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NOMENCLATURE 
 
Symbol Definition 

C Cost (€) 
S Price on spot market (€/MWh) 
F Price of futures (€/MWh) 
X Electricity consumption, amount bought on spot market (MWh) 
H Hedge amount (MWh) 
J Set of all scenarios 
τ Set of all time intervals 
N Number of scenarios in set J 
β Confidence level 
FP Futures premium 
R Reservoir level 
p Probability of scenario occurring 
α Skew parameter 
μ Location parameter 
σ Shape parameter 
𝝓(𝑳)  Non-seasonal autoregressive lag polynomial 

𝝓̃(𝑳)  Seasonal autoregressive lag polynomial 
𝚫  Difference term 
𝑨(𝒕)  Trend polynomial 
𝜽(𝑳)  Non-seasonal moving average lag polynomial 

𝜽̃(𝑳)  Seasonal moving average lag polynomial 
Subscripts and superscripts 

t Time period t, 𝑡 ∈ 𝛕 

T The delivery time for a futures contract 
sys System (price) 
a Area (price) 
APD Area price difference 
rl Riskless 
j Scenario 
ask Ask price 
bid Bid price 
p Lag number for auto-regressive term 
d Differencing degree 
q Lag number for moving average term 
s Periodicity of the seasonality 
P Lag number for seasonal auto-regressive term 
D Differencing degree for the seasonal term 
Q Lag number for seasonal moving average term 
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1 INTRODUCTION 

Starting in the 1990s a large number of countries began processes of deregulation 
and restructuring of their electricity markets. The exact reasons, actions taken 
and results of this process differ between the countries, but the general goal was 
the same: to introduce elements of competition into electricity generation and 
purchasing. For a detailed look at the history of electricity market deregulation 
and restructuring see, for example, Rothwell and Gómez (Rothwell and Gómez 
2003). 
 The result of this process in the Nordic countries was the formation of the 
Nord Pool power market. Nord Pool offers a marketplace for intra-day and day-
ahead electricity trading.  Nord Pool is divided into 21 regions which are shown, 
along with the daily price quotation (€/MWh), in Figure 1. Nord Pool calculates 
a system price, which is the price that balances the supply and demand for the 
entire Nordic market assuming no physical capacity limitations. If there were no 
physical transmission capacity constraints between the bidding areas, the prices 
in all bidding areas would be equal to the system price. However, because there 
are in fact capacity constraints between the bidding regions, there will be differ-
ences in the electricity prices in bidding areas. As can be seen from Figure 1, the 
area price for Finland on 05.10.2020 was 31.12 €/MWh while in the NO1 bidding 
area the price was 6.16 €/MWh. The system price at that time was 10.25 €/MWh. 
For more information on the history and structure of the Nord Pool market, see 
Flatabø et al. (Flatabø et al. 2003). 
 In addition to the physical electricity market operated by the Nord Pool, 
financial derivatives for the Nordic power market can be traded on the NASDAQ 
OMX Commodities exchange. The types of financial instruments traded in the 
Nordic Power product offering include futures contracts based on the Nord Pool 
system price, options based on the Nord Pool system price, and Electricity Price 
Area Differential (EPAD) contracts. EPAD contracts are futures contracts, which 
are based on the price difference between the area price of a bidding area and the 
system price.  

Electricity prices in modern electricity markets are known to be more vol-
atile than the prices of other commodities (Souhir, Heni, and Lotfi 2019). This 
price volatility creates risks for businesses which are highly dependent on the 
electricity markets, such as electricity generators or industries which are large 
electricity consumers. In Finland in 2019, industry and construction accounted 
for 46.1% of total electricity consumption or 39 665 GWh (Statistics Finland 2020). 
At the 2019 average Finnish area price of 44.04 €/MWh (Nord Pool AS 2020), this 
implies that electricity-related costs accounted for approximately 1.7 billion € of 
the costs to these businesses. In addition, for electricity intensive manufacturing 
processes it is not always possible to pass increased electricity costs along to the 
final customer in terms of increased sales prices (Mulhall and Bryson 2014).  
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 Because of the potentially high volatility and high costs, it is important 
that businesses have tools to maintain their electricity cost risk at an appropriate 
level. Conditional value-at-risk, a risk measure, is one such tool. In this thesis 
conditional value-at-risk measures will be used to create a hedging portfolio of 
EPAD futures to manage the monthly electricity price risk for a theoretical large 
electricity consumer. 
 

 
Figure 1 The Nord Pool market regions and the daily prices on 05.10.2020 
(Nord Pool AS 2020). 

This thesis consists of four main parts. Section 2 gives an overview of the 
field of financial risk management as it relates to pricing the risks in electricity 
markets. In Section 3 the Finnish area spot price and futures price data are pre-
sented. In Section 4 the methods used are shown. The main topic of this section 
is the portfolio optimization model shown in Section Portfolio optimization 
model. It can be seen in that section that to perform the portfolio optimization 
routines, future price scenarios must be generated. As such, Section Forecasting 
methods for scenario generation presents three methods, which can be used to 
generate these price scenarios.  In Section 5 the results are presented and dis-
cussed. This consists primarily of the calculated optimal hedging amount using 
each of the three forecasting methods presented in Section Forecasting methods 
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for scenario generation and a comparison of the results of conditional value-at-
risk hedging strategies against more traditional hedging portfolios. In Section 6 
the conclusions are given. 



12 
 

2 THEORETICAL FRAMEWORK 

This work largely falls under the field of financial risk management. There is no 
universally agreed definition of risk, but Aven and Renn propose the definition 
“uncertainty about and severity of the consequences (or outcomes) of an activity 
with respect to something that humans value” (Aven and Renn 2009). In the con-
text of financial risk management, the consequences of interest in this definition 
would be a potential financial loss for a business. 
 There are many ways to measure risk, and the understanding of the suit-
ability of different risk measures has changed over time. In Modern Portfolio 
Theory (MPT) risk is measured using the variance of returns on a portfolio. It was 
realized, however, that there are some undesirable consequences of using the re-
turn variance as a risk measure, such as the fact that both upside and downside 
risk are penalized equally (Rom and Ferguson 1994; T. R. Rockafellar, Uryasev, 
and Zabarankin 2005). Artzener et al. attempted to formalize the desirable qual-
ities of risk measures, and created the term ‘coherent’ risk measures to describe 
measures which possess these qualities (Artzner et al. 1999).  
 Value-at-risk (VaR) is a very widely used risk measure which does not 
satisfy the requirements of a coherent risk measure (Artzner et al. 1999). While 
the basic concepts of VaR were described as early as 1945, the method and mod-
ern naming was popularized in the 1990s by JP Morgan (Adamko, Spuchľáková, 
and Valášková 2015; Holton 2002). The basic definition of VaR is that it gives the 
value of loss which will not be exceeded with a given probability, β. An example 
is shown is Figure 2, where the threshold probability β is set to 95%, and so VaR 
is the value of loss which will not be exceeded in 95% of the cases or which will 
be exceeded in only 5%. 

 

Figure 2 Value-at-risk (VaR) at the β = 95% level. 

 Conditional value-at-risk (CVaR) is a popular risk measure, which is de-
fined as the expected loss in the (1- β)% worst cases. CVaR can be thought of in 
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most cases as the expected loss conditional that the loss exceeds the VaR level. 
CVaR accounts for the shape of the loss tail beyond the VaR threshold. CVaR has 
additional advantages when compared to VaR as it is a coherent risk measure 
(Lim, Shanthikumar, and Vahn 2011) and it is better suitable for using in scenario 
based optimization (R. T. Rockafellar and Uryasev 2000). Figure 3 depicts the re-
lationship between VaR and CVaR. 

 

Figure 3 Conditional value-at-risk (CVaR) compared to value-at-risk (VaR) at 
the β = 95% level 

After electricity markets were deregulated and restructured, financial risk 
management methods began to become more common among both the buy and 
sell side of the market. By the mid 2000’s the basic principles of using energy 
derivatives to manage electricity price risk and the application of VaR in electric-
ity markets were well established (Deng and Oren 2006; Liu, Wu, and Ni 2006). 
Many other works have looked at hedging strategies from the perspectives of 
either electricity produces, retailers, or consumers. From the electricity generator 
perspective, Conejo et al. (Antonio J. Conejo et al. 2008) developed a model to 
manage risk by optimizing purchases of forwards contracts. CVaR was used as 
the risk measure in this work. Similarly from the retailer perspective, Kettunen, 
Salo and Bunn (Kettunen, Salo, and Bunn 2010) studied hedging with forward 
contract by CVaR optimization approach. Zhang and Wang developed a model 
for hedging contract choices for a electricity consumer, and also used CVaR as a 
risk measure (Qin Zhang and Xifan Wang 2009). 

Demand response is another method for managing electricity price risk 
exist, which does not necessitate hedging with financial derivatives. Demand re-
sponse entails electricity consumers adjusting their consumption of electricity 
based on price signals, and so they consume more electricity when prices are low 
and less when prices are high (Kirschen 2003). Demand response has been shown 
to be effective in a wide range of cases, such as the pulp and paper industry 
(Helin et al. 2017) and by managing air-conditioning units (Marwan, Ledwich, 
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and Ghosh 2014). Gómez-Villalva and Ramos also consider a large industrial cus-
tomer and develop a model which can optimize both operational and contractual 
decisions to manage energy costs (Gómez-Villalva and Ramos 2003). While busi-
nesses should utilize all options available for managing electricity risk, including 
demand response, this work will focus only on risk management through finan-
cial hedging. 
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3 DATA 

Monthly spot price data for the Finnish area price and the Nordic system price 
were retrieved from the Nordpool Historic Market Data webpage. The data was 
treated in the same way as done in Junttila et al. (Junttila, Myllymäki, and 
Raatikainen 2018), and so the area price difference (APD) for period t was calcu-
lated as the difference between the system price and the area price, that is, 

𝑆𝐴𝑃𝐷,𝑡 = 𝑆𝑠𝑦𝑠,𝑡 − 𝑆𝑎,𝑡,   (1) 

where 𝑆𝐴𝑃𝐷,𝑡 is the area price differential, 𝑆𝑠𝑦𝑠,𝑡 the system price, and 𝑆𝑎,𝑡 the area 

price at time t. 
The area price differences for monthly data for all the bidding areas in the 

Nordpool power market are shown in Figure 4 for the period of 2005-2017. In 
addition, the mean and standard deviations for the same time period are shown 
in Table 1. The Finnish area has the second highest mean area price differences 
and third highest standard deviation. This indicates that the Finnish area price is 
both relatively high and volatile.  

 
Figure 4 The area price differences for the bidding areas of the Nordpool power 
market. 
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Table 1 Mean and standard deviations for the area price differences of all the 
bidding areas in the Norpool power market for 2005-2016. 

 SE FI DK1 DK2 Oslo Kr.sand Ber-
gen 

Molde Tr.heim Tromsø 

Mean 2.219 3.808 1.886 3.877 -1.141 -1.594 -1.545 1.583 1.583 0.979 

St.d. 4.690 4.792 7.572 6.491 2.800 2.820 2.885 3.603 3.603 3.582 

 
 
The prices for Finnish EPAD contracts were obtained from Nasdaq. The data set 
included daily ask, bid and closing prices. The monthly averages for these were 
calculated using the last five business days of each month. The futures ask price 
at time t for delivery period T would then be 
 

𝐹𝑡,𝑎𝑠𝑘
𝑇 =

1

5
∑ 𝐹𝑛,𝑎𝑠𝑘

𝑇−1
𝑛=−5  . (2) 

 

where 𝐹𝑛,𝑎𝑠𝑘
𝑇  is the ask price on day 𝑛 with delivery period T. Similarly, the bid 

price would be 
 

𝐹𝑡,𝑏𝑖𝑑
𝑇 =

1

5
∑ 𝐹𝑛,𝑏𝑖𝑑

𝑇−1
𝑛=−5  , (3) 

 

where 𝐹𝑛,𝑏𝑖𝑑
𝑇  is the bid price on day 𝑛 with delivery period T. Finally, the closing 

price is given by  
 

𝐹𝑡,𝑐
𝑇 =

1

5
∑ 𝐹𝑛,𝑐

𝑇−1
𝑛=−5  . (4) 

 
Figure 5 shows the Finnish monthly area price difference given by Eq. (1) 

along with the futures contract closing price in the preceding month given by Eq. 
(4), and the resulting futures premium. The data presented in this plot is identical 
to the plot shown in Junttila et al. (Junttila, Myllymäki, and Raatikainen 2018), 
which confirms that the data sources and processing are consistent with that 
work. The ask, bid, and closing prices are shown together in Figure 5. 

In addition to the spot market and futures contract data, the historical 
Finnish hydro reservoir water levels were retrieved from the Finnish Environ-
ment Institute website (Environmental Institure of Finland 2017). The Finnish 
reservoir level can be seen in Figure 7 along with the Finnish area price difference 
for the same period. 

As will be seen in Section 3 it is necessary to predict possible future area 
price differences in order to perform the CVaR portfolio optimization. To create 
these forecasts three models were developed and are presented in Section 3.  In 
addition to the futures contract prices (closing, ask, and bid prices) and Finnish 
reservoir level, two other features were calculated from the data to use as possible 
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model variables for prediction the future area price differences. The three-month 
rolling average area price difference was calculated and indicated by 𝑆𝑎̅𝑝𝑑,𝑡3. In 

addition, the ex-post future premium from the previous month was included.  
 

Figure 5 The monthly Finnish area price difference (APD), the corresponding 
closing price of the futures contract (F) and the resulting futures premium (FP). 

Figure 6 Closing, ask, and bid prices for Finnish EPAD futures ask calculated by 
Eqs. 2-4. The difference between the ask and bid prices is shown as the spread. 



18 
 

 
Figure 7 Finnish area price difference (APD, left axis) and the Finnish hydro res-
ervoir level (Level, right axis). 

The correlation matrix between these seven variables and the Finnish area 
price difference is shown in Table 1. As can be seen from the table, the previous 
month’s spot price for the area price difference (𝑆𝑎𝑝𝑑,𝑡−1) has the highest correlation 
with the current month’s area price difference ( 

𝑆𝑎𝑝𝑑,𝑡). The closing, ask and bid prices for the futures contracts are also correlated 
the spot price and are highly correlated with each other. The correlation between 
the area price difference and the previous month’s reservoir level and futures 
premium are also noteworthy.  
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Table 2 The correlation matrix between the seven variables used for predicting 
Finnish area price differences. The seven variables are: the previous period area 
price difference (𝑆𝐴𝑃𝐷,𝑡−1); the closing price of the futures contract as given by 

Eq. 4 (𝐹𝑡−1,𝑐
𝑡 ); the ask price of the futures contract as given by Eq. 3, (𝐹𝑡−1,𝑎𝑠𝑘

𝑡 ); the 

bid price of the futures contracts as given by Eq. 2, (𝐹𝑡−1,𝑏𝑖𝑑
𝑡 ); the rolling average 

of the previous  three months’ area price difference (𝑆𝑎̅𝑝𝑑,𝑡3); the difference be-

tween the previous month’s spot price and the 3 month rolling average spot 

price (𝑆𝑎𝑝𝑑,𝑡−1 − 𝑆𝑎̅𝑝𝑑,𝑡,3  ); the previous month’s Finnish reservoir level (𝑅𝑡−1); and the 
previous month ex-post futures premium (𝐹𝑃𝑡−1). 

 
𝑺𝑨𝑷𝑫,𝒕 𝑺𝑨𝑷𝑫,𝒕−𝟏 𝑭𝒕−𝟏,𝒄

𝒕  𝑭𝒕−𝟏,𝒂𝒔𝒌
𝒕  𝑭𝒕−𝟏,𝒃𝒊𝒅

𝒕  𝑺̅𝒂𝒑𝒅,𝒕,𝟑 𝑺𝒂𝒑𝒅,𝒕−𝟏 − 𝑺̅𝒂𝒑𝒅,𝒕,𝟑   𝑹𝒕−𝟏 𝑭𝑷𝒕−𝟏 

𝐒𝐀𝐏𝐃,𝐭  1 0.573 0.507 0.447 0.555 0.083 0.483 0.269 -0.324 

𝐒𝐀𝐏𝐃,𝐭−𝟏  0.573 1 0.605 0.536 0.656 0.346 0.686 0.253 -0.566 

𝐅𝐭−𝟏,𝐜
𝐭   0.507 0.605 1 0.984 0.984 0.229 0.4 0.418 0.021 

𝐅𝐭−𝟏,𝐚𝐬𝐤
𝐭   0.447 0.536 0.984 1 0.952 0.186 0.368 0.404 0.095 

𝐅𝐭−𝟏,𝐛𝐢𝐝
𝐭   0.555 0.656 0.984 0.952 1 0.266 0.421 0.429 -0.051 

𝐒̅𝐚𝐩𝐝,𝐭,𝟑  0.083 0.346 0.229 0.186 0.266 1 -0.444 0.175 0.05 

𝐒𝐚𝐩𝐝,𝐭−𝟏 − 𝐒̅𝐚𝐩𝐝,𝐭,𝟑   0.483 0.686 0.4 0.368 0.421 -0.444 1 0.106 -0.579 

𝐑𝐭−𝟏  0.269 0.253 0.418 0.404 0.429 0.175 0.106 1 0.094 

𝐅𝐏𝐭−𝟏  -0.324 -0.566 0.021 0.095 -0.051 0.05 -0.579 0.094 1 
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4 METHODS 

In this section the necessary calculations for optimizing an EPAD hedging port-
folio using CVaR are presented. First, it will be shown how to calculate the total 
cost to an electricity consumer which purchases electricity on the spot market and 
hedges some of its consumption using EPAD futures. Second, it will be shown 
how to calculate the risk of the portfolio. Third, the CVaR optimization is pre-
sented in general. Fourth, the EPAD portfolio optimization model, which is used 
to determine the optimal hedging portfolio, is presented. And finally, the fore-
casting models used to generate the price scenarios necessary for using the CVaR 
optimization model are shown.  

The forecasting models presented here are not meant to be novel, as they 
are only necessary for performing the portfolio optimization and are not the fo-
cus of the thesis. There already exists significant work on forecasting electricity 
prices and, in particular, EPAD futures premiums for the Finnish market. In ad-
dition, many large industrial electricity customers will have in-house forecasting 
models using commercial software such as PLEXOS. The forecasting models pre-
sented in this thesis are only meant to generate plausible price scenarios for using 
the CVaR optimization, and to illustrate how the optimization can be used inde-
pendently of how the forecasts are actually generated. The optimization model 
could be used by any electricity customer by simply replacing the forecasting 
methods presented here with their own price prediction models. 

4.1 EPAD futures portfolio 

A large industrial electricity consumer who has a constant electrical demand (or, 
at minimum, has future demand which is known with 100% certainty) will be 
considered. Having demand with no uncertainty is a common assumption in 
studies optimizing from a electricity consumer’s perspective (A.J. Conejo, 
Fernandez-Gonzalez, and Alguacil 2005; Carrion et al. 2007). The consumer must 
purchase its electricity on the spot market but can use the futures market to re-
duce the risk of increased electricity costs due to higher spot prices in the future. 
If the spot price is equal to the Nordic system price, the customer uses system 
futures, and the electricity consumption is constant, the customer’s total costs are: 
 

𝐶 =  𝑆𝑠̅𝑦𝑠𝑋𝑠𝑦𝑠 + (𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠)𝐻𝑠𝑦𝑠,  (5) 

where 𝐶 is the total cost, 𝑆𝑠̅𝑦𝑠 is the average system spot price, 𝑋𝑠𝑦𝑠 the electricity 

consumption at the system price, 𝐹𝑠𝑦𝑠  the futures price, and 𝐻𝑠𝑦𝑠  the hedged 

amount. 
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If the customer’s spot price differs from the system price and the customer 
uses EPAD futures (along with a corresponding systems futures), their total cost 
would be: 

 

𝐶 =  𝑆𝑎̅𝑋𝑎 + (𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠)𝐻𝑠𝑦𝑠 + (𝐹𝐴𝑃𝐷 − 𝑆𝐴̅𝑃𝐷)𝐻𝐴𝑃𝐷,  (6) 

where 𝑆𝑎̅  is the average area price, 𝑋𝑎  the electricity consumption at the area 

price, 𝐹𝐴𝑃𝐷 the EPAD price, 𝑆𝐴̅𝑃𝐷 the area price differential on the spot market, 
and 𝐻𝐴𝑃𝐷 the amount of EPAD hedging purchased. 

If the customer’s electricity demand is not constant, then the average spot 
price cannot be used and instead the hourly spot price and hourly consumption 
considered instead. Equation 5 will then become 
 

𝐶 =  ∑ 𝑆𝑡𝑋𝑡𝑡∈𝑇 + (𝐹 − 𝑆̅)𝐻    (7) 

where 𝑆𝑡  is the hourly spot price and 𝑋𝑡  the hourly electricity consumption at 
time 𝑡, 𝐹 is the future price used for hedging, 𝑆̅ the average spot price for the 
hedging period, and 𝐻 is the amount of electricity consumption which has been 
hedged. 
Similarly, Equation 6 becomes 
 

𝐶 =  ∑ 𝑆𝑡,𝑎𝑋𝑡,𝑎𝑡∈𝑇 + (𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠)𝐻𝑠𝑦𝑠 + (𝐹𝐴𝑃𝐷 − 𝑆𝐴̅𝑃𝐷)𝐻𝐴𝑃𝐷  (8) 

4.2 Portfolio risk 

If a corporation hedges fully its future electricity consumption, it faces only mi-
nor basis risk. If the portfolio is not fully hedged, it faces the risk that costs of 
consumption will increase, and it faces an opportunity to gain if electricity price 
goes down.  

The electricity consumer’s loss can be calculated as: 
 

𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑠𝑡 −  𝑐𝑜𝑠𝑡𝑟𝑙  (9) 

where 𝑐𝑜𝑠𝑡 is the customers actual costs and 𝑐𝑜𝑠𝑡𝑟𝑙 is the cost of the fully hedged, 
or riskless, portfolio. In terms of spot and futures prices, the loss of a portfolio 
with system futures and EPAD futures can be written as: 
 

𝑙𝑜𝑠𝑠 = (𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠)𝐻𝑠𝑦𝑠 + (𝐹𝑎 − 𝑆𝑎̅)𝐻𝑎 − ((𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠) + (𝐹𝐴𝑃𝐷 −

𝑆𝐴̅𝑃𝐷)) 𝑋𝑎. 

 

(10) 

 

The definition for a futures premium is taken from Junttila et al. (Junttila, 
Myllymäki, and Raatikainen 2018) 
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𝐹𝑃 =  𝐹𝑡
𝑇 − 𝐸𝑡(𝑆𝑇).  (11) 

where 𝐹𝑡
𝑇 is the futures price at time 𝑡 which applies for the period starting at 

time 𝑇 and 𝐸𝑡(𝑆𝑇) is the expected spot price at time T. The ex-post futures pre-
mium can be calculated by replacing 𝐸𝑡(𝑆𝑇), with the realized spot price at time 
T, 𝑆𝑇. 

4.3 Conditional Value at Risk optimization 

This work uses a scenario-based approach for determining CVaR. This method 
involves creating various scenarios, which describe the possible behavior of the 
uncertain variables. This allows standard linear programming methods to be 
used to solve the portfolio optimization problem. This method is described by 
Rockafellar & Uryasev (2000) (R. T. Rockafellar and Uryasev 2000) and in partic-
ular, this thesis uses the formulation presented in Yau et al, (2011) (Yau et al. 
2011). 

Conditional value at risk is calculated as: 
 

𝐶𝑉𝑎𝑅 = 𝑉𝑎𝑅 +
1

𝑁(1−𝛽)
∑ 𝑧𝑗𝑗∈𝐽   (12) 

         
where  
 

𝑧𝑗 ≥ 𝑙𝑜𝑠𝑠𝑗 − 𝑉𝑎𝑅, 𝑧𝑗 ≥ 0 for 𝑗 ∈ 𝐽 (13) 

        
Based on this formulation, CVaR and VaR are found simultaneously during the 
optimization. In the current work it is the future spot price which is not known, 
and a possible future spot price will be generated in each scenario. 

4.4 Portfolio optimization model 

The portfolio optimization attempts to minimize total electricity costs while 
maintaining a given level of CVaR. The overall optimization model can be sum-
marized as: 
 

min 𝐶 = ∑  𝑝𝑗(𝑆𝑎̅,𝑇𝑋𝑎 + (𝐹𝑠𝑦𝑠,𝑗,𝑡
𝑇 − 𝑆𝑠̅𝑦𝑠,𝑇)𝐻𝑠𝑦𝑠 + (𝐹𝐴𝑃𝐷,𝑗,𝑡

𝑇 − 𝑆𝐴̅𝑃𝐷,𝑇)𝐻𝐴𝑃𝐷)𝑗∈𝐽 , 

 

(14) 

 
where 𝑝𝑗 is the probability of scenario 𝑗 occurring.     
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Using the definition of the futures premium Equation 14 can be rewritten 
as 

min 𝐶 = ∑ 𝑝𝑗(𝑆𝑎̅𝑋𝑎 + 𝐹𝑃𝑠𝑦𝑠,𝑗𝐻𝑠𝑦𝑠 + 𝐹𝑃𝐴𝑃𝐷,𝑗𝐻𝐴𝑃𝐷)

𝑗∈𝐽

  (15) 

   
Initially only the area price risk will be considered, so removing the system price 
hedging from Equation 15 gives 
 

min 𝐶 = ∑ 𝑝𝑗(𝑆𝑎̅𝑋𝑎 + 𝐹𝑃𝐴𝑃𝐷,𝑗𝐻𝐴𝑃𝐷)𝑗∈𝐽    (16) 

       
Subject to: 
 

𝐶𝑉𝑎𝑅 ≤ 𝐶𝑉𝑎𝑅𝑙  (17) 

𝐶𝑉𝑎𝑅 = 𝑉𝑎𝑅 +
1

𝑁(1−𝛽)
∑ 𝑧𝑗𝑗∈𝐽   (18) 

𝑙𝑜𝑠𝑠 = (𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠)𝐻𝑠𝑦𝑠 + (𝐹𝐴𝑃𝐷 − 𝑆𝐴̅𝑃𝐷)𝐻𝐴𝑃𝐷 − ((𝐹𝑠𝑦𝑠 − 𝑆𝑠̅𝑦𝑠) + (𝐹𝐴𝑃𝐷 −

𝑆𝐴̅𝑃𝐷)) 𝑋𝐴𝑃𝐷  

(19) 

𝑧𝑗 ≥ 𝑙𝑜𝑠𝑠𝑗 − 𝑉𝑎𝑅, 𝑗 ∈ 𝐽   (20) 

𝑧𝑗 ≥ 0, 𝑗 ∈ 𝐽  (21) 

To summarize, Equations 16-21 present a portfolio optimization model which 
minimizes the total electricity procurement costs with a CVaR constraint on the 
portfolio loss compared to a fully hedged portfolio. More specifically, Eq. 16 pre-
sents the objective function of the model and Equations 17-21 are the CVaR con-
straints. This model construction reflects the decision-making process of indus-
trial electricity consumers, where the primary goal is to minimize the total cost 
to purchase electricity but at the same time managing the risk of large, unex-
pected monthly costs driven by spiking spot prices. 

4.5 Forecasting methods for scenario generation 

As can be seen from Equation 14, in order to perform the portfolio optimization 
it is required to forecast at time t what the spot price will be at time T. The forecast 
should be done in a way that generates multiple price predictions for use in the 
different scenarios and that reflect the distribution of possible future prices. 
Equation 15 shows that this forecasting can also be done in terms of the futures 
premium rather than spot prices 

For this thesis, three forecasting models were developed. Significant work 
already exists on forecasting electricity prices (see, for example, Aggarwal et al. 
(2009) (Aggarwal, Saini, and Kumar 2009) for a review), including the Nordpool 
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market (Kristiansen 2014, 2012). Most large electrical-intensive industrial compa-
nies have built custom forecasting models on a structural understanding of the 
electricity market and demand-supply balance. As a result, forecasting is not the 
focus of this thesis and the models presented here are relatively simple and not 
intended to be novel. However, the models do represent different levels of com-
plexity: the first model predicts future values simply by sampling from the dis-
tribution of past values; the second model is a linear regression; and the third is 
a seasonal ARIMAX model. 

4.5.1 Sampling from historic distribution 

The first model for generating scenarios of the possible futures premiums 
consisted of fitting a skew-normal distribution to the ex-post futures premiums 
for one-month futures EPAD contracts for the Finnish area price at the end of the 
month before the delivery period. Figure 8 shows a histogram of the ex-post fu-
tures premiums and the black line indicates the fitted distribution. This can be 
used to simulate possible future developments of the area price by sampling from 
the fitted distribution and adding it to the closing futures price from the previous 
month, 

 
𝑆𝑡,𝑗 =  𝐹𝑡−1

𝑡 + 𝜀𝑗 ,        𝜀 ~𝑆𝑁(𝛼, μ, σ)   (22) 

where 𝑆𝑁(𝛼, μ, σ) is the distribution fit to the historic ex-post futures premiums. 
This method assumes that there is no information available to improve the 

prediction of the area price difference at time T beyond the current futures con-
tract price. The fitted distribution parameters are given in Table 3.  
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Figure 8 Histogram of ex-post futures premiums for monthly Finnish EPAD fu-
tures. Futures prices were taken at the end of the month before the delivery pe-
riod. A skew-normal distribution was fit to the data. 

Table 3 Fitting parameters for the skewnormal distribution fitted to the ex-post 
futures premiums shown in Figure 8.  

Variable Value 

α 1.127 
μ -1.885 
σ 5.252 

 

4.5.2 Linear regression model 

The second model is a linear regression model of the standard form 
 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 +  𝜀𝑖. (23) 

In this case the dependent variable was the area price difference and the inde-
pendent variables were chosen from Table 2 empirically, based on which varia-
bles minimized the out-of-sample prediction error while having all P values un-
der 0.05. Out of sample prediction error was calculated using k-fold cross-vali-
dation, where k=10. The final independent variables used were: the ask price at 
the close of the previous month (𝐹𝑇−1,𝑎𝑠𝑘

𝑇 ); and the difference of the previous month 
spot price and the 3 month rolling average multiplied by the Finnish reservoir 

level ((𝑆𝑎𝑝𝑑,𝑡−1 − 𝑆̅𝑎𝑝𝑑,𝑡,3)𝑅𝑡−1). The resulting model, when fit to all the available monthly 

Finnish area price difference data, had an 𝑅2 value of 0.67. The coefficient for the 
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𝐹𝑇−1,𝑎𝑠𝑘

𝑇  variable was 0.786 with a p-value of 0.000. The coefficient of the 

(𝑆𝑎𝑝𝑑,𝑡−1 − 𝑆̅𝑎𝑝𝑑,𝑡,3)𝑅𝑡−1 variable was 0.0037 with a p-value of 0.002. 

The in-sample prediction results of the model are shown in Figure 9. The 
simple model clearly tends to lag the actual behavior of the area price difference 
which is particularly obvious when there are large monthly price swings, such as 
at the end of 2009 and beginning of 2010. Figure 10 shows the resulting predicted 
future premiums and the actual ex-post future premiums. The predicted future 
premium is nearly 0 (mean of 0.578 and standard deviation of 1.16) indicating 
that the predicted area price differences are very close to the closing price of the 
futures contracts. 

 
Figure 9 The in-sample results from the linear regression model for predicting 
Finnish area price differences. The black dots show the actual area price differ-
ences, the blue line shows the model predictions, and the blue bars show the 
model residuals. 

To generate price scenarios using this linear regression model, the follow-
ing equation was used 

 

𝑆𝑡,𝑗 = 𝑆𝑡̂ + 𝜀𝑗 ,         𝜀 ~𝑆𝑁(𝛼, μ, σ) ,  (24) 

where 𝑆𝑡̂ is the predicted area price difference from the model and 𝑆𝑁(𝛼, μ, σ) is 
a skew-normal distribution fit to the residuals of the regression model. The dis-
tribution parameters are given in Table 4. The results of Equation 23 are shown 
in Figure 11, where three separate price scenarios are plotted, and Figure 12, 
where 1000 price scenarios are shown. 
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Figure 10 The predicted futures premium and actual ex-post futures premiums 
for the Finnish EPADs. 

Table 4 Distribution parameters obtained by fitting a skew-normal distribution 
to the residuals of the linear regression model prediction Finnish area price dif-
ferences. 

Parameter Value 

𝜶  1.887 
𝛍  -2.542 
𝛔  4.349 
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Figure 11 The colored lines show three different price scenarios generated from 
Equation 24 and the dots show the actual Finnish area price differences. 

 
Figure 12 One thousand price scenarios generated by Equation 24 are shown by 
overlapping blue lines. The actual Finnish area price differences are shown by 
black dots. 
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4.5.3 SARIMAX model 

The third forecasting model used was seasonal autoregressive integrated 
moving average with exogenous regressors (SARIMAX). ARIMA, ARIMAX and 
SARIMAX models have been used extensively in forecasting electricity prices 
(Aggarwal, Saini, and Kumar 2009) and loads (Tarsitano and Amerise 2017; 
Elamin and Fukushige 2018), including for generating electricity price scenarios 
when performing stochastic optimization for electricity procurement (Zhang et 
al. 2016; Carrion et al. 2007).  

The SARIMAX model has the general form of (Perktold, Seabold, and 
Taylor 2020) 

 

𝜙𝑝(𝐿)𝜙̃𝑝(𝐿𝑠)Δ𝑑Δ𝑠
𝐷𝑢𝑡 = 𝐴(𝑡) + 𝜃𝑞(𝐿)𝜃̃𝑄(𝐿𝑠)𝜀𝑡  (26) 

 
Equation 25 is a linear regression, similar to Equation 23, and describes the de-
pendence on the exogenous variables. Equation 26 shows the SARIMA process 
model for the error component. 

It has been established previously that the Finnish area price difference 
time series is stationary (Juntilla, Myllymäki, and Raatikainen 2017), and so it is 
assumed to be the case in this work as well. To determine possible autoregression 
and moving-average terms to include in the model, the autocorrelation (ACF) 
and partial autocorrelation (PACF) functions were plotted and examined. These 
are shown in Figure 13 and Figure 14 respectively. In both the ACF and PACF it 
can be seen the -1 lag term is significant. In the PACF plot it can be seen that also 
the -6 and -21 lag terms are significant, while no other terms besides -1 are signif-
icant in the ACF plot. These plots indicate that possible a AR(1) or MA(1) model 
would work best. Finally, a few different lag terms were tested and the model 
with the lowest AIC value was selected. Table 5 shows the AIC values for the 
various models that were tested. The model with AR lags of -1 and -6- and 12-
month seasonality had the lowest AIC value and so was used for the time series 
modeling. 

𝑦𝑡 = 𝛽𝑥𝑡 + 𝑢𝑡   
 
 

(25) 
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Figure 13 Autocorrelation function for the Finnish area price difference time se-
ries. 

 
Figure 14 Partial autocorrelation function for the Finnish area price difference 
time series. 

In addition to the ARIMA lag terms, the exogenous variables were evaluated as 
well. The variables in Table 2 were checked by adding them to the 
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AR(1,6)ARs(12) model and finding the combination which again gave the low-
est AIC. It was determined that the previous month’s futures closing price and 
the previous month’s Finnish reservoir level were the best exogenous variables 
to include. 

The resulting model was then used to create a rolling, 1 month ahead pre-
diction for the last 18 months of the data set. This was done by first fitting the 
model to the period of January 2006 – June 2013, and then predicting the Finnish 
area price difference of July 2013. Next the model is fit to the period of January 
2006 – July 2013 and the prediction is made for August 2013. This continues until 
the prediction is made for December 2014. These 18 one month ahead predictions 
give a root-mean-squared prediction error of 3.61. This can be compared to, for 
example, using just the closing futures price, 𝐹𝐴𝑃𝐷,𝑡−1

𝑡 , to predict the next month’s 

spot price, 𝑆𝐴𝑃𝐷,𝑡. This would give a root-mean-squared error of 3.71, and so the 
time series model offers a small improvement in prediction accuracy. The results 
of this rolling forecast are shown in Figure 15. 
 
Table 5 AIC values for models with different AR, MA and seasonality terms. 

AR MA Seasonality AIC 

1 0 0 616 
1 1 0 613 
1 0 12 556 
1 1 12 557 
1,6 0 0 593 
1,6 1 0 594 
1,6 0 12 533 
1,6 1 12 535 
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Figure 15 Prediction results for the SARIMAX model. The solid line indicates 
the in-sample prediction results and the dotted line shows the out-of-sample 
prediction results from a rolling, 1 month ahead prediction. 

Price scenarios were generated from the time series model using the same 
process described in Section Linear regression model. First, a probability distri-
bution was fit to the model’s residuals. Then, using Equation 24 the price scenar-
ios were creating by sampling from the residual distribution and adding this to 
the price predicted by the rolling, 1-month-ahead time series model. The result 
can be seen in Figure 16 where three price scenarios are shown for the final 18 
months of data. The distribution parameters obtained from fitting a skew-normal 
distribution to the residuals is shown in Table 6. 

 
Table 6 Distribution parameters obtained by fitting a skew-normal distribution 
to the residuals of the SARIMAX model given in Equations 25 and 26 

Parameter Value 

𝜶  0.7336 
𝛍  -2.179 
𝛔  4.956 
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Figure 16 Price scenarios for July 2013-December 2014. The in-sample model 
predictions for January 2006-June 2013 are shown by the blue line, the actual 
Finnish area spot prices are shown by the black dots, and the three price scenar-
ios shown by the dotted lines. 

4.6 Minimum-variance hedging 

The minimum-variance hedging ratio was also calculated to compare against the 
performance of the VaR hedging methods. The minimum variance (MV) hedge 
ratio is defined as (Wang, Wu, and Yang 2015; Chen, Lee, and Shrestha 2003) 
 

ℎ =
𝐶𝑜𝑣(𝑆,𝐹)

𝑉𝑎𝑟(𝐹)
= 𝜌

𝜎𝑠

𝜎𝐹
 . (27) 

 
In order to apply this, this hedging ratio will be estimated using the ordinary 
least squares (OLS) method (Wang, Wu, and Yang 2015; Chen, Lee, and Shrestha 
2003), 
 

𝑆𝑡 = 𝛼1 + 𝛽1𝐹𝑡 + 𝜖𝑡 ,  (28) 
 
where 𝛽1 is the optimal hedging ratio given by Eq. 27.  
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4.7 Portfolio comparison 

Hedging portfolios are compared against each using the following metrics: 

• Total portfolio cost 

• Savings vs the fully hedged portfolio 

• Maximum monthly loss 

• Reduction in variance (Cotter and Hanly 2006) 

• Sharpe ratio 
 
The total portfolio cost is given by Equation 6. The savings vs the fully hedged 
portfolio is calculated as 
 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠ℎ =  𝐶ℎ − 𝐶𝑓𝑢𝑙𝑙𝑦 ℎ𝑒𝑑𝑔𝑒𝑑 . (29) 

 
The maximum monthly loss is calculated using the loss definition in Equation 19. 
This loss is calculated for each month and then maximum value is then reported 
for each hedging strategy. The reduction in variance is given by  
 

𝑅𝑉 =  1 −
𝑉𝑎𝑟𝐻𝑒𝑑𝑔𝑒𝑑𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

𝑉𝑎𝑟𝑈𝑛ℎ𝑒𝑑𝑔𝑒𝑑𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
 . (30) 

 
Finally, the Sharpe ratio is calculated as 

 

𝑆𝑅 =  
𝐸[𝑅ℎ−𝑅𝑓]

𝜎ℎ
 . (31) 

 
𝑅ℎ is the return on the hedged portfolio, which in this case is the savings of the 
hedged portfolio vs the fully hedged portfolio. 𝑅𝑓 is the return on the risk-free 

portfolio, which in this case is the fully hedged portfolio and so is zero. As a re-
sult, the Sharpe ratio for evaluating these hedging strategies can be reduced to 
 

𝑆𝑅 =  
𝑆𝑎𝑣𝑖𝑛𝑔𝑠ℎ

𝜎ℎ
 . (32) 

 
 



 35 

5 RESULTS AND ANALYSIS 

In this section the results of the portfolio optimization are presented. The portfo-
lio optimization will be done separately using each of the forecasting methods 
presented in Section Forecasting methods for scenario generation 

5.1 Portfolio optimization using historic distribution for sce-
nario generation 

Based on the method presented in Section Sampling from historic distributionthe 
future premium for the Finnish EPAD can be simulated based on the current fu-
tures price and distribution fitted to the historic price data. The price scenarios 
generated in this way can be used in the CVaR optimization shown in Section 
Portfolio optimization model  

Here an example is constructed where the futures price is the price of the 
April 2013 Finnish EPAD future as observed at the end of March 2013. This clos-
ing price was 0.38 €/MWh. For the electricity consumption, a medium sized in-
dustrial consumer is considered which has a constant demand of 50 MW. The 
total electricity consumed, 𝑋𝑎, is then calculated assuming 30 days in a month. A 
summary of the data used in the calculation given in Table 7. 
 
Table 7 The values used to calculate the hedging portfolio results shown in Fig-
ure 17. The distribution parameters α, μ, σ can be found in Table 3.  

Variable Value 

𝑭𝒂,𝒕,𝑻  0.38 €/MWh 

𝑺𝒂,𝑻  𝑭𝒂,𝒕,𝑻 + SN(α, μ, σ)  

𝜷  0.95 

N 10000 

𝑿𝒂  36000 MWh 

CVaR 100,000 € 

 
The values from Table 7 were used in Eqs. 12-17 With the CVaR set to 

100,000 € the optimal hedging amount, H, is 24,977 MWh or 69% of the total elec-
tricity demand for the month. This hedging amount gives a VaR of 80687€ and 
the resulting losses from 10000 scenarios using this optimal hedging portfolio are 
shown in Figure 17. 
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Figure 17 A loss function distribution from the portfolio optimization using the 
historic future premium distribution to predict future prices, including VaR and 
CVaR values at 5% level. Positive values indicate losses and negative values in-
dicate negative losses (i.e. profits). This loss function is calculated using the val-
ues shown in Table 7 and Table 3 and a hedged amount of 24,977 MWh. The 
preselected CVaR value is shown by the vertical red line and the calculated VaR 
value by the black line. 

Next the hedging optimization problem was solved using decreasing val-
ues of 𝐶𝑉𝑎𝑅𝑙 in Equation 17. The resulting hedging amounts are shown as a func-
tion of 𝐶𝑉𝑎𝑅𝑙 in Figure 18. As expected, if CVaR is limited to 0 then the entire 
electricity consumption must be hedged. As the value of CVaR increases the 
amount of hedging required decreases. 

5.2 Portfolio optimization using linear regression model for sce-
nario generation 

The process performed Section 4.1 was repeated using the linear regression 
model developed in Section 3.5.2 for generating the price scenarios used in the 
portfolio optimization. First, the optimal hedging portfolio for April 2013 was 
calculated again, however now using the distribution parameters from Table 4 
and the other values shown in Table 8. 
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Table 8 Input values used for calculating the optimal hedging portfolio using 
the linear regression model for generating future price scenarios.  

Variable Value 

𝑭𝒂,𝒕,𝑻  0.383 €/MWh 

𝑺𝒂,𝑻  𝑆𝑡̂ + SN(α, μ, σ)  

𝑺𝒕̂  0.382 

𝜷  0.95 

N 10000 

𝑿𝒂  36000 MWh 

CVaR 100,000 € 

 
The resulting optimal hedging amount was 22,778 MWh, which was 63% 

of the total monthly consumption. The resulting VaR was 78,305 €. The distribu-
tion of the loss function in the 10000 calculated scenarios is shown in Figure 19 
and the VaR and CVaR values indicated by the black and red lines, respectively. 
The hedging amount required for various levels of CVaR is shown in Figure 20. 

 
Figure 18  The hedging amount required for minimizing total portfolio cost 
with varying levels of CVaR calculated using the values from Table 7 The val-
ues used to calculate the hedging portfolio results shown in Figure 17. The dis-
tribution parameters α, μ, σ can be found in Table 3.and distribution parameters 
from Table 3. 

 



38 
 

 
Figure 19 A loss function distribution from the portfolio optimization using the 
linear regression model for predicting future prices, including VaR and CVaR 
values at 5% level. Positive values indicate losses and negative values indicate 
negative losses (i.e. profits). This loss function is calculated using the values 
shown in Table 8 and Table 4 and a hedged amount of 22,778 MWh. The prese-
lected CVaR value is shown by the vertical red line and the calculated VaR 

value by the black line. 

Next, the size of the optimal hedge calculated for each of the months in 
the data set using the linear regression model to generate the price scenarios. 
These results are shown in Figure 21, where it can be seen that the optimal hedg-
ing amount is typically between 20,000 MWh and 25,000 MWh. In some cases, 
the hedging volume can be much lower when the model predicts that the spot 
price will be lower than the futures price. In other cases, it is optimal to hedge all 
the consumption if the model predicts the spot prices will be higher than the cur-
rent futures price. 

The total cost of this hedging portfolio over the entire period of 2006-2015 
was 14,372,731 € compared with a total cost of a fully hedged portfolio of 
15,513,792 €. This shows the optimal hedging portfolio saves 1,141,060 € in costs 
while still maintaining acceptable levels of risk. The maximum monthly loss of 
the optimal portfolio compared to the fully hedged portfolio was 202,255€. This 
is in comparison with the maximum monthly loss of a fully unhedged portfolio 
(i.e. buying all electricity on the spot market) against the fully hedged portfolio 
of 649,080€.  
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Figure 20 The hedging amount required for minimizing total portfolio cost us-
ing the values shown in Table 8 and Table 4 Table 3 with varying levels of 
CVaR. 

 

5.3 Portfolio optimization using time series modeling for sce-
nario generation 

Finally, the portfolio optimization will be repeated using the time series model 
presented in Section SARIMAX model to generate the future price scenarios. The 
optimal hedging portfolio for April 2013 was again calculated and this time using 
the probability distribution parameters from Table 6 and the other values from 
Table 9. 
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Figure 21 The optimal hedging amount for each month in the data calculated 
using the linear regression model to generate price scenarios. 

Table 9 The input data used to calculate the optimal hedging portfolio using 
the time series model to predict future price scenarios.  

Variable Value 

𝑭𝒂,𝒕,𝑻  0.383 €/MWh 

𝑺𝒂,𝑻  𝑆𝑡̂ + SN(α, μ, σ)  

𝑺𝒕̂  0.808 

𝜷  0.95 

N 10000 

𝑿𝒂  36000 MWh 

CVaR 100,000 € 

 
 

The resulting optimal hedging amount in this case was 25,847 MWh, 
which was 72% of the total monthly consumption. The resulting VaR was 80,180 
€. The distribution of the loss function in the 10000 calculated scenarios is shown 
in Figure 22 and the VaR and CVaR values indicated by the black and red lines, 
respectively. The hedging amount required for various levels of CVaR is shown 
in Figure 23. 
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Figure 22 A loss function distribution resulting from the portfolio optimization 
using the time series model to predict future prices, including VaR and CVaR 
values at 5% level. Positive values indicate losses and negative values indicate 
negative losses (i.e. profits). This loss function is calculated using the values 
shown in Table 7 and Table 9 and a hedged amount of 25,847 MWh. The prese-
lected CVaR value is shown by the vertical red line and the calculated VaR 
value by the black line 

Finally, the optimal hedging amount was calculated for each month be-
tween July 2013 and December 2014. This was done using the rolling, one-month 
ahead forecast presented in Section SARIMAX modelAs these predictions are out 
of sample, they represent an accurate case for how the portfolio optimization 
would perform in a real-life situation. The results for the 18-month portfolio op-
timization are shown in Figure 24. The total cost of this hedged portfolio over the 
18 months was 4,144,230 € while the cost of the fully hedged portfolio was 
4,399,728 €. This means that the optimally hedged portfolio has a savings of 
255,498 € compared to the fully hedged portfolio while maintaining acceptable 
levels of risk. The greatest monthly loss (compared to a fully hedged situation) 
during this period using the optimally hedged portfolio was 56,948 € while if not 
using any hedging and buying all electricity on the spot market the largest month 
loss would have been 94,103 €. 
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Figure 23 The hedging amount required for minimizing total portfolio cost us-
ing the values shown in Table 7 and Table 9 with varying levels of CVaR. 

 
Figure 24 The optimal hedging amount for each month in the data calculated 
using the time series model to generate price scenarios. 
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5.4 Comparison of hedging strategies 

The out-of-sample performance of five hedging strategies were compared using 
the metrics described in Section 4.7. The five strategies are: 

• Fully hedged portfolio (i.e. naive hedging) where the hedge ratio is 1 

• Fully unhedged portfolio where the hedge ratio is 0 

• Fixed hedge ratio, with an arbitrarily chosen ratio of 0.75 

• CVaR hedging using historic distribution for scenario generation (Section 
4.5.1) 

• CVaR hedging using linear regression for scenario generation (Section 
4.5.2) 

• CVaR hedging using time series modeling for scenario generation (Section 
4.5.3) 

• Minimum variance hedging using OLS (Section 4.6) 
 
The out-of-sample performance was calculated for the period of July 2013 to De-
cember 2014 for each hedging strategy. A rolling, one month ahead prediction 
was used in each case. As an example, for predicting the spot prices for July 2013, 
the data of January 2006 – June 2013 was used to fit the prediction model. Then, 
to predict August 2013 the realized July 2013 data was included to the training 
data set. This rolling prediction was continued to December 2014, giving an ac-
curate view of the real-world performance of these hedging strategies. 
 As shown in Table 10, the fully hedged portfolio has the highest total cost 
while the fully unhedged portfolio has the lowest total cost, saving 483 175 € over 
the 18-month time period compared to the fully hedged portfolio. However, the 
maximum monthly loss of the fully unhedged portfolio compared to the fully 
hedged portfolio is 94 103 €.  The other hedging strategies offer some trade-off 
between cost and risk. Generally, the minimum variance portfolio has a higher 
hedging ratio resulting in higher costs but a lower maximum monthly loss while 
the CVaR based strategies have comparably lower hedging ratios and so lower 
costs but higher maximum monthly losses. The CVaR portfolio using the time 
series model for forecasting the future spot prices has the highest Sharpe ratio of 
the portfolio tested, indicating the best risk-return balance, at least by this metric. 
 When comparing the three CVaR portfolios in Table 10, the CVaR using 
the time series model has both lower total costs and lower maximum monthly 
loss than the CVaR using linear regression portfolio. The CVaR using historic 
distribution has a slightly lower maximum monthly loss when compared to the 
time series portfolio but has significantly higher costs. This shows how essential 
the forecasting process is to constructing a well performing hedging portfolio and 
companies without access to internal electricity price forecasts may struggle to 
use these hedging methods effectively. 
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Table 10 Out-of-sample comparison between hedging portfolios using a one 
month ahead rolling forecast for July 2013-December 2014. The portfolio costs 
have been calculated assuming an electricity consumer has a constant electricity 
demand of 50MW.  

Hedging 
strategy 

Total cost 
(€) 

Savings 
vs fully 
hedged 
(€) 

Maxi-
mum 
monthly 
loss (€) 

Variance 
reduction 

Sharpe 
ratio 

Fully hedged 4 503 066 0 0 1 0 
Fully un-
hedged 

4 019 891 483 175 94 103 0 5.394 

Fixed hedg-
ing, h=0.75 

4 382 273 120 794 23 526 0.938 5.394 

CVaR using 
historic distri-
bution 

4 362 350 140 717 30 515 0.909 5.205 

CVaR using 
linear regres-
sion 

4 270 215 232 852 42 744 0.788 5.651 

CVaR using 
time series 

4 247 667 255 401 32 668 0.783 6.125 

Minimum 
variance 

4 460 884 42 182 10 237 0.991 4.836 

 
 Byström (Byström 2003) also compares the hedging effectiveness of differ-
ent portfolios of Nordic electricity futures contracts. However, Byström does not 
use CVaR and instead evaluates the portfolios based on how well they reduce 
variance compared to the spot market. In additional Byström does not consider 
EPAD contracts, only the system price. Byström found in this study that naïve 
(i.e. fully hedged) and OLS hedging strategies provided better variance reduction 
than more complex, time-dependent hedges. Garcia et al. (2017) used portfolio 
optimization to allocate electricity generating assets to mange profit and risk for 
a generation company (Garcia et al. 2017). A mean-variance portfolio was com-
pared against a CVaR based portfolio to determine to which market company’s 
generation assets should be allocated. 
 Other studies have compared the performance of CVaR hedging to other 
strategies, but typically not in the context of electricity markets. Krokhmal et al. 
(2001) compared CVaR portfolio to a minimum variance portfolio of S&P 100 
stocks (Krokhmal, Palmquist, and Uryasev 2001). In this study it was found that 
for a given return the MV portfolio had a higher CVaR than the CVaR portfolio, 
while the CVaR portfolio had a higher variance than the MV portfolio. However, 
the two portfolios were extremely close to each other and the differences between 
them were not large.  
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 It was observed by Krokhmal et al. (2001) that the results of the compari-
son between the CVaR based portfolio and the minimum-variance portfolio were 
data-set specific. As there have been no other works using this Finnish EPAD 
dataset for CVaR optimization, no direct comparisons can be made with the cur-
rent results. However, the general observations from Table 10, that the minimum-
variance portfolio offers the largest variance reduction and that a fixed hedge 
ratio performs relatively well, do match with previous findings. The results pre-
sented here show that the CVaR model from Section 4.4, when combined with a 
well validated forecasting model for scenario generation, allows for the manage-
ment of risk due to spiking spot prices while maintaining low costs. 
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6 CONCLUSIONS 

In this thesis a method for managing electricity area pricing risk for a large in-
dustrial customer was presented. An optimization model which determines the 
optimal amount of EPAD futures contracts to be purchased each month in order 
to minimize total costs while maintaining a given level of CVaR was developed. 
Three methods for forecasting the month ahead area price difference for the Finn-
ish area price were constructed based on historic market data from the NASDAQ 
OMX Commodities exchange and the historic Nordpool spot prices. The optimi-
zation model was then used, in combination with each of the three different fore-
casting methods, to determine the optimal hedging portfolio in some simple ex-
ample cases.  
 The out-of-sample results of the CVaR based hedging portfolios were then 
compared against a minimum-variance strategy, as well as a fixed hedge ratio 
strategy. The minimum-variance portfolio generally resulted in a higher hedge 
ratio than the CVaR portfolios, which meant higher variance reduction and 
higher overall costs. It can also be seen the importance of the forecasting model 
that is used to generate the price scenarios in the CVaR optimization, as the CVaR 
model using time series forecasting had a much lower overall cost and only a 
small increase in maximum monthly loss when compared to the CVaR portfolio 
which used the historic distribution sampling.  

With this approach an electricity consumer can manage their area price 
risk by determining the level of loss they are willing to accept. This methodology 
for area pricing risk management could be used for any electricity consumer in 
the Nord Pool market, but especially those in bidding areas which tend to have 
volatility in the area price differential. In order for an electricity customer to take 
this approach into use, the forecasting methods presented in Section 4.4 could 
easily be replaced with an in-house forecasting model while the portfolio optimi-
zation would remain unchanged.  
 There are two main areas which could be the focus of future work. First, 
the hedging portfolio could be extended to include EPAD futures contracts of 
different lengths and at different purchase times. For example, monthly futures 
contracts could be purchase two or three months before the delivery period. This 
would require forecasting the electricity spot prices multiple months ahead, as 
well as forecasting the changing futures contract price. Daily, weekly, quarterly, 
or yearly futures contracts could also be considered, in addition to the monthly 
contracts studied in this work. The second major area of additional work would 
be to account of uncertainty in the electricity demand of the customer. In this 
work it was assumed that the customer could predict their electricity demand 
exactly for the next month and in reality, this will never be the case. This uncer-
tainty in demand could be handled, for example, in the same way as the uncer-
tainty in the spot price forecast, which is to generate additional scenarios which 
describe the possible realized demand levels. 
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