

Fashina Alfred

CHALLENGES IN SOFTWARE PROJECT COST
ESTIMATION:

A COMPARATIVE CASE STUDY

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY

2021
ABSTRACT

Fashina, Alfred
Challenges in the process of Estimating Software Cost
Jyvaskyla: University of Jyvaskyla, 2021, 50 p.
Information System Science, master’s thesis
Supervisor: Pekka, Abrahamsson

Estimating the cost, effort, and size to complete a software project is one of the
most difficult and confusing tasks confronted by software project managers.
Though, an early estimate is very crucial when bidding for contracts or
determining whether the project viable, it’s accuracy cannot be guaranteed
because of factors like incomplete requirements, inadequate information from
past projects and the experience of the estimator.

Accurate software cost estimate can help the developer make more logical
decisions in planning, scheduling, allocating resource, and monitoring the project
progress. Considering all the estimation models developed by various
researchers, it is inevitable to say that there has not been a perfect estimation
method that solves all estimation problem.

The first part of this thesis provides a general overview of software estimation
and some models, which are classified as algorithm and non-algorithm models.
The second part is a comparative case study research, which emphasizes on two
non-algorithm model, Top-down and Bottom-Up method in comparison with the
estimate gotten from a software development project.

The main result of this study is that it is almost impossible to evaluate an accurate
and error-free estimate at the beginning of a software project. Combining two or
more estimation models at the beginning of the project and enhancing the
estimate as the project progresses could give the better estimate, but other factors
like risk assessment, resetting expectation, unexpected unknowns and exploring
the use of automation should also be considered.

Keywords: Software cost estimation, cost overrun, software project, size
estimation, Algorithm and Non-Algorithm methods

LIST OF FIGURES

Figure 1 : Graphical representation of effort in each release .. 28

Figure 2: Graphical representation of effort in each release ... 41

Figure 3: Enhancing estimation methods in software development process. 48

LIST OF EQUATIONS

Equation 1: Basic COCOMO equation .. 18

Equation 2: Putnam model .. 19

Equation 3: Activity Time Calculation .. 36

LIST OF TABLES

Table 1: Tools and software used: .. 24

Table 2: Release Schedule .. 24

Table 3: Summary of project hours. ... 25

Table 4: Summary of Effort used for each release in minutes. ... 27

Table 5: Summary of Effort used for each release per hour. .. 27

Table 6: Percentage of effort used in hours. .. 28

Table 7: Summary of dataset usage ... 29

Table 8: Baseline data with release history, user story and effort allocated. 33

Table 9: Bottom-up estimate with release history broken down to user stories and effort

allocated. .. 36

Table 10: Top-down method estimated as the developer’s total effort per week. 40

Table 11: Comparison of baseline, bottom-up and top-down estimate 41

Table 12: Summary of the primary empirical conclusions from the analysis. 44

Table 13: Theoretical contributions of the study .. 46

Table 14: Detailed summary of distribution of effort during development 57

Table 15: Defects ... 58

Table 16: Change History .. 59

TABLE OF CONTENTS

1 INTRODUCTION .. 6

1.1 Research Problems and questions .. 7

1.2 Structure of the thesis ... 7

2 LITERATURE REVIEW .. 9

2.1 Size Estimation .. 10

2.1.1 Lines of Code (LOC) .. 11

2.1.2 Function Points ... 11

2.2 Challenges in the process of estimating Software Cost .. 12

2.2.1 Incomplete Requirements .. 12

2.2.2 Maintenance of developed software: .. 13

2.2.3 The Project Procurement Procedure.. 13

2.2.4 Tracking the Progress of the Project .. 14

2.2.5 Lack of Historical Data .. 14

3 SOFTWARE COST ESTIMATION TECHNIQUES .. 15

3.1 Non-Algorithmic Methods ... 15

3.1.1 Analogy estimation methods ... 15

3.1.2 Expert Judgment... 16

3.1.3 Top-down Method ... 16

3.1.4 Bottom-up Method .. 17

3.2 Algorithmic Methods ... 17

3.2.1 Constructive Cost Model (COCOMO) Method ... 18

3.2.2 Putnam's model.. 19

4 RESEARCH METHODOLOGY ... 20

4.1 Choice of the research method ... 20

4.2 Selection of Research method and data collection ... 21

4.3 Research Design .. 21

4.4 Limitation of the research Methods.. 22

4.5 Validity and Reliability Measures Taken ... 22

5 CASE STUDY ... 23

5.1 Background of Case Study ... 23

5.2 Data Collection .. 25

5.2 Data Usage .. 29

6 EMPRICAL ANALYSIS .. 30

6.1 Baseline Estimation ... 32

6.2 Bottom-up Estimation ... 35

6.3 Top-down Estimation .. 38

6.4 Comparison ... 41

6.4 Summary of PECs ... 44

7 DISCUSSION ... 45

7.1 Implications for practice .. 45

7.2 Implications for research ... 46

8 CONCLUSIONS .. 47

8.1 Answer to research questions ... 47

8.2 Limitation of study .. 49

8.3 Future research opportunities .. 49

REFERENCES ... 50

Appendix A - List of abbreviations and terms used in this study. ... 55

Appendix B - Some useful datasets. .. 57

6

1 INTRODUCTION

Human’s dependency on computer has increased greatly, so much that it has
become part of our everyday life. This has also increased the need for faster
functionality, smaller interface and secured platforms. Software companies are
aiming to meet this need while also minimising development cost and delivery
time: (Stutzke, 1996). To achieve this, it is important accurately estimate the effort
required to complete the software project and meet the expected completion date.

Software estimation has been an essential and difficult procedure since the
beginning of the computer era. The bulk of the cost of software development is
calculated as human effort in relation to time (usually in persons-months).
Effective software cost estimates are critical to survival of most organizations
because it helps to determine what resources to commit to the project, how well
to use them, and what to prioritize. It is also be used for generating request for
proposals, contract negotiations, scheduling, monitoring and control: (Zia,
Rashid & Zaman, 2011)

Often, most unfinished software projects have been blamed for inadequate
requirements, experience of developers and estimator and cost overrun: (Hihn &
Habibagahi, 2000). Software estimates made in the early stages of a product
development are usually wrong because of many elements of uncertainty, which
often lead to over or under-estimation of software size and effort: (Kruchten,
2007)

Research on software cost estimation started with software companies and
military organizations that develop large software systems: (Jones, 2005). These
estimates are used to define budgets, schedules, risks, and resource allocation:
(Boehm, Abts & Chulani, 1998). Most of the commonly used estimation models
are either algorithmic or non-algorithmic, but new models that use machine
learning approaches are being researched: (Stamelos, Angelis, Morisio, Sakellaris
& Bleris, 2003).

A good software cost estimate should have the following attributes: (Royce, 1998)
- It is accepted by all stakeholders as realizable.
- It is based on a well-defined software cost model with a credible basis.
- It is based on a database of relevant project experience.

7

- It is defined in enough detail so that its key risk areas are understood, and
the probability of success is objectively attainable.

1.1 Research Problems and questions

The main research question of this thesis is to analyse the challenges encountered
in the process of estimating a software development project, comparing two of
the non-algorithm models with the real-world data. To support the answers to
the question above, the following sub-questions are formulated:

- What is the best estimation method for any software project?

- What are the key reasons for cost overrun in developing large software?

- Is it possible to estimate a software project, by using the Bottom-Up or the

Top-down method alone?

This research attempts to provide answers to these questions by

- reviewing literatures in the field of software cost estimation and
- comparing the Bottom-Up and the Top-Down method with research

analysed.

1.2 Structure of the thesis

Chapter 1 introduces the background of the study, the research problems, key
objectives, the motivation, scope, and the structure of the study.

Literature review is conducted in Chapter 2. This chapter introduces
fundamental concepts in software cost estimation, classification of software
metrics, challenges encountered during the process of estimating software cost.

Chapter 3 introduces the different kinds of software cost estimation techniques.

Chapter 4 introduces the overview of the research methodology applied in the
empirical part of the study. It explains the choice of the research approach and
design. It also discusses the limitations and reliability of the research method.

Chapter 5 describes the data to be used for the case study analysis.

Chapter 6 presents the use cases and empirical analysis of the research data
described in chapter 5.

8

Chapter 7 discusses the primary empirical contribution of the analysis in chapter
6, and its implication to the research.

Chapter 8 concludes the research. The answer to research questions are
presented, limitation of the study and further research opportunities on subject
matter were discussed.

9

2 LITERATURE REVIEW

Despite all the software cost estimation methods developed, there is still no
straightforward way to generate an accurate estimate of the effort, time or cost
required to complete a software project (Bill, 2020). One research report outlined
that barely 5% of software projects are completed on time and within budget.
Another indicates that less than 1% of commercial software projects are
completed on time, within budget and according to specifications. In addition to
that, just about 3 out of 4 software projects begun are either never completed or
cost more than estimated. (Zawrotny, 1995). This was supported by McConnell
(1998), who reported that more than half of software projects either overrun their
budget, get cancelled or delivered late.

According to Steve McConnell (2006), a good estimate is an essential part of
project management which provides a clear view of the project structure, thereby
giving managers the resources to make decisions and have the desired result.
Though, it is difficult to generate a detailed estimate until each feature is
understood, he suggested that an estimate with 75% accuracy is sufficient to start
a project.

These studies shows that it is almost impossible to estimate software
development costs accurately at the beginning of a project. This also indicates
that over-estimating or under-estimating of a project are common occurrence that
happen in software development. For example, an underestimated project could
lead to under staffing, make developers work harder than required, reduce the
time that could be assigned for testing and creativity, and bad quality. On the
other side, overestimation could stretch a project to take at least as long as it was
estimated for, even when it can be completed earlier and over budgeting. (Linda,
2006)

Several reasons were proposed by different literatures on why many projects
overrun its estimate. The factors as listed by Linda (2006) include the lack of
training and experience of developers and estimators, indecision of the
acceptable deliverables, and changing of the requirements. The other reasons
identified by Linda are difficulty managing the schedule of the project as the
requirements change, unreliable expectation, and insufficient resources for the
project.

10

Khatibi and Jawawi (2011) conducted an intensive research, using 2100 internet
websites and came up with several reasons for software projects failure. The most
popular reasons found are insufficient or defective requirements, poor planning,
and inaccurate estimation. Boehm (1984) suggested that lack of clear
understanding of the software requirement and misjudging the size and required
effort for the software projects are the main reasons for inaccurate estimations.

In this study, software project estimation can be regarded as one of the following.

- effort hours estimation
- project duration estimation
- software cost estimation

Some authors suggested that the main problem with software project estimation
is the lack of distinct regulation and standards to adhere to during the overall
process of software development. This might create a guide to detect and resolve
the inaccuracy in an estimate is to recognize the three related quantities, i.e.,
functional specification, cost, and delivery time.

2.1 Size Estimation

One of the main reasons why software projects fail is the inability to accurately
determine the size of the project. According to Campbell (1995), poor size
estimates are usually main cause of cost and schedule overruns. To resolve the
issue of accurately calculating the size of a software project, it is recommended
to use a variety of software sizing techniques. Depending on a single technique
has been noticed to be a major reason for cost overrun and late delivery. (Watt,
1989).

Most complex and large software projects have been underestimated, because it
is demanding to accurately estimate the actual size. (Stutzke, 2005). Many large
projects are regarded as high risk because a change in the requirement could be
difficult and expensive. Some large software project failure could lead to billion
of dollars in loss. (Charette, 2005). It might also require authorization from many
stakeholders before such changes can be accepted. There is also the possibility of
project failure due to changing user expectations and requirements, friction
caused by undefined roles among developers and so many unforeseen events.

There are two types of measurements for software product size. These include
Line of Code and Function Point. However, there are other not too common ones
which include Object Points, Application Points, Predictive Object Points and Unified
Modelling Languages.

11

2.1.1 Lines of Code (LOC)

The Lines of Code (LOC) is the number of source statements delivered at the
completion of the software project. It is one of the most widely used measurement
for software size and complexity: (Rosalind, Pfleeger & Wu, 2005). One problem
with using Lines of Code (LOC) as a metric of measurement for software size is
that it cannot be used to estimate projects with multiple programming language
since each language has its own pattern and syntax. Other issues with LOC are
that it does not take efficiency, accuracy, usability, execution speed and quality
of the code into consideration: (Stevenson, 1995).

The two types of LOC measures are the physical and logical LOC. The physical
LOC is an easy way of counting the lines of code. It is counting all the lines of the
program's source code including comments and blank lines. On the other hand,
the logical line of code is more practical than the physical line of code. It is
regarded as all executable lines or statement created that performs a function:
(Nguyen, Deeds-Rubin, Tan & Boehm, 2007)

Although many literatures have been written that uses LOC as the size measure,
it is difficult to count the lines of code in the development process and there isn’t
an accepted counting standard: (Touesnard, 2004).

2.1.2 Function Points

Function Points is a measure of the amount of functionality delivered by the
software in a project. According to Allan Albrecht (1979), Function Point is
categorized into: Outputs, Inquiries, Inputs, Internal files, and External files (or
interface). Function Points is useful because it can be obtained from detailed
requirements. However, it cannot be used for assessing the size of embedded
system.

Although function points support software size estimates, it is still difficult to
estimate at the beginning of the project and can be cumbersome when assessing
an embedded system: (Symons, 1988). Though, difficult to estimate at the
beginning of a software development process, but it remains valuable as the
requirements becomes explicit. Like LOC, function points are also affected by
changing requirements: (Garmus & Herrod, 2001)

Both sizing methods have their advantages and disadvantages, which cannot be
ignored and could be used to complement each other. These sizing methods are
dependent on the knowledge of the system, experience of the developer writing
the code, and system composition in general: (Symons, 1991)

12

2.2 Challenges in the process of estimating Software Cost

The challenges in accurately estimating software size, time or effort certainly
affect the cost of the software. There are various challenges in estimation, each of
which is related to uncertainty and occur at several places throughout a project’s
life cycle. Every time a decision is made concerning the software project, an
element of complication or difficulty is introduced into the estimation process:
(Eberendu, 2014).

The most difficult aspect of estimation occurs when cost estimates must be made
at the beginning of the software project. For most new project, an estimate is
needed at the early stage of the project, to have an idea of how much will be
needed to complete the project.

For projects that have already started, changes to the requirements, affects the
estimate greatly and could present a bigger problem to its completion if it is not
managed early. The following are some of the challenges encountered in the
process of estimating software project.

2.2.1 Incomplete Requirements

Incomplete or inadequate requirements is regarded as the major reason why cost
estimates are inaccurate. This problem could be regarded as the most difficult to
ignore because most users do not really understand their requirements during
the early stages of the project. Software projects are often undertaken when there
is a recognition of need, while the requirements specification at a sufficiently
detailed level unavailable: (Strike & Emam, 2001). Estimates made at this stage
have a high likelihood of error. A fact that must be accepted is that a complete
statement of the requirements cannot be defined before development begins:
(Humphrey, 1989).

For identical projects, even when the software system being developed is almost
identical to a previously developed system, the requirements or features will be
different because no two software projects are the same: (Hull, 2009). As a project
evolves, product owner gains a clearer and better understanding of the problem
and can create detailed requirements. The inadequacy or experience of the writer
of the requirement could also affected the cost of the software. Many written
requirements are either bias, obsolete, or inconsistent because the writer is unable
or unwilling to use the latest technology in achieving their goals or just don’t
have the required skills and experience: (Boehm, 2010).

13

2.2.2 Maintenance of developed software:

Software maintenance cost is often ignored during the estimation and can be
significantly higher than development costs if it is not managed properly.
Ironically, maintenance costs are much easier to estimate than the overall cost of
developing software but are often neglected: (Albert, Lederer & Jayesh, 1992).

Though estimating the maintenance cost may be an easier task, but there is the
tendency that a maintenance team can inherit an incomplete or unmaintainable
software from the development organization: (Koskinen, 2010) Additionally, it is
difficult to predict if the development team has designed the system to be
maintainable. Though design documentation might have been provided, there is
no assurance that it is detailed enough, especially in the situation where they are
been pressurized to complete the project as soon as they can: (Dehaghani &
Hajrahim, 2013)

The problems stated above are more evident in projects that have a separate
development and maintenance team. For example, a development team project
manager’s responsibility end when the completed system is delivered within the
specified budget and time, therefore having no stake in the maintenance effort:
(Nguyen, 2010).

2.2.3 The Project Procurement Procedure

Procurement, which is usually conducted at the early stage of the software
project, can be challenging for both the procuring team, and the developer. At the
beginning of the procurement process, bids are received, and a suitable developer
team is chosen to complete the project with the accepted estimate.

Some procurement team have a two-stage estimation process: the pre- and post-
contract estimates. The pre-contract estimate is used for bidding for the contract.
This strategy is generally called “bid to win” approach. Such bids are often
prepared quickly from requirements which were often vague with no technical
details. Sometimes, the procurement team is forced estimate as low as possible
for various tasks by the management.

Once a company is awarded the contract, it frequently performs another more
detailed estimate which is considered the post estimate or the real, which is
regarded as realistic. If the “real” estimate is higher than the “bid to win”
estimate, it might become an issue that could be difficult to resolve: (Novack,
1991)

Some procurement team might suggest adding enhancements or finding
problems with the requirements while others might reduce the functionality of
the system to balance the budget. Some small companies might just accept the
project as a loss and hope to use the project to build their portfolio: (Hung, 2006)

14

2.2.4 Tracking the Progress of the Project

Software costs cannot be controlled unless the software costs and progress are
measured. Most software task are considered complete when the person
responsible for the task or the head of the development team, declare it to be
complete.

Milestone and technical reviews are the typical techniques used by procurement
team to gain control over the development process. Though, milestone reviews
are necessary but are not by themselves sufficient to monitor progress on a
project: (Boehm, 2010).

2.2.5 Lack of Historical Data

Organization involved in the development of a new software needs information
about previous projects to estimate accurately what will happen in its next
development project. This information or data cannot be solely relied on for
estimation because no two software are the same: (Charette, 2005). For small
projects, relying on historical data and the experience of key people in the
organization could still provide an accurate estimate but almost impossible for
larger project that are more complex, and the knowledge is distributed among
larger numbers of people: (McConnell, 1998).

15

3 SOFTWARE COST ESTIMATION TECHNIQUES

Software Cost Estimation is an important, but a difficult, task since the beginning
of the computer era in the 1940s. In the last 3 decades, various models have been
significantly developed and used for estimating cost. These cost estimation
methods are classified under two branches: Algorithmic and Non-Algorithmic. The
Algorithmic methods are based on simple arithmetic formulae using summary
statistic. (Donelson, W. 1976), while the Non-Algorithmic method rely on data
from previous software projects to develop the estimate.

3.1 Non-Algorithmic Methods

The non-algorithmic methods involve using previous similar software projects
and experience from such project to derive the estimation. In this method,
estimation is only completed based on analysis of previous software projects.
Some non-algorithmic methods are described below:

3.1.1 Analogy estimation methods

This method involves comparing by analogy with a completed project to
compare their actual costs to an estimate of the cost of a similar new project.
(Shepperd & Schofield, 1997). Generally, since there are rarely two perfectly
matched projects, some adjustment is needed to fit both projects together. The
drawback of this method is that the estimate gotten will be subjective and
challenging because two projects that look similar are always different.
Estimating by analogy can be straightforward but it is not as easy as it looks.

Some advantages of this method are:

- The estimation is based on actual project characteristic data.
- The estimator's experience can be used to improve the estimate.
- For a fairly small project, the distinction between the completed and the

proposed project can be identified, and difference reconciled.

16

Some disadvantages of this method,

- The choice of variables is restricted to information and data from the
previously completed project and any adjustment could alter the
similarities between both projects.

- This method cannot be use for every project.
- This method limit creativity.

3.1.2 Expert Judgment

This method involves consulting one or more experts to derive an estimate. This
method can be relatively accurate if the estimator has significant knowledge
about both the project domain, and the estimation process: (Hihn & Habib-agahi,
1990). Sometimes, expert judgment could be an educated guess supported by a
variety of tools to predict the amount of effort or cost required to complete the
project: (Kruchten, 2007). For example, an expert might access the database of
past projects to understand the new project and use the experience of the system
domain to develop an estimate.

Some advantages of this method are:

- The experts can manage the differences between past project experience
and requirements of the proposed project to create a better estimate.

- Using expert judgement method can help leverage new technologies,
architectures, applications, and languages.

The disadvantages include:

- It is difficult for the expert to quantify human efficiency of the developers.
- Expert may be some biased towards a certain way of estimating and that

could be detrimental to an organization that doesn’t work that way.

3.1.3 Top-down Method

In the Top-down approach, the total cost estimate for the project is derived at the
early stage of the project. This approach starts at the system level, by examining
the overall functionality of the product and later broken down to the various sub-
components of the system: (Liming, 1997).

Top-down estimating method is also called Macro Mode. It is more applicable to
early cost estimation when only general properties are known. This method is
very useful because it is a quick way to have a rough idea of how much the total
project might cost: (Iqbal, Idrees, Sana & Khan, 2017).

Some advantages of this method are:

17

- It focuses on system-level activities such as integration, documentation,
configuration management, etc.

- It requires minimal project detail.
- It is faster to develop and easier to implement.

The disadvantages are:

- It does not recognize smaller and technical details of the software that
might escalate budget and lead to project failure.

- It cannot be used for large software projects.

3.1.4 Bottom-up Method

The Bottom-Up method is the opposite of the Top-Down method. It starts at the
small component level and the results added together to produce an estimate for
the overall project: (Leung & Zhang, 2001)

Some advantages are:

- It helps developers have a feel of the overall structure of the project even
before the start of the project.

- It is more stable because the project flaws in the various components can
be detected early.

The disadvantages:

- It could still be incorrect because the detailed requirements are usually
unknown at the early stage of the project.

- It is time-consuming to develop.
- It is not possible to estimate unknown or unexpected problems.

Other non-algorithm methods, like price-to-win, Parkinson methods, Nelson
model can also be used to estimate the cost of software. In practice, two or more
methods are used together to derive the best estimate for the project: (Casper,
2007)

3.2 Algorithmic Methods

Algorithm model uses some derived mathematical equations to predict project
cost, based research and historical data using metrics such as Lines of code (LOC)
and number of functions. Many algorithmic methods studied and developed
includes, the COCOMO model, Putnam model, and function points-based
models: (Khatibi & Jawaw, 2011).

18

3.2.1 Constructive Cost Model (COCOMO) Method

It was first published in Boehm's 1981 book “Software Engineering Economics” as
a model for estimating effort, cost, and schedule for software projects. It is the
most-used software cost and schedule estimation model (Boehm, B.W 1995). The
model uses basic equation with parameters that are derived from historical
project data and current project. In 1995, COCOMO II was developed and finally
published in 2000 in the book Software Cost Estimation with COCOMO II.

Equation 1: Basic COCOMO equation

COCOMO consists of a hierarchy of three increasingly detailed and accurate
forms. The first level, Basic COCOMO is good for quick, early, rough order of
magnitude estimates of software costs, but its accuracy is limited due to its lack
of factors to account for difference in project attributes. Intermediate
COCOMO takes these Cost Drivers into account and Detailed COCOMO
additionally accounts for the influence of individual project phases: (Malevanny,
2005)

There are other additional cost factors proposed by Boehm et al in the COCOMO
II model for software engineering cost estimation which includes:

- Product factors: This includes reliability, product complexity, database
size, required reusability, and documentation matched to life-cycle needs.

- Computer factors: Includes execution time constraints, storage
constraints, computer turnaround constraints, and platform volatility.

- Personnel factors: Consist of the capabilities of analysts, application
experience, programming capabilities, platform experience, language and
tool experience, and personnel continuity.

- Project factors: The set of which is made up of multisite development,
software tools used, and development schedule: (Boehm et.al 2000).

Advantages:

- It can generate repeatable estimations.
- It is easy to modify input data and customize formulas.

E = a(KLOC)b MM
Time (D) = c(E)d Month(M)
Person required = E/D

- E = Total effort required for the project in man-Months (MM)
- D = Total time required for project development in Months (M)
- KLOC = the size of the code for the project in kilo lines of code

- a, b, c, d = The constant parameters for software project

19

- It is efficient and able to support different estimations methods.

Disadvantages:

- It is unable to deal with unpredicted situations.
- A mistake in the inputs can generate inaccurate estimation.
- Human experience and speed cannot be easily quantified.

3.2.2 Putnam's model

Lawrence Putnam derives his model based on Norden/Rayleigh manpower
distribution and his finding in analysing many completed projects in the 1970s.
In this model the association between effort and size is non-linear: (Putnam,
1978). The Putnam model is sensitive to deliver software project on time.
According to Putnam model, small additions in the project implementation
schedule can result in extensive investments of effort: (Putnam, 2003) The main
equation for Putnam’s Model is:

Equation 2: Putnam model

- Size is the product size.
- B is a scaling factor and a function of the project size.
- Productivity is the ability of a particular software firm to produce software of a given size at

a particular defect rate.
- Effort is the total effort required for the project.
- Time is the total schedule of project.

𝐵1/3∗𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
= (Effort)1/3 * (Time)4/3

Effort =
𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 . 𝑇𝑖𝑚𝑒 4/3
3

 * B

20

4 RESEARCH METHODOLOGY

This chapter describes the research approach and the setting for this study. Its
objective is to strengthen an understanding of how the research is organized and
conducted. This chapter: (a) provide a background to the choice of research
methods; (b) describe the selection of research methods and elaborate the
research design; (c) explain the data collection; and discuss the validity of the
research.

4.1 Choice of the research method

This chapter introduces the research methodology applied in this study. Selecting
a right procedure for a research is fundamental to its success. The choice of
research method has been done so that it addresses the complex innovative
nature of the subject.

A comparative case study approach was chosen because it describes the
procedures involved in establishing the relationship and differences between
explanatory variables (Pickvance, 2005). This research method emphasized on
the explanation of differences and similarities.

The main goal of this research is to analyse how two software cost estimation
methods – Top-down method and the Bottom-up method can be compared in
relation to the actual user data. This approach strives for a holistic and in-depth
analysis of the phenomenon than quantitative research (Yin 1994; Nahar 2000).

Literature review, interview and data collection approach was used to investigate
the research question to enhance confidence in the ensuing findings, mitigate the
weaknesses of the research method approach which is inherent in many
qualitative studies and in so doing, validate the data through cross verification
by using data from more than two source ((Webb, Campbell, Schwartz &
Sechrest, 1966), (O'Donoghue & Punch, 2003).

An empirical model uses data from previous projects to evaluate the current
project, while analytical model, on the other hand, uses formulae based on global

21

assumptions, such as the rate at which developer solve problems and the number
of problems available (Hareton & Zhang, 2003).

4.2 Selection of Research method and data collection

The selections of an appropriate research method hinges on several factors. Some
key factors include: the nature of the phenomenon, the state of existing
knowledge, and the types of questions to be asked ((Babbie, Survey Research
Methods, 1973), (Babbie, 2008), (Dash, 2005)).

For example, different research methods, like action research, grounded theory,
case study research, archival analysis have been proposed for conducting
qualitative and quantitative research. All these research methods have different
techniques for collecting data such as interview, observation, and surveys. The
various research methods answer different research questions, and they have
different control and time focus.

Both quantitative and qualitative data were collected. As stated earlier, the
quantitative data was grounded on three basic data points, i.e. time, size and
defect (Humphrey, 1995). While several other interesting data points could have
been captured, these three metrics were seen to be the most beneficial for setting
some references for other researchers and practitioners.

4.3 Research Design

The main aim of a research design is to ensure that the evidence obtained in data
collection and analysis enables the researcher to answer the initial question as
unambiguously as possible (Creswell, 2003). It is important because it provides a
framework within which the research is conducted and enables both the
researcher and subsequent readers of the research to be able to make sense of the
study by understanding the role and relevance of the different components of the
research.

However, obtaining relevant evidence requires that the researcher specifies the
type of evidence needed to answer the research question and evaluate the
concept or accurately describe the phenomenon. Failure to have a coherent
research design early in the study, may lead to unconvincing answers to the
research question and inexact conclusions.

22

4.4 Limitation of the research Methods

A case study approach has certain limitations that need to be considered. First
and foremost, the result of the case study cannot be applied directly to all
environments (Yin, 1994). In this research, the case study was an analysis of a
single company that has its own specific operational style, target market,
location, policy, ethics, and goals. This study cannot be generalized or regarded
as flawless and might require more cases with different dependencies to have a
comprehensive outcome. Miles and Huberman (1994) have shown that a multiple
case research generates more explanatory and generalized outcomes than a
single case study which may be applicable to all situations. According to Yin
(1994), the choice of a case company is critical because it affects the overall quality
of the study.

Furthermore, the amount of the information retrieved can become incredibly
large if the method of studying the case is utilized in a wrong way. It could cause
difficulty in summarizing and analysing the case. According to Nahar (2000), the
research framework, a preliminary interview protocol and a questionnaire guide
can be utilized to maintain focus on data collection and to reduce the amount of
material to be processed.

Thirdly, the role of the participant in the company or the project to be
investigated, also has a significant effect on the quality of the data gathered. This
represents one of the biggest challenge of data collection. Top officials in an
organization are sometimes too busy or are not willing to give relevant
information about their organization because of privacy issues and its
accessibility to their competitors.

4.5 Validity and Reliability Measures Taken

To ensure validity and reliability of this research, many measures were applied.
This includes.

- Theoretical part of this research (literature review) is based on existing and
academically acknowledged theories.

- The case study was studied in two part: The article used as a case study has
been reviewed using data collected all through the software development
process.

23

5 CASE STUDY

Two of the most widely used software cost estimation methods; the Bottom-up
and Top-Down methods will be compared alongside the user data obtained, to
demonstrate if a software development project can be estimated accurately at the
beginning of the development or not. A comparative case study approach was
chosen for this research.

5.1 Background of Case Study

The data studied for this research was obtained from one of the researches
conducted by VTT Technical Research Center of Finland. VTT is regarded as one
of Europe’s foremost research centre, that endeavours to advance the
implementation and commercialisation of research and technology. Through
scientific and technological methods, the institution has been able to turn several
global challenges and problems into feasible growth for business and society
(https://www.vttresearch.com/en/about-us/what-vtt).

The dataset is from a project conducted from the research centre called eXpert. A
web-based application for data management is developed by four software
engineers and scheduled to be completed in eight weeks. Java application
development platform using the latest open-source production tools (eg Eclipse
2.1, www.eclipse.org) as well as configuration management, unit and integration
testing tools was used for the development of the application. The development
is guided by the Extreme Programming production method, which is thoroughly
introduced with tool support in VTT's laboratory facilities. The tools and
software used are presented in Table 1 below.

24

Table 1: Tools and software used:

Item Description

Language Java (JRE 1.4.1), JSP (2.0),

Database MySQL (Core 4.0.9 NT, Java connector 2.0.14).

Development

Environment
Eclipse (2.1).

SCM CVS (1.11.2); integrated to Eclipse.

Docs MS Office XP.

Web Server Apache Tomcat (4.1).

The schedule, (i.e., from February 3rd, 2003 to March 28th, 2003) and resources for
the project are fixed, even though the system requirements are not fully
understood at the beginning due to large number of potential users (300+) and
their contradicting views. Due to the fixed schedule, all project work is completed
at the VTT’s workspace with the support of a VTT expert to help with all possible
obstacles. Table 2 shows the schedule for each release.

Table 2: Release Schedule

Release number / meeting Date

Steering group kick-off meeting 11.2.2003

SW Release 1 14.2.2003

SW Release 2 28.2.2003

SW Release 3 14.3.2003

SW Release 4 21.3.2003

Steering group meeting II 25.3.2003

SW Release 5 / Final 28.3.2003

Steering group final meeting 15.4.2003

25

5.2 Data Collection

The obtained data is based on three data points: time, size, and defects. The
dataset is arranged around five system releases, each which were tested by 17
customer testers. Activities recorded in the minutes include planning, meeting,
coaching, brainstorming, post-mortem, project management, design, pair, and
self-programming. The time documented for pair and self-programming are
gotten from time in minutes recorded for spike coding, unit testing, coding in
Java and Java Server Pages (JSP) and refactoring.

Table 3 below presents the breakdown of effort in minutes used to complete the
application development. Each task is organized by the effort accumulated per
week and summed up for each release. Release 1, 2 and 3 are each completed
after two weeks while Release 4 and 5 are completed after one week. Release 6
(i.e., the final week) is the time scheduled for project delivery.

Table 3: Summary of project hours.

Summary of Project Hours

W
ee

k
s

P
la

n
n

in
g

 g
a

m
e

W
ra

p
-u

p

M
ee

ti
n

g
s

C
o

ac
h

in
g

B
ra

in
st

o
rm

in
g

P
o

st
 m

o
rt

em

P
ro

je
ct

 m
a

n
ag

em
en

t

D
es

ig
n

M
is

ce
ll

a
n

eo
u

s
ta

sk
s

P
re

-r
el

ea
se

 t
es

ti
n

g
 &

b
u

g
fi

x

P
a

ir
 p

ro
g

ra
m

m
in

g

S
el

f
p

ro
g

ra
m

m
in

g

W
o

rk
in

g
 m

in
u

te
s

W
o

rk
in

g
 h

o
u

rs

R
el

ea
se

 T
o

ta
l

in
 D

et
a

il
s

W
ee

k
 1

840 0 120 0 0 0 0 480 0 0 0 0 1440 24
R

1
 T

o
ta

l
M

in
u

te
s:

 1
1

72
5

H
o

u
rs

: 1
95

.4
17

0 0 120 0 0 0 0 150 0 0 1260 90 1620 27

0 60 125 120 0 0 0 0 0 0 1074 115 1494 24.9

0 0 0 75 0 0 190 0 0 0 916 70 1251 20.85

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
ee

k
 2

0 25 45 0 0 0 415 0 0 0 623 225 1333 22.22

0 0 340 0 0 0 100 0 0 0 750 170 1360 22.67

0 50 0 45 70 0 35 0 0 0 822 50 1072 17.87

0 0 0 15 35 0 15 0 0 0 811 305 1181 19.68

0 0 0 0 0 0 232 0 0 0 300 442 974 16.23

W
ee

k
 3

 800 0 0 0 0 640 185 0 0 0 0 0 1625 27.08

R
2

 T
o

ta
l

M
in

u
te

s:

1
1

38
1

H
o

u
rs

:

1
8

9.
68

3

0 10 34 0 0 0 215 0 767 0 162 155 1343 22.38

0 241 0 0 0 0 75 0 0 0 1264 0 1580 26.33

26

0 45 95 0 0 0 106 0 0 0 923 20 1189 19.82

0 0 0 60 0 0 80 25 0 0 162 145 472 7.87

 0 0

W
ee

k
 4

0 30 0 0 0 0 120 0 0 0 545 302 997 16.62

0 30 0 30 0 0 176 46 0 0 510 165 957 15.95

0 70 35 0 0 0 130 50 0 0 626 355 1266 21.1

0 0 8 0 0 0 260 0 150 534 469 306 1727 28.78

0 0 0 0 0 0 0 0 225 0 0 0 225 3.75

W
ee

k
 5

1190 0 0 0 0 440 140 0 0 0 0 0 1770 29.5

R
3

 T
o

ta
l

M
in

u
te

s:
 1

1
62

2

H
o

u
rs

: 1
93

.7

0 97 0 0 0 0 135 0 0 0 632 148 1012 16.87

0 30 0 0 0 0 30 0 0 0 530 260 850 14.17

0 105 0 0 0 0 213 0 0 0 565 56 939 15.65

0 10 0 0 0 0 10 0 0 0 255 410 685 11.42

W
ee

k
 6

0 175 0 99 0 0 145 0 0 0 820 223 1462 24.37

0 155 0 0 0 0 115 0 0 0 923 185 1378 22.97

0 10 0 30 0 0 45 0 0 0 632 435 1152 19.2

0 120 0 0 0 0 160 0 0 284 590 110 1264 21.07

0 170 0 0 0 0 5 0 300 635 0 0 1110 18.5

W
ee

k
 7

1050 0 0 0 0 240 140 0 0 0 0 0 1430 23.83

R
4

 T
o

ta
l

M
in

u
te

s:
 6

6
44

H
o

u
rs

: 1
10

.7
33

0 0 0 38 0 0 133 0 0 0 926 267 1364 22.73

0 90 0 0 0 0 20 0 240 0 1369 181 1900 31.67

0 65 0 0 0 0 120 0 0 910 130 205 1430 23.83

0 50 0 0 0 0 65 0 0 405 0 0 520 8.67

W
ee

k
 8

517 69 0 240 0 220 140 0 0 0 411 0 1597 26.62
R

5
 T

o
ta

l
M

in
u

te
s:

 5
6

57

H
o

u
rs

: 9
4.

28
33

0 190 445 25 0 0 95 0 20 0 422 146 1343 22.38

0 15 0 0 0 0 145 0 335 0 240 580 1315 21.92

0 10 0 0 0 0 181 0 447 325 139 300 1402 23.37

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
ee

k
 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
6

 T
o

ta
l

M
in

u
te

s:
 2

2
64

H
o

u
rs

: 3
7.

73

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

315 0 0 0 0 0 153 0 180 0 656 10 1314 21.9

0 0 0 0 0 0 160 0 420 310 0 60 950 15.83

 0

Summary 4712 1922 1367 777 105 1540 4684 751 3084 3403 20457 6491

27

Table 4 below, summarizes the effort accumulated per release while Table 5
presented the data per release in hours. These tables gave a clearer picture of
what activities got more effort per release. For example, the highest effort for
coding was done during the first release. The graph below also displayed the
visual representation of the trends, relationships and dependencies of the
variables.

Table 4: Summary of Effort used for each release in minutes.

P
la

n
n

in
g
 g

am
e

W
ra

p
-u

p

M
ee

ti
n

g
s

C
o

ac
h

in
g

B
ra

in
st

o
rm

in
g

P
o

st
 m

o
rt

em

P
ro

je
ct

 m
an

ag
em

en
t

D
es

ig
n

M
is

ce
ll

an
eo

u
s

ta
sk

s

P
re

-r
el

ea
se

 t
es

ti
n

g
 &

b
u

g
fi

x

P
ai

r
P

ro
g

ra
m

m
in

g

S
el

f
p

ro
g

ra
m

m
in

g

R1 effort 840 135 750 255 105 0 987 630 0 0 6556 1467

R2 effort 800 426 172 90 0 640 1347 121 1142 534 4661 1448

R3 effort 1190 872 0 129 0 440 998 0 300 919 4947 1827

R4 effort 1050 205 0 38 0 240 478 0 240 1315 2425 653

R5 effort 517 284 445 265 0 220 561 0 802 325 1212 1026

R6 effort 315 0 0 0 0 0 313 0 600 310 656 70

Total 4712 1922 1367 777 105 1540 4684 751 3084 3403 20457 6491

Table 5: Summary of Effort used for each release per hour.

P
la

n
n

in
g
 g

am
e

W
ra

p
-u

p

M
ee

ti
n

g
s

C
o

ac
h

in
g

B
ra

in
st

o
rm

in
g

P
o

st
 m

o
rt

em

P
ro

je
ct

 m
an

ag
em

en
t

D
es

ig
n

M
is

ce
ll

an
eo

u
s

ta
sk

s

P
re

-r
el

ea
se

 t
es

ti
n

g
 &

b
u

g
fi

x

P
ai

r
P

ro
g

ra
m

m
in

g

S
el

f
p

ro
g

ra
m

m
in

g

R1 Effort/h 14 2.3 12.5 4.3 1.8 0 16.5 10.5 0 0 109.2 24.5

R2 Effort/h 13.3 7.1 2.9 1.5 0 10.7 22.5 2 19 8.9 77.8 24.2

R3 Effort/h 19.8 14.5 0 2.2 0 7.3 16.6 0 5 15.3 82.6 30.4

R4 Effort/h 17.5 3.4 0 0.6 0 4 8 0 4 21.9 40.4 10.9

R5 Effort/h 8.6 4.7 7.4 4.4 0 3.7 9.4 0 13.4 5.4 20.2 17.1

R6 Effort/h 5.3 0 0 0 0 0 5.2 0 10 5.2 10.9 1.2

Total Effort/h 78.5 32 22.8 13 1.8 25.7 78.2 12.5 51.4 56.7 341.1 108.3

28

Figure 1 : Graphical representation of effort in each release

Overall, 7698 Lines of Code and 820 hours were used for the project. While
several points of comparison were established, the more interesting and
noticeable, is that the effort required for coding costs 54.67% of the total
development effort while planning, which is also very important, takes 12.68%
of the total effort.

Table 6: Percentage of effort used in hours.

 P
ro

g
ra

m
m

in
g

 P
a

rt

(i
n

 h
o

u
rs

)

P
ro

je
ct

 M
a

n
a

g
em

en
t

P
a

rt
 (

in
 h

o
u

rs
)

P
la

n
n

in
g

 p
a

rt
 (

in

h
o

u
rs

)

O
th

er
 p

a
rt

 o
f

th
e

p
ro

je
ct

 (
in

 h
o

u
rs

)

T
o

ta
l

 P
ro

g
ra

m
m

in
g

 P
a

rt

(i
n

 h
o

u
rs

)

P
ro

je
ct

 M
a

n
a

g
em

en
t

P
a

rt
 (

in
 h

o
u

rs
)

P
la

n
n

in
g

 p
a

rt
 (

in

h
o

u
rs

)

O
th

er
 p

a
rt

 o
f

th
e

p
ro

je
ct

 (
in

 h
o

u
rs

)

T
o

ta
l

R1 133.7 37.2 14 10.5 195.4 R1 68.43% 19.04% 7.16% 5.37% 100.00%

R2 101.8 33.9 24 30 189.7 R2 53.68% 17.88% 12.65% 15.79% 100.00%

R3 112.9 33.3 27.2 20.3 193.7 R3 58.29% 17.20% 14.03% 10.49% 100.00%

R4 51.3 12 21.5 25.9 110.7 R4 46.33% 10.85% 19.42% 23.40% 100.00%

R5 37.3 25.9 12.3 18.8 94.3 R5 39.56% 27.49% 13.03% 19.92% 100.00%

R6 12.1 5.2 5.3 15.2 37.7 R6 32.07% 13.83% 13.91% 40.19% 100.00%

Total 449.1 147.6 104.2 120.6 821.6 Total 54.67% 17.96% 12.68% 14.68% 100.00%

0

20

40

60

80

100

120

R1 Effort/h R2 Effort/h R3 Effort/h R4 Effort/h R5 Effort/h R6 Effort/h

RELEASE(EFFORT/HR)

Effort Summary/Release

Planning game Wrap-up Meetings

Coaching Brainstorming Post mortem

Project management Design Miscellaneous tasks

Pre-release testing & bugfix Pair Programming Self programming

29

5.2 Data Usage

Many datasets from this project by VTT Technical Research Center of Finland
was made available and analysed for this research. Some of the datasets were not
used but are included in the appendix section of this report because they provide
detailed information about some of the variables or dataset used in this analysis.

The first dataset in the appendix section is the detailed summary table, that
shows the distribution of effort during development. This table provide
information like the Line of Code (LOC), Team productivity/hour (i.e., LOC/hr),
code integration, average time between integration, number of user stories
implemented during each release, post release defects and percentage of pair
programming used.

The second table is the Release history with user requirements. It gives some
information about the timeline of each user-story with the estimated and actual
resource used. The other table is the “Defects” table. It provided more
information about the defects detected during each release and when it was fixed.

The table below provide the list of dataset and how well it was used in this
research.

Table 7: Summary of dataset usage

Document
Identification

Insight Usage of dataset

Project Plan This document includes change history,
breakdown of release content, release Schedule,
references, tools and software used.

Yes. Most part of this document
were used for this research

Summary of
Projected Hours

This was the document that has most of the data
used for the research. It includes the effort chart,
description of data used for analysis (Legend),
chart summary, pair vs solo programming chart,
summary of project

Yes. Most part of this document was
used for the research

Record of defects Records of defects encountered during
development. The records include the defect date,
during what release, explanation of what was done
to rectify defect, severity and time required to fix
defect.

No. This document was added to
the appendix but the data in it was
not used in this research

Change history History of all the changes made during the
development. This doc has the version, date of
change, comment regarding the change

No. This document was added to
the appendix, but the records was
not used in the research

Resource
Estimation

This document explained calendar time vs
programmer time. It explained the concept of pair
programming. It also gives a description of how
much time is dedicated for each release with
respect to customer stories

30

6 EMPRICAL ANALYSIS

This chapter represents the empirical analysis of this study. It starts with the

description of all the user stories described in the research, explanation of the

amount of effort used for the project, estimate developed if the project would

have been estimated using the bottom-up and top-down estimate and the

comparison between the three estimates. Three primary empirical contributions

or deductions (PEC) will be developed from what is noticeable from the

comparison.

Each task is organized by the effort (in hours) accumulated per week and

summed up for each release. Release 1, 2 and 3 are each completed after two

weeks while Release 4 and 5 are completed after one week. Release 6 (i.e., the

final week or project closing and presentation week) is the time scheduled for

project delivery.

Each release is allocated with some use-cases that need to be completed. The

user stories are described below.

Release 1 was scheduled to be completed in 2 weeks and is the start of the

project. The developers are expected to complete each user story within the

time frame allocated within each release. User story 1 – 5 are tasks allocated to

this release. These are:

- User story 1: User must be able to create workspace. This task includes

initial database and software installations.

- User story 2: User must be able to create virtual folder.

- User story 3: User must be able to create virtual file.

- User story 4: User must be able to browse workspaces and folders.

- User story 5: User must be able to open virtual file.

Some hours are allocated for tasks like the project management and planning.

Release 2 is planned to be completed in 2 weeks and contain user story 6 to 17.

This includes:

31

- User-Story 6: User must be able to delete Workspace, Folder, File

- User-Story 7: User must be able to assign owners to workspace, folder,

file.

- User-Story 8: User should be able to sort list.

- User-Story 9: User should be able to update workspace, folder, and file.

- User-Story 10: User should be able to view all file links.

- User-Story 11-12: Bug detection for release 1

- User-Story 13-14: Release 1 bug fixes and enhancement

- User story 15: User should be able to search for keywords and words in

description.

- User story 16: User should be able to update sorted list in User story 8.

- User story 17: User should be able to use keywords to find files, folders,

and workspaces.

Some hours are allocated for tasks like minor bug fixes, pre-release tests,

code review, server environment updating and testing, task estimation and

audit.

Release 3 is scheduled to be completed in 2 weeks and contains user story 18

– 26. These stories are:

- User -story 18: Release 2 bug detected and fixed with enhancements.

- User story 19: Icon for files and folder created.

- User story 20: Administration password for maintenance

- User story 21: Find related function for item.

- User story 22-23: Top 10/100 of the most/least accessed

- User story 24-25: Copy/move function for folders. Password handling

required refactoring.

- User story 26: User can view and choose from list of existing keywords

on new edit, search forms.

During this release, one hour per day was set aside for management and

wrap-up.

Release 4 is planned to be completed in 1 week and contain user story 27 –

31. These stories are:

- User story 27: Release 2 bug detected and fixed.

- User story 28: Release 3 enhancements: mandatory fields, highlight open

workspace, CSS usage, password for editing, Item-List refactoring, time

stamps hh:mm, show folder into for new/edit/delete-functions.

- User story 29: User can copy/move selected folders and resources,

enhancements. Refactoring view .jsp.

- User story 30: User manual/helps created.

32

- User story 31: SW design documentation created but not fully

implemented.

Release 5 is the final part of the project. It is scheduled to be completed in 1

week and contain user story 32 – 35. The presentation and delivery of the

project happened during the next week and might be included in this release.

- User story 32: Release 4 bug detected and fixed.

- User story 33: Release 4 enhancements

- User story 34: Admin tool

- User story 35: Playground

Delivery of the project could be regarded as user story 36 and some hours are

allocated to this.

The next part of this empirical analysis states the effort (measured in hours),

allocated to the user stories, and summed up for each release according to each

estimation method examined.

6.1 Baseline Estimation

The baseline estimation is the effort, in hours allocated to each release according

to the actual project. This include hours that might have not been set aside or

just described as miscellaneous. In this project, some tasks allocated to a specific

release are completed in the other release because of some unforeseen

circumstance. For example, User story 35 was postponed, because the server

was not delivered in time. In release 4, more testing was conducted, because

some unexpected bugs were detected and had to be fixed before the

development process could continue.

The breakdown of the project demonstrates that although all the tasks in the

project can be broken down and scheduled, there are so many unexpected

failures, bugs, incidents, events that could alter the project schedule and

delivery.

The table below displays how much effort it takes to complete each user story

and the reason why that amount of effort was used. There are also comments in

the description column, stating what happened or how many hours were added

to a task.

33

Table 8: Baseline data with release history, user story and effort allocated.

Release

User story

number or

tasks

Description Actual

resource

use Remarks

Release

1 (2

weeks)

Project mgt and

other
Contains time which cannot be recorded to tasks. 35 h

Story #1
User must be able to create workspace. This task includes initial database

and software installations
51 h

Story #2 User must be able to create virtual folder. 63 h

Story #3 User must be able to create virtual file. 10 h

Story #4 User must be able to browse workspaces and folders. 6 h

Story #5 User must be able to open virtual file. 6 h

Planning day
Includes task estimation (and in following releases auditing and post mortem

of previous release)
24 h

Total 195 h

Release

2 (2

weeks)

Project mgt and

other
Contains time which cannot be recorded to tasks. 34 h

Story #6 Delete Workspace, Folder, File 14,5 h

Story #7 Owner to workspace, folder, file 7 h

Story #8 Sorting lists 8 h

Story #9 Update Workspace, Folder, File 10 h

Story #10 View All File Links 4 h

Story #11
Bug Report Function

Postponed to release 3.

Story #13 Release 1 bug fixes and enhancements 8,5 h

Story #15 Search for keywords and words in descriptions 27 h

Story #16
Last Updated field

3 h

(** transferred 1h to story 8)

Story #17 Keywords to files, folders, and workspaces 14 h

Pre-release

tasks

Minor bug fixes, server environment updating and testing, pre-release tests,

code reviews.
28 h

Planning day Includes task estimation and auditing and post mortem of previous release. 32 h

Total 190 h

Release

3 (2

weeks)

Project mgt and

related

Estimated 1 hours per day for management tasks and wrap-up. Estimated

increase in wrap-up on later releases.
33,5 h

Planning day

Includes task estimation and auditing and post mortem of previous

release. Post mortem was mistakenly left out, removed hours from (other

unexpected).

27 h

Pre-release and

other

miscellaneous

tasks

Minor bug fixes, server environment updating and testing, pre-release tests,

code reviews. ”Misspent” time is attempted to capture to here instead of

project management/wrap-up. Code reviews (15h) moved here. Pre-release

test & fix estimate (16h). Other unexpected 4h

20,5 h

34

 No time was left for code reviews. Miscellaneous (5h): UI enhancements.

Story #11 Bug report function 6,5 h

Story #18 Release 2 bug fixes and enhancements 41 h

Story #19 Icons for folders and resources 2 h

Story #20 Administration password for maintenance 0,5 h

Story #21 Find related –function for items 7,5 h

Story #22

Top 10/100 of most/least accessed resources/folders. Java date handling

caused problems as well as somewhat more complex SQL. Hit collecting

wasn’t as easy as expected (problems with Netscape and JavaScript), link

handling was improved.

19 h

Story #24
Copy/Move function for folders. Password handling required refactoring,

underestimated complexity regarding to functions itself.
18,5 h

Story #26

User can view and choose from list of existing keywords on new, edit, search

forms. Changes to server components were under estimated. JavaScript

connectivity between windows was more difficult than expected.

18 h

Total 194 h

Release

4 (1

week)

Project mgt and

related

Estimated half of the actual effort in R3. Drop from 7 to 3 days, estimated

one day too much.
12 h

Planning day Includes release planning and post mortem of previous release 21,5 h

Pre-release and

other

miscellaneous

tasks

Minor bug fixes, server environment updating and testing, pre-release tests,

code reviews. Pre-release test & fix estimate (8h). No miscellaneous or code

reviews expected.

26 h

Tasks were completed early in general and left over time was spent testing

and enhancing functions. Thursday testing left some bugs which were fixed

on Friday which made for almost extra day. Miscellaneous 4h of improving

pictures.

Story #27 Release 3 bug fixes. 6 h

Story #28

Release 3 enhancements: mandatory fields, highlight open workspace, CSS

usage, password for editing, ItemList-refactoring, time stamps hh:mm, show

folder into for new/edit/delete-functions

15 h

Story #29
User can copy/move selected folders and resources, enhancements.

Refactoring view.jsp
22 h

Story #30 User manual / helps 6 h

Story #31 SW Design Documentation will not be fully implemented in R4. 2,5 h

Total 111 h

Release

5 - Part

1 (1

week)

Project mgt and

related

Estimated more than R4 because of project ending and steering group

meeting.
26,5 h

Planning day
Includes release planning and post mortem of previous release. Little new

functionality so expected less than R4.
12,5 h

Pre-release and

other

miscellaneous

tasks

Minor bug fixes, server environment updating and testing, pre-release tests,

code reviews. Pre-release test & fix estimate (10h). No miscellaneous or code

reviews expected. Possible left over time is spent here.

15 h

Story #30
Helps

5 h

Largely underestimated

Story #31 Documentation 5 h

35

Part of documentation was moved to R6 (design doc)

Story #32

R4 bug fixes

1 h

It was expected that some JavaScript would need to be done but wasn’t.

Story #33 R4 enhancements 15 h

Story #34 Admin tool 16 h

Story #35

Playground

0 h

Postponed to R6 because server was not delivered in time.

Total 96 h

Release

5 - Part

2

Planning Planning of final release 5,5 h

Story #35

Playground

-

Server was not purchased early enough for application to be deployed.

Story #31

Documentation

7 h

(design doc)

Time recorded into misc tab in project time sheet.

Story #36
R5 bug fixes

7,5 h

Mainly 1h and 2h estimated, some were done in 10 minutes.

Story #37 R5 enhancements 3,5 h

Project post-

mortem
Was forgotten and not recorded, estimated spent 12h

Miscellaneous Possible last day stuff, not estimated

Pre-release

testing
Was left un-estimated 5 h

Project

management

and related

Project management and shutdown 5 h

Total 38 h

6.2 Bottom-up Estimation

Bottom-Up Estimation is mostly implemented once detailed information about

the project is made available, thereby making it easier to create a work

breakdown structure. A Work Breakdown Structure (WBS) is the process of

communicating all the work that needs to be carried out on a project, broken

down into smaller work packages and documented in a ranking structure:

(Kruchten, 2007).

In this estimation method, effort is estimated for each work package which are

generated by experts and added up to arrive at a total estimate. It helps avoid

cost and payment error in fixed price contracts. It is mostly used for budgeting,

scheduling, fund timing and resource requirement.

36

Some types of Bottom-up estimation

- Single Point Estimation. This method uses a figure or number to specify

certain information like date, time, days e.t.c. For example, how long will

“Task A” take to complete can be specify with 18 months, 6 days, 4 hours

e.t.c.

- Three-Point Estimation: Three different figures are used to specify

certain details. These include the optimistic (a), most likely (m) and

pessimistic (b). This method is rarely used, because it makes the

estimator look incompetent and does not provide the project manager

the right information or data needed for the project. These figures are

used to calculate the Activity Time Calculation which is:

Equation 3: Activity Time Calculation

The data collected from the study used for this project, shows that each release

is broken distinct task which are represented by user story. This process is the

same as the bottom-up method. Every task is broken down into smaller part

(i.e., user story in this research) and effort in hours are allocated to each. The

bottom-up estimate is only an estimate and might not include some of

unplanned incident or events encountered in the project. Some effort time

might be allocated for emergency, but it is just an estimate that might either be

more or less than the allocated time.

The table below the estimated time for the project using the bottom-up method.

Table 9: Bottom-up estimate with release history broken down to user stories and effort
allocated.

Release Story# Description

Estimated

resource

use

Release 1

(2 weeks)

Story #1
User must be able to create workspace. Task include

creation of database and software installation.
96 h

Story #2 User must be able to create virtual folder. 48 h

Story #3 User must be able to create virtual file. 12 h

Story #4
User must be able to browse workspaces and

folders.
12 h

Story #5 User must be able to open virtual file. 12 h

Activity Time Calculation (Te) =
𝑎+4𝑚+𝑏

6

37

Planning day
Includes task estimation (and in following releases

auditing and post-mortem of previous release)
12 h

Total 192 h

Release 2

(2 weeks)

Project management and other Contains time which cannot be recorded to tasks. 28 h

Story #6 Delete Workspace, Folder, File 21 h

Story #7 Owner to workspace, folder, file 6 h

Story #8 Sorting lists 7 h

Story #9 Update Workspace, Folder, File 6 h

Story #10 View All File Links 6 h

Story #11
Bug Report Function

4 h

Postponed to release 3.

Story #13 Release 1 bug fixes and enhancements 20 h

Story #15 Search for keywords and words in descriptions 20 h

Story #16 Last Updated field 4 h

Story #17 Keywords to files, folders, and workspaces 18 h

Pre-release tasks
Minor bug fixes, server environment updating and

testing, pre-release tests, code reviews.
28 h

Planning day
Includes task estimation and auditing and post-

mortem of previous release.
24 h

Total 192 h

Release 3

(2 weeks)

Project management and

related

Estimated 1 hours per day for management tasks and

wrap-up.
36 h

Planning day
Estimation and auditing and post-mortem of

previous release.
27 h

Pre-release and other

miscellaneous tasks

Minor bug fixes, server environment updating and

testing, pre-release tests, code reviews.
35 h

Story #11 Bug report function 8 h

Story #18 Release 2 bug fixes and enhancements 35 h

Story #19 Icons for folders and resources 5 h

Story #20 Administration password for maintenance 1 h

Story #21 Find related function for items 7 h

Story #22 Top 10/100 of most/least accessed resources/folders. 12 h

Story #24 Copy/Move function for folders. 14 h

Story #26
User can view and choose from list of existing

keywords on new, edit, search forms.
12 h

Total 192 h

Release 4

(1 week)

Project management and

related
Estimated half of the actual effort in R3. 17 h

Planning day
Includes release planning and post mortem of

previous release
24 h

Pre-release and other

miscellaneous tasks

Minor bug fixes, server environment updating and

testing, pre-release tests, code reviews.
8 h

Story #27 Release 3 bug fixes. 12 h

38

Story #28

Release 3 enhancements: mandatory fields, highlight

open workspace, CSS usage, password for

editing, ItemList-refactoring, time stamps hh:mm,

show folder into for new/edit/delete-functions

17 h

Story #29
User can copy/move selected folders and resources,

enhancements. Refactoring view.jsp
18 h

Story #30 User manual / helps 4 h

Story #31
SW Design Documentation will not be fully

implemented in R4.
2 h

Total 96 h

Release 5

(Part 1

and 2) -

First week

for

concluding

part of the

project

and 2nd

week for

project

delivery

Project management and

related

Estimated more than R4 because of project ending

and steering group meeting.
20 h

Planning day

Includes release planning and post mortem of

previous release. Little new functionality so expected

less than R4.

12 h

Pre-release and other

miscellaneous tasks

Minor bug fixes, server environment updating and

testing, pre-release tests, code reviews.
14 h

Story #30 Helps 3 h

Story #31 Documentation 11 h

Story #32 R4 bug fixes 5 h

Story #33 R4 enhancements 15 h

Story #34 Admin tool 14 h

Story #35 Playground 2 h

Planning Planning of final release 5,5 h

Story #35 Playground 2 h

Story #31 Documentation 6 h

Story #37 R5 enhancements 5 h

Project management and

related
Project management and shutdown 4 h

Total 132 h

6.3 Top-down Estimation

Top-Down Estimation method is the process where the total cost or effort

required for a project is determined at the beginning of the project. The smaller

PEC 1: The bottom-up estimate is the closest estimate to the baseline estimate. They

both have almost the same features and estimate, except that the effort hours allocated

for non-technical tasks and unexpected events in the bottom-up estimate are

insufficient or inaccurate.

39

part of the project is subsequently broken down with reference to the total

calculated or estimated at the beginning of the project: (Nguyen, 2010). This

method is usually implemented by senior management based on the general

knowledge accessible about the project. It is supported by experience and expert

and rely on historical data of old projects or projects completed by competitor. It

is a quick and easy method and ignore technical details of project which possibly

yield inadequate result since it is no specific metric to measure programmer

efficiency. It could be used for fund requirement, resource capacity planning and

feasibility study (Iqbal et.al., 2017).

Some types of top-down estimation

- Consensus Method: relies on the experience of several senior managers

to improve the accuracy of the estimate. Could be regarded as pooled

experience.

- Ratio Method: relies on the fundamental project attributes like size,

cost/feature, and duration.

- Apportion Method: Calculate the cost of individual tasks as a percentage

of the total cost. For example, a project (100%) can be divided to the

following: Design (15%), Programming (40%), Test (35%) and

Documentation (10%).

- Learning Curve: accounts for the fact that each time a task is repeated, it

will take less time to complete. The concept of pair programming is used

to describe this and shows how effort could be maximized when two

programmers do a task together or when a repetitive task is done again.

With pair programming, the quality of the result is better with less

calendar time, but the person-hours increases.

Estimating the effort required for the project, using the top-down method can

would require some historical data and reference to past projects. Since this

information cannot be retrieve, the number of software developers, hours

allocated for full time work per week, and number of weeks required to

complete the project can be used to calculate the total effort required for the

project.

In this project, four developers are assigned to complete the project. They will

be working full-time, for 8 weeks and the 9th week will be dedicated for closing

and delivering the project. Full time for the project for each developer is 24

hrs/week (i.e., 6 hours/day for 4 days a week). This means that 96 hours of

effort is needed per week for all the four developers. Some tasks (like coding

40

and testing) can be completed using pair programming while other task like

lunch break, team meetings can only be completed individually.

For one programmer (Full time – 6hrs per day = 24hrs required per week.)

- Estimated break/relaxation time – 1 hr per day = 4hrs per week

- Estimated meeting/Planning – 0.75 hr per day = 3 hrs per week

- Estimated coding time – 4.25 hrs per day = 17 hrs per week

Since there are no data that specifies which task will be completed individually

or with pair programming, it can be assumed that 20% of the coding task will

be completed by pair programming but will not be considered in this

estimation. It is also good to note that some codes will be used in some

repetitive tasks, which will reduce the effort time.

The table below the estimated time for the project using the top-down method.

Table 10: Top-down method estimated as the developer’s total effort per week.

Release Week
Developer effort/week
(in hours)

Total effort / week (in
hours)

Release 1

1 24 96

2 24 96

Total 48 192

Release 2

3 24 96

4 24 96

Total 48 192

Release 3

5 24 96

6 24 96

Total 48 192

Release 4 7 24 96

 Total 24 96

Release 5

8 24 96

9 12 48

Total 36 144

 PEC 2: The top-down estimate is just an approximate that is likely flawed. Even though the

estimate might be close to the baseline estimate, it ignores all the technical and non-technical

details, unforeseen events, and work breakdown structure of both the baseline and bottom-

up estimate.

41

6.4 Comparison

In this section, the result from the three estimates above are compared. The

comparison table will include the total effort hours obtained for the baseline

estimation for each release in comparison with the bottom-up and the top-down

estimates.

Table 11: Comparison of baseline, bottom-up and top-down estimate

Release
Baseline Estimate
(Effort in hours)

Bottom-up Estimate
(Effort in hours)

Top-down Estimate (Effort
in hours)

Release 1 195 192 192

Release 2 190 192 192

Release 3 194 192 192

Release 4 111 96 96

Release 5 134 132 144

Figure 2: Graphical representation of effort in each release

The effort estimated during the project (i.e., 195 hours) differs from the estimate

obtained for both bottom-up and top-down methods. It is coincidental that the

effort was required for both the bottom-up and top-down estimates (both 192

hours). Comparing the baseline and bottom-up estimate tables in section 6.1

and 6.2, more effort was allocated to planning and other non-programming

0 50 100 150 200 250

Release 1

Release 2

Release 3

Release 4

Release 5

Comparison Table

Top-down Estimate Bottom-up Estimate Baseline Estimate

42

tasks in the baseline estimate at the beginning of the project while there was no

time allocated for these tasks in the bottom-up estimate. This process planning

reduced the actual amount of effort time required for coding. For example,

project management, planning, taking breaks and other non-coding task under

release 1, accounted for 59 hours in the baseline estimate and just 12 hours in

the bottom-up estimate. This was evident because the coding task for the user

stories were completed within 136 hours in the actual project but was predicted

to be completed in 180 hours using the bottom-up method. The top-down

estimate remains the same per week throughout the project. (i.e., 4 developers

working for 24 hours per week requires 96 effort hours per week and 192 hours

of effort over 2 weeks). The top-down estimate is a quick way to make an

estimate and could be use as a guide of the total effort hours required for the

project.

PEC 3 shows that planning, project management and other non-coding task

should be given more attention and allocated enough time at the beginning of

the project, because it could act as a guide and reduce the time for coding or

doing the technical task.

The same pattern, where the more planning done reduces the coding time can

also be noticed for data recorded in release 2. Furthermore, user story 11, “Bug

Report Function” was estimated to be completed in release 2 but was actual

moved to release 3. The 4 hours allocated to this user story under the bottom-up

estimate are used for the non-coding task in the baseline estimate.

The effort estimated to complete some user stories in the 3rd release differs to

the actual effort used to complete the task. For example, it takes 41 hours to fix

the bugs in release 2, but 35 hours was estimated to complete this task. For the

first time in the project, the estimated efforted required (192 hours) to complete

the task in this release is lesser than the actual time (194 hours) it took to

complete the tasks.

PEC 3: The more effort hours allocated to planning and project

management tasks at the beginning of a software project decreases lag

time, identify possible risk, prioritize tasks, and reduces the time spent on

the actual coding.

43

One aspect of a software development project is the little time allocated for

testing and bug fixing. While some stakeholders just do not see the reason why

they should allocate a lot of time to bug fixing, most developers feel they are good

enough that they make little or no mistake while coding and would not require

so much time fixing bug. Another reason could be that the software just does not

work after different developer must have worked on smaller part of the project.

It is necessary that more time should be allocated for testing and bug fixing, even

when an experienced developer is involved, so that more testing can be

conducted before the software is delivered for use. This is critical for applications

that are life threatening if it is not tested extensively and bugs fixed before

considered appropriate for use. Testing also help to detect any security

vulnerabilities that could cause harm or attack.

Having spent 6 weeks in the project, it could be noticed that more time are spent

on pre-release testing, miscellaneous tasks, and enhancement. The predicted

effort time for these tasks is 37 hours while 47 hours were used. It is also noticed

that the more progress made in the project, the less time spent for planning and

project management. For example, it is predicted that 41 hours will be required

for planning and managing the project, but only 37.5 hours were used.

The effort required for both estimates in the final release are almost the same.

Though pre-release testing (5 hours) was not estimated at all, using the bottom-

up method, but over 13.5 hours are estimated to be used for fixing bugs detected

in this release. Only 7.5 hours was literally used.

Overall, 824 effort hours was used to complete the projected. The bottom-up

method estimated using 804 effort hours and the top-down method estimated

816 hours.

PEC 5: The difference between the baseline estimate obtained from a software

project and estimates calculated by various estimation methods at the beginning

of the project is insignificant and can be likely ignored if the project is small.

PEC 4: Testing and bug fixing are important and delicate part of developing

a software. The more effort hour set aside for these tasks in a software

project, the likelihood it is for the project to completed and accepted by the

customer.

44

PEC 5 shows that the bigger the software project or the longer the delivery time

of a project is, the more difficult it is to estimate the effort required to complete

the project with either top-down or the bottom-up estimation method. For

example, assuming the data used for this study was to be for one year, it will be

impossible to use the top-down method by just multiplying the number of

developers with the number of hours required per week by 52 weeks.

Using this method, would yield a total of 4992 effort hours (i.e., 96 hrs x 52 weeks)

required to complete the project. The problem with this estimate is that so many

uncertainties (some manageable and others unexpected and uncontrollable) like

holidays, sick days, trainings, developer quitting, developer productivity for a

big project, hardware and software problems, mentoring, requirement changes,

natural disaster and many more are not considered. These uncertainties could

lead to overestimation or underestimation, which would have an impact on the

success of the project.

6.4 Summary of PECs

Five primary empirical conclusions were formed from the data used for research

and the data estimated. These primary empirical conclusions are summarized in

the table below.

Table 12: Summary of the primary empirical conclusions from the analysis.

PECs Summary of PECs

PEC 1 The bottom-up estimate has almost the same features and estimate
as the baseline estimate except it is difficult to accurately estimate
the unpredictable events and some non-technical tasks.

PEC 2 The top-down estimate is a quick estimate used to predict what the
total project would cost. It is generally undependable and should
only be considered for small projects or for project bidding.

PEC 3 At the beginning of the project, more effort time should be set aside
for project planning and management, to help create a clear
pathway for the structural and technical definition of the project.

PEC 4 Though it is difficult to predict all the events that could happen in a
project, enough time should be allocated for bug fixing and testing
because it is a necessary and need to be clearly monitored for the
success of the project.

PEC5 The inaccuracy in the estimate generated for a small project is
generally negligible, because there is the possibility that most
estimation method will derive estimates that are almost the same.

45

7 DISCUSSION

This chapter present the five primary empirical conclusions developed in the
previous chapter and attempt to correlate it with theoretical concept of this study.

7.1 Implications for practice

Although, various estimation methods and models have been developed, it is still

very challenging for estimators to decide which one is the best. Some estimates

are simple to develop but extremely inaccurate while others that seems almost

correct, are burdensome to create.

As stated in PEC 1, the bottom-up estimate involves breaking down the projects

to small bits to find the total resources, cost or effort required to complete the

project. It is usually one of the likely accurate estimates since it takes in

consideration almost all the details except the unexpected events that could cause

the failure of the project. For example, there is no way an estimate created

sometime around January 2020 that has enough time assigned to all the tiny bits

of the project, would have allocated enough time for the unexpected lock down

that happened due to the Covid-19 pandemic. This only shows that unpredicted

events could have an adverse effect on an estimate, no matter how accurate it is.

PEC 2 explains how the top-down estimate is just an approximate. It should only

be used in situations where there is the need to have a quick idea of how much a

project would cost. This estimate is used to bid for projects, manage a very small

project that is not complex and does not require extensive details.

Although, the task in PEC 3 and PEC 4 (planning, bug fixing and detailed testing)

are delicate and important measure for the success of a software project, it is

given very little regard in PEC 2 and cannot be accurately estimated in PEC 1.

46

As stated by PEC 5, the choice of the estimation method chosen to estimate a

small project might not matter much, since they could generate almost the same

estimate, it is worth noting that other factors like experience and skill of the

developers assigned to complete the project, unpredicted situations, and ever-

changing requirements could still alter the estimate of the project.

7.2 Implications for research

The goal of this section of the thesis is to balance how the five empirical

conclusions contributes to scientific knowledge.

Table 13: Theoretical contributions of the study

PECs Description Scientific Novelty

PEC 1 The bottom-up estimate is the closest estimate to the
baseline estimate. They both have almost the same
features and estimate, except that the effort hours
allocated for non-technical tasks and unexpected
events in the bottom-up estimate are insufficient or
inaccurate.

Corresponds with
existing knowledge
and research.
(Boehm, 2001)

PEC 2 The top-down estimate is just an approximate that
is likely flawed. Even though the estimate might be
close to the baseline estimate, it ignores all the
technical and non-technical details, unforeseen
events, and work breakdown structure of both the
baseline and bottom-up estimate.

Corresponds with
existing knowledge
and research (Leung
& Zhang, 2001)

PEC 3 The more effort hours allocated to planning and
project management tasks at the beginning of a
software project decreases lag time, identify
possible risk, prioritize tasks, and reduces the time
spent on the actual coding.

Corresponds with
existing knowledge
and research.

PEC 4 Testing and bug fixing are important and delicate
part of developing a software. The more effort hour
set aside for these tasks in a software project, the
likelihood it is for the project to completed and
accepted by the customer.

Corresponds with
existing knowledge
and research.
(McConnell, 2006)

PEC 5 The difference between the baseline estimate
obtained from a software project and estimates
calculated by various estimation methods at the
beginning of the project is insignificant and can be
likely ignored if the project is small.

Contradicts existing
knowledge and
research

47

8 CONCLUSIONS

This chapter present the conclusion for the study. These conclusions include the
answer to the research question and general insight on what was learnt during
the study, limitations of the study and new research areas that could create future
research opportunities.

8.1 Answer to research questions

Estimating the cost of a software project at the beginning of a software project,
continually remains a challenge. Commenting on the issue, Brooks, in his journal,
“Great Challenges for Half-Century-Old Computer Science” labels it as one of the
three big challenges of computer science practice:

Given specific functional, reliability, and performance specifications for a software system, we do
not yet know how to estimate the effort required building it. The challenge is to make software
engineering as predictable a discipline as civil or electrical engineering. I still do not expect any
radical breakthrough, any silver bullet, to solve this problem. But the accretion of many
contributions has already made much progress, and I believe continued careful research, ever
validated by real practice, will bring us to that goal (Brooks, 2003)

The objective of this thesis is to analyse the challenges in software project cost
estimation. To establish this, three sub questions were formulated:

- What is the best estimation method for any software project?

- What are the key reasons for cost overrun in developing large software?

- Is it possible to estimate a software project, by using the Bottom-Up or the Top-

down method alone?

To answer the research question above, a detailed literature review was
conducted on estimation methods and challenges encountered in choosing one
of them.

The empirical findings suggest that none of the estimation methods can be
completely regarded as the best with the highest degree of accuracy. Several
reasons are identified as being responsible for this (Linda, 2006). This includes.

48

- Software development process is moving so fast that it becomes almost
impossible to develop a fit one all type cost estimation method.

- Furthermore, changing requirements and unrealistic expectation from the
customer are the some of the reasons why it is difficult to create an
estimate at the beginning of a project and stick to it all through project.

For example, a software development team might submit a lower bid just to win
the bid. During development, the firm then come up with different ways to
extract more money or to cut corners in areas of functionality, testing, reliability,
etc.

It is recommended to use different estimation methods, because each one of

them have their advantages and disadvantages. The estimates developed,

should also be updated often throughout the project. (Boehm, 2001). For

example, with an innovative idea generated, a good choice can be, starting with

a top-down estimate to give a quick view of the total effort hours needed to

develop a schedule and budget. Later in the project, a bottom-up estimate can

be generated by modifying the schedule and budget and rectifying the

difference.

Figure 3: Enhancing estimation methods in software development process.

Generating
an idea

Planning and

preparing

Executing

project
Terminate

project.

Prepare the estimate.

Develop the estimate.

Manage the estimate.

Improve and enhance the estimate.

49

8.2 Limitation of study

One limitation of the study is that the time schedule for the software
development is small (just eight weeks) and does not give a general overview of
the differences between the results calculated for the estimation methods. A
bigger project, scheduled to be completed over a long period of time (maybe over
a year) with more developers involved, could give a better view if the bottom-up
estimate is better than the top-down estimate or vice-versa.

Comparing the baseline estimate with just two estimation methods (i.e., bottom-
up and top-down estimation method) did not give the possibility of comparing
other methods of estimation like the algorithm methods that could have used
different metrics and equations to derive the total effort required to complete the
project.

8.3 Future research opportunities

More research has been conducted to develop better estimation models, reduce

the time spent creating the estimate or find a way to do things differently. All

these have made researchers to come up with the concept of “No Estimate

model”.

The No Estimate model is not proposed to eliminate the idea of estimating, but

to investigate another method of solving the problems of delivering software

projects on time. The steps suggested are:

- Risk Estimation Method: This is process of arranging the work structure

of a software project to get as much info as possible and get started on

the bigger risk first. The aim of this method is that it is easier to see if the

project will be completed or not.

- Percent Complete method: This is the process whereby a small part of

the project selected and worked on over a chosen time frame (like 2

weeks or a month). This will give the stakeholders the opportunity to

gain better understanding of how long the project could take and if it is

worth it. After the 2 weeks, if things look bad, the stakeholders can stop

investing into it. If things work fines, the next major decision point like a

month or 3 months can be chosen and the whole process repeated.

50

REFERENCES

Abrahamsson, S. & Ronkainen, W. (2002). Agile software development methods:

Review and Analysis. Espoo, Finland, Technical Research Centre of Finland,
VTT Publications 478, available online:
http://inf.vtt.fi/pdf/publications/2002/P478.pdf.

Adams, R. & Schvaneveldt, J. (2003). Understanding Research Methods. 4th Edition,
Pyrczak Publishing.

Albert L, Lederer and Jayesh, P. (1992). Nine Management Guidelines for Better
Cost Estimation. CACM, Vol 35

Albrecht, A.J (1979). Measuring Development Productivity. IBM California. 83 – 92

Beck (2000). Extreme programming explained. Reading, MA, Addison Wesley
Longman Inc.

Beck, Fowler (2000). Planning extreme programming. New York, Addison-Wesley.

Bill, S. (2020). Importance of Project Schedule and Cost Control in Project
Management. Global Knowledge. https://www.globalknowledge.com/ca-
en/resources/resource-library/articles/importance-of-project-schedule-
and-cost-control-in-project-management/

Boehm, B. (1984). Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, N.J.

Boehm, et al. (2000). Software Cost Estimation with COCOMO II. Prentice Hall,
Upper Saddle River, New Jersey USA.

Boehm, B. (2000). Safe and Simple Software Cost Analysis. IEEE Software, Prentice
Hall, Upper Saddle River, New Jersey USA.

Boehm, B. (2001). Software Engineering Economies. In Pioneers and their
contributions to Software Engineering, Prentice Hall, Upper Saddle River,
New Jersey USA.

51

Boehm, B. (2010). Current and Future Challenges for Software Cost Estimation and
Data Collection, Prentice Hall, Upper Saddle River, New Jersey USA.

Brooks, F. (2003). Three Great Challenges for Half-Century-Old Computer Science.
Journals of the ACM. Vol 50, Pg. 25-26.

Campbell, L. and Brian, K. (1995). Software Metrics: Adding Engineering Rigor to a
Currently Ephemeral Process, briefing presented to the McGrummwell F/A-
24 CDR course.

Capers, J. (2008). Preventing Software Failure: Problems Noted in Breach of Contract
Litigation, Caper Jones & Associates, Narragansett, RI.

Capers, J. (2007). Estimating Software Costs: Bringing Realism to Estimating. 2nd
Edition.

Cavalieri, S. Maccarrone, P. & Pinto, R. (2004). Parametric vs Neural Network
Models for the Estimation of Production Costs: A Case Study in Automotive
Industry. International Journal of Production Economics.

Charette, R. (2005). Why software fails: We waste billions of dollars each year on
entirely preventable mistakes. IEEE Spectrum Spotsylvania, Va.

Conte, S. Dunsmore, H. & Shen, V. (1986). Software Engineering Metrics and
Models, Menlo Park, Ca.

Dehaghani, S & Hajrahim, N. (2013). Which Factors Affect Software Projects
Maintenance Cost More?

Eberendu, A. (2014). Software Project Cost Estimation: Issues, Problems and Possible
Solutions, Madonna University, Nigeria

Enachescu, C. & Dumitru, R. (2009). Software Cost Estimation Model based on
Neural Networks.

Garmus, D. & Herron, D. (1995). Measuring the Software Process: A Practical Guide
to Functional Measurement. Prentice – Hall, Englewood Cliffs.

Garmus, D & Herron, D. (2001). Function Point Analysis: Measurement Practices
for Successful Software Projects, Addison-Wesley, Boston, Mass.

Henrich, A. (1997). Repository Based Software Cost Estimation

Hihn, J. & Habib-agahi, H. (2000). Reducing Flight Software Development Cost Risk:
Analysis and Recommendations, Long Beach, CA, 2000.

Hihn, J. & Habib-agahi, H. (2000). Cost Estimation of Software Intensive Projects: A
Survey of Current Practices. http://www.ispa-cost.org/ - International
Society of Parametric Analysts.

52

Hull, D. (2009). Methods and Challenges in Early Cost Estimation

Humphrey, W. (1989). Managing the Software Process, Addison Wesley, Don
Mills Ont.

Humphrey, W. (1995). A discipline for software engineering. Addison Wesley.

Hung, R. (2006). Business Process Management as Competitive Advantage: A Review
and Empirical Study. Total Quality Management & Business Excellence

Iqbal, S. Idrees, M. Sana, A. &Khan, N. (2017). Comparative Analysis of Common
Software Cost Estimation Modelling Techniques. Mathematical Modelling and
Applications. Vol. 2, No. 3, pp. 33-39

Isabella, W. (2002). Improved Software Cost Estimation: A Robust and Interpretable
Modelling Method and a Comprehensive Empirical Investigation

Jeffries, Anderson, Hendrickson (2001). Extreme Programming Installed. Upper
Saddle River, NJ, Addison-Wesley.

Jones, C. (2005). Software Quality in 2002: A Survey of the State of the Art. Software
Productivity Research, Marlborough, Massachusetts.

Jones, C. (2005). Software Cost Estimating Methods for Large Projects: Software
Productivity Research, LLC.

Jones, T. (1998). Estimating Software Costs, New York: McGraw-Hill.

Karen, L. Bramble, M. & Hihn, J. (2003). Handbook for Software Cost Estimation.

Kansala, K. (1997). Integrating risk assessment with Cost Estimation. Nokia
Research Center Espoo. Vol 14, Issue 3, 61-67 Software IEEE.

Kemerer, F. (1987). An Empirical Validation of Software Cost Estimation Models

Khatibi, V. & Jawaw, D. (2011). Software Cost Estimation Method: A review Journal
of Emerging Trends in Computing and Information Science.

Koskinen J. (2010). Software Maintenance Costs. Jyväskylä: University of
Jyväskylä.

Kruchten, P. (2007). Software Development Cost Estimation. University of British
Columbia.

Laudon, K. & Laudon, J. (1999). Essentials of Management Information Systems. 3rd
International Edition. Prentice Hall. 27-30

Leung, H and Zhang, F. (2001). Software Cost Estimation. Department of
Computing, The Hong Kong Polytechnic University.

53

Liming, W. (1997). The Comparison of the Software Cost Estimating Methods

Linda, M. (2006). The Limitations of Estimation for IT Professionals. Volume 8.

Malevanny, S. (2005). Software Project Cost Estimates Using COCOMO 11 Model
Introduction to Software Cost Estimation.
http://www.mhprofessional.com/downloads/products/0071483004/007
1483004_ch01.pdf

McConnell, S. (1998). Software Project Survival Guide. Microsoft Press

McConnell, S. (2006). Software Estimation: Demystifying the black art, Microsoft
Press, Redmond WA.

Miles, M. & Huberman, A. (1994). Qualitative Data Analysis: An Expanded
Sourcebook. 2nd Edition, Thousand Oaks, Sage, California.

Mittal, H & Bhatia, P. (2002). A comparative study of Conventional Effort Estimation
and Fuzzy effort estimation based on Triangular Fuzzy Numbers.

Moody, D. (2002). Empirical Research Methods. Available online at
http://www.idi.ntnu.no/ekaterip/dif8916/Empirical%20Research%20Me
thods%20Outline.pdf.

Nahar, N. (2001). Information Technology Supported Technology Transfer Process. A
Multi-site Case Study of High-tech Enterprises. Jyväskylä Studies in
Computing.

Nguyen, V. Deeds-Rubin, S. Tan, T. & Boehm, B. (2007), A SLOC Counting
Standard, Center for Systems and Software Engineering, University of
Southern California.

Nguyen Vu. (2010) Improved Size and Effort Estimation Models for Software
Maintenance. University of Southern California.

Novack, R. & Simco, S. (1991). The Industrial Procurement Process: A Supply Chain
Perspective. Journal of Business Logistics.

Park, R. (1995). A Manager’s Checklist for Validating Software Cost and Schedule
Estimates.

Prasad, B. & Harker, P. (2009). Examining the contribution of IT towards
Productivity and Profitability in the US retail Banking.

Putnam, L. (2003). Five core metrics: the intelligence behind successful software
management. Dorset House Publishing. ISBN 0-932633-55-2

http://www.mhprofessional.com/downloads/products/0071483004/0071483004_ch01.pdf
http://www.mhprofessional.com/downloads/products/0071483004/0071483004_ch01.pdf
http://www.idi.ntnu.no/ekaterip/dif8916/Empirical%20Research%20Methods%20Outline.pdf
http://www.idi.ntnu.no/ekaterip/dif8916/Empirical%20Research%20Methods%20Outline.pdf

54

Putnam, L. (1978). A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. SE-4,

Ravidranath, C. (2004). Software Metric: A Guide to Planning Analysis and
Application

Roger, S. (1992). Software Engineering: A Practitioner’s Approach, 3rd Edition,
McGraw-Hill, Inc., New York.

Rosalind, L. Pfleeger, L. & Wu, F. (2005). Software Cost Estimation and Sizing
Methods: Issues and Guidelines

Roy, R. (2003). Cost Engineering: Why, What and How. Available on at
http://www.cranfield.ac.uk

Shepperd, M. (1996). Effort Estimation Using Analogy. IEEE

Stamelos, I. Angelis, L. Morisio, M. Sakellaris, E. & Bleris, G. (2003). Estimating
the development cost of custom software. Information & Management.

Stevenson, C. (1995). Software Engineering Productivity, London.

Strike, K. & Emam, K. (2001). Software Cost Estimation with Incomplete Data. IEEE,
Vol 27, Pg. 890-908

Stutzke, R. (2005). Estimating Software – Intensive Systems: Projects, Products and
Processes. Addison-Wesley, Boston, Mass.

Touesnard, B. (2004). Software Cost Estimation: SLOC-based Models and the
Function Point Model Version 1.1

Zawrotny, S. (1995). Estimating Software Development Projects: No Silver Bullets,
But Vendor Software Does Help?

Zia, Z. Rashid, A. & Zaman, K. (2011). Software cost estimation for component based
fourth generation-language software applications, Software, IET, vol.5, no.1,
pp.103-110.

http://www.cranfield.ac.uk/

55

Appendix A - List of abbreviations and terms used in this study.

Line of Code (LOC)

Line of Code is a software metrics which is used to measure the size of a software
program by counting the number of lines in the text of the program’s source code.
It is one of the methods used to predict the amount of effort required to develop
a program.

Function Point (FP)

Function Points was proposed by Allan Albrecht to help measure the
functionality of the software systems. It is also one of the methods used to
estimate the effort required for the software development.

Constructive Cost Model (COCOMO)

The Constructive Cost Model (COCOMO) is an algorithmic software cost
estimation method which was proposed by Barry Boehm. The equations and
parameters are used to compute the cost estimation, which has been formed
based on previous experience in estimation of cost software projects.

Software Life Cycle Management (SLIM)

The SLIM is an empirical software effort estimation model proposed by
Lawrence H. Putnam that describes the time and effort required to finish a
software project.

Software Cost Estimation Process

Software cost estimation process is the set of techniques and procedures that an
organization uses to arrive at a software cost estimate. Generally, there is a set of
inputs to the process (e.g., system requirements) and an output of effort,
manpower loading, and/or duration. It is discovered that this process at an early
stage of software development could be very difficult task to achieve.

Work Breakdown Structure

A Work breakdown structure (WBS) is a deliverable oriented decomposition of a
project into smaller components. It defines and arranges a project's discrete work
elements in a way that helps organize and define the total work scope of the
project which provides the necessary framework for detailed cost estimating and
control along with providing guidance for schedule development and control.

Request for Proposal

56

A request for proposal (RFP) is a document that an organization posts to elicit
bids from potential vendors for a product or service. The quality of an RFP is very
important to successful project manage because it outlines the bidding process
and contract terms and provides guidance on how the bid should be formatted
and presented. A RFP is typically open to a wide range of bidders, creating open
competition between companies looking for work.

57

Appendix B - Some useful datasets.

Table 14: Detailed summary of distribution of effort during development

Id Collected data Release

1

Release

2

Release

3

Release

4

Release

5

Correction

Release

Total

1 Calendar time

(weeks)

2 2 2 1 1 0.4 8.4

2 Total work effort (h) 195 190 192 111 96 36 820

3 Task allocated actual

hours

136(70%) 95(50%) 118(61%) 51(46%) 42(44%) 27(75%) 469(57%)

4 # LOCs

implemented in a

release

1821 2386 1962 460 842 227 7698

5 Team productivity

(loc/hr)

13.39 25.12 16.63 9.02 20.05 8.4 16.90

6 Code integrations

(integrations/day)

8.1 10.1 7.9 10.5 8.2 8.5 8.9

7 Avg. time between

integration

(minutes)

26 21 40 31 27 30 29

8 Avg. number of files

per integration

1.7 2.4 3.1 2.6 3.0 3.0 2.6

9 # User stories

implemented

5 9 9 4 3 4 34

10 # User stories

postponed for next

release

0 1 0 1 2 0 4

11 User story effort

(actual, median, h)

10.1 8.3 7.6 5.9 5.2 2.8 6.8

12 User story effort

(actual, max, h)

63.1 26.9 41.7 21.8 15.9 7.6 63.1

13 # Tasks defined 10 30 18 21 19 9 107

14 Task effort (actual,

median, h)

11.7 2.9 5.9 1.7 2.6 0.7 2.7

15 Task effort (actual,

max, h)

32.3 8.8 14.0 8.8 5.3 3.4 32.3

58

16 # post-release

defects

4 5 4 4 11 - 2.19

17 Post-release

defects/KLoc

2.19 2.10 2.04 8.7 13.06 -

1.43

(3.75)

18 # Post-release

enhancement

suggestions made

by testers

17 13 5 3 0 - 38

19 Pair programming

(%)

81.7 76.3 73.0 78.8 54.2 90.4 75.9

20 Required customer

involvement (%)

17.4 21.4 18.6 25.0 23.4 24.3 20.6

21 Rework costs (%) - 8.7* 11.8 11.6 2.6 61.5 9.8

*Includes also enhancements.

Table 15: Defects

 Defects

Date

found

During

Task Description Severity

Release

In

Release

Out Date fixed

Time

fixed

1

2003-02-

14

Pre-1

Test

User can enter html-

directives into text fields

which can in worst case

enables script writing

onto page. Major R1 2003-02-14 60

2

2003-02-

14

Pre-1

Test

Create forms leave user

to "ack" page, should

open the created

folder/workspace/folder

in which file was created. Cosmetic R1 2003-02-14 30

3

2003-02-

14

Pre-1

Test

Refreshing form left by

defect #2 causes action to

be performed again, ie

creating another folder or

file with same attributes. Major R1 2003-02-14 60

4

2003-02-

14

Pre-1

Test

File link requirements

are too strict? (3.1) Cosmetic R1 2003-02-14 60

5

2003-02-

14

Pre-1

Test

after newFileHandeler

file description losses

spaces Cosmetic R1

 8.1.

New File -function

created duplicated file

(same file x2) when

performed, action didn't

repeat itself (ghost?) Minor? R2

2003-02-

19 9.1.

 top-level description

converts wrong Minor? R2

2003-02-

20 10.1.

DateCreateded was

update, becourse Minor? R2 2003-02-20 30

59

dateCreatede type was

timestamp

Table 16: Change History

Version Date Comments

0.1 03.02.2003 first draft, for R1

0.2 10.02.2003 fixed findings made by Abr

1.0 11.02.2003 fixed findings found in steering group meeting

1.1 18.02.2003 Update schedules and estimates for R2

1.2 03.03.2003 Updates schedules and estimates for R3

1.3 04.03.2003 fixed estimates

1.4 06.03.2003 fixed spent time, concerning task miscellaneous

1.5 17.03.2003
updated actual hours for R3, added schedule and estimated for
R4

1.6 24.03.2003 updated actual hours for R4

1.7 27.03.2003 updated schedule and estimates for R5

1.8 28.03.2003 updated actual hours for R5 and created "post R5 release"

1.9 03.04.2003 updated estimates and post-R5 to R6

2.0 16.04.2003 Final version after last post-mortem

