet for complex morlet continuous 
wavelet transform (CMCWT), which is used to solve the 
first problem as mentioned above (as shown in Fig. 2). The 
induced method was conducted to convert the time domain 
signals of every participant into the time–frequency 
domain signals, so that the fourth-order tensor was formed. 
Subsequently, the temporal components, spectral compo-
nents, spatial components, and features of subjects-stimuli/
conditions mode of NPLC are extracted simultaneously 
by CPD from the fourth-order tensor (to solve the second 
problem as mentioned above). Finally, a comparison was 
made of the diversity between NPLC extracted by CPD 
and TFA in the temporal component, spectral component, 
spatial component, and repeated measure analysis of vari-
ance (rm-ANOVA) results (the flow of data processing and 
analyze as shown in Fig. 1).

Methods

Participants and EEG Data Acquisition

Fifteen college students were recruited to participate as paid 
volunteers from Shanghai University of Sports in China. 

Raw data

Preprocessing

Optimal set of CFBW

Mother wavelet

CMCWT

i = I?

s = s + 1

Yes

s = S?

Fourth-order tensor

Yes

Multi-domain features

CPD

i = i +1 

No

No

Fig. 1   The flow of tensor-based method for ERP data analysis. S is 
the number of subjects-stimuli/conditions; I represents the number of 
channels

Single-subject data

Preprocessing

A set of CFBW

Mother wavelet

CMCWT

i = I?

Third-order tensor

Yes

R  components

CPD

i = i +1 
No

Max.CC

Template

m = 80?

m = m+1

No

 Optimal CFBW

Yes

Fig. 2   Optimal CFBW set selection. I and 80 are the number of chan-
nels and total number of sets of CFBW, respectively. Max.CC repre-
sents maximum correlation coefficient
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Seven were females and eight were males (Mean age: 20.8; 
Std: 1.4). All the participants were right-handed, presented 
with normal or corrected to normal visual acuity and they 
did not know or see the experimental paradigm before the 
experiment. Previous studies reported that anger appeared to 
be an important factor in human behavior (Denny and Sie-
mer 2012) and the emotion Go/Nogo task was used in a great 
number of studies to explore the underlying mechanisms 
(Goldstein et al. 2007; Shafritz et al. 2006; Verona et al. 
2012; Yu et al. 2014). Following this line, in this study, all 
participants were required to participate in emotion (Anger 
and Neutral) Go/Nogo task. The details of the experiment 
materials and the paradigm can be found in our previous 
research (Xia et al. 2018). EEG recordings at 64 locations 
were collected according to the standard 10–20 system. The 
EEG data were referenced online against the FCz electrode 
and grounded at the AFz electrode. Meanwhile, a vertical 
electrooculogram was obtained below the left eye, and the 
horizontal electrooculogram was obtained at the outer can-
thus of the right eye. Impedances were less than 5 kΩ . The 
BrainAmp amplifier and BrainVision Recorder 2.0 system 
(Brain Products GmbH, Germany) were used to record elec-
trical activity for each participant with a 500 Hz sampling 
rate and the data were filtered between 0.01 and 100 Hz by 
a BrainAmp amplifier.

Data Preprocessing

The preprocessing of EEG was conducted in two sorts of 
software. Firstly, by the Analyzer 2.0 system (Brain Prod-
ucts), the FCz electrode was restored when the data were 
re-referenced offline to an average of both posterior ear 
papillae (TP9 and TP10) for each participant (Debener et al. 
2012). Subsequently, using the EEGLAB toolbox (Delorme 
and Makeig 2004) running in the MATLAB environment 
(MathWorks, Natick, MA), the data preprocessing was per-
formed offline. The EEG signals were filtered offline with 
a 45–55 Hz notch infinite impulse response (IIR) (Delorme 
and Makeig 2004; Guan et al. 2004; Kropotov 2010; Lopez-
Calderon and Luck 2014; Nishida et al. 1993; Widmann 
et al. 2015) filter (to remove line noise), a high-pass IIR 
filter of 0.2 Hz and a low-pass IIR filter with 30 Hz, respec-
tively. Furthermore, the filtered continuous recordings were 
epoched from 200 ms before the stimulus onset to 1000 ms 
after the stimulus onset. Epochs/trials whose maximum 
magnitude exceeded 100 μV  were excluded ( 5.7% of epochs/
trials were rejected) and then remaining epochs were base-
line corrected. Considering the COI is below 30 Hz and in 
order to reduce the impact of low-frequency components, a 
band-pass filter with 3–30 Hz based on Fast Fourier Trans-
formation (FFT) was applied to filter the single-trial data 
(Cong et al. 2015b). Taking into account the diversity of 
bad channels of each participant, 22 bad channels were 

removed for all participants. They were identified based on 
the data distribution and variance of channels, by using the 
EEGLAB’s function-pop_rejchan (Delorme and Makeig 
2004) and the FASTER toolbox (Nolan et al. 2010).

Time–Frequency Analysis

Complex Morlet Continuous Wavelet Transform

STFT and WTA are two common algorithms in the TFA of 
ERP data. STFT has been extensively utilized for TFA of 
ERP data since it is proposed by Potter in 1947 (Araki et al. 
2016; Cohen 1989; Ehm et al. 2011; Fumuro et al. 2015; 
Kauppi et al. 2013). This method is to calculate the Fourier 
transform of the windowed signals, which are approximately 
stationary over the window. However, the length of the win-
dow is the same for all frequencies. If the length of the win-
dow is too long, it will lead to low time-resolution at higher 
frequencies and low frequency-resolution at lower frequen-
cies. In contrast, when the window length is relatively 
shorter, it will present the opposite results. Compared with 
STFT, the wavelet transform uses short windows at high 
frequencies and long windows at low frequencies (Rioul 
and Vetterli 1991; Peng and Chu 2004). That is to say, the 
wavelet transform is more adapted to TFA of non-stationary 
signals, for example, EEG/ERP data (Peng and Chu 2004). 
Therefore, WTA is used to achieve a trade-off between time-
resolution and frequency-resolution in this study.

When the length of discrete sequence signal y(t) is 
T(t = 0, 1, 2,…,T − 1) , then the wavelet transform can be 
expressed as (Zhang et al. 2017):

In the above formula, �(
t−t0

a
) is the mother wavelet. a and 

t0 are called scaling and shifting parameters, respectively. 
In this study, the complex Morlet Wavelet is defined as the 
mother wavelet (Tallon-Baudry and Bertrand 1999; Tallon-
Baudry et al. 1996, 1997, 1998; Bertrand and Tallon-Baudry 
2000; Simões et al. 2003; Lachaux et al. 2005; Li et al. 2019; 
Xia et al. 2019):

where fb and fc stand for bandwidth and center frequency, 
respectively. And a gaussian shape respectively in the time 
domain and frequency domain around its fc can be obtained 
(Zhang et al. 2017).

A wavelet family is characterized by a constant ratio 
(Tallon-Baudry et al. 1996):

(1)Y(a, t0) =
1√
∣ a ∣

T−1�
t=0

y(t)�
� t − t0

a

�
.

(2)�(t, fc) =
1

√
�fb

2

ei2�fcte
−t2

2 fb
2
,
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In this formula, fbf =
1

2�fb
 , K should be more than 5 (Zhang 

et al. 2017).
Given an ERP data xc,n(t) , c and n are the number of the 

electrodes/sensors and trials, respectively. The definition of 
induced method can be given (Herrmann et al. 2005) by the 
following equation:

In Eq. 4, ∣ Xc,n(t, f ) ∣
2 represent the power values of ERP data 

in cth electrode and nth trial.

Selection of an Optimal Set of CFBW for CMCWT​

As shown in our previous study (Zhang et al. 2017), different 
parametric settings may result in divergent time–frequency 
results. CMCWT [the MATLAB function (Daubechies 
1992; Mallat 1999)] was used under the MATLAB envi-
ronment for the TFA of ERP data with an optimal set of 
CFBW selected from a number of sets of CFBW (as shown 
in Fig. 2). The specific steps are as below.

Eighty sets were generated through different combina-
tions of center frequency (fc) and bandwidth (fb) under the 
constraint of K > 5 . K is the constant ratio in Eq. 3. The 
combinations are as follows: when fb1 = 0.1, fc = 9, 10 , 
respectively; when fb2 = 0.2, fc = 5, 6, 7, 8, 9, 10 , respec-
tively; when fb3 = 0.3, fc = 3, 4, 5, 6, 7, 8, 9, 10, respectively; 
when fb4 = 0.4, fc = 3, 4, 5, 6, 7, 8, 9, 10, respectively; when 
fb5 = 0.5, fc = 2, 3, 4, 5, 6, 7, 8,  9,  10, respectively; when 
fb6 = 0.6, fc = 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively; when 
fb7 = 0.7, fc = 2, 3, 4, 5, 6, 7, 8, 9,  10, respectively; when 
fb8 = 0.8, fc = 2, 3, 4, 5, 6, 7, 8, 9, 10 , respectively; when 

(3)K =
fc

fbf
= 2�fbfc.

(4)ERSPav(t, f ) =
1

N

N∑

n=1

∣ Xc,n(t, f ) ∣
2
.

fb9 = 0.9, fc = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively; when 
fb10 = 1, fc = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.

The CFBW in each set was applied to the TFA (see 
“Complex Morlet Continuous Wavelet Transform” section) 
of the same single subject data under one condition.

Each set of CFBW corresponded to a time–frequency 
representation (TFR) and topography (obtained by aver-
aging the same region of interest, the time window from 
300–600 ms and the frequency range from 3 to 7 Hz for all 
sets of CFBW) obtained by TFA. Meanwhile, third-order 
tensor including frequency, time, and channels can be com-
posed by the time–frequency results of all sets of CFBW, 
respectively.

A typical topographical distribution of time–frequency 
results was referred to as the template. For instance, 
when fb = 1 , the value of fc can be respectively set as 
1, 2, 3, 4, 5, 6, 7, 8, 9,   and 10. The topographical dis-
tribution of fc4 = 4 was finally chosen as the template 
Ttemplate(fb10, fc4 ) , based on the comparison of its topogra-
phy and TFR with those of other sets of CFBW. That is to 
say, the time-resolution and frequency-resolution of its TFR 
are better than other sets of CFBW, and the template could 
represent most of the topographic maps of all sets of CFBW. 
After defining fcn , the correlation coefficients (CCs) between 
the template ( Ttemplate ) and spatial components sr(fb10, fcn ) 
obtained by CPD were calculated by the following equa-
tions (R components were extracted in each mode based on 
the method as described in our previous studies (Cong et al. 
2012a, 2015a), the detail of extracted number of every set 
of CFBW is shown in Table 1).

where r = 1, 2,…,R;n = 1, 2,…, 10 ; Y is the CC of each 
component for every set of CFBW. 

(5)Y(fb10, fcn , r) = �(sr(fb10, fcn ), Ttemplate(fb10, fc4 )),

Table 1   The extracted number 
in each mode of every set of 
CFBW

fc fb

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 – – – – – – – – 36 28
2 – – – – 35 45 25 42 35 32
3 – – 51 43 32 34 28 25 45 45
4 – – 28 50 45 42 30 36 46 42
5 – 25 44 46 25 35 25 25 40 25
6 – 37 52 35 20 45 40 30 30 32
7 – 34 37 30 42 40 28 42 42 45
8 – 26 26 36 31 36 36 30 45 28
9 25 40 44 25 40 25 35 40 33 30
10 45 36 38 24 42 35 35 48 30 45
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where � ∈ (−1, 1) represents the CC between sr and Ttemplate ; 
I is the number of channels; Ti

template
 and si

r
 are the value of 

each channel for Ttemplate and sr , respectively; Ttemplate and sr 
are the mean value of Ttemplate and sr , respectively.

Subsequently, the maximal CC for each set of parameters 
was chosen as:

Then, the corresponding r th components with the maximum 
CC were obtained. The same procedures were applied to the 
other sets of CFBW.

Finally, an optimal set of CFBW was selected. Take the 
mutil-domain components of the first four maximum CCs of 
four sets of CFBW as example, as shown in Fig. 3. Compar-
ing the corresponding waveforms of the maximum CCs of 
the first four sets of CFBW, the set of fb = 0.7, fc = 4 was 
firstly discarded, because the COI was evoked after the stim-
ulus onset. Then, we considered that the period of waveform 
of COI was relatively narrow in the time domain (usually 
not more than one second) and there were few irrelevant 
spikes for waveform and spectrum of multi-domain features 
extracted by CPD. fb = 1 and fc = 1 were used to define the 
mother wavelet.

(6)

�(sr, Ttemplate)

=

∑I

i=1
(si

r
− sr)(T

i
template

− Ttemplate)
��∑I

i=1
si
r
− sr

�2�∑I

i=1
(Ti

template
− Ttemplate)

2

,

(7)
q(fb10, fcn , r) = max(Y(fb10, fcn , 1), Y(fb10, fcn , 2),… , Y(fb10, fcn ,R)).

Tensor Decomposition Algorithm

In an ERP experiment, there should be at least three modes 
including time, channels/space, and subjects-stimuli/con-
ditions. When the time-domain data are converted into 
the time–frequency domain, a fourth-order tensor includ-
ing time, frequency, channels/space, and subjects-stimuli/
conditions can be formed. Moreover, EEG data are used 
to identify common activities over subjects. It is necessary 
and interesting to study the interaction among modes, such 
as time, frequency, and channels/space modes. Here, CPD 
(Hitchcock 1927; Cong et al. 2015a) is applied to extract 
COI from the high-order tensor.

Given an Nth-order tensor X ∈ RI1×I2×⋯×IN , the CPD can 
be defined as:

In Eq.  8, X̂ approximates the high-order tensor X ; 
E ∈ RI1×I2×⋯×IN  is a Nth-order error tensor, whose 
sizes of all dimensions are the same as X ; ‖u(n)

r
‖2 = 1 

(n = 1, 2,…,N − 1) . U(n) = [u(1)
r
◦u(2)

r
◦⋯◦u(N)

r
] represents 

a component matrix for mode #n , and n = 1, 2,…,N.

In this study, the fourth-order tensor consisted of the 
time–frequency results. It can be extracted by CPD (Cong 
et al. 2014, 2012d):

In the above formula, I is a diagonal tensor, the value of 
every element of its super-diagonal is equal to one; the com-
ponent matrix F contains the multi-domain features of R 

(8)X ≈

R∑

r=1

u(1)
r
◦u(2)

r
◦⋯◦u(N)

r
+ E = X̂ + E ≈ X̂.

(9)

X ≈

R∑

r=1

u(f )
r
◦u(t)

r
◦u(s)

r
◦f r = I ×1 U

(f ) ×2 U
(t) ×3 U

(s) ×4 F.

Fig. 3   a–d The multi-domain 
components with the first four 
maximum CCs of four sets 
of CFBW ( fb = 1 , fc = 2 ; 
fb = 1 , fc = 1 ; fb = 0.5 , fc = 2 ; 
fb = 0.7 , fc = 4 ), respectively
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brain activity (R components are extracted in each mode), 
and each column corresponds to one feature. The compo-
nent matrix corresponds to the rth components in the time 
domain ( u(t)

r
 ), frequency domain ( u(f )r  ) and space domain 

( u(s)
r

 ), respectively. Those components reveal the proper-
ties of the rth multi-domain feature in the domains as well 
(Cong et al. 2015a, 2012a). In the CPD, the rth temporal 
component, rth spectral component, and rth spatial com-
ponent are interrelated, but neither of them is associated 
with other multi-domain components (Cong et al. 2015a). 
Meanwhile, combining with the generative mechanisms of 
NPLC of interest, CPD is selected to extract NPLC of inter-
est from the fouth-order tensor. According to Eqs. 1 and 4, 
the time–frequency transforms are obtained by calculating 
the product of the constant and the sum of the square of 
the absolute value of the convolution between signals and 
the mother wavelet. Therefore, the elements of the high-
order tensor are nonnegative in the study. In our previous 
study (Cong et al. 2014), the fourth-order tensor (the size 
of last mode is conditions by groups by subjects) is formed 
to find the discrepancy of cognitive processes between the 
two groups under every condition. Likewise, our interest is 
to identify the differences between emotion factor under Go/
Nogo tasks by calculating statistical results of the features of 
last mode extracted from the fourth-order tensor (frequency 
by time by channels/space by subjects-stimuli/conditions: 
30 × 600 × 42 × (15 × 4)).

Results

Time–Frequency Analysis

Combining the previous studies (Benvenuti et al. 2017; 
Harper et al. 2014; Karakaş et al. 2000; Kirmizi-Alsan 

et al. 2006; Pandey et al. 2016) with the time–frequency 
representations (TFRs) and topographies of all conditions 
of the present data, we selected the Fz, FCz electrodes for 
analysis of the theta oscillation (range 3–7Hz) between 
300 and 600ms. Then multivariate rm-ANOVAs were 
computed on theta oscillation using emotion (Anger and 
Neutral), task (Go and Nogo) as within-subject factors. 
Figure 4a–c displayed the grand averaged TFR of every 
condition at Fz and FCz, topography of the theta oscil-
lation, and the corresponding mean power of every con-
dition, respectively. In order to show the corresponding 
power of theta oscillation of every participant under each 
condition, the scatter plots with boxplots were displayed 
in Fig. 4d as well.

The results illustrated that the main effect of task was 
significant (F(1,14) = 10.378, p = 0.006, �2

p
= 0.426) . How-

ever, the interaction effect between emotion and task was 
insignificant ( F(1,14) = 0.007, p = 0.936, �2

p
= 0.001) . Simi-

larly, there was no significant main effect between anger and 
neutral condition (F(1,14) = 2.816, p = 0.116, �2

p
= 0.167).

Through visual inspection of the TFR and the mean 
power of each condition or stimulus for TFA results, the 
power of Nogo task ( mean:721.45 μV2 ; std: 78.81 μV2 ) 
was significantly higher than that of Go task (mean: 542.91 
μV2 ; std: 62.40 μV2 ). In addition, the anger condition 
(mean: 647.70 μV2 ; std: 66.32 μV2 ) also elicited stronger 
power than that of neutral condition (mean: 616.65 μV2 ; 
std: 65.90 μV2).

In order to demonstrate that the statistical results are 
affected by the selected ROI for TFA compared with 
those of the proposed method, the ANOVA reults of 
another RIO (time window: from 200 to 700  ms; fre-
quency range: 3–7 Hz) were also shown. The main effect 
o f  e m o t i o n  (F(1,14) = 1.955, p = 0.1840, �2

p
= 0.123) 

and interaction effect between the two factors 

Fig. 4   a The grand averaged 
time–frequency representations 
(TFRs). b Topographical distri-
butions of the theta oscillations 
at Fz and FCz with the time 
window of 300–600 ms. c The 
mean power of every condi-
tion. d The scatter plots with 
boxplots of the mean power 
of every condition. Anger-Go, 
go task of the anger-associated 
words; Anger-Nogo, Nogo task 
of the anger-associated words; 
Neutral-Go, go task of the neu-
tral words; Neutral-Nogo, Nogo 
task of the neutral words; ’**’ 
represents p < 0.01
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(F(1,14) = 0.023, p = 0.8810, �2
p
= 0.002) were insignificant, 

respectively. In addition, there was a significant main effect 
for tasks (F(1,14) = 8.643, p = 0.0110, �2

p
= 0.382) . The 

methods, which can be used to precisely determine the ROI 
of TFR of every condition according to the corresponding 
boundary, were not discussed in this study.

Multi‑domain Features of NPLC

Aiming at extracting the NPLC of interest, the results from 
each step of the tensor decomposition analysis of ERP are 
as following.

Using the CFBW confirmed in “Selection of an Optimal 
Set of Parameters for CMCWT​” section ( fb = 1, fc = 1 ), the 
induced method was performed on all participants’ data for 
TFA. The sampling point is nonlinear distribution in the 
frequency domain, with 30 points set in the whole frequency 
band of interest (3–30 Hz).

The fourth-order tensor was formed by the time–fre-
quency results.

According to the fit value as shown in Fig. 5d, 36 com-
ponents were extracted in each mode. The detail of how to 
define the number of extracted components for CPD can 
be found in our previous studies (Cong et al. 2012c, 2013, 
2014, 2012b).

We considered the temporal, spectral and spatial properties 
of NPLC of interest as shown in “Time–Frequency Analysis” 
section. Its latency fell in the range from 300 to 600 ms in the 
time domain, the peak of corresponding spectrum is below 
8Hz, and its peak amplitudes are distributed in the frontal–cen-
tral cortex in the space domain. The 11th component was cho-
sen (in Fig.  5a). In addition, the TFR in Fig. 5a was based on 
the outer product of the temporal and spectral components.

When the multi-domain features were determined, two-
way (emotion and task) repeated measurement statistical test 
were performed to investigate the between-task differences 
under emotion condition (Anger and Neutral) with 0.05 as 
the level of significance, and Greenhouse Geisser correc-
tion was performed when necessary. The results showed that 
the interaction effect between emotion and task reaches a 
significant level (F(1,14) = 10.607, p = 0.006, �2

p
= 0.431 ). 

There was a significant main effect of both emo-
t ion (F(1,14) = 6.162, p = 0.026, �2

p
= 0.306) and task 

(F(1,14) = 17.688, p = 0.001, �2
p
= 0.558) . Through post hoc 

analysis, the results demonstrated that the power of anger 
condition was larger than that of neutral stimuli in the Nogo 
task (p = 0.005) , not in the Go task (p = 0.367) . By contrast, 
there was a significant main effect of task conditions under 
both anger (p < 0.001) and neutral condition (p = 0.005) . 
Thus, this study found that the power of NPLC oscillation 
obviously increases in anger words when compared to neu-
tral words in the Nogo task as shown in Fig. 5b. In addition, 
the scatter plots with boxplots were also shown in Fig. 5c 
such that the feature of every participant in every condition 
can be observed.

Conclusion and Discussion

Using CPD to separate the multi-domain features of NPLC 
of interest, this study investigated the differences between 
tensor decomposition analysis and TFA of ERP data. The 
tensor-based results were more discriminative than those 
derived from TFA. The method based on tensor decompo-
sition showed not only the significant main effect of task 
condition, but also significant interaction effect between 
emotion and task. The main effect of emotion was found 

Fig. 5   a Multi-domain features 
of NPLC of interest as well as 
the corresponding temporal, 
spectral, and spatial components 
were extracted from all brain 
activity. b The mean magnitude 
of every condition. c The scatter 
plots with boxplots of the mean 
magnitude of all conditions. d 
The magnitude of FIT, DIFFIT 
is performed on this curve. ’**’ 
represents p < 0.01
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to reach a significant level. Moreover, the proposed method 
ensured that statistical analysis results donot change with 
ROI. This manifested that the derived features fulfill expec-
tations in this study, and it should be fundamental for the 
extension of our proposed method for the analysis of other 
EEG/ERP data.

In this study, the time–frequency results are used by aver-
aging the time–frequency transforms of each single-trial data 
to separate the multi-domain features of NPLC of interest, 
and it is different from those methods which obtain COI 
by averaging multi-trial waveforms in time domain and cal-
culating the time–frequency transforms of averaged ERP 
data. Moreover, there are several methods to form a high-
order tensor to extract the information of short ERPs data 
simultaneously in the time, frequency, space, and partici-
pants modes. For example, in order to study the properties of 
NPLC at the single-trial level, the fourth-order tensor can be 
comprised of frequency by time by channels by subjects-tri-
als. Particularly, the third-order tensor is constructed includ-
ing temporal, spectral, and spatial information, because the 
time-locked characteristics of NPLC in different single-trial 
are not deterministic. Few strictly time-locked characteris-
tics of NPLC are preserved.

Furthermore, CPD is a group analysis method that per-
forms on the high-order tensor of brain activity collected 
from different participants and stimuli/conditions (Zhou 
et al. 2016). It assumes that all subjects share the same 
information of components in the time domain, frequency 
domain, and space domain, while the variance in signatures 
of all participants is revealed by those common components 
(Cong et al. 2015a). As we all know, the EEG/ERP data of 
one subject in each condition/stimulus can form one block 
tensor. In other words, for one subject’s data, the block ten-
sor can be a third-order tensor (time by channels by stimuli/
conditions) or fourth-order tensor (frequency by time by 
channels by stimuli/conditions), so multi-participant data 
can form multi-block data. Therefore, coupled/constrained 
matrix and tensor factorizations can be applied to extract 
common and individual components and/or build links 
between them (Zhou et al. 2016).

There are several drawbacks for using CPD and TFA to 
extract the NPLC of interest from ERP data. One limitation 
is the small number of subjects were recruited to participate 
in the experiment in this study. The ERP data were only 
collected from 15 participants. Another one is the method 
to extract NPLC by tensor decomposition has not been 
employed in other ERP data. Additionally, in Fig. 4a, the 
grand averaged TFRs clearly display that the theta oscilla-
tion of interest of every condition has a specific and visible 
boundary and the ROIs of the four conditions are different. 
Hence, the same ROI for all conditions used for statistical 
analysis in the research is unreasonable and arbitrary. The 
techniques, such as edge detection method based on Canny, 

Marr–Hildreth, Deriche, Sobel, and Laplacian algorithms, 
can be used to precisely mark the edge of ERO of inter-
est of every condition respectively in the TFR (Milanović 
et al. 2019). In this study, the tensor decomposition was used 
to extract the multi-domain features of NPLC simultane-
ously for an expected statistical results, evidencing that this 
method is promising with substantial potentials in neurosci-
ence applications.
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