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Abstract: We have shown that prebiotic xylo-oligosaccharides (XOS) increased beneficial gut 

microbiota (GM) and prevented high fat diet-induced hepatic steatosis, but the mechanisms 

associated with these effects are not clear. We studied whether XOS affects adipose tissue 

inflammation and insulin signaling, and whether the GM and fecal metabolome explain associated 

patterns. XOS was supplemented or not with high (HFD) or low (LFD) fat diet for 12 weeks in male 

Wistar rats (n = 10/group). Previously analyzed GM and fecal metabolites were biclustered to reduce 

data dimensionality and identify interpretable groups of co-occurring genera and metabolites. 

Based on our findings, biclustering provides a useful algorithmic method for capturing such joint 

signatures. On the HFD, XOS-supplemented rats showed lower number of adipose tissue crown-

like structures, increased phosphorylation of AKT in liver and adipose tissue as well as lower 

expression of hepatic miRNAs. XOS-supplemented rats had more fecal glycine and less 

hypoxanthine, isovalerate, branched chain amino acids and aromatic amino acids. Several bacterial 

genera were associated with the metabolic signatures. In conclusion, the beneficial effects of XOS 

on hepatic steatosis involved decreased adipose tissue inflammation and likely improved insulin 

signaling, which were further associated with fecal metabolites and GM. 

Keywords: non-alcoholic fatty liver disease; xylo-oligosaccharides; metabolites; gut microbiota; 

biclustering; high fat diet; microRNA; rats 

 

1. Introduction 

Up to 90% of the obese population in Western countries is estimated to suffer from 

non-alcoholic fatty liver disease (NAFLD). NAFLD is defined as excessive fat 

accumulation in the liver, which is not caused by excessive alcohol consumption or 

steatogenic drug use. Without intervention, simple NAFLD can progress to 

steatohepatitis, which is characterized by steatosis along with inflammation and 

hepatocyte degeneration, and ultimately cirrhosis, exposing the patient to a risk of hepatic 

failure and hepatocellular carcinoma [1]. 

In recent years, the pathogenesis of liver diseases has been shown to involve the 

digestive system and in particular the microbes that it hosts [2]. A very likely explanation 
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could be the flux of microbial metabolites into the portal circulation, facilitated by 

inflammation in the gastrointestinal tract [3]. Understanding the role of the gut microbiota 

(GM) in NAFLD has raised the hope that the GM could be modulated to alleviate the 

disease with, for instance, specific diets. We have shown that high hepatic fat content was 

associated with low abundance of Faecalibacterium prausnitzii in humans [4,5] and, further, 

that the intragastric administration of F. prausnitzii ameliorated NAFLD in mice [6]. We 

and others have found that the growth of F. prausnitzii can be naturally increased by 

feeding it with prebiotic xylo-oligosaccharides (XOS) [5,7] and we further found that XOS 

supplementation partly prevented hepatic steatosis and increased F. prausnitzii 

abundance in rats [5]. However, besides hepatic metabolism, serological findings and gut 

integrity, the mechanisms associated with prebiotic-induced prevention of NAFLD have 

not been widely explored. Hepatic fat accumulation has been shown to strongly associate 

with adipose tissue insulin resistance [8] and inflammation[9] in humans. We have shown 

that F. prausnitzii administration reduces adipose tissue inflammation [6], but whether 

XOS be increasing its natural abundance reduces inflammation, is not known. [10–12]. In 

inflammatory conditions, macrophages are typically found around necrotic adipocytes in 

formations called ‘crown-like structures’ (CLSs) [13]. The density of CLSs has been shown 

to correlate with obesity, hepatic inflammation and insulin resistance [14,15]. The fecal 

metabolome gives insight into the GM function and displays certain alterations in 

metabolic diseases. Fecal short chain fatty acids (SCFAs), trimethylamine, bile acids, 

ethanol and indole derivatives have risen as potential markers of NAFLD-related 

dysbiosis of the GM [16]. Decreased fecal SCFAs have been linked to NAFLD [5,17] and 

increased insulin resistance [18]. In addition, increased SCFA esters, decreased amounts 

of certain ketones and higher fecal levels of propionate and isobutyrate have been found 

in patients with NAFLD [19,20]. In our previous study, nuclear magnetic resonance (1H-

NMR) analysis of cecal metabolites of rats showed that, compared to the HFD, prebiotic 

XOS reduced cecal levels of isovalerate and tyrosine [5]. Decreased levels of isovalerate 

have been associated with NALFD in several studies [21–24] while, similar to XOS, 

feeding resistant starch to mice on a HFD seemed to also decrease isovalerate levels [25]. 

Elevated levels of tyrosine have been widely associated with NAFLD [22,24,26–28] and, 

further, its increase can be a marker of progressed steatosis and increased insulin 

resistance [24,26,27]. 

Machine learning (ML) models that use the taxonomic composition of highly 

complex microbial communities to predict host characteristics and disease have been 

increasingly popular and have helped to uncover novel information on the interactions of 

our microbiome and health [29–31]. The associations between fecal metabolomes, 

taxonomic composition, and metabolic health are less well characterized, however. Using 

classification and regression models, we recently explored the GM as a supplement to 

conventional risk factors to predict prevalent and incident liver disease occurrence and 

severity with improved accuracy in a large prospective population cohort [32,33]. 

Biclustering algorithms are a commonly utilized technique in gene expression studies that 

provide possibilities to detect associations between taxonomic and metabolomic variation 

by grouping the rows and columns of a 2-dimensional matrix [34,35]. Applications of 

biclustering in the field of microbiology are encouraging, if still rather sparse [36–38]. 

Moreover, the existing body of research has concentrated on biclustering microbial 

samples and spectroscopic or spectrometric peaks to taxonomically group the samples 

and even predict the taxon in a random sample. This knowledge can be extended to 

multiomic data sets derived from a given biological matrix, where biclustering can be 

used to identify co-occurring sets of microbial species and their co-varying metabolic 

signatures. 

In this study, we determined whether the effects of XOS on the GM and hepatic 

health were associated with reduced adipose tissue inflammation as well as improved 

lipid metabolism and insulin signaling in liver and adipose tissues. To this end, we looked 

at the phosphorylation levels of key proteins related to insulin signaling and lipid 
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metabolism in liver and adipose tissues. To further characterize adipose tissue 

inflammation, we measured the common leukocyte antigen CD45 and the density of 

CLSs. We also determined the expression levels of hepatic microRNAs (miRNA) 

previously linked to NAFLD [39,40], and the activity of metabolic enzymes in adipose 

tissues and gastrocnemius muscle. Our central hypothesis was that the GM composition 

and fecal metabolome would display specific signatures of XOS supplementation and 

thus partly explain the improvement of NAFLD. To this end, we utilized a biclustering 

algorithm on the correlation coefficient matrix of bacterial genera and metabolites to 

identify coherent and interpretable, biologically relevant biclusters and reduce effective 

data dimensionality. Finally, we identified signatures of XOS supplementation and 

changes in adipose tissue and liver metabolism. Overall, our findings demonstrate how 

the currently available data integration techniques, such as biclustering, can facilitate joint 

analysis of multiple parallel omic data types and thus provide novel insights into the 

interplay between different levels of taxonomic and functional variation in host-

associated microbial communities. 

2. Materials and Methods 

2.1. Animals, Diets and Analysis of Hepatic Fat Content 

An approval for the animal experiment was received from the National Animal 

Experiment Board of Southern Finland (ESAVI/8805/4.10.07/2017), and the study was 

performed in accordance with the Guidelines of the European Community Council 

directives 2010/63/EU and the European Convention for Protection of Vertebrate Animals 

used for Experimental and other Scientific Purposes (Council of Europe No123, 

Strasbourg 1985). Four different diets were administered ad libitum to rats as described 

previously [5]. XOS was supplemented or not with high (HFD, 60% of energy from fat, 

Labdiet/Testdiet, London, UK) or “low” (LFD, 10% of energy from fat, Labdiet/Testdiet) 

fat diet for 12 weeks in male Wistar rats (n = 10/group). The average dose of XOS for the 

rats in our study was 0.05 g/kg. XOS (95% pure, CAS #87099-0) isolated from corncobs 

(Zea mays subsp. mays) by enzymatic hydrolysis was donated by Shandong Longlive 

Biotechnology (Yucheng, China). The body weight was determined with an electronic 

scale before necropsy. At necropsy, liver was excised and weighted with electronic scale. 

The average body and liver weights as well as the ratio of liver weight/body weight for 

each diet group are provided in the supplements (Table S1). The hepatic fat content was 

determined biochemically and histologically, and the methods and results were presented 

in our previous publication [5]. 

2.2. Collection and Analysis of Fecal Samples 

The contents of the cecum were collected at the time of necropsy, snap-frozen in 

liquid nitrogen and stored at −80 °C, as described previously [5]. Extraction of the bacterial 

DNA from the cecum contents, 16S rRNA gene sequencing and processing of the sequence 

data and extraction of operational taxonomic units (OTUs) were done as described 

previously [5]. Sample preparation for metabolomic analysis, NMR measurement and 

identification and analyses of cecal metabolites were done as described previously [5]. 

Altogether 226 bacterial genera and 38 metabolites were included in the downstream 

data analyses for this study. Both datasets were explored for features with low prevalence. 

For the bacterial genera, features with a prevalence of <10% at the 0.1% relative abundance 

were considered to have low prevalence, which left us with 66 genera. Data loss, 

calculated as the sum of relative abundance per sample, was on average 0.7%. For the 

metabolites, features with a prevalence of <10% at 0 absolute abundance were considered 

to have low prevalence. No metabolites were filtered out. 

It should be noted that to minimize redundant fields in the correlation matrix, we 

filtered out dataset for variables with high amounts of zero or missing values, which was 

the case for most genera. In the preprocessing phase, we filtered out roughly 70% of the 
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genera, using 10% prevalence at 0.1% relative abundance as the cut off. In this process, the 

relative abundances of the phyla Firmicutes and Bacteroidetes increased 32 pp and 

decreased 45 pp, respectively. In previous studies Firmicutes accounted for most taxa 

predictive of liver disease [32,33] and in our case the dropped genera had low overall 

significance. 

2.3. Biclustering 

To remove effects bacterial compositionality, we applied the centered-log ratio (clr) 

transformation to the filtered genus-level abundances. Before the transformation, +1 was 

added to absolute abundances to avoid division by zero errors. The maximum effect of 

the +1 addition was no more than 0.07 pp on relative abundances. Spearman correlations 

were calculated between the clr-transformed genus and raw metabolite abundances. The 

co-variation in the genus and metabolite abundances was then investigated by forming 

biclusters on the Spearman correlation coefficient matrix. We used the spectral co-

clustering algorithm described by Dhillon [41], available through the spectral coclustering 

method from the Scikit learn package. The optimal number of clusters was determined to 

be five by measuring Silhouette and Calinski-Harabasz scores for each model with cluster 

amounts 2–38, for metabolite and genus axes separately. By functionality, the spectral co-

clustering method attempts to form a block-diagonal bicluster structure from the highest 

values, in this case the strongest positive correlations, with each row and each column 

belonging to exactly one bicluster. This allows the discovery of meaningful negative 

correlative patterns by examining cross-cluster correlations. 

2.4. Preparation of Tissue Protein Homogenates and Measurement of Metabolic  

Enzyme Activities 

The epididymal, mesenteric and subcutaneous adipose tissues, liver and 

gastrocnemius muscle were harvested upon necropsy, snap-frozen in liquid nitrogen and 

stored until use at −80 °C. After pulverizing the tissues in liquid nitrogen, the tissues were 

further homogenized in ice-cold lysis buffer using TissueLyser (Qiagen, Valencia, CA, 

USA). For liver and muscle, the total proteins were extracted from ~25 mg of pulverized 

tissue using 10 times of volume (v/w) of buffer that contained 50 mM Tris-HCl (pH 7.4), 

150 mM NaCl2, 1% NP-40, 1 mM NaVO4, 0.1% SDS and 1 mM DTT, supplemented with 

protease and phosphatase inhibitors (Thermo Fischer Scientific, Waltham, MA, USA). For 

epididymal, mesenteric and subcutaneous adipose tissues, the total proteins were 

extracted from ~100 mg of pulverized tissue using 4 times of volume (v/w) of buffer that 

contained 10 mM Tris-HCl (pH 7.4), 150 mM NaCl2, 2 mM EDTA, 1% Triton-X-100, 10% 

glycerol and 1 mM DTT, supplemented with protease and phosphatase inhibitors 

(Thermo Fischer Scientific). 

The enzyme activities of citrate synthase (CS), aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT) in the adipose tissues and gastrocnemius muscle protein 

homogenates were measured with Konelab 20xTi analyzer (Thermo Fischer Scientific) 

using commercial kits, and the 3-hydroxyacyl-CoA dehydrogenase 8 (β-HAD) activity in 

a solution that contained 50 mM triethanolamine-HCl (pH 7.0), 4 mM EDTA, 0.04 mM 

NADH, and 0.015 mM S-acetoacyl-CoA. 

2.5. Western Blot Analyses of the Phosphorylated Proteins 

A total of 60 µg of protein homogenates from liver and 50 µg of total protein from 

adipose tissues were run on Criterion™ TGX Stain-Free 4–20% gradient gels (Bio-Rad 

Laboratories, Hercules, CA, USA). After that, the gels were ultraviolet (UV) -activated 

with ChemiDoc™ imaging system (Bio-Rad) using default settings for the stain free gel 

activation. Then, the proteins were blotted onto nitrocellulose membranes using Trans-

Blot® Turbo™ RTA Midi Nitrocellulose Transfer Kit (Bio-Rad) and Trans-Blot® Turbo™ 

Transfer System (Bio-Rad). After blotting, the membranes were imaged with ChemiDoc™ 
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imaging system (Bio-Rad) using default settings for the stain free blots. Then, the 

membranes were cut horizontally in order to separate the molecular weights 

corresponding to the proteins of interest, and afterwards blocked with Odyssey® Blocking 

buffer (LI-COR Biosciences, Lincoln, NE, USA) for 1 h at RT. Then, the membranes were 

incubated overnight at +4 °C with the primary antibodies diluted at 1:1000 in Odyssey® 

Blocking buffer. All primary antibodies were purchased from Cell Signaling Technology 

(Danvers, MA, USA). On the next day, the membranes were incubated with the secondary 

antibody donkey anti-rabbit IRDye 800CW (LI-COR Biosciences) diluted at 1:20,000 in 

Odyssey® Blocking buffer for 1 h at RT. Finally, the images were acquired with 

ChemiDoc™ imaging system using default settings for IR Dye 800CW blot. To quantify 

the phosphorylation levels of the proteins Image Lab 6.0 –software (BioRad) was used. 

The intensities of the protein bands of interest were normalized to intensities of the stain 

free blot. 

2.6. Quantitative Real-Time PCR Analyses 

To analyze the expression levels of hepatic miRNAs and Actb mRNA, as well as 

adipose tissue Cd45 mRNA, the total RNA was extracted from ~100 mg of pulverized 

epididymal and mesenteric adipose tissues and ~20 mg of pulverized liver by 

homogenizing with TissueLyser (Qiagen, Germantown, MD, USA) in Trizol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the supplied protocol. For the analysis of 

the Cd45 and Actb mRNA, total RNA was reverse transcribed using the High-Capacity 

cDNA Synthesis Kit (Applied Biosystems, Foster City, CA, USA) according to the 

instructions of the manufacturer. For the analyses of miRNAs, the total RNA was reverse 

transcribed using miScript II RT Kit with HiFlex buffer (Qiagen). 

Real-time quantitative PCR (qPCR) analysis of Cd45 and Actb mRNA was performed 

using iQ SYBR Supermix and the CFX96™ Real-Time PCR Detection System (Bio-Rad). 

The sequences of the in-house designed primers were as follows: Cd45 forward 5′-

CCGTTGTACACCAGAGATGA-3′, Cd45 reverse 5′-TCCCAAAATCAGTCTGCAC-3′, 

Actb forward 5′-GGCACCACACTTTCTACAAT-3′ and Actb reverse 5′-

AGGTCTCAAACATGA TCTGG-3′. The expression levels of Cd45 mRNA were 

normalized to the quantity of cDNA in the samples that were determined with Quant-iT 

PicoGreen dsDNA Assay Kit (Invitrogen) according to the manufacturer’s instructions. 

The fluorescence was detected with GloMax Multi+ microplate reader (Promega 

Biosystems, Sunnyvale, CA, USA). 

To quantify the expression levels of hepatic miRNAs, iQ SYBR Supermix and the 

CFX96™ Real-Time PCR Detection System (Bio-Rad) were also used. The sequence of the 

universal primer was 5′-GAATCGAGCACCAGTTACGC-3′. The sequences of miRNA 

specific primers were obtained from miRBase [42], and were as follows: 

 rno-miR-21-5p MIMAT0000790: 5′-UAGCUUAUCAGACUGAUGUUGA-3′. 

 rno-miR-122-5p MIMAT0000827: 5′-UGGAGUGUGACAAUGGUGUUUG-3′. 

 rno-miR-192-5p MIMAT0000867: 5′-CUGACCUAUGAAUUGACAGCC-3′. 

 rno-miR-221-3p MIMAT0000890: 5′-AGCUACAUUGUCUGCUGGGUUUC-3′. 

The expression levels of miRNAs were normalized to the levels of Actb because the 

common miRNA endogenous controls U6 and RNU6B have been shown to be highly 

variably expressed in liver samples [43]. 

2.7. Histopathological Scoring of the Epididymal Adipose Tissue 

The epididymal adipose tissue samples for the histological analysis were fixed in 

buffered 4% paraformaldehyde for 48 h at +4 °C, transferred into PBS and stored at +4 °C 

until histological processing. The samples were routinely embedded into paraffin, 

sectioned at 6 µm and stained with hematoxylin and eosin (H&E). After general 

histopathological assessment, the total number of CLS per one tissue section (section areas 
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25–35 mm2) in each animal was counted. The histopathological assessment was done 

blinded to the treatments. 

2.8. Statistical Analyses 

The statistical analyses, except for the GM and their metabolites were performed with 

IBM SPSS Statistics v26 for Windows (SPSS, Chicago, IL, USA). The main effects of the 

diet and XOS as well as their interactive effects on the variables were determined using 

UNIANOVA. If an effect of XOS was found, the statistical significance of the differences 

between the XOS-supplemented group and HFD or LFD were further analyzed with 

Mann Whitney U test. The statistical significance was determined at p < 0.05. The statistical 

analyses for bacterial genera and the metabolites were performed with Python, using 

Scipy and Sklearn packages. Group differences were analyzed with Mann Whitney U test, 

as with the biomarkers. 

We studied the biclusters, diet types, and measured biomarkers further with 

supervised and unsupervised ML. First, we fitted a classification model with metabolites 

and genera from the whole dataset and then from each bicluster separately to predict 

overall diet, diet fat content or XOS ingestion. We used XGBoost [44] as the classifier, as 

we previously demonstrated its suitability for microbiological dataset [32,33]. Our model 

was fitted with raw metabolite abundances without standardization, as XGBoost is a 

decision-tree based classifier. However, genus abundances were clr-transformed [29,45]. 

The model performance was evaluated by average accuracy and F1 scores from 5-fold 

cross validation. Principal component analysis, as implemented in the Scikit Learn 

package, was used to analyze biomarkers with biclusters and individual features. 

3. Results 

3.1. Biclustering 

Biclustering identified five sets of co-occurring metabolites and bacterial genera 

(Table 1). For clarity, we named the biclusters based on their metabolite characteristics. 

Overall, the spectral co-clustering method provided well-defined biclusters visually and 

in terms of Silhouette and Calinski-Harabasz scores. We found a decent coherence within 

the biclusters considering the ontology and structure of the metabolites. SCFAs, 

carbohydrate metabolism markers and nicotinate appeared together in the same bicluster, 

named hereafter SCFA bicluster, and showed distinct co-variation. These metabolites 

were consistently more abundant in the feces of LFD rats, as we have described previously 

[5]. The product bicluster contained valerate, aspartate and isobutyrate, which are 

products of amino acid fermentation [46], specifically of the branched chain amino acids 

leucine, isoleucine and valine [47]. Choline and its degradation products, trimethylamine 

(TMA) and ethanol appeared in the same bicluster, named hereafter TMA bicluster. 

Amino acids (AA), including BCAAs and aromatic amino acids, were mostly grouped in 

the AA bicluster. The isovalerate bicluster contained a heterogeneous group of 

compounds. Tyrosine and isovalerate, the metabolites previously found to decrease with 

XOS ingestion on the HFD [5], were found in the AA and isovalerate biclusters, 

respectively. Tyrosine, however, appeared to co-vary with hypoxanthine and 

methylamine, which were both lower on the XOS-supplemented diets independent of the 

dietary fat. 

Despite some redundancy, we identified functional coherence within the biclusters 

on the bacterial genus axis as well. The SCFA bicluster contained a significant proportion 

of gram-positive, known SCFA producers [48,49] and genera linked to lean phenotypes 

[50–52]. These genera were more abundant in the LFD groups. The isovalerate bicluster, 

on the other hand, contained genera known to thrive in carbohydrate-deficient conditions 

[53–55] but also genera, which encompass apparent opportunistic pathogens [56,57]. 

These genera were chiefly more abundant in the HFD groups. The AA bicluster seemed 

to contain at least two gram-negative genera, which have been previously implicated in 
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adipose tissue inflammation and metabolic dysfunction in mice [20,58]. In addition, the 

total abundance of these genera was decreased by the XOS on the HFD. 
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Table 1. The features contained in each bicluster, with non-annotated bacterial genera excluded. Positive log2 fold change 

indicates higher abundance in the HFD group. 

Bicluster Genera in Bicluster 

Log2 Fold 

Change 

HFD/HFD + 

XOS 

Log2 Fold 

Change 

HFD/LFD 

Metabolites in Bicluster 
Log2 Fold Change 

HFD/HFD + XOS 

Log2 Fold 

Change 

HFD/LFD 

SCFA Bicluster 

[Ruminococcus] gauvreauii 

group 
–0.14 –2.43 * 1,3-dihydroxyacetone 0.17 –0.61 

Anaerostipes –1.41 –4.04 ** 2-oxoglutarate 0.27 –0.44 

Christensenellaceae R-7 group 0.42 –0.2 Acetate –0.05 –0.52 ** 

Clostridium sensu stricto 1 –0.23 –3.78 * Butyrate –0.07 –1.51 ** 

Faecalibaculum 1.48 –5.69 ** Glucose 0.11 –1.96 ** 

GCA-900066225 –0.81 –2.47 ** Methionine 0.38 –0.06 

Papillibacter 0.86 –3.87 ** Nicotinate 0.05 –1.06 ** 

Parabacteroides 0.29 –0.48 * Propionate –0.01 –0.62 ** 

Rodentibacter –0.83 –2 Pyruvate 0.63 –0.98 * 

Romboutsia 1.69 –0.75 Uracil 0.59 –0.51 * 

Ruminiclostridium 5 1.39 * –2.31 ** Urocanate 0.48 –0.63 

Ruminococcaceae UCG-014 0.25 –0.82    

Turicibacter 1.16 –3.96 **    

Product 

Bicluster 

[Bacteroides] pectinophilus 

group 
–3.51 0.8 Aspartate 0.06 0.17 

[Eubacterium] 

coprostanoligenes group 
–0.42 –0.12 Isobutyrate 0.08 0.57 

[Eubacterium] xylanophilum 

group 
0.81 0.66 Threonine 0.09 0.47 * 

Akkermansia –0.29 0.21 Valerate 0.25 0.47 * 

Alistipes –0.01 1.13 *    

Defluviitaleaceae UCG-011 0.37 2.38 **    

Family XIII AD3011 group 1.13 ** 1.33 *    

Odoribacter –0.33 1.35    

Ruminococcaceae UCG-005 0.77 1.93    

TMA Bicluster 

Allobaculum 0.93 1.6 Choline 0.97 1.45 * 

Alloprevotella –0.5 –0.05 Ethanol –0.2 –0.08 

Bacteroides –0.1 0.38 Fumarate 0.01 –0.39 

Blautia –0.25 –0.69 Glycine –0.81 * 0.48 

Erysipelatoclostridium –1.31 –0.04 Methanol –1.09 0.24 

Escherichia-Shigella –1.82 ** –0.93 Trimethylamine 0.15 0.11 

Faecalitalea –0.65 1.24 *    

Flavonifractor 0.96 3.07 *    

Fusicatenibacter 3.88 10.07    

Holdemania –0.32 0.9    

Intestinimonas –0.18 –0.57    

Lachnospiraceae UCG-008 –0.82 1.46    

Marvinbryantia –1.65 ** –0.95    

Oscillospira –0.83 8.89    

Parasutterella 0.63 0.98    

AA Bicluster  

Bilophila 0.61 * 3.41 ** Alanine 0.19 0.04 

Desulfovibrio 0.75 –0.25 Formate –0.8 –0.75 ** 

Eisenbergiella –0.03 0.05 Glutamate 0.08 –0.03 

Erysipelotrichaceae UCG-003 –0.23 –1.25 Hypoxanthine 1.8 ** –0.46 * 

Lachnospiraceae NK4A136 

group 
1.27 0.87 Isoleucine 0.34 * –0.16 

Mucispirillum 1.51 1.03 Leucine 0.31 0.07 

Oscillibacter 0.7 * –0.97 * Methylamine 0.73 ** 0.5 

Roseburia –0.08 –1.42 Phenylalanine 0.45 * –0.04 
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Ruminiclostridium 1.27 –0.06 Proline 0.33 0 

Ruminiclostridium 9 0.55 0.31 Tyrosine 0.55 ** 0.02 

Ruminococcaceae UCG-003 0.67 0.18    

Ruminococcaceae UCG-004 –2.8 –2.33    

Ruminococcus 1 0.13 0.35    

Isovalerate 

Bicluster 

[Eubacterium] nodatum group 0.36 3.31 ** Glycerol 1.57 3.0 ** 

Candidatus Soleaferrea 0.58 2.21 ** Isovalerate 0.37 * 1.02 ** 

GCA-900066575 0.41 1.0 * Lactate 0.63 0.9 

Lachnoclostridium –0.33 2.38 * Malonate –0.11 0.28 

Lactobacillus 0.28 0.51 Succinate –0.35 –1.53 

Lactococcus 0.54 0.6 Tryptophan –0.11 0.45 

Rikenellaceae RC9 gut group 0.31 1.43 * Valine 0.39 * 0.09 

Ruminococcaceae NK4A214 

group 
–0.04 1.91 **    

Sellimonas 0.57 2.57 **    

UBA1819 –0.63 1.86 **    

Mann-Whitney U: * p < 0.05, ** p < 0.01. 

We illustrate the biclustering in a heat map, where the rows and columns are 

arranged according to the number of the bicluster, and the nodes are colored by the 

magnitude of the Spearman correlation coefficient (Figure 1a). The strongest positive 

correlations were observed between the metabolites and the genera in the SCFA bicluster, 

that is, between SCFAs and SCFA-producers. The strongest negative correlations found 

were between the metabolites in the SCFA bicluster and the genera in the isovalerate 

bicluster, which contained most genera associated with the HFD. Escherichia, Shigella and 

Parasutterella genera are known to produce TMA and ethanol from choline [46,59,60]. 

These genera and metabolites clustered together, suggesting that the biclusters indeed 

reflect biological significance. 

Compared to the HFD, the HFD + XOS group had higher levels of glycine and TMA 

bicluster genera, particularly Marvinbryantia and Escherichia-Shigella. The HFD + XOS 

group also had lower levels of amino acids and slightly lower levels of amino acid 

degradation products and metabolites in the isovalerate bicluster. The genera in the AA 

bicluster, particularly Bilophila and Oscillibacter were decreased with XOS 

supplementation. 

No bicluster-level differences were observed between the LFD and LFD + XOS 

groups. Feature-wise, XOS supplementation on the LFD was associated with lower 

hypoxanthine levels and higher methylamine and 1,3-dihydroxyacetone levels. XOS 

supplementation associated with increased abundances of genera Bilophila and GCA-

900066575 and decreased abundances of Alloprevotella, Erysipelotrichaceae UCG-003, 

Erysipelatoclostridium, Akkermansia and [Eubacterium] coprostanoligenes group. 

We also plotted the hepatic triglycerides along with the total abundances of the 

genera and metabolites from each bicluster (Figure 1b). The bicluster compositions 

seemed to clearly associate with hepatic fat content. This was most visible within the 

SCFA, product and isovalerate biclusters where the separation of the HFD and LFD 

groups was most prominent. Higher abundance of SCFAs, glycolysis markers and “lean”-

type microbes not only associated with a leaner phenotype and “healthier” diet, but also 

with better hepatic health in terms of fat content. 
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Figure 1. Biclustering results: (a) Heat map of Spearman correlation coefficients between the metabolites and genera. The 

color of a node indicates the magnitude and the direction of correlation. Biclusters suggested by the spectral co-clustering 

algorithm are visible as the diagonal highlighted blocks. The resulting checkerboard structure is a side product of the 

algorithm and allows the observation of cross-cluster associations such as the congregated negative correlations in the 

upper-right corner. (b) Summed relative genus and absolute metabolite abundances in each bicluster. Boxes indicate 

quartiles; points outside whiskers are outliers. Scatter markers were sized to indicate hepatic fat (triglycerides) in each 

sample. Bacterial relative abundances were summed and then centered log ratio (clr) -transformed. Both axes were mean 

centered at zero. 

We used classification to test how well each bicluster reflected the differences 

between the diet groups. Moreover, we wanted to see whether the variation within some 

biclusters could be attributable to the dietary fat or XOS supplementation. For 
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comparison, we trained the selected classifier model first with all genera or metabolites in 

the data set. To study associations of certain diets and biclusters, we then trained the 

model separately with the features in each bicluster (Supplementary Table S2). The raw 

metabolite abundances and the clr-transformed genus abundances were used as input 

values. 

The prediction accuracy for overall diet groups was low for each run, most likely 

implying the homogeneity of the LFD and LFD + XOS groups. Using all biclusters, the 

XOS supplementation was predicted with a modest 50% accuracy, although a slightly 

higher accuracy was reached by using features from only the AA bicluster. The 

metabolites in this bicluster were somewhat better predictors of XOS than the genera 

(62.5% vs. 45% accuracy). These metabolites, ranked by the highest feature importances 

were hypoxanthine, tyrosine, glutamate, methylamine, isoleucine, formate, alanine, 

proline, leucine and phenylalanine. 

As apparent in the scattergrams in Figure 1b, the dietary fat explained greatly the 

variance in several features and had a prominent impact on the separation of the groups. 

The predictive performance for the dietary fat was high, whether using all features or only 

the features in the SCFA bicluster, with glucose and butyrate comprising 0.975 and 0.025 

of the feature importances, respectively. Almost the same accuracy and f1 scores were 

achieved by using only the features from product and isovalerate biclusters. 

3.2. The Effects of the Diets on the Hepatic MicroRNA’s 

Hepatic miRNAs that have been previously associated with NAFLD [61] were 

analyzed with quantitative real-time PCR. Based on the univariate analysis of variance, 

there were no interactive effects of XOS or dietary fat on the levels of miRNAs. However, 

based on Mann Whitney U test, compared to the HFD, the HFD + XOS had lower hepatic 

levels of miR-192-5p (p = 0.002) and miR-221-3p (p < 0.001), and the LFD group had higher 

levels of miR-21-5p (p < 0.001), as well as decreased the levels of miR-192-5p (p = 0.001) 

and miR-221-3p (p < 0.001) (Figure 2). On the LFD, XOS supplementation decreased the 

hepatic levels of miR-192-5p (p < 0.001, Figure 2). Compared to the HFD + XOS, the LFD + 

XOS had higher levels of miR-21-5p and lower levels of miR-192-5p (p < 0.001 for both, 

Figure 2). 

 

Figure 2. The relative expression levels of miRNAs in liver. n = 8–10/group. The graph shows the 

quantification of the miRNAs by real-time quantitative PCR. The black dots in the bars show 

individual data points. * indicates statistically significant (p < 0.05) difference between the groups 

as determined by Mann Whitney U test. 
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3.3. The Effects of the Diets on the Phosphorylation of Insulin Signaling and Fatty Acid 

Oxidation Related Proteins in Liver 

The phosphorylation of acetyl-CoA-carboxylase at Ser79 (p-ACC) directs the fatty 

acid metabolism from lipogenesis to oxidation. Both dietary fat [F (1, 0.368) = 307.4, p < 

0.001] and XOS supplementation [F (1, 0.006) = 4.6, p = 0.039] affected p-ACC (Figure 3). 

On the HFD, XOS supplementation slightly decreased, and on the LFD increased it. The 

phosphorylation of ACC was lower on the HFD than on the LFD. In addition, dietary fat 

and XOS had an interactive effect on p-ACC [F (1, 0.012) = 13.7, p = 0.001]. Dietary fat [F 

(1, 2.8 × 10−5) = 6.8, p = 0.013], but not XOS, affected the inhibitory Ser636/639 

phosphorylation of insulin receptor substrate 1 (p-IRS1) with the phosphorylation levels 

being slightly lower in the LFD groups (Figure 3). Fat and XOS had an interactive effect 

on p-IRS1 [F (1, 2.1 × 10−5) = 5.7, p = 0.022]. Downstream from the IRS1, XOS affected the 

Thr308 phosphorylation of protein kinase B (p-AKT) [F (1, 4.7 × 10−6) = 4.5, p = 0.040) 

increasing it slightly independent of dietary fat (Figure 3). The dietary fat [F (1, 0.006) = 

12.0, p = 0.001), but not XOS, affected the Thr202/Tyr204 phosphorylation of extracellular 

signal-regulated kinase (p-ERK) with the phosphorylation levels being lower on the LFD 

groups (Figure 3). 

 

Figure 3. The phosphorylation levels of ACC, IRS1, AKT and ERK in liver. n = 8–10/group. The 

graph shows the quantification of the proteins by Western blot. The black dots in the bars show 

individual data points. Above the graph examples of the blot images are shown. The effects of 

XOS and dietary fat (FAT) on each phosphorylated protein are indicated in the boxes below the 

graphs. NS denotes non-significant effect. The effects of XOS were further verified with Mann 

Whitney U test, and * indicates statistically significant (p < 0.05) difference between the HFD or 

LFD group and the corresponding XOS-supplemented group as determined by Mann Whitney U 

test. 

3.4. The Effects of the Diets on the Markers of Adipose Tissue Inflammation 

According to the histopathological scoring of the epididymal adipose tissue, both 

dietary fat [F (1, 140.237) = 29.2, p < 0.001) and XOS [F (1, 28.463) = 5.9, p = 0.020) decreased 

the number of CLSs (Figure 4a) but neither affected the number of mononuclear cells (data 

not shown). 

Quantitative PCR of protein tyrosine phosphatase receptor type C, also known as 

leukocyte common antigen (CD45) mRNA, revealed that the dietary fat but not XOS 

affected the relative mRNA. The levels were higher in the LFD than HFD groups both in 

epididymal (CD45-epi) [F (1, 0.011) = 18.1, p < 0.001) and mesenteric (CD45-mese) [F (1, 

0.071) = 15.1, p < 0.001) adipose tissue (Figure 4b). 
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Figure 4. The effects of the diets on adipose tissue inflammation markers. (a) The graph shows the 

observed counts of CLSs in epididymal adipose tissue as determined by histopathological scoring. 

N = 10/group. The black dots in the bars show individual data points. (b) The graph shows the 

relative expression levels of CD45 mRNA in both epididymal and mesenteric adipose tissue that 

were quantified with qPCR. n = 8–10/group. The black dots in the bars show individual data 

points. 

In both panels, the effects of XOS and fat separately are indicated in the boxes below 

the graphs. NS denotes non-significant effect. The effects of XOS were further analyzed 

with Mann Whitney U test, and on the HFD, XOS tended to decrease CD45 mRNA as 

indicated by the p-value shown in the graph. 

3.5. The Effects of the Diets on the Phosphorylation of Insulin Signaling, Fatty Acid Oxidation 

and Lipolysis Related Proteins in the Epididymal and Subcutaneous Adipose Tissue 

In the epididymal adipose tissue, the dietary fat decreased [F (1, 0.73) = 24.5, p < 0.001] 

p-ACC (Figure 5a). The dietary fat also decreased [F (1, 0.09) = 6.2, p = 0.017] and XOS 

tended to increase [F (1, 0.051) = 3.5, p = 0.070] the lipolysis activating Ser660 

phosphorylation of hormone-sensitive lipase (p-HSL) (Figure 5a). XOS subtly increased 

p-AKT [F (1, 0.054) = 6.9, p = 0.012] (Figure 5a). In the subcutaneous adipose tissue LFD 

had an increasing effect on p-ACC [F (1, 0.151) = 14.2, p = 0.001] but XOS had no effect on 

it (Figure 5b). No effects of the diets on the phosphorylation of AKT or ERK were found 

in the subcutaneous adipose tissue (Figure 5b). 
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Figure 5. The effects of the diets on the phosphorylation levels of proteins in the adipose tissues. 

(a) Phosphorylation levels of ACC, HSL and AKT in epididymal adipose tissue. (b) 

Phosphorylation levels of ACC, AKT and ERK in subcutaneous (SC) adipose tissue. * indicates 

statistically significant (p < 0.05) difference between the HFD or LFD group and the corresponding 

XOS-supplemented group as determined by Mann Whitney U test. 

In both panels n = 8–10/group. The graphs show the quantification of the of the 

proteins by western blot. The black dots in the bars show individual data points. Above 

the graph examples of the blot images are shown. The effects of XOS and dietary fat (FAT) 

separately are indicated in the boxes below the graphs. NS denotes non-significant effect. 

The effects of XOS were further verified with Mann Whitney U test, and * indicates 

statistically significant difference between the HFD or LFD group and the corresponding 

XOS-supplemented group. 

3.6. The Effects of the Diets on the Activities of Metabolic Enzymes 

The LFD increased the activity of AST in the epididymal adipose tissue [F (1, 0.002) 

= 8.7, p = 0.006], while XOS decreased it in the mesenteric adipose tissue [F (1, 0.411) = 7.9, 

p = 0.009] (Figure 6a). The dietary fat and XOS had an interactive effect on AST activity in 

the subcutaneous adipose tissue [F (1, 0.01) = 12.4, p = 0.001] (Figure 6a). XOS 

supplementation increased the activity of ALT in the epididymal adipose tissue [F (1, 

0.006) = 4.7, p = 0.018] independent of dietary fat (Figure 6b). An interactive effect of fat 

and XOS was found on the activity of beta-HAD in the mesenteric adipose tissue [F (1, 

9.333) = 14.5, p = 0.001], while in the subcutaneous adipose tissue only dietary fat had an 

increasing effect on it [F (1, 0.027) = 4.7, p = 0.037] (Figure 6c). LFD increased the activity 

of CS in the epididymal adipose tissue [F (1, 0.024) = 17.2, p < 0.001], while in 

gastrocnemius muscle the dietary fat and XOS had an interactive effect on its activity [F 

(1, 6.649) = 4.7, p = 0.037] (Figure 6d). 
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Figure 6. The activities of (a) AST, (b) ALT, (c) β-HAD and (d) CS in epididymal, mesenteric and 

subcutaneous (SC) adipose tissue as well as gastrocnemius muscle. * indicates statistically 

significant (p < 0.05) difference between the HFD or LFD group and the corresponding XOS-

supplemented group as determined by Mann Whitney U test. 

In all panels n = 8–10/group. The graphs show the biochemically measured enzymatic 

activities. The black dots in the bars show individual data points. The effects of XOS and 

dietary fat (FAT) separately are indicated in the boxes below the graphs. NS denotes non-

significant effect. The effects of XOS were further verified with Mann Whitney U test, and 

* indicates statistically significant (p < 0.05) difference between the HFD or LFD group and 

the corresponding XOS-supplemented group  

3.7. Associations between the Biclusters and Biomarkers 

We investigated how the total abundances of the metabolites (Figure 7a) or genera 

(Figure 7b) in each bicluster were associated with the biomarkers of liver or adipose tissue. 

Most notably miR-221-3p, miR-192-5p, hepatic triglycerides, CLSs and, to a lesser amount, 

p-IRS1-liver and p-ERK-liver correlated negatively with SCFAs, carbohydrate metabolism 

markers (p < 0.05 for all, Figure 7a), and the “lean-type” genera in the SCFA bicluster (p < 

0.05 for all, Figure 7b). These biomarkers were positively associated to metabolites and 

genera in the product bicluster and genera in the isovalerate bicluster. 

Conversely, p-ACC-liver, CS-epididymal, AST-mesenteric, CD45 and miR-21-5p, 

were positively associated with features in the SCFA bicluster and negatively associated 

with features in the product bicluster and genera in the isovalerate bicluster (p < 0.05 for 

all, Figures 7a,b). None of the biomarkers were significantly associated with the total 

abundances of metabolites in the TMA bicluster, however, AST-subcutaneous, miR-21-5p 



Int. J. Environ. Res. Public Health 2021, 18, 4049 17 of 28 
 

 

and AST-epididymal were negatively and CLSs positively associated with the TMA 

bicluster genera (p < 0.05 for all, Figure 7b). 

The total abundance of the metabolites in the isovalerate bicluster was negatively 

associated with p-HSL-epididymal, p-AKT- epididymal and p-ACC- epididymal (p < 0.05 

for all, Figure 7a). In addition, feature-wise observations revealed that isovalerate, which 

was significantly elevated in the HFD group compared to the HFD + XOS group, was 

positively associated with hepatic triglycerides, CLSs, miR-221-3p and miR-192-5p (p < 

0.05 for all). Isovalerate was also negatively associated with miR-21-5p, p-ACC-liver, 

CD45-epididymal, CS-epididymal, p-ACC-epididymal and p-AKT-epididymal (p < 0.05 

for all). 

To study whether different co-variation of the metabolites, genera and biomarkers 

were linked to the effects of XOS, we further analyzed the associations within the HFD 

and HFD + XOS groups by principal component analysis (PCA). For the comparison, we 

used the total metabolite or total genus abundances of each bicluster and biomarkers with 

significant or visually interesting differences between the two groups. The groups differed 

markedly along the first principal component, containing 20.5% of the total variance 

(Figure 8). Most of this variance was explained by miR-192-5p, miR-221-3p, AA bicluster, 

isovalerate bicluster, p-AKT-epididymal, p-ERK-liver and p-HSL-liver, as apparent by the 

loadings (Figure 8). 

The total metabolite abundances in the AA and isovalerate biclusters positively co-

varied with miR-192-5p, miR-221-3p and to a lesser amount with AST-mesenteric, CLSs 

and hepatic triglycerides. Conversely, they co-varied negatively with p-ERK-liver and p-

HSL-epididymal. The genera in the AA bicluster tended to co-vary with CLSs and hepatic 

triglycerides. 
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Figure 7. Heat maps of Spearman correlation coefficients between the total abundances of (a) The 

metabolites and (b) The genera in each bicluster and different biomarkers. The color of a node 

indicates the magnitude and the direction of correlation. Hierarchical clustering was applied to 

biomarkers. The raw metabolite abundances were summed, and the relative genus abundances 

were summed and then clr-transformed. epi = epididymal fat, mese = mesenteric fat, SCfat = 

subcutaneous fat, gastro = gastrocnemius muscle. * denotes p < 0.05 and ** p < 0.01. 
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Figure 8. PCA of the HFD and HFD + XOS groups using total feature abundances in each bicluster 

and selected biomarkers, (a) Ordination and (b) Loading plots. The total explained variance for 

each component is shown in parentheses, and the ellipses indicate 95% confidence intervals. 

In the PCA of significantly different features (Figure 9), the group separation was 

observed along explained 31.4% of the total variance. Methylamine co-varied strongly and 

positively with hepatic miRNAs and AST-mesenteric and negatively with pATK-

epididymal and ALT-epididymal. Hypoxanthine co-varied with CLSs, hepatic 

triglycerides and p-AKT-epididymal. Noticeably, BCAAs (leucine, isoleucine, and valine) 

and aromatic amino acids (phenylalanine and tyrosine) were clustered with triglycerides 

along the first component, which explained most of the between-group variation, whereas 

glycine, along with ALT-epididymal, distinctly co-varied along the second component. 

The genera Oscillibacter, Bilophila and Ruminiclostridium 5, which were significantly 

decreased with XOS (Figure 10), were also associated with hepatic triglycerides and 

miRNAs. Escherichia-Shigella and Marvinbryantia were increased with XOS 

supplementation and co-varied positively with p-AKT-epididymal and negatively with 

CLSs, hepatic triglycerides and miRNAs. 

 

Figure 9. PCA of the HFD and HFD + XOS groups with all significantly differing features and 

biomarkers, (a) Ordination and (b) Loading plots. The ellipses indicate 95% confidence intervals. 

The total explained variance for each component is shown in parentheses. epi = epididymal fat, 

mese = mesenteric fat. 
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Figure 10. The features with significant differences between the HFD and HFD + XOS groups, log2 

fold changes and mean-centered values showing group distributions. Negative log2 fold change 

indicates higher log2 effect size with XOS, and positive indicates higher log2 effect size without 

XOS. Bars indicate error. Kernel density bandwidth of the violin plot 0.5. epi = epididymal fat, 

mese = mesenteric fat. 

4. Discussion 

In the present study, we sought to characterize the underlying tissue-specific 

mechanisms associated with the steatosis-preventing effects of XOS supplementation in 

rats. In addition, we implemented novel bioinformatic analyses to understand whether 

the interplay between the gut microbes and their metabolites could explain the prebiotic 

and hepatic health-promoting effects of XOS. Indeed, the hepatic steatosis-preventing 

effects of XOS were associated with decreased adipose tissue inflammation, likely 

improved insulin signaling and certain clusters of co-occurring fecal metabolites and 

bacterial genera. 

The development of biclustering techniques has been driven by the need to capture 

relevant biclusters, that relate to real biological associations and physical conditions. 

Much of this development has been in the context of transcriptomics [62], but biclustering 

techniques can potentially benefit other omics studies as well, such as discovering the 

biological co-occurrence of microbes and their metabolites [36]. Here we utilized the 

spectral co-clustering method [41] on a data table of correlations between the metabolites 

and bacterial genera and demonstrated its utility in (a) Identifying co-occurring bacterial 

genera and subsets of relevant metabolic conditions and (b) Thus reducing the effective 

dimensionality in the analysis of a multiomic dataset and improving interpretability. 

The identified biclusters captured that the SCFAs and co-varying markers of 

carbohydrate metabolism were decreased on the HFD, which is in agreement with 

decreased SCFAs having been previously linked to NAFLD and insulin resistance 

[5,17,18]. Among the genera that were most abundant on the LFD, in SCFA-rich 

conditions, were Anaerostipes and Faecalibaculum, which are known saccharolytic butyrate 

producers [48,49]. The only known species of Faecalibaculum, F. rodentium, has also been 

identified as anti-tumourigenic in mice [48]. The HFD was characterized by lower fecal 
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SCFAs and correlated with an increased abundance of a heterogeneous group of genera. 

Among these, Candidatus Soleaferrea has been described in anorexic subjects [53] and GCA-

900066575 and Lachnoclostridium in high fat [54] conditions suggesting that our findings 

might be related to the carbohydrate-deficient conditions on the HFD. We also found 

choline and its degradation products ethanol and TMA along with known TMA-

producing proteobacteria Escherichia, Shigella and Parasutterella [46] in a shared bicluster. 

Thus, these biclusters seemed to reflect biological significance. 

With respect to biclusters, the effects of XOS supplementation seemed to vary 

depending on the dietary fat, which was apparent by the low classification accuracy. On 

the LFD, the addition of XOS associated with only a few individual metabolites and 

genera not visible at the bicluster level. On the HFD, glycine was elevated with XOS 

supplementation. Impaired glycine biosynthesis has been linked with hyperlipidemia and 

steatohepatitis and, conversely, administration of glycine in a tripeptide form to mice 

alleviated both conditions [63]. Notably, the levels of hypoxanthine were decreased by 

XOS independent of dietary fat. Hypoxanthine is a major substrate of xanthine oxidase, 

which converts it to uric acid and reactive oxygen species [64]. Xanthine oxidase is highly 

expressed in liver and recently investigated as a therapeutic target in NAFLD [65]. 

Reducing oxidative stress through suppression of the xanthine metabolic pathway 

ameliorated hepatic steatosis and inflammation. Thus, some of the steatosis-reducing 

effects of XOS might be attributed to higher glycine and lower hypoxanthine levels in our 

study. Yet, further mechanistic in vitro or in vivo studies will be needed to understand 

how these metabolites could affect hepatic metabolism. 

On the HFD, XOS-supplemented rats had significantly lower levels of isovalerate, 

methylamine and slightly lower levels of the co-occurring genera. In a recent study, 

feeding resistant starch to mice on a HFD decreased the levels of isovalerate and 

abundances of Oscillibacter, Ruminiclostridium 5 and Ruminiclostridium 9 [25] being in line 

with our findings showing that Oscillibacter and Ruminiclostridium 9 were found to co-vary 

together and with the amino acid levels. 

XOS-supplemented rats also had lower levels of BCAAs and aromatic amino acids. 

This metabolic fingerprint was visible in the biclusters, as these metabolites were 

contained in AA and isovalerate biclusters. In addition, amino acid fermentation products 

(the Product bicluster) tended to be lower with XOS. Obesity and NAFLD have been 

shown to have an interactive effect on serum amino acid levels, increasing BCAAs and 

aromatic amino acids while decreasing glycine [26,27]. In addition, the same amino acid 

profile has been linked to metabolic syndrome independent of obesity [66]. We observed 

a reverse effect by XOS on these amino acids in feces, which raises the question and need 

for future mechanistic studies to determine whether altered protein catabolism by the GM 

could be tailgated by insulin resistance and hepatic steatosis. 

As described, we aimed to determine the possible relations of the tissue level 

molecular mechanisms in concert with their interactions with the metabolites and 

microbes to the hepatic steatosis-preventing effects of XOS. We first analyzed the hepatic 

expression levels of several miRNAs previously associated with NAFLD [61]. Supporting 

the role of up-regulated miR-21-5p in reducing lipid accumulation [67], we found that the 

HFD groups expressed significantly less miR-21-5p, which has been shown to also 

promote hepatic insulin resistance and steatosis [67,68]. However, contradicting results of 

serum and hepatic miR-21-5p levels have been reported in both humans and in animal 

models of NAFLD/NASH. Some studies show an up-regulation of miR-21-5p [69,70], 

while others report a down-regulation [67,71]. miR-122-5p is involved in the regulation of 

hepatic lipid metabolism among other several physiological processes in hepatic function 

[72]. In our study, there were no differences in miR-122-5p levels between the groups 

suggesting that miR-122-5p is not responsive to HFD or XOS in rat liver. XOS lowered the 

levels of hepatic miR-192-5p both on the HFD and LFD, which is contradictory to rodent 

studies showing that NAFLD or HFD decreased hepatic miR-192-5p expression leading 

to lipid accumulation in cells [40,73]. It is possible that our results with XOS-induced miR-
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192-5p down-regulation could relate to reduced hepatic inflammation [74], however, 

further studies are needed to determine this effect of miR-192-5p. In previous studies miR-

221-3p has been shown to be involved in NASH-induced carcinoma mouse model [75]. 

Furthermore, up-regulation of miR-221-3p in liver has been observed in NASH patients 

in a fibrosis-dependent manner as well as in a mouse model of hepatic fibrosis [76]. Our 

results show that XOS down-regulated hepatic miR-221-3p on the HFD suggesting a 

healthier hepatic miR-profile in response to XOS supplementation. However, in our 

model fibrosis was not present as reported previously [5]. In our study, miRs 192-5p and 

221-3p were associated with hepatic p-ACC and triglycerides, supporting the emerging 

role of these miRs in regulating lipid metabolism [39,40]. Nevertheless, the mechanistic 

role of these miRs in hepatic fat accumulation remains to be resolved in future studies. 

On the HFD, XOS slightly decreased the hepatic levels of Ser79-phosphorylated 

ACC, the enzyme that catalyzes the rate-limiting step of de novo lipogenesis (Wakil et al. 

1983). The phosphorylation of ACC at Ser79 inactivates ACC inhibiting the production of 

malonyl-CoA, which causes a decrease in de novo lipogenesis [77–80] and enhances fatty 

acid β-oxidation [80,81]. Based on our results, the prevention of hepatic fat accumulation 

by XOS did not involve enhanced ACC activation by Ser79 phosphorylation. However, 

we found that higher fecal glucose, nicotinate (niacin) and butyrate along with SCFA-

producing bacterial genera, particularly Faecalibaculum, were highly predictive of higher 

p-ACC. This is not surprising considering that SCFAs and niacin have both been shown 

to impede hepatic de novo lipogenesis [82,83]. 

Upon binding of insulin, IRS1 subsequently recruits phosphoinositide 3-kinase 

(PI3K), which activates AKT by phosphorylating it at Thr308 [84]. While the tyrosine 

phosphorylation of IRS1 promotes its activity, serine phosphorylation of IRS1 inhibits its 

functions [85]. We did not find effects of XOS on the Ser-phosphorylation of IRS1, yet, as 

expected, the LFD groups expressed less phosphorylated IRS1 indicating better insulin 

signaling compared to the HFD groups. However, downstream of IRS1, XOS enhanced 

the phosphorylation of AKT independent of dietary fat in the epididymal adipose tissue 

and liver. This is in agreement with a recent study in type 2 diabetic rats showing that 

XOS increased insulin signaling in muscle [86]. An improved insulin signaling by XOS 

could be linked to its anti-hyperglycemic effects that were recognized already 30 years 

ago [87]. Nevertheless, in our previous study XOS did not affect serum glucose levels in 

the same rats [5]. AKT phosphorylation in the epididymal fat negatively correlated with 

the genera and metabolites in the isovalerate bicluster, likely reflecting the effects of 

dietary fat. These associations might relate to the role of BCFAs in regulating adipocyte 

insulin signaling [88]. 

Because the pathogenesis of NAFLD is associated with adipose tissue dysfunction 

[8,9], we also studied whether the XOS-induced reduction in hepatic fat content was 

linked to alterations in the activity of metabolic enzymes and inflammation in the adipose 

tissues of the rats. Several studies have shown that in obesity, infiltration of immune cells 

into the adipose tissue increases inflammation, which is associated with disturbed insulin 

signaling [89–92]. Insulin resistance in turn is a risk factor for the onset of NAFLD [93]. 

We hypothesized that XOS-induced increase of anti-inflammatory F. prausnitzii, reduced 

hepatic fat content and increased AKT phosphorylation would associate with decreased 

HFD-induced inflammation in the adipose tissue. The epididymal adipose tissue samples 

exhibited no over pathological changes and the amount of CLS was relatively low in all 

groups. Highly likely, the adipose tissue macrophages have played a role in our study to 

contribute to the hepatic fat content because both the XOS and LFD were associated with 

a reduced number of CLSs in the epididymal adipose tissue. Adipose tissue-resident 

macrophages are known to importantly contribute to the onset of NAFLD by increasing 

macrophage recruitment and inflammation in the liver [9,11,12]. In our data, SCFAs and 

co-varying bacterial genera were associated with lower number of CLSs. SCFAs butyrate, 

propionate and acetate are known to reduce inflammation in both liver and adipose tissue 

[16], and thus, their co-variance in our study could reflect biological significance. 
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To analyze inflammatory factors further, we also determined the mRNA expression 

levels of CD45 mRNA in the mesenteric and epididymal adipose tissue. CD45 is a 

transmembrane protein that is present on all leukocytes and their hematopoietic 

progenitors [94]. In both the epididymal and mesenteric adipose tissue, the expression of 

CD45 was highest in the LFD groups despite the decreased number of macrophages. This 

finding was surprising because we have shown that increasing F. prausnitzii abundance 

in mice by oral administration was followed by a decrease in hepatic fat content and a 

concomitant decrease of CD45-positive leukocytes in the adipose tissue [6]. However, it 

should be noted that while CLS are macrophages and mainly bone marrow-derived 

CD45-positive cells [95], based on their cell morphology they are highly differentiated and 

phagocytize adipocytes [96]. Thus, it might be that the production of CD45 mRNA in these 

cells is low despite the high protein content. In addition, interestingly, on a contrary to 

many studies linking immune cell infiltration into the adipose tissue inflammation and 

NAFLD, some studies have shown that enrichment of specific immune cells in the adipose 

tissue can in fact prevent the onset of insulin resistance. For instance, Harmon et al. 

showed that B-1b lymphocytes that are enriched in the visceral adipose tissue of obese 

humans, decrease inflammation and insulin resistance in the visceral adipose tissue in 

diet-induced obese mice [97]. In another study, perforin-positive dendritic cells reduced 

inflammation in the adipose tissue by reducing the number of tissue resident, 

inflammatory T cells in mice [98]. The results of these two studies raise the question 

whether some type of immune cells in the adipose tissue may sometimes be a protective 

instead of detrimental. 

Altogether, in the present study, we identified several inflammatory and metabolic 

changes as well as co-variances of metabolites and bacterial genera underlying the XOS-

prevented hepatic steatosis in rats. This validated the use of biclustering as a useful 

algorithmic tool to assess the biological importance of microbe-metabolite co-occurrence 

in health and disease. 

5. Conclusions 

Based on our observations, the joint analysis of taxonomic and metabolomic patterns 

can be supported by biclustering algorithms, which provide a useful technique for 

detecting interpretable groupings of co-varying microbes and metabolites, potentially 

linked with health and disease. The preventive effects of XOS on hepatic steatosis could 

be linked to reduced adipose tissue inflammation, as apparent by the lower counts of CLSs 

in the epididymal adipose tissue. This reduction was accompanied by increased 

phosphorylation of AKT in both liver and epididymal adipose tissue, suggesting that less 

inflammation was associated with improved insulin signaling. On the HFD, XOS 

increased fecal glycine and decreased BCAAs, aromatic amino acids, hypoxanthine and 

isovalerate that due to their known functions could partly explain steatosis-reducing 

effects of XOS. However, future mechanistic studies are needed to understand how these 

GM-produced metabolites could exactly affect hepatic metabolism and fat content. 
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