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The evolution of dispersal tendencies and of cognitive abilities have both been intensely 
studied. Yet little attention has been given to the question of how these two aspects 
may relate to each other, as a result of their joint evolution. On the one hand, learn-
ing abilities may help dispersers to cope with their new habitat. On the other hand, 
dispersal may sometimes reduce the need for learning, because local environments may 
differ in how much there is to learn. To get a better understanding of this relationship, 
we built an individual-based simulation in which both learning speed and dispersal 
tendency were free to evolve. We found that both positive and negative correlations 
could evolve between these traits, depending on properties both of local patches and of 
the metapopulation as a whole. We also found that dispersal stabilized the co-existence 
of different cognitive types in the metapopulation, underscoring its importance for 
maintaining biodiversity within species.

Keywords: behaviour syndromes, co-existence, cognition, cognitive styles, insurance 
hypothesis, invasion

Introduction

Animal dispersal describes the process of individuals leaving their birthplace or to 
settle and reproduce in a new location (Bowler and Benton 2005, Ronce 2007). This 
process is of great importance for individual fitness and for the whole metapopulation. 
Dispersal allows for gene flow between populations and stabilizes metapopulations 
through source–sink dynamics. Dispersal also plays a crucial role for species in fluctu-
ating environments by allowing individuals to invade new areas with favourable con-
ditions. In this context, the ‘spatial insurance hypothesis’ emphasizes the importance 
of dispersal for the persistence of ecosystem functioning in fluctuating environments 
because it allows better-adapted species to take over the ecological role of less-adapted 
species when conditions change (Loreau et al. 2003, Thompson and Fronhofer 2019). 
On the other hand, dispersal of invasive species can cause severe damage to ecosystems 
(Shine 2010), including human agriculture (Paini et al. 2016). In general, dispersal can 
be divided into three phases: emigration, transfer and settlement (Bowler and Benton 
2005). Reasons to disperse can be diverse, the most prominent being avoidance of 
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conspecific competition, including kin-competition (Bowler 
and Benton 2005). But also finding mating partners, avoid-
ing predation or finding suitable habitats when the birth 
place’s environment has changed, can induce dispersal.

Costs of dispersal can arise in all three phases, with meta-
bolic costs or even death during the transient phase being 
the most obvious (Bonte et al. 2012). Yet costs can also arise 
before departure, e.g. associated with expressing dispersal-
related traits such as wings in locusts or cicadas (Bonte et al. 
2012). Costs can also occur long after settlement, e.g. due to 
loss of familiarity with the environment (Bonte et al. 2012). 
Another crucial problem for dispersers is the finding of a suit-
able habitat to which they are phenotypically well adapted. 
A concept termed ‘informed dispersal’ (Clobert et al. 2009) 
has been proposed, stressing the importance of gathering 
information about conditions in the natal patch and new 
patches (McNamara and Dall 2011, Delgado  et  al. 2014, 
Mortier  et  al. 2019). The ability to assess and compare an 
individual’s expected fitness in different patches should clearly 
influence dispersal decisions. Informed dispersal depends 
crucially on how well individuals can obtain information, 
how reliable the information is, and in which dispersal phase 
the information is gathered (Delgado et al. 2014). This need 
for information processing suggests that cognitive abilities 
may play a crucial role here. Moreover, cognitive abilities 
may also help to adjust to local conditions after settlement 
and therefore influence dispersal decisions – an aspect which 
has yet not been considered in modelling approaches (Sutter 
and Kawecki 2009, but see models on resource preferences 
by Maspons et al. 2019). There is accumulating evidence that 
individuals differ in their cognitive abilities (Boogert  et  al. 
2018, Cauchoix et al. 2018) and these differences are often 
correlated with other behavioural traits, forming so-called 
‘cognitive styles’ (Carere and Locurto 2011, Sih and Del 
Giudice 2012, Niemelä et al. 2013, Griffin et al. 2015). It has 
been suggested that a speed–accuracy tradeoff is underlying 
such a correlation and that faster moving or more explorative 
individuals tend to be cognitively less flexible or enhanced 
(Sih and Del Giudice 2012). Yet, empirical and theoretical 
work indicate that correlations between movement behav-
iour and cognitive abilities can be more varied, depending 
on environmental conditions (Amy et al. 2012, Trompf and 
Brown 2014, Guido  et  al. 2017, Liedtke and Fromhage 
2019). In addition to resource availability, predation pressure 
is relevant in this context because movement under risk is 
severely reduced (Niemelä et al. 2012, Moran et al. 2016).

In line with this, it has been suggested that different per-
sonalities may have different dispersal tendencies (Cote et al. 
2010, Wey et al. 2015). Together with other traits (such as 
morphology, metabolic rates, lifecycles) these personality 
traits may form so-called dispersal syndromes. It therefore 
seems likely that individual differences in cognitive abili-
ties may also affect the fate of dispersers beyond the tran-
sient phase. However, whether individuals with enhanced 
cognitive abilities should increase or decrease their dispersal 
rates is not straightforward. On the one hand, once an indi-
vidual has familiarized itself with local conditions by means 

of learning, emigrating may mean to lose this investment. 
Thus, individuals investing strongly into learning abilities 
may be more reluctant to leave their current location. On the 
other hand, cognitive abilities may facilitate adjusting to new 
circumstances in new locations, thereby reducing dispersal 
costs. Thus, individuals (or species) which invest in cognitive 
abilities to adjust to local conditions may pay higher costs of 
leaving their natal place but also pay lower costs of settling in 
new patches.

In this study, we therefore want to investigate the joint 
evolution of cognitive abilities and dispersal, with empha-
sis on how learning speed helps to cope with local condi-
tions both in the natal and new patch. This approach will 
complement previous studies which investigated how infor-
mation gathering during the departure, transient and settle-
ment phase influence dispersal (McNamara and Dall 2011, 
Delgado et al. 2014, Jacob et al. 2015, Hillaert et al. 2018, 
Mortier et al. 2019). To this end we develop an individual-
based simulation model in which individuals exploit different 
resources, and resource intake translates to reproductive suc-
cess in the end of the season. In this model, individuals need 
to learn how to access certain types of resources before they 
can exploit them. Further experience in handling these hard-
to-access resources types will increase the speed with which 
individuals can handle the resources. Implementing learn-
ing as the reduction of handling time of specific resources 
reflects the idea that some feeding techniques need to be 
practiced repeatedly before succeeding (e.g. tool use in pri-
mates (Boesch et al. 2019) and birds (Kenward et al. 2006), 
or hunting techniques in dolphins (Guinet and Bouvier 
1995)). Moreover, individuals can also decrease predation 
pressure by ‘anti-predation’ or ‘avoidance’ learning whenever 
they survived a predator encounter. By studying the interplay 
between the evolution of dispersal tendencies and cognitive 
abilities, we will also assess the potential effect of dispersal on 
maintaining within-species diversity in cognitive styles.

Methods

This model is an extension of a previously published model 
which studied the evolution of alternative cognitive styles 
through niche-specialisation, albeit without considering 
dispersal (Liedtke and Fromhage 2019). In order to inves-
tigate the interplay between cognitive styles and dispersal, 
here we implemented a metapopulation setting with NPatches 
habitat patches (list of abbreviations in Table 1), which are 
connected through random global dispersal (i.e. individuals 
have the same chance of reaching any of the NPatches patches 
when dispersing). Since we focus on how learning abilities 
may help individuals to adjust to new conditions faced after 
dispersal, we do not include habitat-matching leading to 
non-random dispersal, which has been investigated elsewhere 
(Delgado et al. 2014, Jacob et al. 2015, Edelaar et al. 2017, 
Holtmann et al. 2017, Maspons et al. 2019, Mortier et al. 
2019, Pellerin et al. 2019). Carrying capacity of each patch 
is set to NIndividuals and three traits are allowed to evolve 
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independently for NGenerations: learning ability L, exploration 
tendency E and dispersal tendency D. All three traits are con-
tinuous with values between 0 and 1. At the end of each gen-
eration, individuals reproduce in proportion to their fitness. 
For simplicity we assumed asexual reproduction, although 
including sexual reproduction could be a worthwhile avenue 
for future studies. We note, however, that insofar as evolution 
tracks phenotypic optima, phenotypic long-term outcomes 
may often be robust with regard to recombination and other 
features of the genetic system (Grafen 1984, Hammerstein 
1996). Fitness of individuals is specified by the amount of 
resources they obtain during their lifetime. We assume an 
‘income breeder’ system where individuals may reproduce 
independently of their survival until the end of season.

The length of a season (= generation) is defined by the num-
ber of days before dispersal Tbefore, plus the number of days after 
dispersal Tafter. For simplicity, dispersal does not consume any 
time and takes place in the middle of the season. Accordingly, 
Tbefore and Tafter have equal length in most cases. Cost of disper-
sal is implemented as mortality risk M during dispersal.

The lifecycle of individuals proceeds in four phases: 1) 
time before dispersal in which they can collect resources but 
also face a risk of encountering predators; 2) potential disper-
sal event i.e. moving with some probability from one patch 
to another, with a mortality risk defined by M; 3) time after 
dispersal for collecting resources under a risk of predation; 4) 
asexual reproduction followed by death. After the last phase a 

new generation starts with offspring generated by the parent 
generation.

Environment

The environment of a patch is defined by its patch size 
NIndividuals and the abundance (ARi) of different resource 
types Ri. Abundances are defined as the maximal number of 
resource items of type Ri which an individual can encounter 
in a given period of time (below). Furthermore, resources are 
defined by their value VRi in terms of increasing fitness, their 
handling time HRi i.e. how long individuals need to handle 
them before they can obtain their value, and their detectabil-
ity CRi, i.e. how easy they are to find.

Predation

Each day an individual, with a given E, faces a probability ΩP 
of being attacked by a predator (below). For simplicity, there 
is only one kind of predator present and predation pressure 
ΩP is the same in all patches throughout the metapopula-
tion. Each time an individual is attacked by a predator, it dies 
with a probability λP (called the predator’s lethality) that can 
change according to the individual’s previous experience with 
surviving such attacks.

Learning

Learning is implemented as a reduction in handling-time 
(HRi) of resources due to gaining experience with specific 
resource types. Up to ten different resource types are imple-
mented, with R1 being a simple-to-access resource whose 
handling requires no learning. R2 to R10 are resources for 
which individuals need experience before they can exploit 
them. Therefore, individuals get better at exploiting resource 
items of type R2 through R10 with time. Similarly, lethality of 
predators (λP) can be reduced through learning from previous 
predator encounters. A detailed description of how learning 
was calculated follows below.

Resource intake and predation

First, we calculate the maximum number of resource items 
per type Ri which an individual can collect before dispersal, 
by multiplying the abundances (ARi) in patch Pi with the time 
it has to do so (i.e. Tbefore). Based on the results found in a 
previous study (Liedtke and Fromhage 2019), we assumed 
that individuals will at least move every second time step. 
Whether individuals would also move in the other timesteps 
depends on their exploration tendency (Ei). The higher its Ei 
the more likely an individual moves and encounters further 
resources, such that its maximum number of resource items 
of type Ri is given by

N A T ERi Ri i= ´ ´ +( )before 1 	  (1)

Table 1. Abbreviations.

Abbreviation Description

ARi Abundance of different resource types 
CRi Detectability of resource type i
D Dispersal tendency
E Exploration tendency
F Reproductive success (fecundity) 
HRi Handling-time of resource type i
L Learning ability 
M Mortality risk during dispersal
NGenerations Number of generations
NIndividuals Carrying capacity per patch
NPatches Number of patches
NRi Maximum number of resource items per type  

per individual 
Pi Patch number i
Ri Resource type i
Rmaxi Maximum total amount of resources Rmaxi in a 

given patch 
Tafter Length of season after dispersal
Tbefore Length of season before dispersal
VRi Value of resource type i
VTotal Sum of value of all resources collected by a  

given individual
α Cost coefficient of learning
λP Lethality of the predator 
µ Mutation probability
ΩP Likelihood of a predator encounter 
Ф Competition factor 
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This formulation implies that individuals with Ei = 0 gain 
maximally half of what individuals with Ei = 1 gain. Next we 
calculate how often individuals are attacked and whether they 
will be killed during a specific encounter. To this end we cre-
ate a vector of length Tbefore. For each day, a binary variable 
(0 = no attack, or 1 = attack) is drawn from a binomial dis-
tribution with probability ΩP × Ei, where ΩP is the predator 
encounter probability and Ei is the focal individual’s explora-
tion tendency. Accordingly, the more or faster an individual 
explores its environment, the more likely it will be detected 
and attacked by a predator. We then calculate the cumula-
tive number of encounters and specify for each encounter 
how much the lethality (λP) would be reduced (due to grow-
ing experience) assuming it survived all previous attacks. 
Thus, the more predator encounters an individual survives, 
the lower the lethality becomes. The lethality in the current 
encounter is:

l lP P iL= ´ + ´( )_ /initial number of previous encounters1 1 	  (2)

where Li is the focal individual’s learning ability and λP_initial 
is the predator’s baseline lethality. Thus, the higher Li, the 
faster λP is reduced over the course of repeated encounters.

We then draw for each day a random number between 
0 and 1 from a uniform distribution, which functions as a 
death threshold. On the first day where the lethality of the 
present encounter exceeds the random death threshold, the 
individual dies.

We then calculate the amount of resources the individ-
ual collected during the Tsurvived days it survived by multi-
plying the maximum amount of resources (as calculated in 
Eq. 1) by the proportion Tsurvived/Tbefore of the relevant time 
period during which the individual was alive:

N N T TRi Ri¢ = ´ survived before/ 	  (3)

Thus, the earlier in the season an individual dies, the fewer 
resources it collects and the lower its fitness becomes. If it is 
not killed at all, it gains the maximum amount of resource 
items as specified in Eq. 1.

Next we take into account the individuals’ exploration 
tendency Ei and the detectability of resource types CRi. We 
assume that the faster an individual explores, the less thor-
oughly it can search; and the harder the items are to detect 
(i.e. low CRi), the less likely they are found. This changes the 
calculation of collected resources as:

N N C ERi Ri Ri i² = ¢´ - - ´( )( )1 1 	  (4)

Thereafter, we take into account each individual’s efficiency of 
handling resources as influenced by its learning speed L and 
the number of resource items collected, i.e. how much expe-
rience it gained with a specific resource type. This changes the 
calculation of collected resources as:

N
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Ri
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0 1 1
round

max , 	 (5)

where HRi is the handling-time of Ri. This formula was selected 
because it describes a decline of handling time at a decelerat-
ing rate. This functional shape appears biologically plausible 
because perfection may often be difficult to reach, which may 
slow down progress once more progress has been made. Note 
that resources with high H need to be encountered multi-
ple times before they can be exploited by a given individual, 
reflecting the idea that some feeding techniques need to be 
practiced repeatedly before succeeding (such as tool use in pri-
mates (Boesch et al. 2019) and birds (Kenward et al. 2006), or 
hunting techniques in dolphins (Guinet and Bouvier 1995)).

Finally, we take into account intraspecific competition 
over resources within a patch. First we estimate the maximum 
total amount of resources Rmaxi collected by all individuals 
in a given patch, adjusted by a competition factor Ф that 
controls the severity of the competition:

R T A Ni Rimax before Individual= ´ ´ /F 	  (6)

Then we divide this by the sum of resources collected by 
all individuals as estimated by Eq. 5, to obtain the ratio 
Rmaxi/∑NRi‴. If this ratio is < 1, the focal resource type is 
completely depleted and the share collected per individual is 
reduced accordingly, as:

N N R NRi Ri i Ri²² = ²¢´ å ²¢max / 	  (7)

For example, if resource type R2 was collected 10 times more 
often than its Rmaxi value for this patch, then for every indi-
vidual in this patch its amount of collected R2 items is mul-
tiplied by 0.1.

Dispersal

After this foraging phase, individuals could disperse to a 
randomly chosen patch. An individual’s decision to stay or 
disperse depends on its trait value D and a threshold value 
between 0 and 1 randomly drawn from a uniform distri-
bution. When the individual’s dispersal tendency (D) is 
higher than that threshold, the individual disperses; other-
wise it stays at its natal place. Due to the stochasticity of this 
process, some patches may have higher or lower numbers 
of individuals after the dispersal phase. Dispersal costs are 
implemented as mortality risk M which was set to 0.01 in all 
cases. Whenever an individual attempts to disperse, a random 
number between 0 and 1 is drawn from a uniform distri-
bution. If this number is lower than M, the individual dies; 
otherwise it successfully disperses.

After the dispersal phase, surviving individuals are allowed 
to collect resources again. Resource intake, predation and 
competition are calculated as in the pre-dispersal phase  
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(Eq. 1–7) with the only difference being that the duration of 
the post-dispersal phase is defined by Tafter.

Reproduction

After estimating the total resource income of all individuals, 
reproductive success (fecundity) is calculated as:

F V L= ´ - ´Total ( )1 a 	  (8)

where L is an individual’s learning ability, α a cost coefficient 
which specifies the cost of learning, and VTotal is the total 
value of all resources collected by this individual. We do not 
include any explicit cost of E because costs of exploration are 
implicit in the risks of predation and of overlooking resources. 
The next generation is recruited in each patch separately, by 
independently sampling (with replacement) NIndividuals parent 
individuals to produce one offspring each, with the parent 
generation’s F values used as sampling weights. Thus, the 
higher a focal individual’s F is compared to all other individu-
als in the same patch, the more likely it contributes offspring 
to the total NIndividuals.

Mutation

Mutation probabilities for all three traits (L, E, D) are set to 
µ = 0.1. Although this is much higher than natural per-locus 
mutation rates (Drake et al. 1998), it has the advantage of 
speeding up the evolutionary process, thereby saving com-
putational time without influencing the outcome qualita-
tively. Traits evolve independently and new values are chosen 
randomly from a normal distribution with the parental trait 
value as mean and SD of 0.1.

Extinction

To increase the incentive to disperse, it is common practice 
in modelling studies to implement random extinction of 
patches (Poethke et al. 2003). We do so by erasing, with a 
given frequency, all individuals of a randomly selected patch 
in the end of a generation. The empty patch can only be 
recolonised by immigrants from other patches.

Initialisation

Initially we heuristically explored the parameter space in 
order to find parameter settings allowing the evolution of 
different cognitive styles which can coexist within (com-
pare Liedtke and Fromhage 2019) and/or between patches. 
In our simulations, co-existence is based predominantly on 
resource specialization in combination with fast or low explo-
ration tendency: individuals could either specialize on being 
fast explorers, collecting conspicuous and easy-to-handle 
resources, or explore slowly but more thoroughly and exploit 
hard-to-detect resources. In particular, because no biologi-
cally meaningful correlations between L and D can occur 
unless there exists sufficient variation, parameters had to be 

adjusted so as to avoid giving a decisive advantage to either 
high- or low-learning styles. For example, provided that envi-
ronments contained features worth learning, increasing the 
available time gave a competitive advantage to high-learn-
ing types, unless the cost of learning was also increased. To 
achieve a suitable balance in qualitatively different settings 
(e.g. where learning was either useful for dispersers or not) 
multiple parameters had to be adjusted (Supporting infor-
mation). Rather than describing any particular species, the 
selected settings were aimed to illustrate biologically interest-
ing possibilities that merit further investigation.

To analyse the link between L and D at the metapopula-
tion level, we used generalized estimating equation models 
(GEEs) with D as the dependent and L as the explanatory 
variable. We implemented ‘patch ID’ as the grouping variable 
to correct for dependency within patch, Gaussian error struc-
ture and correlation structure ‘exchangeable’ (Halekoh et al. 
2006, Zuur et al. 2009).

To investigate the effect of dispersal on the coexistence 
of different phenotypes (i.e. cognitive styles) within a meta-
population, we compared a simulation with patches being 
connected by dispersal to another simulation with otherwise 
identical settings but dispersal being disabled. Since patches 
in the simulation without dispersal could not be recolo-
nized by immigrants, we allowed no extinction events in this 
comparison.

In most cases we held resource detectabilities (CRi) con-
stant, which led to E evolving to similar values for all individ-
uals. This allowed us to concentrate on the effects of learning 
abilities on dispersal and vice versa, which is our main inter-
est here. However, in simulations concerning the effect of 
dispersal on co-existence of behaviour types, we used simula-
tions with different CRi values.

To analyse the effect of the probability of finding a suit-
able habitat when dispersing, we changed the frequencies of 
suitable habitat patches from 2 out of 20 up to 20 out of 
20 and recorded the mean dispersal tendencies in each case 
(Supporting information). We compared these population 
means by using a linear model with dispersal tendency as the 
dependent, and frequency of suitable patches as a factorial 
explanatory variable. We used the ‘powerTransform’ function 
of the R package ‘car’ in order to meet model assumptions.

To analyse the effect of predation, we increased the param-
eter ‘predator lethality’ (λP) in eleven steps from 0 to 0.1 
(Supporting information). To analyse the effect of learning 
cost, we changed the parameter ‘cost coefficient of learn-
ing’ (α) from low (α = 1/6) to high (α = 1) in eleven steps 
(Supporting information). Similarly, intra-specific competi-
tion (Ф) was changed from low (Ф = 2) to high competition 
(Ф = 12) in eleven steps (Supporting information). In these 
analyses, all other parameters were held constant.

Parameter settings for each of the presented simulation 
sets are given in the Supporting information. All models pre-
sented in the main text were replicated 10 times with identi-
cal parameter settings to check for consistency. All replicate 
runs produced qualitatively similar results, with one excep-
tion occurring in simulations concerning the co-existence.
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Results

We found that dispersal tendency (D) and learning speed (L) 
are correlated under a range of circumstances. Depending on 
environmental conditions (e.g. resource composition, preda-
tion pressure) and life-history traits (i.e. longevity), this cor-
relation can change direction from negative to positive.

Heterogeneous cognitive demands between patches

For example, we found a strong positive correlation (GEE: 
n = 1200, p < 0.001, x2 = 45.38, estimate = 0.3431; 
SE = 0.05; Fig. 1) when the metapopulation consists of two 
equally frequent patch types, with one type having only easy-
to-access, the other only hard-to-access resources. Here, a dif-
ferent cognitive style evolved in each patch type: one low-L 
style specializing on easy-to-access resources and one high-L 
style specializing on hard-to-access resources, respectively. In 
this example, low-L individuals evolved lower dispersal ten-
dency because (unlike high-L individuals) they cannot collect 
any resources in the ‘wrong’ kind of habitat for their style. 
Essentially this makes dispersal costlier for low-L individuals.

Heterogeneous cognitive demands within patches

Under other conditions we can find a negative correlation 
between D and L (GEE: n = 1200, p < 0.001, x2 = 197.82, 

estimate = −0.38388; SE = 0.02729; Fig. 2). Here there are 
again two equally frequent patch types, but now each patch 
contains two types of resources: an easy-to-access type and 
one of two hard-to-access types, where learning progress is 
not transferrable between the latter two. Low-L individuals 
then cope equally well in both patch types, whereas high-L 
individuals perform better in the patch type for which they 
have relevant experience. The risk of ending up in the wrong 
patch type thus essentially makes dispersal costlier for high-L 
individuals.

Habitat type frequency

In general, we find that dispersal tendency increases with 
the frequency of suitable habitat patches for a given pheno-
type (Supporting information). This is intuitively expected 
because, from an evolutionary standpoint, the risk of ending 
up in unsuitable habitat plays a role similar to the risk of 
dying during transit: both can be regarded as costs of disper-
sal. Hence environmental characteristics at two spatial levels 
affect dispersal: at the level of single patches (e.g. resource 
abundances) and at the metapopulation level (frequencies 
of suitable patches). However, when a patch type was very 
rare (i.e. only 2 out of 20 patches, Supporting information), 
D in this patch type became highly variable, with an unex-
pectedly high mean value. This was caused by high number 
of immigrants coming from the other patch type, especially 

Figure 1. Positive correlation between dispersal and learning ability, in a metapopulation consisting of 12 patches, N = 100, G = 500. Half 
of the patches consist of environments with easy-to-access resources (red curve in the density plots). The other half consist of environments 
with resources requiring learning to access them (turquoise curve in the density plots). Scatterplot shows the frequency of individuals with 
specific combinations of trait values in the whole metapopulation. Upper density-plot shows densities of trait L values and right-hand 
density-plot shows densities of trait D values for the two different environmental types.
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after extinction events. The more time had passed since the 
last extinction event, the lower D then became in the rare 
patch type (not shown) – until another extinction event re-
started this process.

Coexistence

When investigating coexistence of cognitive styles, we see 
that usually in all 24 patches (this higher number of patches 
was used here to facilitate observing rare events) the coex-
istence is maintained when dispersal is permitted (Fig. 3). 
This was true for nine out of ten replicated simulation runs, 
with the exception being a single patch in a single run, where 
only one cognitive style was maintained. By contrast, when 
dispersal was not allowed, the less numerous phenotype went 
extinct in all patches in all replicated simulation runs (Fig. 3). 
Thus, indeed, we observed stable coexistence of cognitive 
styles within patches only in true metapopulation settings, in 
which dispersal connects the patches.

Predation

Predation pressure has multiple effects depending on its sever-
ity (Supporting information). Low predation pressure allows 

individual to adapt to predation by means of learning and 
thus leads to an increase in L. Because high L also allows indi-
viduals to exploit hard-to-access resources, they benefit more 
from staying in their natal place. Consequently, dispersal rates 
are low in general and the correlation between D and L is neg-
ative. When predation pressure becomes severe, it reduces life 
expectancy to such an extent that learning to exploit hard-to-
access resources becomes less beneficial. Consequently, instead 
of investing in L, individuals then specialise on easy-to-access 
resources. This in turn selects for increased dispersal because 
easy-to-access resources can be exploited without learning, 
which eliminates any reduction of resource intake caused by 
dispersal. Because all individuals have similar values of L and 
D, the correlation approximates zero. Predation effects on 
exploration are straightforward: under low predation pressure, 
exploration rates are high to increase resource encounter rates; 
under high predation pressure, exploration rates become low 
to increase life expectancy (Supporting information).

Learning costs

High learning costs reduce L and increase D, because all 
individuals specialise on easy-to-access resources (Supporting 
information). Moderate learning costs induce parts of the 

Figure 2. Negative correlation between dispersal and learning ability, in a metapopulation consisting of 12 patches, N = 100, G = 500. All 
patches consist of environments with easy-to-access and hard-to-access resources. Half of patches contain one type of hard-to-access 
resources (red curve in the density plots) and the other half contain another type of hard-to-access resources (turquoise curve in the density 
plots). When dispersing to a patch type different from its natal patch, individuals specialised on hard-to-access resources could not use past 
experience and needed to learn anew. Scatterplot shows the frequency of individuals with specific combinations of trait values in the whole 
metapopulation. Upper density-plot shows densities of trait L values and right-hand density-plot shows densities of trait D values for the 
two different environmental types.
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population to invest into L and disperse less. Low learn-
ing costs induce the majority of individuals to invest in L 
and exploit hard-to-access resources and disperse even less. 
We therefore observe that learning costs affect L and D in 
opposite directions. Because under most levels of learning 
costs all individuals of the metapopulations evolve to have 
similar trait values of D and L respectively, the correlation 
between these traits fluctuates around zero (Supporting infor-
mation). In cases where two cognitive styles coexist (around 
α = 1/3), we can see that α explains much of the variation in 
D as indicated by the high value of Wald statistic (Supporting 
information).

Resource competition

Effects of intraspecific competition are similarly straightfor-
ward: with low competition all individuals specialise on the 
more abundant and easy-to-access resources. When competi-
tion over these resources increases, an increasing number of 
individuals invest in high L in order to exploit hard-to-access 
resources and avoid this competition. Consequently, mean 
L increases and dispersal tendency decreases. Again, because 

under most settings all individuals have similar trait values, 
the correlation between those L and D fluctuates around zero 
(Supporting information). In cases in which two cognitive 
styles coexist (Ф = 6) we can see that the severity of intra-
specific competition explains much of the variation in D as 
indicated by the high value of Wald statistic (Supporting 
information). There is no effect of the severity of competition 
on E and the trait value fluctuates around 0.5 accordingly 
(Supporting information), at least while all resource types 
have the same detection probability.

Discussion

We have shown that dispersal tendencies and cognitive abil-
ities (i.e. learning speed) may evolve in a correlated man-
ner, where the direction of the correlation depends both on 
characteristics of local patches (e.g. resource abundances) 
and of the metapopulation as a whole (e.g. frequencies of 
suitable habitats). We also found that dispersal can sta-
bilize the coexistence of different cognitive styles within 
patches, showing its theoretical significance for maintaining 

Figure 3. Each panel shows the distribution of individuals with specific combinations of trait values: L on the x-axis and E on the y-axis. 
Dark blue indicates lower, light blue higher number of individuals with the same trait combination. Each panel represents one simulation 
run with a metapopulation consisting of 24 patches, N = 100, G = 500. The left-hand side columns show results for simulations without 
dispersal; the right-side columns show results for simulations in which dispersal was permitted.
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biodiversity within species. The detailed analysis of three 
key parameters revealed that robust correlations between 
learning and dispersal can arise whenever pronounced indi-
vidual differences in learning provide the requisite amount 
of variation.

Cognitive abilities can influence how well animals can 
cope with complex, new or changing environmental condi-
tions (Shettleworth 2009). Yet cognitive abilities are costly 
(Butler 2008, Niven and Laughlin 2008) and thus should 
be invested in only when needed. Since dispersing individu-
als may settle in habitats which differ from their natal place, 
dispersal may generate a mismatch between cognitive abili-
ties and the need for them in the new environmental condi-
tions. More generally the cognitive phenotype, which evolved 
to match the natal place, might be suboptimally adapted to 
other environments. We therefore expected that dispersal 
tendencies and learning abilities may coevolve. Indeed, we 
found that dispersal tendencies and learning abilities were 
often correlated in our simulations. However, the nature of 
this correlation depended on the precise parameter settings. 
Under some circumstances, animals need to invest highly in 
learning to cope with their local conditions. If such animals 
disperse, what they have learned about the old environment 
may no longer be relevant in the new environment (i.e. loss 
of familiarity (Bonte  et  al. 2012)). Therefore, these cogni-
tively advanced individuals may face two kinds of disadvan-
tages, depending on the conditions in the new patch. When 
dispersing to ‘simple’ environments in which one does not 
need high cognitive abilities, they still have to pay the costs 
of such abilities but can no longer benefit from them. This 
puts them at a disadvantage compared to locally adapted, i.e. 
less smart, residents. Alternatively, when high-L individuals 
settle in complex environments, they need to learn coping 
with new conditions. While their advanced learning abilities 
are helpful in this regard, their lack of previous experience 
in this environment puts them at a disadvantage compared 
to non-dispersing locals who enjoy a head start in benefiting 
from their learned skills.

In contrast, individuals adopting a low-learning cogni-
tive style may not suffer as much from loss of familiarity 
when dispersing, given their specialization on easy-to-access 
resources for which one does not need experience. Therefore, 
under such circumstances, low-learning individuals pay 
lower costs of dispersal and we can find a negative correla-
tion between D and L. It might therefore be expected that 
typical ‘proactive’ individuals as described in the personal-
ity literature (reviewed by Sih et al. 2004, Cote et al. 2010) 
have higher dispersal tendencies than ‘reactive’ individuals. 
Conversely, when easy-to-access resources are not available in 
all patches, a positive correlation between D and L may arise 
because low-learners who end up in the ‘wrong’ kind of patch 
perform very poorly, whereas high-learners perform moder-
ately well even in patches where there is not much to learn. 
In this situation high learning styles essentially function as a 
generalist strategy for coping with spatial heterogeneity. Due 
to the somewhat abstract and simplified nature of our model, 
however, it is hard to predict a priori what kind of correlation 

between dispersal and learning abilities should be more com-
monly observed in nature. One line of evidence suggests that 
successful invasive species tend to be large-brained and seem-
ingly cognitively advanced (Sol et al. 2005, 2008, Amiel et al. 
2011). However, given that many invasive species were intro-
duced by humans (Sol et al. 2005, 2008, Amiel et al. 2011), 
invasiveness does not necessarily imply high dispersal tenden-
cies. Other factors, such as a lack of natural enemies in the 
new area, may be more important for invasiveness. Moreover, 
our predictions about dispersal in any given generation can-
not readily be extrapolated to multi-generational invasions. 
For example, the mechanism (namely, loss of familiarity) 
which sometimes puts cognitively advanced dispersers at a 
disadvantage in our model does not extend to the dispersers’ 
descendants.

It is worth noting that studies showing a positive cor-
relation between invasion success and learning abilities are 
mostly done with long-living species such as birds and mam-
mals (Sol et al. 2005, 2008). The longer individuals live in 
their new environment, the more time they have to learn and 
to recoup their investment into cognitive abilities (comapre 
Maspons et al. 2019). This mechanism leads us to hypoth-
esize that the higher the longevity of species, the more likely 
cognitively advanced dispersers can settle successfully in new 
environments. It would be interesting to investigate if such 
a three-way correlation between longevity, cognition and 
dispersal tendencies (compare Maspons et al. 2019) can be 
found both between similar species and between individuals 
of the same species.

As mentioned above, a correlation between learning abili-
ties and dispersal requires sufficient variation in learning 
abilities, which in turn requires a suitable balance among 
parameters (for example, learning costs, the severity of intra-
specific competition and predation, resources abundancies) 
that might otherwise make learning abilities uniformly high 
or low.

Predation pressure has a complicated effect. When preda-
tor lethality is weak, it can favour investment into higher 
(anti-predator) learning abilities to reduce mortality risk. If 
predation pressure becomes so severe that even fast learners 
cannot substantially reduce the mortality risk, the benefits 
of learning are diminished, which reduces the mean L of the 
population and, of course, affects any correlation between D 
and L accordingly.

Another finding was that when patches with suitable habi-
tats become frequent, higher dispersal tendencies evolve for 
a given cognitive style in our model. This reflects the fact 
that a reduced risk of arriving in unsuitable habitat effectively 
reduces the costs of dispersal (other things being equal). The 
finding that we also observe high dispersal rates for very rare 
habitats is explained by a high number of immigrants origi-
nating from more frequent habitats types, with correspond-
ingly high dispersal tendencies. This strikes us as a plausible 
prediction that could be tested in empirical studies of disper-
sal tendencies in a heterogeneous metapopulations.

Finally, the comparison of simulations with and without 
dispersal shows that dispersal can stabilize the existence of 
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different phenotypes within patches. Here we simulated the 
coexistence of two cognitive styles with low versus high learn-
ing abilities. Depending on the resource parameter settings, 
these slow- versus fast-learning styles, could, in principle, 
have low or high exploration tendencies and thus could either 
match or mismatch the styles as described in the proactive–
reactive framework (Sih and Del Giudice 2012). Which cog-
nitive styles was more prone to extinction, and thus depended 
more heavily on dispersal, was determined by their relative 
frequencies in the metapopulation. The stabilizing effect of 
dispersal was presumably caused by immigrants recoloniz-
ing patches in which one phenotype had gotten extinct. By 
contrast, although phenotypes may also be re-introduced 
by mutation, mutation alone proved insufficient to stabilize 
the coexistence of alternative phenotypes – even though we 
assumed rather high mutation rates. These results stress the 
potential importance of dispersal for the preservation of bio-
diversity not only at the community level (Loreau et al. 2003, 
Low-Décarie et al. 2015, Thompson and Fronhofer 2019) but 
also within species. The maintenance of trait variation within 
populations may facilitate evolutionary responses to changing 
conditions, such as evolutionary rescue, and thereby strongly 
affect the stability of ecosystems (Bourne  et  al. 2014, Bell 
2017). In this way our study hints at how cognitive abilities, 
dispersal and evolutionary rescue may act in concert to pre-
vent extinction.
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