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ABSTRACT: Using the CGC effective theory together with the hybrid factorisation, we
study forward dijet production in proton-nucleus collisions beyond leading order. In this
paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative
corrections associated with a three-parton final state, out of which only two are being
measured. To that aim, we start by revisiting our previous results for the three-parton
cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions
for these results, which not only look considerably simpler, but are also physically more
transparent. We also correct several errors in this process. The real NLO corrections to
inclusive dijet production are then obtained by integrating out the kinematics of any of the
three final partons. We explicitly work out the interesting limits where the unmeasured
parton is either a soft gluon, or the product of a collinear splitting. We find the expected
results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section
in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and
final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet
production will be presented in a subsequent publication.
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1 Introduction

In this paper we shall study inclusive dijet production in proton-nucleus (pA) collisions
at forward rapidities, i.e. at very small angles with respect to the collision axis in the
fragmentation region of the proton. This kinematics is interesting in that it gives us access
to the small-x part of the gluon distribution in the nuclear target, where high-density
phenomena like gluon saturation are expected to be important. For this particular set-
up, it is a good approximation to assume that the final state — the two measured jets
possibly accompanied by unmeasured particles — is produced via radiation from a single
parton from the incoming proton. The role of the scattering is to put on-shell the otherwise
virtual quanta from the parton (light-cone) wavefunction and also to give these quanta a
non-trivial distribution in energies and momenta. In particular, their final distribution in
transverse momenta (or azimuthal angles) should reflect properties of the nuclear gluon
distribution, that we are ultimately interested in. To avoid a proliferation of cases, we
shall restrict ourselves to the quark channel, that is, we shall consider only the case where
the parton from the proton which participates in the scattering is a quark. The addition
of the gluon channel is in principle straightforward and will be addressed in a subsequent
publication.

As implicit in the previous discussion, we shall use the framework of the so-called
“hybrid factorisation” [2—4], where the leading quark is assumed to be collinear with the
proton (and described by the standard quark distribution), whereas its interactions with the
nuclear target are described within the Colour Glass Condensate (CGC) effective theory [5,
6]. The nucleus is viewed as a source of strong, random, colour fields representing the
small-x gluons and their correlations. The high-energy scattering between a parton from
the proton — the leading quark and its radiation — and these strong colour fields will be
computed in the eikonal approzimation, that is, by associating a Wilson line (describing
colour precession) to each parton projectile. As a result, the cross-section corresponding
to a given (partonic) final state can be related to gauge-invariant products of Wilson
lines, whose high-energy evolution (via soft gluon emissions) is described by the Balitsky-
JIMWLK equations [7—14] — actually, an infinite hierarchy of coupled equations for multi-
point correlations. This evolution becomes considerably simpler in the limit of a large
number N, > 1 of colours, where the hierarchy acquires a “triangular” structure. In
particular, the first equation in this hierarchy reduces to a closed, non-linear, equation —
the Balitsky-Kovchegov equation [7, 8] — for the elastic S-matrix of a colour dipole.

The formalism as a whole — meaning the non-linear evolution equations with in-
creasing energy and the hybrid factorisation — has been originally proposed to leading
order (LO) in perturbative QCD [4-6]. But for realistic applications to the phenomenol-
ogy, one needs next-to-leading order (NLO) accuracy, at least. Note that, unlike for the
collinear factorisation (and the associated DGLAP evolution), the compatibility between
the high-energy factorisation and the weak coupling expansion is a a priori unclear, at
both conceptual and practical level. Yet, via explicit calculations and tenuous efforts, one
was able to build the NLO versions of the BK [15] and B-JIMWLK [15-19] equations, and
also of the “’impact factors” (the scattering matrix elements void of evolution) for a few,



relatively simple, processes, like single inclusive hadron production in pA collisions [20—
22], the structure functions for electron-proton (ep) or electron-nucleus (eA) deep inelastic
scattering (DIS) at small Bjorken x [23-25], exclusive diffractive vector-meson and dijet
production in DIS at small x [26-28], and inclusive photon + dijet production in eA colli-
sions at small z [29)].

The original NLO results for both the BK equation and (some of) the impact factors
turned out to be problematic, in the sense of generating instabilities in the high energy evo-
lution [30], or negative cross-sections for particle production [31-34]. These difficulties have
been eventually understood and cured. In the case of the BK equation, the solution [35-42]
involves all-order resummations which enforce the proper time-ordering for the lifetimes of
the soft gluon fluctuations of the dilute projectile (a parton from the proton, or a colour
dipole in the case of DIS). The scheme-dependence of such resummations is considerably
reduced when using the rapidity of the dense target (the large nucleus) as the “evolution
time” [40]. For the NLO impact factors, the negativity problem arises when enforcing a sep-
aration between the leading-order BK evolution and the NLO impact factor which is local
in rapidity [43] (thus following the traditional prescription of the kr-factorisation [44, 45]).
So, the simplest way to avoid the problem — and obtain a positive-definite cross-section
— is to give up this separation, that is, to keep the high-energy evolution and the NLO
corrections together, in a generalised impact factor [43, 46-48]. In this “unsubtracted”
scheme, the only evolution which needs to be factorised from the “hard” impact factor is
the DGLAP evolution on the external lines — that is, the evolution of the parton dis-
tribution for the parton from the proton which initiates the scattering, and that of the
fragmentation functions for the produced hadrons.

One process that has attracted much interest over the last years is the production
of a pair of jets or hadrons in “dilute-dense” — proton(deuteron)-nucleus (pA) [49-58] or
electron-nucleus (eA) [51, 59-65] — collisions at forward rapidities. This process could
be used to probe saturation even in the (experimentally more accessible) set-up where
the final jets/hadrons have transverse momenta significantly larger than the saturation
momentum in the dense target. Indeed, the multiple scattering off the saturated gluons in
the target is one of the mechanisms responsible for the transverse momentum imbalance
between the final jets, hence for their distribution in the relative azimuthal angle. (The
other important such a mechanism is the final state radiation, leading to the so-called
“Sudakov factor” [66].) In turn, this imbalance leads to a broadening of the final particles
distribution in the relative azimuthal angle A¢, around the back-to-back peak at A¢p = 7.
Such a broadening has indeed been observed in d+Au collisions at RHIC [67, 68], although
at this level it looks difficult to distinguish the effects of saturation from those of the final
state radiation [69].

That said, it would be important to have a more precise calculation of the cross-section
for dijets (or dihadrons) production within the CGC formalism. This is our main purpose
in this and a subsequent paper, where we will compute the respective NLO corrections to
the impact factor for the case of pA collisions. Specifically, in this paper we shall present
the “real” NLO corrections — those associated with a final state which involves three
partons, out of which only two are measured. By integrating out the kinematics of the un-



measured parton, one generates a NLO correction to the cross-section for dijet production.
In the companion paper, we will compute the corresponding “virtual” corrections — those
associated with one-loop corrections to the amplitude.

For simplicity and to avoid a proliferation of cases, we shall restrict ourselves to the
quark channel, that is, we shall only consider processes in which the final state is obtained
via radiation from an initial quark from the wavefunction of the incoming proton. The
quark channel is expected to dominate the forward particle production in the kinematics
at RHIC, but the gluon channel should be added too in view of realistic applications to
the LHC. We plan to do so in a later paper.

The starting point for computing the “real” NLO corrections to the dijet cross-section
is the leading-order (tree-level) cross-section for “trijet” (three partons) production, that
we obtained in a previous paper [1], by using the formalism of the light-cone wavefunction
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(LCWF). So, for our present purposes, it should be enough to “integrate out” one (any)
of the three final partons in our results in [1]. However, this is not what we shall do in
practice. Indeed, the LO trijet cross-section is by itself a very complex quantity and our
respective results in [1] were presented in a cumbersome way, which is not convenient for
the present purposes. (We have realised that when trying to match our results for “real”
and “virtual” corrections to dijet production, e.g. in order to check the cancellation of the
infrared divergences.) So, our first step in this paper will be to re-derive the results for
3-parton production in a streamlined way and with a better strategy for organising the
final expressions. In this process, we shall also correct several errors which occurred in our
original results [1], that we were able to identify thanks to various tests to be discussed
below.

In view of the above, the results for the LO trijet cross-section to be presented in
this paper should be viewed as our final respective results, in replacement of the previous
ones in [1]. These results are still formal, as they involve undone Fourier transforms in the
transverse plane: the calculation of the LOCWF is performed using the transverse coordinate
representation, to take profit of the eikonal approximation. Hence, our expressions for the
cross-section involve Fourier transforms relating the transverse coordinates of the three final
partons (in both the amplitude and the complex conjugate amplitude) to their respective
momenta, as measured in the final state. To actually compute these Fourier transforms —
say, in view of applications to the phenomenology — one would also need explicit results for
the partonic S-matrices probed by these particular processes. The techniques for computing
such S-matrices — from numerical solutions to the BK and JIMWLK equations, or via
mean field approximations to the latter — are well documented in the literature, but their
discussion goes beyond our present purposes. In agreement with previous studies [51,
70], we shall find that in the multicolour limit N. — oo, the various S-matrices that we
shall encounter are built with just two non-trivial colour structures: the dipole and the
quadrupole.

Given these results for trijet production, the “real” NLO corrections to dijets are easily
obtained (at least, formally) by integrating over the longitudinal and the transverse mo-
mentum of one of the three final partons and then convoluting with the proton distribution
function for the incoming quark. If one measures two hadrons in the final state, convolu-
tions with the appropriate parton-to-hadron fragmentation functions are also needed.



As a check of our calculations, we shall study two special limits for which the results
are a priori known: the case where the unmeasured parton is a soft gluon and that where
this parton is produced via a collinear splitting. In the first case, we expect to recover
(one step in) the B-JIMWLK evolution' of the LO cross-section for producing a quark-
gluon pair. In the second case, one should find the DGLAP evolution for the incoming
quark distribution and for the fragmentation functions of the produced quark and gluon.
We indeed recover these expected results, but only after rather non-trivial manipulations,
which in particular involve cancellations between many terms. Thus the good results that
we find in these limits provides a rather stringent test on our results.

We shall not insist in separating out the LO evolution from the NLO impact factor.
In the case of the B-JIMWLK evolution, this is in line with our preference for the “un-
subtracted” scheme [43] alluded to above, which avoids potential problems associated with
a local subtraction in rapidity. In the case of the DGLAP evolution, the subtraction of
the collinear divergences is indeed mandatory, but it requires more refined techniques like
the dimensional regularisation, that we shall develop in the companion paper devoted to
“virtual” NLO corrections.

This paper is structured as follows. In section 2 we shall briefly recall the result for the
LO dijet cross-section in the quark channel, i.e. the Born-level cross-section for producing
a quark-gluon (qg) pair at forward rapidities. This result is well known [1, 49, 51] but
we shall often need it for comparisons with the NLO results to be obtained later. In
section 3, we present the LO (tree-level) results for the production of three partons: qqq
and ggg. We first show the three-parton components of the quark LCWF in the final
state and then use them to compute the relevant cross-sections. As already mentioned, in
doing that we shall both reorganise and correct our original results in [1]. In section 4 we
compute the “real” NLO corrections to dijet production in the quark-initiated channel by
(formally) “integrating out” one of the three partons in the trijet results. We also explain
the simplifications which occur in the colour structure (i.e. in the partonic S-matrices) due
to the fact that one of the partons is not measured. In section 5 we show that in the limit
where the unmeasured parton is a soft gluon, our NLO results reproduce, as expected, the
(real part of the) JIMWLK evolution for the ¢gg dijet cross-section. Finally, in section 6,
we consider the limit where the unmeasured parton is produced by a collinear splitting.
We show that, in this limit, our NLO results develop collinear singularities, that we isolate
to leading logarithmic accuracy and verify that they can be interpreted as one-step in the
DGLAP evolution of the initial (¢) and final (qg) states.

2 Dijet cross-section at leading-order

As a warm-up, let us briefly recall some steps in the derivation of the leading-order (LO)
result for the cross-section for dijet production in pA collisions at forward rapidity (see
e.g. [1, 49] for more details). As mentioned in the Introduction, we consider only the quark

'More precisely, one must recover only the “real” part of the B-JIMWLK equation and similarly for the
DGLAP equation; the respective “virtual” parts will be generated by the “virtual” NLO corrections to the
dijet cross-section.



channel: the parton collinear with the incoming proton and which initiates the process
is taken to be a quark. (The corresponding result for the gluon channel can be found in
refs. [1, 53].)

2.1 Kinematics

We start with some generalities on the kinematics and use this opportunity to introduce
some of the notations. We chose the z direction along the collision axis and work in a frame
in which the proton is an energetic right-mover with (light-cone) longitudinal momentum
Q™", whereas the nucleus is an ultrarelativistic left mover, with longitudinal momentum
P~ per nucleon. (We shall neglect the nucleon masses in what follows.) We more precisely
assume that the nucleus target carries most of the total energy, so the high-energy evolution
via the successive emissions of soft gluons is fully encoded in the nuclear gluon distribution.
To leading order, dijet production at forward rapidities and in the quark channel
proceeds as follows (see also figure 1): a quark initially collinear with the proton, with
longitudinal momentum ¢+t = z,Q7, scatters off the dense gluon system in the nuclear
target and emits a gluon in the process. The two “jets” are the final quark, with longitudinal
momentum pt = z;QT and transverse momentum p, and the emitted gluon, with kT =
2QT and final transverse momentum k. The target has zero “plus” momentum, hence the
respective component is preserved by the scattering: x, = x1+x2; accordingly, we shall also
write k™ = g™ and hence p™ = (1—60)g™, with § = 25/x, < 1 the gluon splitting fraction.
On the other hand, the collision can transmit a transverse momentum of the order of the
saturation momentum Qs — the typical momentum of a gluon at saturation —, hence we
expect an imbalance |p + k| ~ @, between the final jets.
The two jets are put on-shell by the collision, hence they must receive from the nucleus
a “minus” component equal to their total light-cone energy; writing this as a fraction z,
of P~, we deduce
p2 k2 p2 ki2

T PT = St = xy= —+

2.1
2pt 2kt 1S x9S (2.1)

with s = 2QT P~ (the center-of-mass energy squared of the collision). It is customary
to express the longitudinal fractions x4, and x4 in terms of the (pseudo)rapidities 7 =
(1/2)In(p™/p~) and n2 = (1/2) In(k™ /k™) of the produced jets in the center-of-mass frame,
where Qt = P~ = /s/2. Using p* = (p,/v/2)e™ and similarly k* = (k, /v/2)e™ (with
p1 = |p| etc), one finds

k k
2y =P em 4 FL gn =PLem g ZLoom (2.2)

Vs Vs Vs Vs

The forward dijet kinematics corresponds to the situation where n; and 72 are both positive

Lg

and larger than 1. In this regime, one has x4 < x4, < 1, showing that the forward particle
production explores the small-z, part of the nuclear wavefunction. The relevant value of
the nuclear saturation momentum increases with decreasing x4, due to the rise in the gluon
density in the transverse plane, via soft gluon emissions. This is governed by the non-linear



evolution equations (BK or B-JIMWLK), which imply Q?(z,) ~ x;AS, with Ag ~ 0.20 (see
e.g. [41] for a recent study).

Note that in deriving eq. (2.2) we did not necessarily assume 2 — 2 kinematics (i.e.
q9 — qg). In fact, the most interesting case for us here is that of multiple scattering, which
involves the exchange of arbitrarily many soft gluons between the quark-gluon fluctuation
of the proton and the nucleus. In such a case, 4P~ is the total LC energy transmitted from
the target to the quark-gluon system and p+ k is similarly the total transverse momentum.

Under the present assumptions, multiple scattering can be resummed to all orders
within the eikonal approximation: the nuclear target appears to the proton as a Lorentz-
contracted shockwave (say, localised at z+ = 0) and the transverse coordinates of a projec-
tile parton (quark or gluon) is not modified by the collision. It is then convenient to work
in the transverse coordinate representation and Fourier transform to transverse momenta
only at the end of the calculation. In this representation, the only effect of the scatter-
ing is a colour precession of the parton wavefunction, represented by a Wilson line in the
appropriate representation of the colour group SU(N,).

2.2 The quark-gluon component of the quark light-cone wavefunction

We use the light-cone wavefunction (LCWF) formalism and the projectile LC gauge AT =
0. The initial state at (LC) time 2+ — —oc is taken to be a bare quark: |¢)™ = la%(a™, q)),
with ¢*, g, A and a denoting the quark longitudinal and transverse momenta, its spin, and
its colour state, respectively. (Our conventions for the bare Fock states and for the action
of the associated creation and annihilation operators are presented in appendix A.) The
outgoing state at zT — oo is computed as |¢)*" = Uj(oo,0) S U (0, —c0) |¢)™, where the
QCD evolution operators Ur(0, —o0o) and Uy (oo, 0) describe QCD radiation prior and after
the scattering, respectively, and S is the S-matrix operator for the scattering between the
parton system which exists at time 2™ = 0 and the shockwave.

To compute quark-gluon production to leading order (LO), it is enough to expand the
action of the evolution operators to O(g), e.g.

(| Hint |2

U0, ~00) i) = [i) ~ 3 Ll jy (23)
J J t

where Hiy is the interaction part of the Hamiltonian, |i), |j) are energy-momentum eigen-
states of the free QCD Hamiltonian Hy (i.e. the Fock states built with bare partons) and
E;, Ej are the corresponding LC energies (the sum of the minus components of the partonic
4-momenta for all the partons composing a Fock state, assumed to be on-shell). Taking
i) = |q%(¢™, q)), the outgoing state is a superposition of a single-quark state (whose colour
has been rotated by the scattering) and the quark-gluon state, in which we are primarily
interested. The gg Fock-space component is most convenient written in the transverse
coordinate representation, where the matrix elements of S are diagonal when computed in



the eikonal approximation; it then reads [1]:

) EEPS R |
s out:_/d2 2 /1d919¢)\1)\(9)\/q7 =Y D — (1 — O — 0
‘QA(Q 7w)>qg zd'y | N R (w — ( ) — Oy)

a5, (1= 0)g", 2) gl (0g", y)) .

x [V (@) U (y) th — ths VO (w))]

(2.4)

where w is the transverse coordinate of the incoming quark (conjugated to its transverse
momentum q),  and y are the transverse coordinates of the final quark and gluon, and the
constraint w = (1 — #)x + Oy follows from the conservation of the transverse momentum.
Furthermore, gf(&q*, y) is a gluon with transverse helicity ¢, colour state b, longitudinal
momentum fg¢* and transverse position y. We also used the following notation for the
spinor/helicity structure:

820 = x4, [2=0)87 = i070°] xa = da, [(2 = 0)57 — 2007 2] . (2.5)

The two terms inside the square bracket in eq. (2.4) come from the action of the S-matrix
S and refer to the situation when the scattering with the shockwave occurs before and
respectively after the gluon emission (see figure 1). Upy(x) and Vo (x) are Wilson lines
in the adjoint (for the gluon) and respectively fundamental (for the quark) representation,
which describe scattering in the eikonal approximation — i.e. under the assumption that
the transverse coordinate of the projectile parton is not modified by its scattering off the
gluon distribution in the target. In matrix notations,

U(x) = Texp {ig/da:+ TA; (z, :13)} , V(x) = Texp {ig/daz+ t* A (a7, :z:)} .
(2.6)
with the colour field A, representing the small-z gluons in the target. In the CGC effective
theory, this field is random and must be averaged out at the level of the cross-section.
The outgoing state in eq. (2.4) is clearly vanishing in the absence of scattering, i.e. in
the limit where U — 1 and V' — 1. Indeed, in the absence of any interaction (like the
scattering off a nuclear target), the quark-gluon pair cannot be produced in the final state
(since an on-shell quark cannot emit a gluon). Furthermore, using the identity

Vi) e V)], =U"(y) ., (2.7)

Ba

one sees that the difference of Wilson lines in eq. (2.4) also vanishes when y — «. This is
the expression of colour conservation: in the limit where the transverse separation between
the daughter partons shrinks to zero, the quark-gluon pair scatters off the nuclear target
in the same way as its parent quark, hence the bare quark and its gg fluctuation cannot
be disentangled by the collision.

2.3 The quark-gluon cross-section at leading order

The inclusive cross section for forward quark-gluon production in quark-nucleus (gA) scat-
tering can be computed as the average of the respective product of number density operators



q+7W (1—9>q+,X

9q",y

(a) (b)

Figure 1. The quark-gluon component of the outgoing wave-function for an incoming quark. There
are two ways to insert the shockwave, before and after the gluons emission, represented in figure a
and b, respectively.

q.w
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Figure 2. One of the contributions (the one proportional to Sgeq (€, y, w)) to the quark-gluon
production cross section in eq. (2.10). There are four such contributions, in which the shockwave
can be located either before or after the gluon emission, in both the direct amplitude and the
complex conjugate amplitude. The dashed line represents the final state at =+ — oo.

(for bare partons) over the momentum-space version of the outgoing state. The latter is
obtained from eq. (2.4) via a Fourier transform:

out

— /w et |g(qt, w)) (2.8)

a9

out
a8(a*, a))
q9

Specifically, with our present conventions one can write

dot9otX 1o e
=i Bt =gt = o (et @) M) k) a8 et @)

out

1 o
(2.9)

Our definitions for the number density operators for bare quarks, Nq(p), and for bare
gluons, N, (k), are exhibited in eq. (A.17) and respectively (A.19) from appendix A.

As already mentioned, we can choose ¢ = 0 (the longitudinal axis is taken to be
parallel to the collision axis). After some simple algebra, one finds the following result for



the forward quark-gluon production cross section at LO [1, 49]:

dofA9tX 90 Cp [14 (1 - 0)2]
dpt ipdkt d?k (2m)60q T
" / (@ -Y) (Z-Y) _ip@a)-iky-5)
2%y9 (T—Y)? (T —7)*
X [Sqgag (T, Y, T, Y) — Sggq (T, y, W)) — Sygg (w, T, Y) + S (w, W)],
(2.10)

5(gt — Kkt —p")

2
with Cp = t%* = ]\;CN_C L and a compact notation for the transverse integrations: [, = [ &=

It is understood that 6 = k™ /¢*, w = (1 — 6)x + 0y and w = (1 — 6)T + 0y. To obtain
this result, we have also used the identity e?ei* = §7§* — §?%%§7! to perform the sums over
the quark helicities and the gluon polarisations (recall eq. (2.5)):

SYN(0) oA(0) = 467 (14 (1-0)?) . (2.11)

In writing eq. (2.10), we have also performed the average over the random colour
fields A~ describing the soft gluons from the target and we have introduced the following
S-matrices describing the forward scattering of colourless systems made with up to four
partons: a quark-antiquark dipole,

S (w, W) = Ni (tx(V(w)VI (@) (2.12)

C

a quark-antiquark-gluon triplet (this is illustrated in figure 2),

Sagi (2, 9, ) = = (o (VI@) 1V (@)1) U (y)) o)
— oy (VS v Sy, w) - S w) = S(a. ) Sww).
and finally a quark-antiquark pair accompanied by two gluons:
Sagiy (% ¥, T, 7) = C;Nc (e (Vi@ Vvi@ee) vt uw)]™) o1
~ o (Ve 3. 7. 0SB - S@ @) = Qe . 7. D) Sw. 7).

The second equalities in the r.h.s. of egs. (2.14) and (2.13) are obtained after using eq. (2.7)
together with standard Fierz identities. Besides the colour dipole already introduced in
eq. (2.12) they also involve the quadrupole,

_ 1 _ _

Q(x,4.9.%) = - (n(V@)Vm) V@) Vi@)). (2.15)
(&

The final, approximate, equalities in eqgs. (2.14) and (2.13) hold in the multi-colour limit

N, — o0, which allows for important simplifications, as already visible in the above results.

It is understood that the target averages occurring in the above equations (2.12)-

(2.15) are computed over the nuclear gluon distribution evolved down to a longitudinal



momentum fraction x4, cf. eq. (2.1). So, in principle, these S-matrices must be obtained
from solutions to the non-linear B-JIMWLK equations, which in general form an infinite
hierarchy. At large N., one can use simpler equations, which are closed: the BK equation
for the dipole S-matrix together with the evolution equation for the quadrupole obtained
in [71-73]. The latter is still cumbersome to use in practice, so it is useful to notice that a
mean field approximation relating the quadrupole to the dipole [51, 54, 72-74] appears to
work quite well, even for finite N, [75].

Given the partonic cross-section (2.10), the contribution of the quark channel to the
leading-order cross-section for dijet production in pA collisions at forward rapidity is ob-

tained as
d pA—>2]et+X

d3 d3k

1 dorfA X
= [d 2.16
[ a1 i (2.16)

g—channel

where qf(zq, 4?) is the quark distribution function of the proton, for a longitudinal mo-
mentum fraction z, = ¢*/Q* and a resolution scale ©2. At LO, the value of x4 is fixed by
the d-function in eq. (2.10). Furthermore, u? should be chosen of the order of the hardest
among the transverse momenta, k? or p?, of the produced jets, or hadrons.? The final
result at LO and for large N, reads

dobd 19X b s 1+(1-6)?
Bpd3k =2qqf(xq, 1 )(271_)5 20(q")2
(@-9) (F-Y) _ip(e—z)-ik--5)
zyy (2—Yy)? (T-7)?
x [Q(z,4,9,%)S(y, ¥)—~S(z, y) S(y, W) - S(w, §) S(¥, T)+S (w, w)],
(2.17)

X
T

where ¢t =pT + kT, 0 =kT /¢", and 2, = ¢7/Q™.

We shall later need also the expression of the LO cross-section for the case where one is
measuring a pair of hadrons (instead of jets) in the final state. Under the assumption that
the parton — hadron splitting is collinear, this cross-section is obtained by convoluting
eq. (2.17) with the quark — hadron and gluon — hadron fragmentation functions:

dg_pA—)hl ho+X
LO

d3p d3k

q—channel 21
qAaqurX (2.18)

dz dz
/ 1 / 2 /dﬂfq qf Tg, [ )WDM/q(Zl,MQ) th/g(ZQ,,u,z),

where it is understood that p; = p/z1, k1 = k/z2 (for both longitudinal and transverse
components), z, = (p{ + k;)/QT, and 6 = ki /(p{ + k). This expression (2.18) for the
dijet cross-section is a particular example of the hybrid factorisation, originally introduced
in the context of single hadron production in pA collisions [2-4]. Thus is “hybrid” in the
sense that the initial and final states are treated in the spirit of the collinear factorisation,
whereas the hard process is rather computed using the CGC effective theory for QCD

2As we shall discuss in section 6, this particular choice minimises the magnitude of the NLO corrections
associated with the DGLAP evolution of the quark distribution in the proton.
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at high energy (which in turn can be viewed as a generalisation of the kp-factorisation
originally developed in the context of the BFKL evolution [44, 45]).

Before we proceed with the calculation of NLO corrections to the partonic cross-section
in eq. (2.10), let us briefly comment on another type of corrections, which are not suppressed
by powers of the QCD coupling but rather by inverse powers of the center-of-mass energy
/s, and which could become important already at leading order in « if this energy is not
high enough: these are corrections to the eikonal approximation underlying the partonic
S-matrices which appear in eq. (2.10). As discussed in relation with eq. (2.6), this ap-
proximation amounts to neglecting the change in the transverse position of the projectile
parton associated with its scattering. This assumption is justified so long as the coherence
time T = 2k* /k? of that parton is much larger than the longitudinal extent L = 2R/~ of
the nuclear target.? Here, kT and k are the parton longitudinal and transverse momenta,
respectively, R4 ~ A'/3R (with R the proton radius) is the nuclear radius in its rest frame
, and v = P~ /M is the Lorentz contraction factor (M is the nucleon mass and P~ its lon-
gitudinal momentum). Corrections to the eikonal approximation are suppressed by powers
of the “small parameter” L/7, estimated as

L k* 2RaM B k%

ki _
= = —=2RAM = —e "2RAM 2.19
T 2kt P- zs A NG ¢ AT (2.19)

where z = kT /Q™, s = 2QT P~, and the last equality holds in the center-of-mass frame,
where 2 can be related to the parton rapidity n via x = (k1 //s)e" (recall eq. (2.2)). For
numerical estimates, we shall use AY3 = 6, R = 1fm, M = 1GeV, together with k| =
2GeV (which is of the order of the nuclear saturation momentum Q;); hence 2R4 Mk, ~
120 GeV. At the LHC energies, /s > 2TeV, this ratio L/7 is very small for any n > 0,
that is, at both central (n ~ 0) and forward (n > 1) rapidities. At RHIC on the other
hand, where /s = 200 GeV, the condition L/7 < 1 is satisfied only for sufficiently forward
rapidities, say n > 1. Throughout this paper, we assume that this condition is well satisfied,
hence the eikonal approximation is indeed justified, at least at leading order. That said,
the sub-eikonal corrections are expected to compete with the NLO perturbative corrections
whenever L/7 ~ O(as). Within the LO CGC formalism, such corrections to (multi-
)particle production in dilute-dense collisions have been studied in [76-80] (and references
therein).

3 Trijet cross-section at leading order

In preparation for the calculation of the real NLO corrections to dijet production, let us
first revisit our results for the LO trijet (¢¢q and ggg) cross-sections, originally presented in
ref. [1]. As compared to [1], we shall improve these results at two levels: (i) we shall rewrite
them in a different way, which is not only more compact and physically more transparent,
but also better suited for the purposes of the NLO calculation, and (ii) we shall correct

3 A simple way to understand this condition is as follows: in order to be negligible, the transverse deviation
Az ~ (kl/kJr)L generated by a scattering with transferred momentum k; must be much smaller than
the quantum uncertainty ~ 1/k in the transverse position of the parton.
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several errors and misprints, that we failed to identify in ref. [1], by lack of appropriate
tests. Hence, the results for the trijet cross-section to be presented in this section should
be viewed as our final respective results, in replacement of those in ref. [1]. And as matter
of facts, we have obtained these new results via an independent calculation, and not by
just reshuffling terms in the original results from ref. [1].

3.1 The tri-parton components of the quark outgoing state

We first present the expressions of the tri-parton Fock-space components of the quark
outgoing state. These are obtained by expanding the QCD evolution operators in |q>Out =
Ur(00,0) S U (0, —00) |¢)™ to second order in the interaction Hamiltonian (see e.g. ref. [1]
for details). In this expansion, we shall ignore the virtual corrections for the time being
(they will be computed in a subsequent paper); that is, we shall only keep those second-
order terms which contribute to a tri-parton (ggq and ggg) final state. We shall not present
the details of the calculations — they would be very similar to those described at length in
ref. [1] — but only emphasise the differences w.r.t. [1], which mainly refer to a reshuffling of
terms. For the convenience of the reader, our conventions for the light-cone wavefunction
formalism are summarised in appendix A, whereas appendix B exhibits all the matrix

elements of the QCD interaction Hamiltonian which are relevant for this calculation.

3.1.1 The tri-quark final state

To explain this reshuffling, we shall focus on the three-quark (ggq) final state. As explained
in [1], this state receives two types of contributions,

inst
143 gqs = 198 g + 148 gqq - (3.1)

where the second term, with upper-script inst, refers to the instantaneous piece of the
intermediate gluon propagator in the LC gauge, where the first term with upper-script reg
refers to its regular piece, which is non-local in LC time (see also figures 3 and 5).

The general expression for the regular piece, as obtained to second order in light-cone
perturbation theory, reads (see eq. (4.2) in [1])

a\Treg
’(Z)\ >qqq

&| = — B B
S|@, a5, 45, ) (B, €5 5, Ho—aal a5, 97) (43, 98 [Hy gl a5
(qué_ Eq) (qu - Eq)

5[as)

—p 0
_li, 0 4 <q,\3q)\2qj\‘l
:§‘QA3Q)\QQ/\1>

Hyqg “]15 9;1> <Q;\Y5 9i [Hgqg ‘CJ§4> <Qf4
(Eqg = Eqqq) (Eq— Eqqq)
Hyaa |03, 97 ) (a3, 97| S |3, 9 ) {0, 98 gl a5
(qu_quE)(qu_Eq) ’

=P 0
N <qA3 ay, 43,

—p 0
N <qA3 ay, 43,

(3.2)

The three terms in the r.h.s. of this equation correspond to the different possible insertions
of the shockwave relative to the two parton branchings, as illustrated by the Feynman
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Figure 3. The three possible configurations for the interplay between parton branching and scat-
tering, for a final partonic state built with three quarks: (a) initial-state evolution (the first term
in the r.h.s. of eq. (3.2)), (b) mixed evolution: the gluon is emitted prior to the scattering, but it
splits after the scattering (the second term in eq. (3.2)), (c) final-state evolution (the third term in

eq. (3.2)).

graphs in figure 3. In the first term, cf. figure 3.a, both parton branchings occur prior to the
scattering off the shockwave, hence they are generated by the second-order expansion of the
evolution operator Us(0, —o0). Accordingly, both energy denominators involve differences
w.r.t. the light-cone energy E, of the initial state. Similarly, the second term, cf. figure 3.b,
describes the process where both branchings occur in the final state (after the scattering),
hence they are generated by Uj(oo,0). The corresponding energy denominators involve
differences w.r.t. the energy Fg4 of the final state. Finally, the third term, cf. figure 3.c,
describes one emission prior to the scattering, as generated by the first order term in
Ur(0,—00), and a second one after the scattering — the first order term in U;(oco,0).

The reshuffling of terms is based on the following identity:
1 1 1

Fur — Bt By~ ) Bt — Bo) (Bry —~ B By~ B By~ B )

which has a simple physical meaning: it shows that in the absence of scattering (i.e. in

the limit S — 1), the three second-order corrections in eq. (3.2) exactly cancel each other.
In turn, this is a consequence of the fact that an on-shell quark cannot radiate gluons in
the absence of any scattering (see the discussion in [1]). In what follows, we shall rely on
this identity to re-express the middle term in eq. (3.2), cf. figure 3.b, as the sum of two
negative contributions which exhibit the same energy denominators as the two other terms
there (see figure 4 for a graphical illustration of this manipulation). After this rewriting,
the contribution of the initial-state scattering is treated as a subtraction term for the two
other contributions (those shown in figures 3.a and 3.c).

It is in principle straightforward to implement this reshuffling of terms via manipu-
lations of the original results for the trijet final state, as presented in [1]. However, in
presenting our respective results in what follows, we shall often use different integration
variables compared to [1]. Moreover, as stated at the beginning of this section, our original
results in [1] contained some misprints and errors, that we have identified (and corrected)
after explicitly working out special limits. In view of that, it is perhaps not so useful to
compare with ref. [1] anymore, but simply rely on the new results to be presented here.
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. SR

Figure 4. The new way in which we express the contribution of the initial-state interaction (the
middle term in eq. (3.2)) after using the identity eq. (3.3). The light-colour shockwave in the r.h.s.
represent the S-matrix (a Wilson line) for the scattering of only one parton: the original quark,
denoted with a cross.

This is in particular true for the ¢gg component of the outgoing quark state. In ref. [1],
this has been obtained by separately evaluating the three terms in the r.h.s. of eq. (3.2),
with the result shown in eq. (4.9) of that paper. After treating the second term there (which
corresponds to figure 3.b) as a subtraction term, performing some changes of variables, and
correcting an error, one finds

) =T [ [t (5) eta0 ST E

VO (2)ts Viee (2 Vob(x )5 ta, %5 VI (w) tngba(y)Vﬂﬁ(x)tga—tgptgﬁvﬁa(w)
8 02(1_0)R21£(0—€) 22 02(1—0) R

X3 ((1-0)m+0y—w) 28, (0-&)q*, 2)a, (€07, 2) 45, (1-0)g™, @) ).

(3.4)

Our notations are illustrated in figure 3): 6 and £ are the longitudinal momentum fractions
(w.r.t. the momentum ¢* of the incoming quark) of the intermediate gluon and of the
quark produced by the splitting ¢ — qq, respectively. Also, & and y are the transverse
coordinates of the quark and the emitted gluon, whereas z and 2z’ similarly refer to the
quark and the antiquark generated by the gluon. Notice that y is not an independent
coordinate, since it must coincide with the center of energy of the qg pair produced by the
gluon decay. Similarly, the transverse coordinate w of the incoming quark must be the
same as the center of energy of the quark-gluon pair in the intermediate state, or of the
three quarks in the final state. Explicitly,

_&z+ (097
= ; :

The §-function inside the integrand enforces the condition on w shown in the second

=1-0)z+0y=(1—-0x+Ez+(0—£)z2. (3.5)

equality in eq. (3.5), thus introducing a constraint on the 5 integrations visible in the r.h.s.
of eq. (3.4). The transverse coordinates denoted with capital letters, that is,

R=z-y, Z=z-2, (3.6)

are the transverse separations between the daughter partons after each of the emission
vertices. Finally, the spinorial structure of the two branching vertices is encoded in the
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following tensors:

65A(0) = x, [(2—0)87 —i00®| o = by, [(2 - 0)07 — 2027,
PO =, [26 = 107 +i0® xy =y, [(26 - 167 +2i7] . (3.7)

The two terms within the square brackets in eq. (3.4) represent the contributions of the
two graphs in figure 3.a and figure 3.c respectively, minus the respective subtraction terms
generated by the graph in figure 3.b, as shown in figure 4. Thanks to these subtractions,
the numerator in each of these terms vanishes in the limit where the transverse separations
between the daughter partons (as appearing in the respective denominator) are shrinking
to zero. Consider e.g. the second term: when R = ¢ — y — 0, meaning that the three
coordinates x, y and w become coincident with each other, one can use the following
identity (cf. eq. (2.7))

Ut () 1%, = [VT(as) th(m)}ﬁa , (3.8)

to verify that the respective numerator vanishes, as announced. Similarly, the numerator
in the first line vanishes when both R — 0 and Z — 0 (meaning that all transverse
coordinates become degenerate: w = ¢ =y = z = 2’). Furthermore the two terms within
the square brackets in eq. (3.4) cancel each other in the limit Z — 0 (i.e. z = 2’ = y) at
fixed R. To see this, one should use yet another version of the identity eq. (2.7), namely,

Ve vie)] =i U" ). (3.9)

which expresses the fact that the scattering cannot distinguish a ¢g fluctuation of zero size
from its parent gluon (recall the discussion after eq. (2.7)).

These properties of the LCWF will be later useful in demonstrating the cancellation
of “ultraviolet” (short-distance) singularities in the calculation of cross-sections for particle
production. Such properties are more difficult to check on the original expression for the
LCWF, ie. eq. (4.9) in ref. [1].

The previous discussion also implies that the second term in eq. (3.4) can be generated
from the first term there via the simultaneous replacements z — y and 2z’ — y. This
allows us to introduce a simpler notation, that we shall systematically use throughout this
paper. Specifically, eq. (3.4) can be equivalently written as

450" w)" = jéi; [ [ [laestn, (5) et DR td

9499
V() b5 VIO VP @) th, — th, ts VO (w) , .
X l J 92(1_9)R2+€(§_§)£§2 i —(z, 2 _>y)1 (3.10)

x 52 (1= ) + 0y —w) [25, (0 — )a*, #') af, (&a", =) a5, (1 = )t ) ).

Besides this “regular” contribution, which involves an intermediate state with a prop-
agating gluon, there is an additional contribution built with the instantaneous piece of
the gluon propagator (see figure 5). This is given by eq. (4.13) in ref. [1], which with the

~15 —



=

Figure 5. The two possible insertions of the shockwave in the case where the final quark antiquark
pair has been produced via an instantaneous gluon interaction: (a) initial-state evolution, (b) final-
state evolution.

present conventions reads

o inst . g2 q+ ( )6(0 5)
‘q)‘ (Q+’ w)>qqq T (27'(')4 / 2,2/ / a0 / dg 92 )R2 +€(9 - 5)22)
V() 15, VIR V7 ) 5, — 1, 105 VP ()]

x 6 (w =) |33, (0= &)a*, #) af, (€a*, 2) a5, (1 = O)a*, @),
(3.11)

X

where ¢ = (1 — 0)x + £z + (0 — )2’ is a compact notation for the center of energy of
the final quark triplet. Note that, in this case, there is no intermediate gluon state: the
cut gluon propagator in figure 5 together with the two attached QCD vertices defines a
local effective vertex for the decay ¢ — qqq of the initial quark into the three final ones.
So, in particular, there is no analog of the second term in eq. (3.4) (the one denoted as
(z, 2/ = y) in eq. (3.10)). That said, it is still convenient to introduce a compact notation
(similar to that in eq. (3.10)) for the complete triquark outgoing state, i.e. the sum of the
two contributions in egs. (3.4) and (3.11). This reads

j 7l
/ /d@/ngZ
a9q 27r Lz, 2

V"‘;( )3 VIP(2) VP () th, — tg, tas VI (w) ) ,
[@&ghhk d 92(1 _ 9)R2 +§([; 6)22 B - (Z, z — y)] (3 12)

x 62 (w— o) |28, (0 — ©)a*, ), (&a¥, 2) a5, (1 = 0)a",@)).

a5(a*, w))

where ‘PJAZAQMA = (I)j)é)\g)\l)\(mv z, 2/, 0, &) is an effective vertex for the splitting of the orig-
inal quark into the three final quarks, which includes contributions from both propagating
and instantaneous intermediate gluons:

' i £ 2 0 —¢) Z2
Bl (@ 7 2, 0.6 = 0(1-0)¢l, ( > BF 1 (0) = Org25 00,20 - )0( )R- Z

(3.13)
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Figure 6. The three possible configurations for the interplay between parton branching and scat-
tering, for a final partonic state built with three quarks: (a) initial-state evolution (the first term
in the r.h.s. of eq. (3.2)), (b) mixed evolution: the gluon is emitted prior to the scattering, but it
splits after the scattering (the second term in eq. (3.2)), (c) final-state evolution (the third term in

eq. (3.2)).

It is understood that the second piece in eq. (3.13) vanishes after substituting z — y and
Z =y

(b‘ilg)\Q)\l)\(a:? Y, Y, 0,8 =0(1— 9)%0312)\3 <§> Z)\]A(Q) (3.14)

0 1

Hence the subtraction of the contribution from the intermediate gluon state is truly per-
formed only for the case of a propagating gluon, as it should. Ultimately, one should keep
in mind that the compact expression for the three-quark outgoing state in eq. (3.12) is
merely a convenient notation, which is rather formal, but will be useful to simplify the

writing for our final results.

3.1.2 The final state with one quark and two gluons

In this subsection we shall exhibit the remaining 3-parton Fock space components of the
quark outgoing LCWEF': those in which the original quark is accompanied by two gluons.
There are two possible topologies for the gluon emissions, as shown in figures 6 and 7,
respectively. Besides these “regular” graphs, where the intermediate parton (quark or
gluon) is propagating, there are similar graphs which involve the instantaneous piece of
the respective propagator. (These are not shown, but can be easily inferred by comparing
with figure 5.) All these graphs have been computed in [1], with results that we shall
here rewrite by regrouping terms and also correct whenever necessary, as explained in the
previous subsection on the example of the three-quark final state.

We start with the graphs where both gluons are emitted by the original quark, cf.
figure 6. Their contribution is shown in eq. (4.14) of [1], that can be rewritten as

o ol __ 94" Lo [0 VEQL=8) jm i (o YLXOT
’%(qt w)>qgg = 3@ /%z’z//o d@/0 déﬁﬁm(@, £) )\2/\(£)W
[Vév(m) Udb(zl) Uca(z) tgﬁ a,Ba — th t%ﬁ Vﬁa(w)

(=06-OX ) +i-geyz (=77 y>]

x 6 (w—¢) |}, (1= )", @) g5 (¢a", 2) g6 = )a™, )

(3.15)
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where y denotes the transverse position of the intermediate quark and c¢ is the center of
energy of the three final partons (and coincides with the position w of the original quark):
(1-0)x+(0—&2

y= 1—¢ ,oe=(1-Qyutsz=>0-0z+z+ (-2 (3.16)

Furthermore,
Y=y—=z, X' =x—2, (3.17)

are the transverse separations between the daughter partons after each emission vertex.
The spinorial structure is encoded in qﬁ/\l 1 (&) (cf. eq. (3.7)) for the first emission vertex and
respectively

A0, € =X}, [(2— €= 0007 +i(e - 0)eTo?| xi, (3.18)

for the second vertex; notice the relation Tf\Jl 4(0,0) = gbijl 1 (0).

The structure of eq. (3.15) is reminiscent of that in eq. (3.10). The first term within
the squared brackets represents the contribution of the final-state interaction, cf. figure 6.a,
minus a piece generated by the initial-state interaction, cf. figure 6.b. The second term, as
obtained from the first term via the replacements x, 2’ — y, refers to the intermediate-state
interaction, cf. figure 6.c, minus the remaining contribution of figure 6.b.

The contribution of the corresponding instantaneous graph, for which there is no analog
of figure 6.c, is found as

a4 inst, 1 _ d@ 1
(g™, w) ( —£) X 9500 XX
q99 , 2,2
VO () UP (2 )UC“( )t% t%a tg, %g Vﬁo‘( ) (3.19)

(1=0)(0 —(X)? +£(1 - €)Y
x 6 (w - e) ¢}, (1 = 0)g*, @) g (€q™, 2) g (0 - O)g*, 2)),
As in the previous subsection, it is convenient to group together “regular” and “instanta-
neous” contributions in a unique expression involved a non-local effective vertex — here,

for the splitting of the original quark into a ggg system. Then the sum of eq. (3.15) and
eq. (3.19) reads

. 1 0 Y™ (X"
a5(a" "")>;g = 25223& /w,z,z//o dQ/o ® (?é’);

—ijmn VO (@) UP(Z) U(2) 8585, — 15,15, V7 () / (3.20)
’ [:*j“ 0@ o7 ea-gr @77
x 6 (w = e) ¢}, (1 = 0)a*, @) g (€q™, 2) g (0 — O)g*, =),
with the effective vertex J)‘f";\m = E?ln;n(az, z, 2/, 0, &) defined as
igmn / 1— n mn X' 2
= (@, 2, 2, 0.6) =\ JE(6-€) (9 e, 0. 96O - ™ (1-0) (4, 05000 2 }() .
(3.21)

It is understood that the second piece in eq. (3.21) vanishes when X' =x — 2’ — 0.
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Figure 7. The three possible shockwave insertions for a final partonic state built with one quark
and two gluons: (a) final-state scattering, (b) initial-state scattering, and (c) intermediate-state
scattering.

The remaining topology for a final state with two gluons and a quark is very similar
to that previously discussed for the tri-quark final state (compare the graphs in figures 7
and 3, respectively). Hence, we shall simply present here the final result — the analog of
eq. (3.12) — without further explanations. This reads

2 ig2q+ Rmzn
o+ —
NG ,w)>qgg— 2] /m / d@/ d¢

Liimn LV @) U () U 1, — f“d £, V7 (w)
A1LA 92(1—9)R2+§(9—§)Z2

x 52 (w = ¢) g}, (1= 0)a", @) g (¢a™, =) g((0 —&)a*, =),

_ (z,z’ ) (3.22)

where we recall that Z =z — 2/, R=x —y, and ¢ = (1 — 0)x + 0y, with y defined in
egs. (3.5).
The effective vertex Hl)\jf;n = Hl)f;n(m, z, 2, 0, &) is defined as

igmn nli ii emn 60— 2 Z2
H>\J1>\ <w’ Z; z/7 0, {) = 5(9 - f)(l_H) <9F l](‘g £) ¢>\1>\( ) — 066 0N TS R-Z)’
(3.23)
where the first term in the r.h.s. is the three-gluon vertex
nlij 1
e (9 6) nléz] 5m'6lj 571]511 , (3.24)

3 0—¢ 5

whereas the second term comes from the graphs with an instantaneous intermediate gluon.
To obtain an explicit expression for the subtracted term denoted as (z,z’ — y) in
eq. (3.22), the following identity is useful:

FeUt(y) UL (y) = Ut (y). (3.25)

As before, one can check that, thanks to this subtraction, the two terms within the square
brackets cancel each other in the limit Z — 0.
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3.2 The trijet cross-section

The leading-order cross-section for the inclusive three partons (“trijet”) production in the

quark-nucleus collision is computed similarly to eq. (2.9), that is, as the expectation value of

the product of three number-density operators (themselves built with Fock space operators

for bare partons).

3.2.1 The qqq final state

For the qqq final state, one writes (a factor 278(ky + k3 + k3 —¢T) is implicit in the Lh.s.)
do.qA—)qqq—l-X 1

By Phy ks 2N,
1 ou a — \/ 9 9 a
o | st w)| o) k) Nh) [a3 (0, w)

out

" (a5(a". g = 0| Ny (ko) N (ka) Ny(hs) |3 (4™, g = 0))

out

_
99

(3.26)

where as shown in the second line, only the gqgq Fock-state component of the outgoing
quark state, cf. eq. (3.12), is involved in this calculation. A priori there are four possible
contractions for the product /\qu(kl)J\qu(kg) of quark number density operators. However,
two of these contractions correspond to non-planar graphs — these are graphs where the
original parton on one side of the cut is contracted with the quark generated by the gluon
decay on the other side of the cut (see figure 13.b in [1]) — which are suppressed in the
multicolour limit N, — oco. In what follows we shall systematically work in this limit,
since it allows to simplify the colour structure of our results and also to render them
physically transparent. Hence we shall keep only two of the four possible contractions —
those corresponding to planar graphs as illustrated in figure 8. We shall explicitly write
the result for the case where the leading quark has momentum k; and the other quark has
momentum ko. The other term can be simply obtained by permuting these two momenta.

A straightforward calculation using the outgoing state in eq. (3.12) together with the
Fock space rules summarised in appendix A yields?

dodA—aaq+X o?2Cr N f
Ak 2ky dky ko dki ks 2(27)10(q™)
y / e~k (x—T)—iky(2—%)—iks (2 —Z') w
2
z,2,2,x,2,2 z2z

iymn [ —] [ ——
X[KO (m,z,z,ac,z,z,@,ﬁ)Wo(m,z,z,a:,z,z

50" =k = k3 — k)

(3.27)

~—

(2 o)~ (2 F D)+ (2 oy & B )]
+ (ki o b, ki o ko)
The notations here are similar to those in eq. (3.12). The transverse coordinates

x, z, z', y, w refer to the direct amplitude (DA) and have the same meaning as in fig-
ure 3 and eq. (3.5). We use a bar to indicate the corresponding coordinates in the complex

“In the large-N. limit under consideration, the quark Casimir factor apparent in eq. (3.27) can be as
well approximated as Cr ~ N./2; this applies to all the results involving Cr to be shown in this paper.
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conjugate amplitude (CCA). We use the notations in eq. (3.6) for the transverse separations
between the emitted partons, that is,

R=xz-y, Z=z2z—-2, R

T-vy, Z=z—-7%, (3.28)

The longitudinal momentum fractions 6 and £ are the same in the DA and in the CCA,
since they are fully fixed by the kinematics of the final state, as follows:

0=1-——L =2 (3.29)

The é-function enforcing longitudinal momentum conservation implies k3 = (6 — &)q™,
which in particular requires 6 > ¢ (i.e. ki + k3 < q¢*).

Let us now explain the new structures occurring in eq. (3.27). The tensorial kernel is
defined as

@3\]3/\2A1/\(w, z, 2,0, o0 (T, 2,7, 0, )
(21 - OR +£(0 -6 22 (1 - OR +£0 -2
(3.30)
with the effective vertex @f\]s aoapn introduced in eq. (3.13) (the star in ®* denotes com-

N

10,8 =

iymn I = =
ICO (mv Z2,z2,I, =z,

plex conjugation). The product of effective vertices in the numerator can be explicitly
computed as

(1)7;)\];’)\2)\1)\ S\ZK;)\IA non—inst.
= 4(1-0)* [(0-26)2677 5"+ 02 (57167 — 567" ) | [(2-0)%07 0™ 462 (576 — g7 )|
(3.31)

As emphasised by our notation, in evaluating this product we have excluded the instan-
taneous pieces from the two effective vertices. These pieces have a very simple tensorial
structure, so they can be easily inserted when needed.’

The effects of the collision are encoded in the function Wy, defined as the following
linear combination of partonic S-matrices:

Wo (z, 2, 2/, T, 2z, Z)
= Soqaaaq (%, z, 2, ®, 2, Z') = Sgqaq (2, 2, 2, W) — Sygqq (0, T, 2, Z) + S (w, W).
(3.32)

Our notations for the partonic S-matrices are intended to describe (via the lower scripts)
the partonic composition of the multi-parton system which scatters off the shockwave and
to also distinguish (via a bar on the transverse coordinates) between partons in the DA
and in the CCA, respectively. The ordering of the transverse coordinates in the argument
follows that of the lower subscripts. The indices/arguments corresponding to partons in
the DA appear on the left to those representing the CCA. When reading the lower indices,

5These instantaneous pieces do not contribute to either the soft, or the collinear, limit that we shall
study later; so, a result like eq. (3.31) is indeed sufficient for our purposes in this paper.
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Figure 8. Left: the graph corresponding to final-state interactions in both the DA and the CCA; its
colour structure is encoded in the 6-quark S-matrix shown in eq. (3.33). Right: a graph describing
interference between interactions in the intermediate state in the DA and respectively in the final
state in the CCA; the associated S-matrix is obtained by replacing z — y and 2’ — y in eq. (3.33).

one should also keep in mind that a quark in the CCA formally counts like an antiquark
(from the viewpoint of the direction it its colour charge flow).

According to these conventions, the S-matrix Syqq5q4 (T, 2, 2, &, Z, Z') refers to the
eikonal scattering of a system made with 6 quarks: 2 quarks (x, z) and one anti-quark (2’)
in the DA, together with 2 “anti-quarks” (®, Z) and one “quark” (Z’) in the CCA. This
describes the situation where the collision occurs in the final state (i.e. after the second
splitting) in both the DA and in the CCA (see figure 8.left), and reads

Seqqaaq (@, 2,2 E,2,7) = (e (Vi@)V(@ret) i (V) VIV (2)evi()),

CrN,
~ Q(xz, 2,2/, %)S(2,2), (3.33)

where the approximate equality holds for large N.: in this limit, the 6-quark S-matrix
factorises into the product of a dipole, S(z, Z), and a quadrupole, Q(z, 2/, Z/, T).

Furthermore, Sgyqq (¢, 2, 2/,w) and Sygqq (w, T, Z, Z’') represent interference terms
where the collision with the shockwave occurs in the final state on one side of the cut, and
in the initial state (prior to the first splitting) on the other side; e.g.,

Syqaq (T, 2,2/, W) = CF2NC <tr [V(a:)taVT(ﬁ)tb} tr [V(z)t“VT(z/)th ~ S(z,w)S(x, 2').
(3.34)

Finally, the colour dipole S (w, W) = Syg(w, w) describes initial-state interactions in both
the DA and the CCA.

The normalisation factors in the above definitions are such that all the individual
S-matrices reduce to unity in the absence of scattering. Accordingly, both the linear
combination in eq. (3.32) and the cross-section (3.27) vanish in that limit, as expected.
The overall colour structure becomes remarkably simple at large N,:

Wo (z,2,2,2,2,7) ~ Oz, 2,2/, 7)S(2,2)-S(2,w)S(z, 2 ) -S(w,2)S(Z', T)+S (w,w) .
(3.35)

The three other terms within the square brackets in eq. (3.27), which are obtained
as various limits of the first term, refer to situations where the scattering in the final
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state gets replaced by scattering in the intermediate state, as explained in relation with
eq. (3.10). E.g. the second term within the square brackets, denoted as (z, 2’ — y), is
illustrated in figure 8.right. We recall that this term can be obtained by letting Z — 0
in the kernel (3.30) (which in particular means using the simplified version of the effective
vertex shown in eq. (3.14)) and replacing z — y and z’ — y in the arguments of the
partonic S-matrices in the r.h.s. of eq. (3.32).

It is quite instructive to display the version of eq. (3.32) which applies to the last term
in eq. (3.27), as obtained by simultaneously replacing (z, 2’ — y) and (z, 2’ — y). This
describes the case where there are no interactions with the shockwave in the final gqq state,
neither in the DA nor in the CCA. Working at large N, for definiteness, cf. eq. (3.35), one
finds

Wo (w7y7yaj7g7y) = Q(cc,y,ﬂ,i)S(y,y) —S(y,ﬁ)S(QZ?y) —S(w,y)S@,f)—i—S (w7 E) :
(3.36)

This S-matrix structure is identical to that occurring in the integrand of eq. (2.17) for
LO quark-gluon production (¢A — gg + X). This is easy to understand: in both cases,
the interactions with the nuclear shockwave refer to the partons involved in the branching
q—qg-

So far, we have not specified the xg-argument of the various S-matrices in eq. (3.32),
i.e. the “minus” longitudinal momentum fraction of the gluons from the nuclear target
which are involved in the production of the three-parton state. Clearly, this is given by the
generalisation of eq. (2.1) to a final state involving three partons, that is,

k? k3 k3
Ko,k R

; (3.37)
1S x9S T3S

Tg =

where x; = k‘;r /QT are the “plus” longitudinal momentum fractions of the produced par-
tons. Needless to say, this value for x, applies not only to the gqq final state discussed so
far, but also to the ggg final states to which we now turn.

3.2.2 The ggg final state

For the qgg final state, the trijet cross-section is computed as (once again, a factor 276 (ki +
ky + ki — g") is implicitly understood in the Lh.s.)

do 94999+ out/ o/ + / \/ \/ af .+

d3k1 d3k2 d3k3 = 2Nc <q/\ (q y 4 = 0)‘ Nq(kl)Ng(k2)Ng(k3) ‘q/\ (q ,y d = 0)>

1 ot (a8 (a™, )| N (k) Ny (o) Ky () [ ™ w0))

2N, S 999

out

out

)
a99

(3.38)

The second line involves the ggg Fock component of the quark outgoing state, which, as
explained in section 3.1.2, is the sum of two contributions, corresponding to two different
topologies for the gluon emission vertices, as illustrated in figure 6 and figure 7, respectively.
It is therefore natural to split the cross-section in eq. (3.38) into three contributions. In
the first one, the topology in figure 6 is used for the quark LCWF in both the DA and the
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Figure 9. A contribution to the ggg cross-section (3.39) which features final-state interactions in
both the DA and the CCA; the respective colour structure is shown in eq. (3.43). There is a similar
diagram in which the momenta ko and k3 of the final gluons are exchanged with each other.

CCA. Similarly, the second contributions involves the topology in figure 7 alone. Finally,
the third contribution represents interferences between the two topologies. Besides, each
of these three contributions is built with two pieces, corresponding to the two possible
permutations for the momentum labels of the produced gluons. As before, we shall work
in the limit of a large number of colours, in which one discards the non-planar graphs. One
should however pay attention to the fact that the symmetry of the triple gluon vertex makes
that the graphs generated by exchanging the two final gluons in figure 7 are still planar,
and therefore must be kept in the final result. This will result in appropriate symmetry
factors.

A straightforward calculation using eq. (3.20) yields the following expression for the
first piece of the cross-section:

dofyy " «2ch

dki d?ky dky d?ks dk3 d2ks  2(2m)10(qt)

25(q+_kf_k;_k;)

<P~
" / ok (o %) —iky(=—2)—iks-(z—2) ¥ (X)" Y (X))
7,57 22,2 (X)2(X')2

(3.39)
X [lC;””pq(w, 2,2, %, 2, 7,0, )W (x, 2, 2, T, 2, Z)

@ >y - @F 57+ (@ oy £ TE )]
+(k;Hk+, kg(—)kg).

The notations for the transverse coordinates which appear in this equation are easily

grasped by comparing with eq. (3.20). The new tensorial kernel K77 is defined as

mnpa _ =, 2, 2, 0, &) E{N (7, 2, 7, 0, €)
1 - — —2-
[(1=0)0 =X+ €0 -2V [(1-0)(0 — (X )? +£(1 - Y]
) (3.40)
with the effective vertex =Y\ introduced in eq. (3.21) and the longitudinal momentum

fractions 6 and £ shown in eq. (3.29). The product of effective vertices in the numerator
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can be explicitly computed:

iJmn —ijpq * 1- g * ip;*
=] = S 0,055,090 6
2
= 8™ 514 ’S(; ? L+-9[a-02+01-9?%. (341)

Furthermore, W) denotes the following linear combination of partonic S-matrices:
Wi (z, 2, 2, T, z, Z)

= Stggz:qgg (®,2,2,2,2,7) - Stgfligiq (z, 2, 2/, W) - Sty (w, Z,2,2) + S (w, w).
(3.42)

We use the same notations as explained after eq. (3.32) in order to synthetically summarize
the partonic content for both the DA and the CCA. The first S-matrix in the r.h.s., that is,

C;NC <tr Vi@v@)itede] [vi@ue)” [UT(z’)U(z')rb>

~Q(z,2,z',%) Q(2,2,2,7) S (2,%2), (3.43)

1) I = = =/
Saggiag (T (x,2,2,%,2,Z)

describes final-state interactions in both the DA and the CCA and hence it includes Wilson
lines for 6 partons: one quark () and two gluons (z, 2’) in the DA, and one “anti-quark”
(z) and two gluons (Z, Z’) in the CCA (see figure 9). Similarly,

1 _
S(gg)gq (z, z, 2/, w) =

T (o [Vi@) etV (@) 10) U (2') U (2))

~ S(z, 2')S8(7/, 2) S(z, w), (3.44)

is an interference term between final-state and initial-state interactions. Once again, the
large N, version of W) can be fully expressed in terms of colour dipoles and quadrupoles:

Wi (z, 2,2, 2,2,2)~Q(x, 2,2, Q(2, 2,%,7) S(2,2) + S (w, w) —
- S(z, 2')S(7, 2) S(2, w) — S(w, 2)S(z, 2')S(Z, ®). (3.45)

As a simple check, we notice that after the double replacement (z,z’ -y & %,z — )
(which yields the last term within the square brackets in eq. (3.39)), the r.h.s. of eq. (3.42)
takes the same form as for the scattering of a quark-gluon pair,® as expected.

Consider also the second piece in the cross-section (3.39), as obtained by permuting the
momenta ks and k3 of the final gluons. This can be computed from the first piece (the one
explicitly shown in eq. (3.39) and illustrated in figure 9) by exchanging ko <+ k3 within the
Fourier phases and kj <> kzgr within the longitudinal momentum fractions. Alternatively,
and equivalently, this second term can be written as a Fourier transform which involves
exactly the same Fourier phases as the first term, but with the following changes of variables
in the remaining part of the integrand: z < 2/, Z ++ Z/, and £ «» 0 — £. This amounts to
permuting the transverse coordinates and the longitudinal momentum fractions assigned
to the final gluons in the amplitude in figure 6 (and similarly for the CCA).

5That is, it reduces to the S-matrix structure visible in the integrand of eq. (2.10), up to some relabelling
of variables.
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Figure 10. A graph contributing to the cross-section in (3.46); the associated S-matrix is shown
in eq. (3.50).

We now turn to the second contribution to the cross-section for ggg production, that
involving the topology in figure 7. We now use eq. (3.22) to deduce

402 CrN,
— s ¢ ) + _ ]{:+ _ k+ _ k-‘r
dki d*ky dky d?ky dky d?ks  2(2m)10(q*)? (@7 =k =k = k)

« / ik () ~iky (2~7) ~iks (2 ~7)
x,z,2,x,2,2'

qA—qg9g9+X
da(Q)

R"Z"R'Z’
X {ICgmpq(w, 2,2,%,2,Z,0, )Wy (w, 2, 2/, T, 2, Z)
(27 oY) - EF D+ (e oy £ 2T )]
This equation involves the new tensorial kernel (the effective vertex H?K" has been intro-
duced in eq. (3.23))
I (@, 2, 2/, 0, OIS (T, %, 7, 0, €)
(21 - OR2 + €0~ )22 [2(1 - R +£(0 - )2

whose numerator can be explicitly computed as (as before, we exclude the contribution of

cmnpd —

: (3.47)

the instantaneous pieces of the vertices, to simplify writing)

— 26(6—€)6*(1-6)?

non—inst.

1IMN 7L Pq*
H)\l)\ H)\l)\

25nl5qr 5nq51r §na 6lr
_ M\285lm srp 2¢slr smp _ glp smr
x[(2-0)20m 5P 02 (8" o™P — 375 )]( 7o +(9_£)2>

_45(9_5)92(1_9>2|:(2—0)25nm5qp+0;§mp5nq_926np5qm+
nq §mp v 1
+6™6™P [14(1 0)](£2+(9_£)2>}. (3.48)

Furthermore, W is the following linear combination of partonic S-matrices:
Wy (z, 2, 2, ®, 2, Z)

= 5(52;@9 (x, 2,2/, @, 2, 2) — S;E)gq (z, z, 2/, W) — 5@ (w,Z,%,7)+S (w, w),
(3.49)
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where the 6-parton S-matrix describes final-state interactions in both the DA and the

CCA,

qggtigg z
CFNz g (U @U(E)] " [UiEvE)] " s [Vi@veer])
~ % [Q(2,2/,2/,2) Q(w,2,2,%)S (2/,2') + Q(2,2,2,2) Q (x, 2,2, %) S (2,2)],

(the two terms correspond to permutations of the final gluons), whereas the 4-parton S-
matrix describes the interference between scattering in the final state and the initial state,
respectively:

2 _
Ség)gq (z, z, 2/, w) =

CFNE fabc]crde <UeC(Z/)Udb(z) tr [VT (m)trv(m)t(z} >

~ % Sz, 2)S(2, 2) S(z. W) + S, 2)S(z, ) S(z, W)]. (3.51)

As a check, one can see that after performing the double replacement (2,2’ -y & z,Z2’ —
Y) in eq. (3.49), one recovers the colour structure describing the scattering of a quark-gluon
pair (the structure shown in eq. (3.36) at large N.).

Note that, as compared to eq. (3.39), eq. (3.46) contains an additional factor of 4
(besides the modified colour factor, which reflects the different structure of the partonic
S-matrices). This factor of 4 is related to the symmetry of the amplitude in figure 7 under
the exchange of the two final gluons. This in turn implies that the integrand of eq. (3.46) is
symmetric under the simultaneous exchanges z <+ 2/, Z <> Z/, and £ < 6 — &, as it can be
easily verified. We used this symmetry property twice: (i) for a given assignment of the
momenta of the two gluons (e.g., k5 = &g and k3 = (6 — €)g¢™, as in figure 10), there are
two possible Wick contractions in the calculation of the expectation value N, (ko) Ny (k3),
cf. eq. (3.38), which give identical results; (ii) the graphs obtained by permuting the gluon
momenta, ko <> k3, give identical results as well, because we can undo the effect of this
permutation via a change of variables which leaves the integrand unchanged.

The remaining terms refer to interferences between the two topologies shown in figure 6
and figure 7, respectively. We shall explicitly show the piece where the topology in figure 6
counts for the DA and that in figure 7, for the CCA (see figure 11 for an illustration).
The total result can be then obtained by taking the double of the real part of the shown
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Figure 11. A particular graph contributing to the “interference” cross-section (3.52); its colour
structure is exhibited in eq. (3.55).

contribution. One finds

A +X
doly ™% 202 Cp N,

i d2ky di] d2ky diy d2ks  4(2m)10(g)

5 0(q" =k — kg = k)

o 2Re/ ik (@) —iky (%) ik (/%) ¥ (X)"R"Z"
%,%2,% .2, 2,2 (X’)272

(3.52)
X [/Cg”npq(a:, 2, 2,2, 2, 2,0, )Ws (x, 2,2, T, Z, Z)

@ oY) - @ D)@ oy & 2T o)
4 (k; o kT ky o kg) .
It is important to notice that, in the subtracted terms, y is the function of & and 2’ defined

in eq. (3.16), whereas g is rather a function of Z and Z’ defined by the “bared” version of
eq. (3.5). Furthermore,

mnpq — El)\]ln)f\Ln(:c7 z, zl’ 97 6) leglp)(\}*(f Ev El) 07 5)

[(1—6)(0— &)(X)2 +£(1—€)2Y?] [2(1 - OR’ +£(0 —€)Z°]

(3.53)

The combination of Wilson lines describing the scattering has the same general structure,
that is,

Ws (z, 2, 2, T, z, Z)

= 5® (x, 2,2/, @, 2, 2) — s (z, z, 2/, W) — 5B (w,Z,%,7)+S (w, w),

999999 9999 9499
(3.54)
with however some new ingredients, namely,
S(g)gqgg (x,2,2',7,2,7)
— 21 cde = da 1=t N 1= bra,c
= oo’ Ui@U)] [UfE)U )] e Vi@ @)t
~Q(x,2',Z2/,%) Q(2,2,2,72) S (2,2), (3.55)
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= gl (U2 U™ () Vi@tV (@)tee] ) 3.50)

~ SFm, 2\S(2',2)S(z,w),

~ CpN? (3.57)
~ S(w,2)S8(z,Z2')S(Z, x).

It might be interesting to notice that the last term in eq. (3.52), as obtained via the double
replacement (xz, 2’ — y & Z,Z’ — ¥), does not has the same colour structure as expected
for a final quark-gluon state (unlike the respective limits for all the other colour functions
Wo, Wi, and Ws). One finds indeed

Wi (y, 2,9, 7, 5,9) = S(y, 2)S(7, )8 (2.9) —S(y, )8 (2, ) —S(w, §)S(F, 7) +8 (w, ),
(3.58)
which should be compared to eq. (3.36). This difference is due to the fact that the pattern
of the colour flow in the interference graphs is different as compared to the direct graphs.
Note finally that, in the large- N, limit, the three functions encoding the colour struc-
ture in the various contributions to the cross-section, namely W, W5, and Ws;, become very
similar to each other: W) and W5 take exactly the same form, shown in eq. (3.45), whereas
Wy differs only through the additional symmetrisation with respect to the exchange of the
two final gluons.

4 Next-to-leading order corrections: the real terms

As mentioned in the Introduction, the next-to-leading order (NLO) corrections to the cross-
section for forward dijet production in pA collisions can be divided into two classes: real
and wvirtual. In the remaining part of this paper, we shall compute the real corrections
— those associated with a final state which involves three partons (“jets”), out of which
only two are measured. By integrating out the kinematics of the unmeasured parton, one
generates a loop correction to the cross-section for the two measured jets. This loop opens
in the direct amplitude (DA) and closes back in the complex conjugate amplitude (CCA).
The virtual NLO corrections, on the other hand, refer to loop corrections to the amplitude
itself. They will be addressed in a subsequent paper.

4.1 The di-quark jet production

We first consider final states which include two measured fermions: two quarks, or a quark-
antiquark pair. The cross-section for di-quark jet production’ is obtained by “integrating

"This particular channel, i.e. ¢A — gq + X, does not exist at leading-order, unless one considers double
quark scattering, that is, the simultaneous scattering and production of two collinear quarks from the
wavefunction of the incoming proton. The respective contribution counts at zeroth order in «s, but it is
proportional to the double-quark distribution in the proton (that can be roughly estimated as the product
of two standard, single-quark, distributions).
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out” the final antiquark in our general formula for the three-quark final state, cf. eq. (3.27):

dodA—aatX dodA—aaq+X
R R— / dky d*ky —————— . (4.1)
k] 2k, i a2k, ki 2k di; d?ky dks d2ks

(The subscript “rNLO” stays for real next-to-leading order corrections.) With reference to
eq. (3.27), it is quite clear that the integral over k:}f can be trivially performed by using
the §-function for longitudinal momentum conservation, whereas the integral over ks yields
a factor (2m)26(®) (2’ — Z), which allows one to identify the coordinates 2z’ and Z’ of the
unmeasured antiquark in the DA and the CCA, respectively. The result of eq. (4.1) can
be succinctly written as

d Jg\z;\quﬁX ) dogA—aaq+X o
dkir d?ky dk; d?ks = (2m) alk:fL d?k, alk:;r d?ks dkgL d?ks n R ,,’ (42)
k3 =qt -k -k, 2/=%

where it is understood that the trijet cross-section in the r.h.s. is given by eq. (3.27), but
without the J-function expressing the conservation of longitudinal momentum.

Some care must be taken, concerning the order of limits: the identification z’ = Z’ must
be made only after performing the subtractions which occur in the integrand of eq. (3.27).
For instance, in the subtracted term denoted as (Z, 2’ — ¥), one must first perform the
replacements Z — gy and 2’ — § at fired 2’ and only then identify 2’ with 2’. (The two
limits do not commute with each other, as one can easily check.)

The fact that the antiquark is not measured brings some simplifications in the structure
of the 6-quark S-matrix in eq. (3.33) (which describes final-state interactions, cf. figure 8-
left): when 2z’ = Z’, the Wilson lines describing the scattering of the antiquark compensate
each other by unitarity, VT(z’ )V (2') = 1, and then the quadrupole appearing in the second
line of eq. (3.33) reduces to a dipole (we consider large N, for simplicity):

Syqgaze (T, 2, 2/, T, 2, 2 = 2') ~ S(x, T) S(z, 2), (4.3)

However, this simplification refers only to the first term within the square brackets of
eq. (3.27). Consider e.g. the second term, denoted as (z, 2’ — y). If one first replaces
both z and 2’ by vy, and only then one identifies z’ = Z’, then the quadrupole structure
survives in eq. (3.33):

Sqq(ﬁtjq (.’L’, Yy, E7 E) E, = Z/) =~ (’)(a:, Yy, Z,, E) S(y, E) (44)

In this equation, y is understood as the function of z and z’ shown in eq. (3.5).

The longitudinal momentum fractions # and & which implicitly appear in the r.h.s. of
eq. (4.2) are fixed by eq. (3.29), which for the present purposes should be rewritten in terms
of the longitudinal momentum fractions ¥1 = ki /Q* and 29 = kJ /QT of the measured
partons (“jets”) and the respective fraction x4, = ¢*/Q" of the original quark:

g gm ke _m

= . 4.5
qr Lq qr Lq (45)
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As discussed in relation with eq. (2.16), the physical dijet cross-section (to the order of
interest) is obtained by averaging over z, with the quark distribution inside the proton:

dgplég2jet+X ) daqﬁgqurX
Do |~ [4a %) Oy — a1 — r . (6
FEEp |y g0 [ drasstoqi) 00~ o~ dkf hy kg Py O

It is furthermore important to keep in mind that the cross-section (4.6) depends upon
the “plus” longitudinal fractions 1, x2, and x4 not only via its dependence upon ¢ and
&, as explicit in eq. (3.30) for the kernel Ky, but also via the dependence of the various
S-matrices upon the “rapidity” variable® Zg4, as introduced by their high-energy evolution.
We recall that x4 is the “minus” longitudinal momentum fraction carried by the gluons
from the nucleus which participate in the scattering. This is indeed a function of z1, =9
and x3 = x4 — x1 — T2, as shown in eq. (3.37).

4.2 The quark-antiquark di-jets

The case where the measured dijet is made with a quark-antiquark pair® is similarly ob-
tained by integrating eq. (3.27) over the kinematics of one of the two final quarks, e.g. over
k1. This gives

dodA—eat+X dodA—29q+X
Mo — / dki d’ky — — — . (4.7)
dk d?ko dky d?ks3 dki d2ky dk3 d?ks dky d?k;

The above r.h.s. involves two contributions: the unmeasured quark k; can be either the
incoming quark, or the quark produced by the decay of the intermediate gluon. The
contribution of the first case to the gqg cross-section is explicitly shown in eq. (3.27),
while that of the second case can be obtained by exchanging ki and ko within the first
contribution.

Specifically, in the first case (k; corresponds to the leading quark), the integral over
k1 enforces = @ and the longitudinal momentum fractions should be evaluated as

p—1-_ T2t T2 (4.8)
Lq Zq
The fact that & = T simplifies the colour structure of the cross-sections in all the situations
where the leading quark interacts in both the DA and the CCA: the respective Wilson lines
compensate each other by unitarity. In what follows we shall exhibit these simplifications
directly in the large N, limit.
Specifically, the 6-quark S-matrix Sgegqq¢ (3-33) reduces to a product of two dipoles
(one for each of the two measured partons):

Syegiaq (x, 2, 2\ T =2, %, Z) ~SZ, 2)S(z, Z). (4.9)

8More precisely, the evolution “rapidity” related to x, is Y; = In(1/z,).

9This case can be viewed as a NLO correction to the O(as)-process in which a gluon collinear with
the incoming parton splits into a ¢g pair while scattering off the nuclear target [1, 53]. The respective
cross-section involves the gluon distribution, which is however suppressed at large x, i.e. for the forward
kinematics of interest for us here.
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A similar simplification occurs in all the four terms within the squared brackets in eq. (3.27);
e.g., for the last term, as obtained via the double replacement (z,2' — y & z,2/ — ¥),
one finds

Seqaqaq (T Y, Y, T =2, 7, Y) =S¥, y)S(y, ¥). (4.10)

This is recognised as the large- N, version of the S-matrix for a colour dipole made with
two gluons.

In the second case, where ki refers to the quark originating from the gluon decay, the

integral over k; enforces z = Z and the longitudinal momentum fractions are evaluated as

h—1-22 g T2ET (4.11)

Tq Lq

As in the case of eq. (4.2), the limit z — Z does not commute with the various replacements

in eq. (3.27), like (2,2’ — y), and must be performed after them. Accordingly, there is

only one simplification in the colour structure, corresponding to the unique topology (in

terms of shockwave insertions) in which the unmeasured gluon k; scatters both in the DA

and in the CCA. One then has

Sqqaiaq (x, 2, 2/, T, 2 =2,2) ~ Oz, 2/, 2, T). (4.12)
4.3 The two-gluon di-jets
The cross-section for the final state involving two measured gluons is obtained by “integrat-
ing out” the final quark in the trijet cross-section corresponding to the qgg final state. As
discussed in section 3.2.2, there are three contributions to the qgg cross-section, illustrated

in figures 9), (10, and 11. By integrating out these three contributions over the kinematics
(kf, k1) of the unmeasured quark, one finds

A X qA—qgg+X
d(ngL?;gg+ — (27_[_)2 Z dO—(Z)
alk:;r d?ks dl<:§L d?ks 2123 dlffr d?k, dk; d?ko dk;f d%ks K mqt ki k| 2z

3
(4.13)
We again used the compact but somewhat formal notation introduced in eq. (4.2), where
it is understood that the J-function expressing longitudinal momentum conservation is
excluded from the trijet cross-sections. In turn, each of the three terms in the r.h.s. is made
with two pieces, corresponding to the permutations of the measured gluons ko and ks.

It is further instructive to notice the simplifications in the colour structure of the trijet
cross-sections which appear due to the fact that the quark is not measured (x = %). These
simplifications refer to the S-matrices denoted as S’é;)gqgg with ¢ = 1, 2, 3, which describe
situations where the final quark scatters both in the DA and in the CCA. As usual, we show
the ensuing simplifications only at large N.. In the three cases, one of the two quadrupole
factors reduces to a dipole. One finds,'?

(1) R =N o(3)
nggégg (a:, 2,2, L=1T, 2, Z) - nggl?gg

~S(7,72) 97, 2,2 7) S(2,2). (4.14)

(¢, 2,2, T=x,% 7

10As implied by its notation, the colour dipole S (%', 2) is built with a quark located at Z’ in the CCA
and an anti-quark located at 2’ in the DA; recall eq. (2.12).

~32 -



and respectively

S(S?gqgg (, 2,2, T=x,%,2) ~ %{S (z,2) Q(z,2,%2,2) S(z,7)

+S (7, 7) 9, 2,z %) Sz, 2)] (4.15)

4.4 The quark-gluon dijets

The quark-gluon dijet final state already exists at leading order, as discussed in section 2.
The corresponding real NLO corrections are obtained by integrating out one of the two
final gluons from the qgg trijet cross-section computed in section 3.2.2, say the one with
momentum k3. The complete result is therefore the sum of three terms,

d qA—qg+X quA%qgngX

J:NLO + 2 (2)

5 5 dks d°k s 5 e (4.16)
dk‘ldkzldk‘Qdkg i 123dk1dk1dk‘2dk2dk‘3dk3

In turn, each of these three terms is made with two pieces, since the unmeasured gluon
with momentum k3 can be any of the two final gluons in figures 9), (10, and 11. Consider
for definiteness the case where this is the gluon with longitudinal momentum 6 — £ and
transverse coordinates z’ and Z’ in the DA and the CCA, respectively. Then the integral
over ks enforces 2’ = Z’ and the longitudinal fractions should be computed as in eq. (4.11),
that is,

k+r I

f=1--L =1-"> = =—.
q* Tq ' ¢ A

k+
2 2 (4.17)

It is again instructive to display the main simplifications in the colour structure due
to the fact that one of the final gluons is not measured (z’ = Z’). One finds

Ségl])gq—gg (,2,2/,2,2,7 = 2) ~ Séz)gq—gg (xz,2,2,2,2,2 =2') ~S (2, %) S (Z,2) S (2, %),
(4.18)

Sy (@2, 2 B EF =) = 2[S (@.7) S (2.2)8 (2,2) + 8 (2.7) Q. 2. 2.7) |.

9994999
(4.19)

5 Soft gluon emissions: recovering the B-JIMWLK evolution

In this section we shall study the behaviour of the previous results in the limit where one
of the two final gluons is very soft, that is, either & — 0 or § — & — 0. This is interesting
since, in this limit, our general results should reduce to one-step in the B-JIMWLK (or
BK) evolution of the leading-order dijet cross-section. As we shall see, this expectation
is indeed verified and it provides a rather strong test of the correctness of our previous
calculation. For more generality, we shall first address the soft gluon limit for the trijet
(qgg) cross-section, before eventually specialising to the (real) NLO corrections to the dijet
(qg) cross-section.
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5.1 Direct emissions by the quark

We start with the contribution to the cross-section shown in eq. (3.39), where the two
gluons are directly emitted by the quark, both in the DA and in the CCA (recall figure 9).
When (at least) one of these gluons is soft, there are two types of simplifications.

First one can neglect the recoil of the emitter (here, the quark) at the respective
emission vertex, meaning that its transverse coordinate is not modified by the soft emission.
With reference to figure 6, when & — 0 one can approximate y ~ w ~ (1 — )z + 62/,
whereas for 6 — { — 0, one has y ~ ¢ and w ~ (1 — 0)x + 0z.

Second, one can simplify the dependence of the kernel (3.40) — which, we recall,
encodes information about both the emission vertices and the energy denominators — upon
the longitudinal momentum fractions # and £. It is easy to check that the instantaneous
piece of the effective vertex Z (cf. eq. (3.21)) does not contribute to the would-be singularity
in the soft limit. Hence, one can use the expression (3.41) for the square of the effective
vertex. This gives the following soft limits:

SN0, OZR0, € — o when 0= =0

160(1 — 0)*[1 + (1 — 0)?]
0—¢ ’

;2
., gmwgna 1ELL +0(1 o)] , when £—0. (5.1)

Concerning the denominator of Ky, the limit # —& — 0 poses no special difficulty and yields

16[1 + (1 — 6)?]
00 — Y2V’

Kt — e when 6 —§—0. (5.2)
The other eikonal limit, namely & — 0, is a bit more subtle, as it does not commute with
the equal transverse points limits which define three of the four terms within the square
brackets in eq. (3.39). Keeping the dominant terms as & — 0 in each of the respective
kernels, one finds

/cm”pq]5 . — 0, when both X’ # 0 and X +£0,
_>
16[1 + (1 —9)? _
R 61+ ( Q,] , when X’ =0, but X #0,
92(1 — 9 Y2(X')?
2
— 5Py 16[1 + (1= 9>i , when X’ #0, but X =0,
62(1 - 0)(X")2Y"
2
., gmngng 1011+ (1 - 0)7] ., when X'=X =0, (5.3)

oY2Y”

These expressions exhibit single poles at § = £ and respectively & = 0, which are the
expected infrared singularities associated with the bremsstrahlung of very soft gluons.
What is however quite remarkable and also important for what follows, is the special way
how these singularities appear within the structure of the cross-section (3.39): (i) the
pole at # = £ is common to all the four terms in eq. (3.39) and, moreover, the respective
kernels become degenerate in this limit; (ii) the pole at & = 0 refers only to the last term
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Figure 12. The four diagrams which dominate the cross-section (3.39) in the eikonal limit £ — 0
in which the first emitted gluon (shown in red) is soft.
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Figure 13. Diagrams which contribute to the ggg cross-section (3.39) in general, but which do
not survive in the eikonal (soft) limit for the gluon with longitudinal momentum fraction £ (shown
in red). These graphs do not contribute to the JIMWLK evolution of any of the S-matrices which
enter the LO cross-section (2.10).

in eq. (3.39), as obtained via the double replacement (x,z2’ — y & Z,Z' — 7). These
properties are essential in order to recover the JIMWLK evolution, as we now explain.

The limit & — 0 corresponds to the case where the soft gluon is the first one to be
emitted (see figure 6). Property (ii) above tells us that the dominant graphs in this
limit are the four graphs shown in figure 12, where the interaction with the shockwave
occurs either in the initial, or in the intermediate, state (the soft gluon is drawn in red).
Notice that this is only a subset of all the possible topologies which contribute to the
cross-section (3.39) in general: 4 out of 9. The missing diagrams are those which describe
initial-state evolution (equivalently, final-state scattering) in either the DA, or in the CCA,
or in both; that is, both gluon emissions occur prior to the scattering off the shockwave.
(Two of the excluded diagrams are illustrated in figure 13.) This is in agreement with the
fact that a soft gluon has a short formation time, hence it must be emitted as close as
possible to the nuclear target in order to contribute to the scattering.
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The graphs shown in figure 12 have the right structure to describe one step in the
JIMWLK evolution of the LO dijet cross-section: they precisely encode the BK evolution
of the last piece in eq. (2.10) — the dipole S-matrix S (w, w) —, as we now demonstrate.
Let us use the momentum assignments shown in figure 9, i.e. k3 = £¢* and k3 = (0—¢&)q™,
with £ — 0. In this limit, eq. (3.39) simplifies to

doffy " _8a2CE1+(1-0)
dki d?ky dky d?ks dk3 d2ks €550 (2m)10  £0(qt)?

« / =ik (z—T) —iky (2—) —iks (2 ) (Y ' Y) ( X)
z,2,2,x, 2,2 Y2? (X’) (Y )2
x [Q(w, 2, %, ) S(2, ) - S(w, 2) S(z, ®) - S(w, 2) S(Z,W) + S (w, W) |, (5.4)

6(qt — kT —k3)

where we have used w ~ y ~ (1 — )z + 0z’ and we recall that Y =y — 2z ~ w — z
and X' = & — 2z’ (and similarly for the respective coordinates with a bar). Also, we have
ignored the soft momentum k5 in the é-function for longitudinal momentum conservation.
This is in the spirit of the soft gluon approximation to the high-energy evolution, which
effectively violates energy conservation, albeit only marginally (by ignoring the soft gluons
in the energy balance).

As expected, eq. (5.4) is the same as the result of acting with the “production” version
of the JIMWLK Hamiltonian [81-83] on the last term (the dipole S (w, w)) in the LO gg
cross-section (2.10). The “production” Hamiltonian is a generalised version of the JIMWLK
Hamiltonian which, when acting on the cross-section for particle production in dilute-dense
(pA or eA) collisions, leads to the emission of an additional, soft, gluon, which is measured
in the final state. If on the other hand this soft gluon is not measured, i.e. if one integrates
out its kinematics, then one generates the “real” piece of the standard JIMWLK evolution.
By integrating eq. (5.4) over ki = &g and ko, one finds (with 2asCr ~ asN. = 7a, at
large N.)

dolio ™ &, 14(1-0)
dki d?kydks d?ks — (2m)°  20q*

" / k1 (o—7)—iky(=/ %) (T~ 2) - (T~ %)

57 32 (m_z/)2(§_21)2

/1 * / w__z)ZQ) [8 (w,w) — S(w, Z)S(z,ﬁ)]
(5.5)

5(qt — ki —k3)

Notice the simplifications in the colour structure due to the fact that the integral over ko
has identified the coordinates z and Z of the unmeasured gluon: z = Z.

The expression in the third line of eq. (5.5) is recognised as the “real” part of the BK
equation for the evolution of the dipole S (w, w). More precisely, it exhibits the integral
version of the BK equation, that is, its formal solution as obtained by integrating the r.h.s.
of that equation over £. This integral exhibits a logarithmic divergence at its lower limit
(¢ = 0). In reality, this divergence is cut off by the condition of energy conservation. Indeed,
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Figure 14. The four diagrams contributing to the cross-section (3.39) which survive in the eikonal
limit @ — £ — 0 in which the second emitted gluon (shown in red) is soft.

this integral can be equivalently rewritten as [(d¢/€) = [(dwa/x2), with 29 = ki /Q™; then
eq. (3.37) together with the constraint x4, < 1 clearly implies a lower-limit on x, hence
on &.

This discussion also shows that the soft (¢ < 1) part of the integral over the un-
measured gluon contributes to the high-energy (B-JIMWLK) evolution of the LO dijet
cross-section, so it is only the remaining contribution at large & ~ 1 which should be
viewed as a genuine NLO correction to the “hard impact factor”, i.e. to the partonic cross-
section for the gA — qg+ X process. That said, it turns out that the separation of the full
integral over ¢ between a “soft part” describing LO evolution and a “hard part” describing
NLO corrections to the impact factor is generally subtle, due to the fact that the various
S-matrices in eq. (5.5) do implicitly depend upon . (Indeed, their rapidity evolution scale
is x4, which is a function of xa, hence of £, as shown in eq. (3.37).) This dependence is
essential, as argued in refs. [43, 47]: attempts to separate the “soft” evolution from the
“hard” NLO impact factor which ignore this evolution may lead into troubles, like negative
values for the NLO cross-section, as observed in the context of single inclusive particle
production in both pA [21, 31, 46] and eA collisions [48]. A detailed discussion of such
issues in the context of dijet production goes well beyond the purposes of this paper. But
one should keep them in mind when trying to actually estimate the NLO corrections (say,
for the purposes of the phenomenology).

Consider similarly the eikonal limit for the second emitted gluon, that with longitudinal
momentum k3 = (0 — &)gt. Eq. (5.2) implies that, when this gluon is soft (§ — ¢ < 1), all
the four terms within the squared brackets in eq. (3.39) are multiplied by the same kernel,
hence the respective colour structures can be simply added to each other. Remarkably, 12
of the 16 partonic S-matrices which are a priori contained in these structures mutually
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Figure 15. Diagrams which contribute to the ggg cross-section (3.39) in general, but which do not
survive in the eikonal (soft) limit for the gluon with longitudinal momentum fraction 6 — & (shown
in red).

cancel in their sum, and we are left with

dikf Pk dk§ ko dky d?hes lg_cg  (2m)10 (60— €)0(q")?2
_ -
| (X-X) (X -X)
XX (X)2(X)?
X [Q (x,2/,2,7)Q (7, 2,2,2)-S(Z,Z)Q(x, 2, %, Z)
S (x,

- Sz, 2) (2, 2,z, %)+ Q(=, z, Z, E)}S(z JZ) (5.6)

6(qt — kT —k3)

y / ik (2 —T)—iks: (2—F) —iks: (' —F'
77 27 E/? b} z’ z

where X =2 —zand X' =o — 2/

(we have used y ~ x). The four surviving S-matrices
correspond to the situations where the shockwave is inserted either in the final qgg state,
or in the intermediate qg state (see figure 14), so that at least one gluon participates in the
scattering (together with the quark, of course). For more clarity, we also show in figure 15
two graphs whose contributions have cancelled in the overall sum.

The four surviving graphs in figure 14 follow the same pattern as that illustrated in
figure 12: the soft gluon is the last (first) one to be emitted prior to (after) the shockwave.
In this case too, they describe the JIMWLK evolution of one of the S-matrices from
eq. (2.10) — here, the colour quadrupole which enters in the structure of the first term
there, cf. eq. (2.14) and (2.17). Specifically, these are the four diagrams describing the
evolution of the quadrupole Q (x, z, Z, &) via the emission of a soft gluon which is emitted
at @ in the DA and reabsorbed at Z in the CCA. One can check (e.g. by comparing to
eq. (A.5) in ref. [83]) that the various factors in eq. (5.6) are precisely as needed in order to
describe this particular evolution.!' Of course, the JIMWLK evolution of the quadrupole
also involves other diagrams, in which the soft gluon is emitted /absorbed by some other pair
of external legs [71-73, 83]. These additional diagrams will be generated by the remaining
contributions to the ggg cross-section, whose soft limit will be explored in the next two
subsections.

1n the case where the soft gluon k3 is not measured (which amounts to identifying 2z’ = z), we precisely
recover the relevant “real” terms from the JIMWLK equation for the high-energy evolution of the quadrupole
S-matrix [71-73].
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5.2 Direct contributions involving the 3-gluon vertex

The discussion of the soft gluon limit for the second contribution to the ggg cross-section,
eq. (3.46), is somewhat simpler, due to the manifest symmetry of this contribution under
the exchange of the two final gluons. It is therefore enough to consider only one of the two
eikonal limits aforementioned, say £ — 0. In this limit, the triple-gluon vertex in eq. (3.24)

can be approximated as
1

§

It is then easily to see, by using the expressions (3.23) for the relevant effective vertex
and (3.47) for the kernel, that the latter admits the same limit for all the four terms within
the square brackets in eq. (3.46), that is,

(0, € = 0) =~ —— 8,0, - (5.7)

_A[14(1—6)%] §mP e

Kmnpq’ %
£—0 0 5 R2R

2

(5.8)

This expression shows the expected soft singularity: a single pole at & = 0. As before,
this degeneracy of the four kernels implies that only four topologies survive in the final
result (among the 9 which were originally present in the r.h.s. of eq. (3.46)): those in which
the shockwave is inserted in either the final qgg state, or in the intermediate qg state.
The surviving configurations are shown in figure 16. At large N, each of the S-matrices
associated with these four graphs is in turn built with two colour structures, corresponding
to permutations of the two gluons, as shown e.g. in eq. (3.50). Still for £ — 0, one can also
identify 2’ = y and 2’ = ¥ in the arguments of the surviving S-matrices.

We are thus led to the following result (we use the conventions in figure 10, i.e. the
ky = &gt and ki = (60— &)qt):
A X
doly 799" _ 402CpN. 1+ (1-0)°
dk d?ky dky d?ks dk§ d2k; €50 (2m)10 £0(qt)?

o / o~k (2= T)—ika-(z—%) ~iks-(y—T) (R 'R) (Z '7>
T,2.7,3,2y R2R'Z22Z°

X {[Q(az, 2,2,%)2(2 9,9,2) - Q(x,y, 2, %) S (Y, Z)

6(qt — ki — ki)

- Q(:l?, z, Y, E)S(Z, y)—i-Q({D, v, Y, i)}8<y7y) )

+12, 2279522 -5(79)S(y, 2)

SS9+ SS9y v ) (5.9)

where Z = z — y, R = x — y and similarly for the coordinates with a bar. Both the first
term within the first square bracket and the first term within the second square bracket
are generated by the first graph in figure 16, via its decomposition at large N., which
is graphically illustrated in figure 17. This figure also makes clear that the four terms
within the first square bracket describe the emission of a soft gluon from the quadrupole
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Figure 16. The four diagrams contributing to the cross-section (3.46) in the eikonal limit £ — 0
for one of the two emitted gluons (the one shown in red).

Q(x, y, Yy, T), such that the soft gluon is emitted at y in the DA and at g in the CCA.
Similarly, the four terms within the second square bracket describe the emission of a soft
gluon from the dipole S (y, 7).

The result (5.9) takes a more familiar form in the case when the soft gluon ks is not
measured, meaning that one can integrate over its kinematics (which in particular allows
us to identify z = Z).

ol 3% a, 14(1-6)?
dk d?ky dk3 d2ks — (2m)5 20q+

« / ik (z—T)—iks:(y—7)
5)§7m7'y
g /1 dg / (y—2)- W-—=
X — —= -
2mJo & J: (y—2)*(y—2)

X {[S(x, 7)S(y,9)—Q(x, v, 2, ®) S (Y, 2)

6(gt — ki —ky)

~Q(2,2,7,7)S(2 9+ Q, ¥, 7. %) ]S (y,7)

+2S@.9) - S 9S=w|e@ v v | 610

This result is recognised as a piece of the JIMWLK evolution of the first term
Sqeqq (X, ¥, T, Y) ~ Q(x, y, ¥, T) S(y, Y) in the expression (2.17) or the LO cross-section.
More precisely, we have the real part of the BK equation for the dipole S(y, ) together
with the relevant part of the real part of the JIMWLK equation for the quadrupole
Q(x, y, gy, ©). To complete the (real terms in the) evolution of the latter, we also need
the interference contribution in eq. (3.52). This will be discussed in the next section.
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Figure 17. A redrawing of the first graph in figure 16 valid at large N, which exhibits the 2 colour
structures hidden in this graph: each gluon is replaced by a double line denoting a quark-antiquark
pair of zero transverse size. These two large-N. graphs correspond to the first terms in the first
and, respectively, second squared bracket in eq. (5.9).

5.3 Interference graphs

We finally consider the eikonal limits for the contributions to the ggg cross-section asso-
ciated with interference graphs, cf. eq. (3.52) and figure 11. The relevant limits for the
product of effective vertices in the numerator of eq. (3.53) read as follows:

862(1 — 0)3[1 + (1 — 0)?]

0—¢
— —80™I™ (1 — )1+ (1 —6)?], when ¢ —0. (5.11)

S0, IR0, — 5  when 6-€0,

When 6 — ¢ — 0, all the four kernels in eq. (3.52) take the same form, which reads

8[1+ (1 —0)?]

K?”Pq — — 5mp 5nq —)
00— )Y?R

when 6—-¢—0. (5.12)
Once again, this means that only four topologies survive in the cross-section in that limit
— those in which at least one of the final gluons interacts with the shockwave and which
are illustrated in figure 18. Still for 8 — & — 0, we can also approximate the transverse
coordinates as y ~ « and y ~ Z.

Concerning the limit & — 0, we need to distinguish between two cases, depending upon
the fact that X’ = x — 2’ vanishes, or not:

M2
K ., _gmagnp 81+ (1 mlz ,  when X' #£0,
€50 62(1— 6)(X")°R
_ 2
— _5mq5np w , when X/ =0. (513)
COY?R

Clearly, the soft singularity at & = 0 is present only in the case where X’ = 0. i.e. for
the two terms within the square brackets in eq. (3.52) where the coordinates & and 2z’ get
replaced by y. The eight S-matrices within the structure of these two terms can now be
simply added to each other (since they are all multiplied by the same kernel) and it is easy
to see that only four of them survive in the final result: those illustrated in figure 19. Still
for £ — 0, one can use w ~y ~ (1 —O)x + 0z’ and y ~ Z'.
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Figure 18. The four diagrams contributing to the cross-section (3.52) in the eikonal limit 6 —¢ — 0
(the soft gluon is shown in red).

Figure 19. The four diagrams contributing to the cross-section (3.52) in the eikonal limit £ — 0
(the soft gluon is shown in red).
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To show explicit results, we shall use the momenta assignments in figure 11, which in
particular imply k; =&qT and k:}f = (0 — &)q*. For the case  — & — 0, one easily finds

A X
dolyy 19" 4a2CrN, 1+ (1-0)°

dki d?kydky d?kodki d?ksly ¢ o (2m)10 (0 —€)0(¢T)

. X / . 7
y / ik (2—F)—ika-(2—F)—iks-(z' %) (X X) (X Z)
z,2,Z2 ,x,2,2' XQYQ (X/)QZQ

26(q+ - k1+ - k;)

—Q(x,2,2,7)S(2,2) +S(x,2) S (Z,E)}S (2,%), (5.14)

where X' = ¢ — 2/, Z = z — Z', and we have also used y = « and § = Z to replace
Y - X =x—zand R — X = Z—%. These alternative notations facilitate the comparison
with eq. (5.6), which refers to the direct contribution of the amplitude in figure 6. Both
eq. (5.6) and eq. (5.14) express the effect of producing one soft gluon when acting with
the “production” version of the JIMWLK Hamiltonian on the quadrupole Q(x, z, Z, T)
in the first term in the r.h.s. of eq. (2.17) for the LO dijet cross-section.'? In eq. (5.6),
the soft gluon is emitted and reabsorbed by the same quark, with transverse coordinates
x and Z in the DA and the CCA, respectively. Eq. (5.14) is the interference term where
the soft gluon is emitted by the quark x in the DA and absorbed by the “other quark”, at
Z, in the CCA. (This “other” quark is truly a component in the large- N, decomposition of
the harder gluon with energy fraction 6.) Notice the difference in sign between eqs. (5.6)
and (5.14). Except for the sign, the respective numerical factors are identical at large N,
as they should.

Besides egs. (5.6) and (5.14), there are two more contributions to the JIMWLK evo-
lution of the quadrupole (here, in the sense of soft gluon production) [83]. One of them
was already shown eq. (5.9), although with somewhat different notations for the transverse
coordinates.'® The other one is the second interference term, in which one exchanges the
topologies between the DA and the CCA; this can be easily inferred from (5.14) via hermi-
tian conjugation. When the soft gluon is not measured, the sum of these four contributions
reproduces the “real” terms in the B-JIMWLK evolution of the quadrupole [71-73].

2Notice the change of notation y — z when going from eq. (2.10) to eq. (5.6) or (5.14).
13The difference in notations between eq. (5.9) on one hand and eqgs. (5.6) and (5.14) on the other hand
comes from the fact that, in section 5.2, we preferred to work in the other soft limit, that is, £ — 0.
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Consider now the other eikonal limit, namely ¢ — 0. Using the second line in eq. (5.13)
together with the relevant terms from eq. (3.52), one finds

do_(q:g%qgngX
dki d2ky dki d?ky dk d2ks

 402CpN, 1+ (1 —6)?
£—0 (2m)t0 £0(qt)?
X' -E) (Y -7)
(X')2RY?2Z

o(g" — ki —k3)

« / ik (@—T)—iky (2~ %) —iks: (') (
T, z,yx, 2,2

x[8(2,2)Qy, 2, 2.9) - Sy, 2) S (2, 7)
- Sy DSEN+SW.9)[ST.?), (5.15)

whereY =y —2, X' =z — 2/, Z =% %', and R =% — 3 and we have replaced w — y
and Z' — ¥, as appropriate in this limit. The S-matrices within the square brackets have
the right structure to describe the production of a soft gluon from the dipole S (y, 7) (see
eq. (A.2) in ref. [83)).

If the soft gluon is not measured in the final state, one must integrate eq. (5.15) over
ki = €qT and ko; this gives (with 2a5Cr ~ Tay)

A X _
o G 1+ (1—0)

ki Pk dk} Pk (275 20g+

S(qt — ki —k3)

/ ey B2 E W 5 g,)
1 z
e df/ D s - 5w 2509
(5.16)

where the change of global sign occurred because Z = —(y — z). This is indeed the right
sign to describe the BK evolution of the dipole S(w, g) from the product S(w, §) S(y, )
which appears with a negative sign in the third term in the r.h.s. of eq. (2.17). (Recall that
w ~ y in the soft limit at hand.)

To summarise, the discussion of the eikonal limits of our results for the ggg trijet
cross-section has allowed us to reconstruct the “real” terms in the B-JIMWLK evolution of
the LO cross-section (2.17) for the gg dijet. Specifically, we have identified the “real” part
of the evolution equations for the first term (the product Q(zx, y, ¥, ) S(y, ¥) between
a quadrupole and a dipole) and for the last term (the dipole S (w, w)) in eq. (2.17), and
also for the dipoles S(y, w) and S(w, y) which appears in the two intermediate terms
there. On the other hand, we have not yet encountered the evolution of the two other
dipoles which enter these intermediate terms, namely S(x, y) and S(y, ). There is a
good reason for that: these two other dipoles are built with quark legs which “live” on the
same side of the cut, that is, they both “live” in the DA for S(x, y), and respectively in the
CCA for S§(g, ®). Accordingly, the BK evolution of these dipoles involves graphs like those
shown in figure 20, which represent wvirtual corrections to the qg dijet cross-section. The
contributions of such graphs will be considered in a companion paper devoted to virtual
corrections.
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Figure 20. Graphs representing virtual corrections to the qg dijet cross-section. Both shown
graphs count for the BK evolution of the dipole S(x, y) which enters the second term in the r.h.s.
of eq. (2.17).

6 Collinear divergences: recovering the DGLAP evolution

Besides the soft divergences that we have just discussed, the NLO corrections to the dijet
cross-section are expected to also contain collinear divergences. In momentum space, they
correspond to the limit where the daughter partons emerging from a splitting have a very
small relative transverse momentum (i.e. they make a very small angle § — 0). In the
transverse coordinate space, this is the limit where the transverse separation between the
two daughter partons becomes arbitrarily large.

Before turning to explicit calculations, let us first recall some general features about
the origin and the treatment of the collinear divergences in the framework of the hybrid
factorisation (see e.g. [21]):

(i) collinear divergences are associated with (unmeasured) partons which are emitted
long before the hard process, or longtime after it. By the “hard process”, we mean
the ensemble of the other interactions, that is, the scattering off the nuclear target (the
shockwave) and the emission of additional, relatively hard (non-collinear), partons.

(ii) The “collinear” parton may scatter with the shockwave, but its scattering does not
matter for the inclusive dijet cross-section at NLO.

(iii) If the collinear emission occurs prior to the hard process — in the present case, that
should be a gluon emission by the incoming quark —, then the associated divergence
can be reabsorbed into the DGLAP evolution of the parton distributions in the proton
projectile (here, the quark distribution gf(z,, u?), as visible in egs. (2.16) and (4.6)).

(iv) If the collinear emission originates from one of the final partons — in this case, that
could be either a gluon emission from the final quark, or the splitting of the final gluon
into two gluons, or into a quark-antiquark pair —, then its treatment depends upon
our definition of the measurement process. If we measure two hadrons in the final
state, then the collinear divergences should be absorbed into the DGLAP evolution
of the fragmentation functions for the quark, or the gluon, emerging from the hard
process. If instead we measure two jets, whose definition involves an opening angle
R, then any emission at small angles # < R must be viewed as a part of the final-state
jets, whereas emissions at larger angles § > R are interpreted as NLO corrections
to the hard process. In this argument, the jet angle R effectively acts as a collinear
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Figure 21. Graphical illustration of the collinear limits corresponding to the two gluon emissions
by the incoming quark. The Feynman graphs in the first line show the topology of the emission:
the gluon emerging from a collinear splitting is represented in blue. The schematic diagrams in the
second line illustrate the geometry of the splittings in the transvserse coordinate space.

cutoff for the NLO corrections. In this remaining part of this section, we shall assume
a hadronic description for the final state, for definiteness.

(v) The collinear divergences can be unambiguously separated from the infrared (or
“soft”) divergences associated with soft gluons. A given graph can develop both soft
and collinear divergences, but the overlapping divergences cancel — as a consequence
of probability conservation — when adding together real and virtual corrections. This
makes it possible to disentangle soft from collinear divergences in practice and to as-
cribe them to the B-JIMWLK evolution of the hard process and to the DGLAP
evolutions of the initial and final states, respectively.

6.1 DGLAP evolution for the initial quark

Our first example refers the NLO contribution denoted with a subscript (1) in eq. (4.16). We
recall that this contribution is obtained from the trijet cross-section (3.39) by integrating
out a gluon with momentum k3, which can be any of the two gluons in the final state, cf.
figure 9.

As already mentioned, the collinear regime corresponds to the situation where the
transverse separation between the two daughter partons can be arbitrarily large. For the
diagram in figure 9, there are two such limits, one for each of the two gluon emissions, as
illustrated in figure 21. In the first case, depicted in the l.h.s. of figure 21, the first gluon

emission is the collinear one; one then has |Y| > | X'|, where we recall that X' = & — 2’
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Figure 22. The four graphs contributing to the limit where the first gluon emission (depicted in
blue) is collinear. These graphs are free of initial-state interactions.

and Y = y — z. This covers the case of the DGLAP evolution of the incoming quark
distribution, to be discussed in this section. In the other case (the r.h.s. of figure 21), the
opposite inequality holds: | X’| > |Y'|. This is the case of the final state DGLAP evolution,
to be discussed in the next subsection.

Consider the case depicted in the l.h.s. of figure 21: the first gluon emission, with
longitudinal fraction &, is not measured (Z = z) and is in the collinear regime. Using
Y? > (X’)? and similarly Y > (X')2, one finds that the kernel (3.40) simplifies to
(recall eq. (3.41))

o 326MP§n4 )
/Cl Pd ~ mpq—m(@ Pq—)g(f)a (6'1)

where £ = (60 — £)/(1 — £) denotes the splitting fraction for the second gluon emission and

1+ (1—2)?

Pq%g (Z) = 22 ’

(6.2)
is the DGLAP splitting function for the process ¢ — gg. The approximation in eq. (6.1)
holds so long as

E1-*Y? > (1-0)(0 - )(X')?, (6.3)

together with a similar condition involving Y and X In writing eq. (6.1), we have ignored
the instantaneous pieces of the effective vertices which enter the numerator of K; (that is,
we have used eq. (3.41)). On physical grounds, it is quite obvious that these pieces cannot
yield collinear singularities: they correspond to effective graphs in which the two emissions
occur simultaneously. We shall shortly give a more mathematical argument in that sense.
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Eq. (6.1) shows that, in the collinear limit,'* the two gluon emissions factorise from
each other at the level of the kernel ICq. Let us now check that a similar factorisation also
holds at the level of the colour structure, i.e. for the S-matrices.

Since all the four terms within the squared brackets in eq. (3.39) are now multiplied by
a same kernel, it follows that only four topologies (in terms of shockwave insertions) survive
in this limit. These are the topologies shown in figure 22, which do not involve initial-state
interactions, as expected: the “collinear” gluon is emitted before the hard process, both
in the DA and in the CCA. This gluon crosses the shockwave in all these graphs, but the
Wilson lines describing its scattering mutually cancel by unitarity: V(z)V1(Z) = 1 when
Z = z. Because of this cancellation, the colour structure of the four graphs in figure 22 is
precisely the same as for the LO gg final state in eq. (2.10).

Using egs. (3.39) and (6.1), one deduces the following approximation for this particular
dijet cross-section in the collinear limit for the unmeasured gluon:

ot .
dpt d?pdk* d’k (27r)6( +)2(1 - &) Pqﬁg(xl + mg)

—zp(w T) '—Z") a:—z) (w_zl)

(
x/a:,z’,m,z’ (x_z) (w_2/)2
x Q. 2, 2, %) S(, 7) — S, #) S(z', §) — S(y, 7) S, %) + S (v, )

4o C —z)- (y—=z
* amyp Frol®) / ((z - z))2 (;y_ z)g , (6.4)

For more clarity, we have used the same notations for the momenta of the two produced
partons as in eq. (2.10): (p*, p) and (kT, k) refer to the produced quark and gluon,
respectively. Furthermore, 1 = p™/Q" and x5 = kT/QT, with QT the longitudinal
momentum of the incoming proton. The original longitudinal fractions 8 and & should now
be evaluated as

0 —
gzl_ﬂ, gzl_wjgz §: x2 , (6.5)
Zq Tq 1-¢ xi+a

where we recall that z, = ¢*/Q" denotes the longitudinal momentum fraction of the

original quark. The transverse coordinate y of the intermediate quark is related to the
coordinates & and 2’ of the produced partons via eq. (3.16), which becomes

r1x + CL‘QZ’ .. —

= and similarly for y) . 6.6

Ve o ( y for g) (6.6)

Eq. (6.4) exhibits the expected factorisation of the (unmeasured) collinear emission

from the LO dijet cross-section (2.10) — here initiated by a quark with original longitudinal

momentum ¢t (1 — £). The integral over z in the last line, which physically represents

the integral over the transverse phase space for the collinear emission, is logarithmically

divergent at large |z|. To exhibit this singularity, let us introduce a low-momentum cutoff

141n general, i.e. beyond the collinear limit, this factorisation would be spoilt by the dependence of the
energy denominator in eq. (3.40) upon the longitudinal fractions 6 and &.
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A on the transverse momentum of the unmeasured gluon, meaning an upper cutoff ~ 1/A
on the transverse separations |y — z| and |y — z|. With this regularisation, the integral
over z in eq. (6.4) can be estimated as (below, r = |y — y|)

y Y- 2)? q° r2ZA\2 A2
(6.7)
In the last equality, p is a generic scale obeying A < p < 1/r. In what follows, it will

—2z)-(y—z d2 —ia-(y—7 ]_ 1 2
/d2z((y_z))2((y ) —>/—qe @(y y)@(q—A):ﬂln—:wan—i—wlnu—

be used as a renormalisation scale to subtract the collinear divergence at A — 0 from the
genuine NLO correction. The divergence will be then absorbed into the DGLAP evolution
of the quark distribution for the incoming quark.

To that aim, one should recall that the physical cross-section also includes a convolution
with gf(zq, u?), as visible in eq. (2.16) at LO and in eq. (4.6) for a particular “real” NLO
correction. For the NLO correction at hand and to the perturbative accuracy of interest,
this convolution reads

1 1y
/0 dxqu(vo)(xq)g(xq—wl—M)(' ) = /0 1 _€€ xi i_ 232(]5[0) (xi i_ gz)@(l—f—ﬂﬁl—l‘z)( ),
) (6.8)

where g} (z4) is the bare (parton model) quark distribution, which is independent of the

scale 12, and the dots within the integrand stay for the partonic cross-section in eq. (6.4).
In the integral in the r.h.s. we changed variable z, — £ according to (6.5); the step function
comes from the condition x, < 1. When using this convolution together with eq. (6.4),
one should also notice that q7(1 — &) = p™ + kT = (21 + 22)Q™ is the total longitudinal
momentum of the produced dijet and thus it is independent of £. Hence, the whole ¢
dependence of the final result is encoded in the following integral

-z 2
rAqy(z, 1) = asfF /0 d¢ - f ; q§"0)(1 f 6)Pq_m({) In % ) (6.9)
where it is understood that z = x; + x2. As suggested by its notation, the r.h.s. in (6.9)
is precisely the result of one “real” step in the DGLAP evolution of the quark distribution
inside the proton, where the step consists in integrating out gluon radiation with virtualities
¢ within the range A? < ¢ < p?. The corresponding virtual graphs are expected to add
the “plus” prescription to the splitting function P,,4(§) and thus remove the apparent
divergence of (6.9) at £ — 0. This will be checked in our subsequent paper (see also the
discussion at the end of this subsection).

By inspection of egs. (6.4)—(6.9), one can see that the original collinear divergence
from the NLO correction has been transferred to the DGLAP evolution of the incoming
quark distribution in the LO result. The finite reminder, as obtained by keeping only the
second term, mIn(1/r2u?), in the r.h.s. of eq. (6.7), represents a genuine NLO correction
to the hard process. However, our above calculation for this correction is only correct to
leading logarithmic accuracy w.r.t. the logarithm In(p3 /u?), with p? = max(p?, k?). (The
typical value of 7 = |y — | is fixed by the Fourier transforms in (6.4) as 72 ~ 1/p3.)
The p-dependence of the cross-section introduced by this and other similar corrections
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compensates the respective dependence of the quark distribution. This ensures that the
result for the cross-section is independent of the arbitrary renormalisation scale p at NLO.

In order to have a complete NLO result, which also includes the numerical coefficient
under the log, one must go beyond our previous approximations in eqs. (6.1) or (6.7).
That is, one should exactly compute the contributions from graphs which contain collinear
divergences, like the 4 graphs figure 22, by using dimensional regularisation together with
a suitable subtraction scheme, like M S.

At this level, it is easy to understand why the graphs involving instantaneous propaga-
tors cannot generate collinear divergences. As clear by inspection of (6.4), such divergences
occur via the integration over the Weiszécker-Williams kernel Y™ /Y ? which describes a
bremsstrahlung process in transverse space (recall e.g. eq. (3.39)). This kernel is inherent
in the graphs involving the regular part of the (quark or gluon) propagator, but it is absent
from the instantaneous graphs. Said differently, the contribution from the instantaneous
vertices do not involve enough powers of Y™ and/or Y” to generate a divergence when
integrating over z.

It is finally interesting to compare the graphs in figure 22, in which the first emitted
gluon is collinear, to those in figure 12, where the same gluon is soft. In figure 22 there are no
initial-state interactions, whereas in figure 12 the final-state interactions are missing. This
is in agreement with the physical expectations that a collinear gluon must be emitted very
early, well before the hard process, unlike a soft gluon, which must be the closest emission
with respect to the collision. This physical distinction should allow us to unambiguously
separate between soft and collinear divergences.

Yet, by inspection of these two figures, one sees that one particular graph contributes in
both cases: this is the first graph in both figure 22 and figure 12. This graph has generated
the term proportional to S (y, ¥) in eq. (6.4), which is in fact an ezact evaluation for that
graph'® — up to regularisation issues, of course. And indeed, if one takes the soft limit
& — 01in eq. (6.4), one recovers one of the two terms proportional to S (w, W) in eq. (5.5).
(The other such a term comes the fourth graph in figure 12, in which the soft gluon is never
intersecting the shockwave. We recall that, in writing eq. (5.5), we have identified y = w
and y =w.)

This discussion makes clear that the first graph in figure 22 (or in figure 12) contributes
to both the collinear (DGLAP) and the soft (B-JIMWLK) evolutions. In particular, it
contains an overlapping, soft and collinear, divergence. This might seem to contradict our
previous argument, that these two types of divergences can be separated from each other.
In fact, there is no contradiction: such overlapping divergence are eventually cancelled
after adding the virtual corrections.

We shall systematically study the virtual corrections in a subsequent paper. Here we
merely show in figure 23 the graphs relevant to the above discussion: the real graph that
has already appeared as the first diagram figure 22 together with the virtual graphs which
remove its collinear divergences in the limit where the first emission is both collinear and

15Remember that this particular graph originates from the last term within the square brackets in (3.39),
for which eq. (6.1) becomes exact.
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Figure 23. The set of “real” and “virtual” graphs which count for the cancellation of the overlap-
ping, soft and collinear, divergences associated with the first gluon emission by the quark.

soft (¢ < 1). The soft limit is indeed important for this argument: in general, the real NLO
corrections and the virtual ones are weighted by quark distribution functions with different
arguments: x, = (21 + x2)/(1 — &) for the real corrections, cf. eq. (6.8), but z, = x1 + z2
for the virtual graphs, whose final state involves only two partons: the measured quark
and gluon. However, when £ < 1, these two weighting factors become identical with each
other and then it becomes possible to observe the cancellation of the overlapping, soft and
collinear, divergences.

Let us show how this works for the three graphs in figure 23. FEach of the two vir-
tual graphs gives a contribution which is simply the product between the LO dijet cross-
section (2.10) and a “tadpole” describing the virtual gluon emission. The effect of adding
these contributions to the real term in eq. (6.4) is to replace the emission kernel for the
first emission, cf. eq. (6.7), by the dipole kernel,

) 1 L ,w-2-@G-2_ (-9’

M2 = T oo Yy 22w 2 (-2 =)

., (6.10)

which decreases much faster at large |z| then the original kernel in eq. (6.7): as 1/z*
instead of 1/22. So, the would-be logarithmic singularity at large |z| disappears. The
dipole kernel exhibits instead short-distance (ultraviolet) poles at z = y and z = g, but
they are ultimately inocuous, as they cancel against other virtual corrections, not shown
in figure 23.

6.2 DGLAP evolution for the final quark

Still for the topology illustrated in figure 9, we now consider the case where the second
gluon emission — the one where the gluons carries a longitudinal momentum fraction 6 — &
in figure 9 — is not measured (2’ = 2’) and is collinear. As already explained, this means
that the transverse separation X’ = x — 2’ between the two daughter partons emerging
from the second splitting is much larger than the corresponding separation ¥ =y — z for
the first emission: (X’)? > (Y)2. Under this assumption, the dominant contribution to
the trijet cross-section in eq. (3.39) comes from the last term there — the one obtained
after the double replacement (z,2’ — y & ¥,Z' — y) — since the corresponding kernel
is the only one not to be suppressed at large (X’)2. Not surprisingly, the graphs which
survive in this limit are those which are void of final state interactions, as illustrated in
figure 24. We therefore expect the collinear divergence generated by these graphs to express
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Figure 24. The four graphs surviving in the collinear limit for the second gluon emission (depicted
in blue). These graphs are void of final-state interactions.

the DGLAP evolution of the final-state gluon in the leading-order dijet cross-section (2.10).
Let us verify that this is indeed the case.

The kernel for the surviving terms has, clearly, the same expression as displayed in
eq. (6.1), where the longitudinal momentum fractions must now be evaluated as

0 — _
R S B e e R 0N (6.11)
Tq T4 1-¢ Tq — T2
The main difference w.r.t. the previous subsection is that the kernel in eq. (6.1) now applies
only to the last term within the square brackets in eq. (3.39). After also using 2’ = 2/, we
find that eq. (6.4) gets replaced by

qA—qg+X
dU(l)rNLo,Z - 4a,Cp
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x |Q(y,2.2,9)8(2.2) - S(y,2)S(2, W) — S(w,2)S(Z,7) + S (w, )
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——FP, . 6.12
(27r)2 Q%g(g ) o (:13 _ z’)Q(f _ Z,)Q ( )
For reasons to shortly become clear, it is convenient to consider z; = 1 — & — the splitting
fraction of the measured quark at the second emission vertex — as an independent variable,
on the same footing as the external variables x1 and x2. Then the longitudinal fractions

¢ and x, and the transverse coordinate y should be understood as (recall egs. (3.16)
and (6.11))

X1
l’q:fEQ—’—f, é-: )
21 T+ 2122

together with a similar expression for y.

ST y=znz+(1—2)2, (6.13)
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It is furthermore useful to change two of the integration variables, from x and T to y
and g (this will facilitate the comparison with the LO result in eq. (2.10)). Recalling that
z' = 2/, one finds

ple-2)=—py-m. @-2-(y-2). (6.14)

When expressed in terms of these new variables, w = (1 — &)y + £z becomes independent
of 2/, so the integral over z’ factorizes.

6 as shown in the Lh.s.

After also convoluting with the initial quark distribution,®
of eq. (6.8), and changing the respective integration variable from z, to z; according to
eq. (6.13), one obtains the following expression for the collinear singularity encoded in this

particular NLO correction to the dijet cross-section

do_pAﬁqg+X
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x [Q(y, 2,2,9)S(2,2) - S(y,2)S(2, W) — S(w,2)S(2,9) + S (w, ) |
dosCrp, [ (=2 (¥=-2)
X (2r)2 Pyq(z1) /z, (y— 2)2(g— 2)2 (6.15)

where we have also used z1/(1 — §) = z4z1 and Py_,4(1 — 21) = Py4(21).

Eq. (6.12) exhibits a factorised structure, as expected: it is the product of the LO dijet
cross-section in eq. (2.10) (but for final momenta p; = p/z; and k) times the probability for
an unobserved emission in the final state. This probability contains a collinear singularity
similar to that visible in eq. (6.7), which here should be absorbed into the renormalisation
of the fragmentation function of the final quark. Specifically, the singular piece of eq. (6.12)
can be written as

da%}fgf dz 9 doP—a9+X )
dp*dp dk* k| / = T 1) " S Dysg(z1,1%),  (6.16)
where )
Dy/q(z1, %) = Crp () % . (6.17)

is recognised as the contribution of the first step in the DGLAP evolution of the quark-to-
gluon fragmentation function.

16Strictly speaking, to the NLO accuracy of this calculation, one should evaluate eq. (6.15) with the bare
quark distribution q}o) (zq), as in egs. (6.8) and (6.9). We nevertheless insert the renormalised (i.e. DGLAP-
evolved) distribution gy (24, u?), for more generality. (This would be generated via a similar treatment
of collinear divergences occurring in higher orders of perturbation theory.) Also, following the standard
procedure in the literature [2, 21], we shall use the same renormalisation scale p? for both the parton
distributions and the fragmentation functions (see e.g. eq. (6.16) below). This choice is particularly natural
when using dimensional regularisation for the 2-dimensional integrals developing collinear divergences, as
in ref. [21].
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Figure 25. The four graphs surviving in the collinear limit for the g — gg splitting (the unmeasured
gluon is depicted in blue). These graphs are void of final-state interactions.

To summarise, eqs. (6.15)—(6.17) describe the beginning of the DGLAP evolution of
the quark fragmentation function in eq. (2.18). The corresponding evolution of the gluon
fragmentation function will be discussed in the next two sections.

6.3 DGLAP evolution for the final gluon: g — gg splitting

We now consider the collinear limit for the second topology yielding real NLO corrections
to quark-gluon production, the one denoted by the subscript (2) in eq. (4.16) and which
is illustrated in figure 7. In this case, a collinear divergence can be generated only by the
second emission (see the discussion towards the end of this section), in which case it is
associated with the DGLAP evolution of the fragmentation function for the final gluon.

So let us consider the collinear limit for the second emission in figure 7. This is the
limit where the transverse separation Z = z — 2’ between the two final gluons is much
larger than the separation R = & — y between the final quark and the intermediate gluon:
Z? > R?. With reference to eq. (3.46), this hierarchy entails two important simplification.
The first one refers to the energy denominator and is fully similar to that discussed in the
previous section: it implies that the only surviving graphs are the four graphs without final-
state interactions, shown in figure 25. These graphs correspond to the last term within the
square brackets in eq. (3.46) — the only one not to be suppressed at large Z2. The second
simplification refers to the product (3.48) of effective vertices: in eq. (3.46), this product
is multiplied by R™ Z" R” Z?. When computing the graphs in figure 25, the integral over

the coordinate 2z’ of the unmeasured gluon (2’ = Z’) can be factorised as

n 774 n n n

[ZZ pma s Ly

2 727 o 4 2 Ju Z 2 (z —Z)2A

where the approximate equality holds for the singular piece alone: in the collinear limit at

hand, the differences Z = z — 2’ and Z = z — 2’ can be arbitrarily large, whereas |z —z| is
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fixed to a value ~ 1/k, by the Fourier transform for the measured gluon; so, in evaluating
the singular piece of (6.18), one can approximate Z ~ Z and at the same time restrict
the integral over 2’ to Z? > (z — z)2. The logarithmic divergence at Z? — 0o has been
regulated by a momentum cutoff A2, as in eq. (6.7).

Eq. (6.18) shows that, for the purpose of extracting the collinear singularity, one can
replace Z" Z* — (Z-Z)6™ /2 within the integrand of eq. (3.46). This allows us to simplify
the tensorial structure of the product of effective vertices (cf. eq. (3.48)):

. §na

MY IR R R (2 - Z) =5 =48(0 — §)6°(1 — 6)? [1+(1-0)?

1 1 1 — —

4+ +-+—|(R-R)(Z-2). 6.19

X(02+§2+(0_€)2)( )( ) ( )

As a check, we note that the eikonal limit { < 6 of this result is consistent with eq. (5.8).
The rest of the calculation is straightforward and yields (see also figure 25):

qA—qg+X
dg(z)rNLo,2 4o,Cp

~ P,
dptd?pdk+d2k — (27)5(q")20 1-9(0)
> / e—ip-(m—i)—ik(z—?) (x — y) ’ (j — g)

Tza,2 (x —y)2(T —y)2

% |Q@,y.7,2)S(y,¥) - S(,y)S(y. ®) - S(w, HSF7) + S (w, )]

x ‘t@;;réicpgﬁg@/m /. (< — j,));((j__j); (6.20)

where zo = £/60 is the splitting fraction of the measured gluon and

[1—2(1-2)?

Pg—*g(z) = z(l—z) ’

(6.21)

is the gluon-to-gluon LO DGLAP splitting function. It is understood that only the log-
arithmic collinear singularity is properly encoded in eq. (6.20), but not also the constant

term under the logarithm.

At this stage, it is convenient to express all the longitudinal fractions in terms of 1,
xo and z9:
Z2

x2 z1
Tg=x1+—, f=1——=—-"—,
29 Tq To + 21711

=102 (6.22)
Also, we make a change of integration variables, from z and Z to y and ¥y, by using

1 1
y=122+(1—29)2 = z—E:Z—(y—y), z—z’zz—(y—z’), (6.23)
2 2

together with w = (1 — 0)x + Oy.
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We finally add the convolution with the quark distribution function g (z,, ©?), but use
z9 rather than z, as an integration variable. Putting all that together one finds

A +X
—dp+d2pdk+d2k = 2;23 q9f\Lq, 1 (2m)6(q )2 q—yg

" / P (a—T) ik (y-7) /2 (T~ Y) (T~ F)
Yy (x—y)?*(x-7)*

X |Q(.9.9.7)5(y.9) - S(2,9)5(y.®) - S, Y)S®F,7) + § (w,w) ]

4o N, -2 - (g—-2
X WPQ—W(ZQ) /z’ ((::'yJ_ z/))z(;y_ z/)i' (6'24)

This is analog to eq. (6.15) from the previous section and its subsequent discussion is also
similar: the collinear divergence can be absorbed in one step of the DGLAP evolution of
the gluon-to-gluon fragmentation function:

as N, ,u2

- Py ,4(z2) In e (6.25)

-Dg/g(227 /*’LQ) =

To conclude this section, let us explain why the first emission cannot contribute a
collinear divergence for this particular topology. The first emitted gluon is an intermediate
gluon, which decays into two other gluons prior the final state. One of these daughter
gluons is measured in the final state (Z # z), and the other one is not (Z’ = 2’). Hence
the coordinates, y and g, of the intermediate gluon are different in the DA and the CCA,
respectively (as also manifest in eq. (6.20)). Hence, the would-be collinear limit for the
first emission, that is, R? > Z?2, cannot generate a collinear divergence in the integral over
the transverse coordinate z’ of the unmeasured daughter gluon.

One can similarly understand that the interference graphs responsible for the piece
denoted by the subscript (3) in eq. (4.16) (see figure 11) do not generate collinear diver-
gences either. This is consistent with the fact that the LO DGLAP evolution admits a
probabilistic picture and could not accommodate such interference effects.

6.4 DGLAP evolution for the final gluon: g — ¢ splitting

As a final exemple for the DGLAP evolution of the quark-gluon cross-section, let us briefly
consider the case where the gluon undergoes a collinear splitting into a quark-antiquark
pair, thus contributing to the gqq final state. With reference to eq. (3.27) for the respective
cross-section, this situation corresponds to the case where Z2 > R? and one of the daughter
fermions of the gluon decay — say the antiquark with longitudinal fraction 6 — £ (see
figure 8) is not measured (z’ = 2’). Clearly, the treatment of the g — ¢ collinear splitting
is entirely analog to that of the g — gg splitting discussed in the previous section. Once
again, the surviving graphs are the four graphs corresponding to the last term in eq. (3.27),
which contain no final-state interactions. (The respective S-matrix structure has been
already exhibited in eq. (3.36).) And the product of effective vertices which enters the
kernel (3.30) can be simplified — in so far as the collinear divergence is concerned — by
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using the analog of eq. (6.18). This yields (recall also eq. (3.31))
ij mn iBm o o 0 B >
P PR R (2 2) = =8(1-0)* (1+(1-0)°) (0-9°+€’) (R-R) (2 Z).
(6.26)
Inserting this into eq. (3.27) and integrating over k3, one finds (we relabel the final momenta
as p and k for the two measured quark, with p referring to the leading quark)

dofirod ™™ 4a,Cr
dp* Ppdi @k = @myegryee) )
—ip(x—x)—ik-(z—= ( — )'(7_7)
X/z,w,ze a o )(§_5)2(;_y?;2
< |92, 9,7, 2)S(y,7) - §(2,y)S(y, ®) — S, PS[F.) + S (w. ) |
4asNy (z—2)-(z—2)
X ng%q(g/e) /z’ (z - 2)2(z — 2)2’ (6.27)

which also involves the LO DGLAP splitting function for the g — ¢q splitting:

224+ (1 - 2)?

Pyq(2) = 9

(6.28)

The similarity with eq. (6.20) is manifest. Once again, the collinear singularity encoded
in the above integral over 2z’ is reabsorbed into a contribution to one-step in the DGLAP
evolution of the fragmentation function for gluon fragmenting into quarks:

N 2
e fpgaq(z) In % :

Dyyg(z,p%) = (6.29)
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A Definitions of states and field quantization

In this appendix, we summarise our conventions for the field quantisation and the definition
of the bare Fock states. More details on the light-cone wavefunction formalism, including
the complete expression of the QCD Hamiltonian in the light-cone gauge, can be found in
appendix A of ref. [1].
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Quantisation of the fields is performed in wusual manner introducing cre-

ation/annihilation operators and imposing commutation (anti-commutation) relations

among them. For the gauge fields we shall use the following expansion:

o Jkt d’k 1 . )
Al _ a(.+ —ik-x af g+ ik-x ]
1 ($) /0 o1 / (27’()2 \/Qkii (az (k ?k)e + a; (k 7k)e )

The creation and annihilation operators obey the bosonic algebra:

|t (k" k), o) (0", )] = (27)%6“5;6(k+ — p*)3) (I — p).
Transforming to coordinate space,
@k, k) = / Pze 7 qf (k) 2) |
the commutation relation becomes:
{a?(kJra ), a?T(er,y)} = 210%6;;0(k* — pT)d® (x — y).

The quark fields can be expanded by the following expression:

a o dk* I’k 1 a1+ —ik-x ot .+ tk-x
Vi@ =0 | G [ s (B0 ke 4 g ( ke)

(2m)? /2
The polarisation vectors are:

T

o =1, XAXA = 2, XL I'xxg = a0 Xil o Xng = 2M163, 2, -

The anti-commutation relations:
{88, 6%, k), 0" p) | = {5, (KT, B), 0", )
= (21)3 8x10, 0P 6P (K — p) 5(kT — pT).
Transforming the fields to coordinate space a la (A.3):

{88, (6%, @), b0t w) = {3, (6, @), 0", w)
= 27 0y, 0% 6P (2 —y) 6 (kT — pT).

(A1)

(A.2)

(A.3)

(A.8)

(A.9)

The multi-parton bare Fock states are obtained by acting with the relevant creation

operators on the bare vacuum state. In this paper, we use both the 3-momentum repre-

sentation k = (k*, k) and the mixed representation (k*,x), as obtained via the Fourier

transform from transverse momenta to transverse coordinates. Let us present here a few

representative examples.

o The bare vacuum state |0). This state obeys the following conditions:

ai(q", )10) = b5(a™, @)[0) = d3(¢", g)10) = 0.

— H8 —

(A.10)



e The bare quark state. In momentum space, this state is constructed as
a5.(k*, k) = 05T (K, k) [0) (A.11)
its scalar product is normalized as follows:
(a5, 2) |a, (6%, B) ) = (2m)%6°7 83,0, 60 (k —p) 6(KT —p*). (A12)
The mixed representation of the bare quark state is obtained as
d’k .
o+ — —iz-k | o+ aT
80, @) = [ Grae a0 R) = 51 ) ), (A.13)
and the dot product reads

(a0, w) a3, (kF, @) ) = 27 8% 63,5, 6 (@ — ) ST — pT). (A14)

e The bare quark-gluon state. In momentum space, this state reads
a8 (0", p) g (k" k) = 83T (0", p) af (K, k) [0) (A.15)

The mixed representation of this state reads as follows:

G0t @ g ) = [ SR ek gt ) g ) =

2
=3 (", @) afT (KT, 9) |0). (A.16)

Let us finally present our definitions for the number density operators for bare partons;
they read as follows (for quarks, antiquarks, and gluons, respectively):

Rolot.2) = G 0" PR 2) = / P E IR T B @), (A7)
Nelo) = oS DE0) = o [ PP 0" 20 ), (A18)
Ny (k) = (21)3 oot (k)at 3/ e =2 g0t (1 2)ad (kT 2). (A.19)

B Matrix elements

In terms of the Fock space operators introduced in the previous appendix, the free QCD
Hamiltonian takes the following form,

B / dk* [ P’k K?
N (2m)2 2k*
+ba*<k+ k) VS (K, k) — A (k™ k) 5 (K, k)

(a6 Ry a2 %K)
(B.1)

which in particular shows that the dispersion relation for free quarks and gluons is Ej =
k2

2kT -
Hamiltonian, as this is not needed in full generality for the purposes of this paper. Rather,

We shall not write the corresponding expression for the interaction piece of the

we show only those matrix elements which enter the computation of the outgoing state in
section 3.1:
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Emission of a second gluon from the quark state

(45, (W) g2 (D)5 (D) Hymsggl a5, (5)g7 (k) )

_ 915a0"0 ¢ [2pf v 1908 (2m)856® (k — )6®) (s — u — p)
BNl e R e
gtba5ac5il 260 o-u 08
—1-725 oTeS XTM P o’ —chS—Jr X, (2m)864) (k — ) (s — u — 1).

(B.2)

Gluon splits into quark and antiquark pair

(85, (w)a}, (£)3, (p) Hy-sql a3, ()95 (K))

= VQTHHXT\Q ot T X (2m)%6) (s — £)6P) (k — p — u)

thedﬁ'yfs)\)\ t 2k' ot U 6c(3 5
Tavar o = o T, (2m) %) (s = p)OP k — t — ).

e ut

Triple gluon interaction in presence of a quark

(a5, (£)9F (a)9%, () [Hggq] 45, ()i (K))
B igfabc(saﬂ(s)\l)Q

2/ 2kTptgT

+ _ ot kKt + gt (B.4)
<pm _ qm + qpkm> (5nl + <kn +qn _ p+qpn> 5ml

(2m)%63) (s — )6 (k —p — q)

X e

k+_|_ +
+ <q+pql _pl - kl) 5mn‘| .

Quark produces quark and antiquark pair instantaneously

210 ta
— le% g t o 5
<q§32(k)q§3 ()43, () [Hg-sqqq] qu(p)> =+ Sﬁ)thmgkal(277)35(k—p+q+8)-

(B.5)

Instantaneous emission of a two gluons from the quark state (inst. q)

(a3, (g} g7 (p) [HisL, | a5, (5))

2 tb tC c tb
g
- Vit <Sfﬁ_?+ XLQUJ‘UIXAI + 815_5;; xﬁzazajxh (2r)35(t +p+u—s).

(B.6)
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o Instantaneous emission of two gluons from the quark state (inst. g)

(a3, ()95 (p)gb (k) | Hirshe, | a5 (@) )
- 2 rabcya + _ L.+ B7)
ig? foets, (0" — k") ; (
BN Sy X2, X1 (27) 040 (k + p + s — q).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

E. Tancu and Y. Mulian, Forward trijet production in proton-nucleus collisions, Nucl. Phys.
A 985 (2019) 66 [arXiv:1809.05526] [iNSPIRE].

A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, The Color glass condensate and hadron
production in the forward region, Nucl. Phys. A 765 (2006) 464 [hep-ph/0506308] [INSPIRE].

J.L. Albacete, A. Dumitru and C. Marquet, The initial state of heavy-ion collisions, Int. J.
Mod. Phys. A 28 (2013) 1340010 [arXiv:1302.6433] [INSPIRE].

J.L. Albacete and C. Marquet, Gluon saturation and initial conditions for relativistic heavy
ion collisions, Prog. Part. Nucl. Phys. 76 (2014) 1 [arXiv:1401.4866] InSPIRE].

E. Tancu and R. Venugopalan, The Color glass condensate and high-energy scattering in
QCD, Quark-gluon plasma 4 (2003) 249 [INSPIRE].

F. Gelis, E. Tancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate,
Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [nSPIRE].

I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99
[hep-ph/9509348] [INSPIRE].

Y.V. Kovchegov, Small z F(2) structure function of a nucleus including multiple Pomeron
exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the
Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization
group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014
[hep-ph/9706377] [INSPIRE].

A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD
evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

E. Tancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass
condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color
glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color
glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

I. Balitsky and G.A. Chirilli, Nezt-to-leading order evolution of color dipoles, Phys. Rev. D
77 (2008) 014019 [arXiv:0710.4330] [INSPIRE].

— 61 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysa.2019.02.003
https://doi.org/10.1016/j.nuclphysa.2019.02.003
https://arxiv.org/abs/1809.05526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.05526
https://doi.org/10.1016/j.nuclphysa.2005.11.014
https://arxiv.org/abs/hep-ph/0506308
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0506308
https://doi.org/10.1142/S0217751X13400101
https://doi.org/10.1142/S0217751X13400101
https://arxiv.org/abs/1302.6433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.6433
https://doi.org/10.1016/j.ppnp.2014.01.004
https://arxiv.org/abs/1401.4866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4866
https://doi.org/10.1142/9789812795533_0005
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0303204
https://doi.org/10.1146/annurev.nucl.010909.083629
https://arxiv.org/abs/1002.0333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.0333
https://doi.org/10.1016/0550-3213(95)00638-9
https://arxiv.org/abs/hep-ph/9509348
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9509348
https://doi.org/10.1103/PhysRevD.60.034008
https://arxiv.org/abs/hep-ph/9901281
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9901281
https://doi.org/10.1016/S0550-3213(97)00440-9
https://arxiv.org/abs/hep-ph/9701284
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9701284
https://doi.org/10.1103/PhysRevD.59.014014
https://arxiv.org/abs/hep-ph/9706377
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9706377
https://doi.org/10.1103/PhysRevD.62.114005
https://arxiv.org/abs/hep-ph/0004014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004014
https://doi.org/10.1016/S0375-9474(01)00642-X
https://arxiv.org/abs/hep-ph/0011241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011241
https://doi.org/10.1016/S0370-2693(01)00524-X
https://arxiv.org/abs/hep-ph/0102009
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102009
https://doi.org/10.1016/S0375-9474(01)01329-X
https://arxiv.org/abs/hep-ph/0109115
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109115
https://doi.org/10.1103/PhysRevD.77.014019
https://doi.org/10.1103/PhysRevD.77.014019
https://arxiv.org/abs/0710.4330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.4330

[16]

[17]

[29]

[30]

I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order,
Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].

A. Kovner, M. Lublinsky and Y. Mulian, Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov, Kovner evolution at next to leading order, Phys. Rev. D 89 (2014) 061704
[arXiv:1310.0378] [INSPIRE].

A. Kovner, M. Lublinsky and Y. Mulian, NLO JIMWLK evolution unabridged, JHEP 08
(2014) 114 [arXiv:1405.0418] [INSPIRE].

M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone wave function to
JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].

G.A. Chirilli, B.-W. Xiao and F. Yuan, One-loop Factorization for Inclusive Hadron
Production in pA Collisions in the Saturation Formalism, Phys. Rev. Lett. 108 (2012)
122301 [arXiv:1112.1061] [INSPIRE].

G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA Collisions, Phys.
Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Single-inclusive particle
production in proton-nucleus collisions at next-to-leading order in the hybrid formalism,
Phys. Rev. D 91 (2015) 094016 [arXiv:1411.2869] [INSPIRE].

I. Balitsky and G.A. Chirilli, Photon impact factor and kr-factorization for DIS in the
next-to-leading order, Phys. Rev. D 87 (2013) 014013 [arXiv:1207.3844| [INSPIRE].

G. Beuf, Dipole factorization for DIS at NLO: Loop correction to the vy — qq light-front
wave functions, Phys. Rev. D 94 (2016) 054016 [arXiv:1606.00777] INSPIRE].

G. Beuf, Dipole factorization for DIS at NLO: Combining the qq and qqg contributions,
Phys. Rev. D 96 (2017) 074033 [arXiv:1708.06557| [INSPIRE].

R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, Impact factor for high-energy
two and three jets diffractive production, JHEP 09 (2014) 026 [arXiv:1405.7676] [INSPIRE].

R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, On the one loop v*) — ¢g
impact factor and the exclusive diffractive cross sections for the production of two or three
jets, JHEP 11 (2016) 149 [arXiv:1606.00419] [INSPIRE].

R. Boussarie, A.V. Grabovsky, D.Y. Ivanov, L. Szymanowski and S. Wallon, Nezt-to-Leading
Order Computation of Fxclusive Diffractive Light Vector Meson Production in a Saturation
Framework, Phys. Rev. Lett. 119 (2017) 072002 [arXiv:1612.08026] InSPIRE].

K. Roy and R. Venugopalan, NLO impact factor for inclusive photon+dijet production in
e+ A DIS at small x, Phys. Rev. D 101 (2020) 034028 [arXiv:1911.04530] [INSPIRE].

T. Lappi and H. Méantysaari, Direct numerical solution of the coordinate space
Balitsky-Kouvchegov equation at next to leading order, Phys. Rev. D 91 (2015) 074016
[arXiv:1502.02400] INSPIRE].

A .M. Stasto, B.-W. Xiao and D. Zaslavsky, Towards the Test of Saturation Physics Beyond
Leading Logarithm, Phys. Rev. Lett. 112 (2014) 012302 [arXiv:1307.4057] [INSPIRE].

A .M. Stasto, B.-W. Xiao, F. Yuan and D. Zaslavsky, Matching collinear and small x
factorization calculations for inclusive hadron production in pA collisions, Phys. Rev. D 90
(2014) 014047 [arXiv:1405.6311] [NSPIRE].

K. Watanabe, B.-W. Xiao, F. Yuan and D. Zaslavsky, Implementing the exact kinematical
constraint in the saturation formalism, Phys. Rev. D 92 (2015) 034026 [arXiv:1505.05183]
[INSPIRE].

— 62 —


https://doi.org/10.1103/PhysRevD.88.111501
https://arxiv.org/abs/1309.7644
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.7644
https://doi.org/10.1103/PhysRevD.89.061704
https://arxiv.org/abs/1310.0378
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.0378
https://doi.org/10.1007/JHEP08(2014)114
https://doi.org/10.1007/JHEP08(2014)114
https://arxiv.org/abs/1405.0418
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.0418
https://doi.org/10.1007/JHEP05(2017)097
https://arxiv.org/abs/1610.03453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.03453
https://doi.org/10.1103/PhysRevLett.108.122301
https://doi.org/10.1103/PhysRevLett.108.122301
https://arxiv.org/abs/1112.1061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1061
https://doi.org/10.1103/PhysRevD.86.054005
https://doi.org/10.1103/PhysRevD.86.054005
https://arxiv.org/abs/1203.6139
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.6139
https://doi.org/10.1103/PhysRevD.91.094016
https://arxiv.org/abs/1411.2869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2869
https://doi.org/10.1103/PhysRevD.87.014013
https://arxiv.org/abs/1207.3844
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3844
https://doi.org/10.1103/PhysRevD.94.054016
https://arxiv.org/abs/1606.00777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.00777
https://doi.org/10.1103/PhysRevD.96.074033
https://arxiv.org/abs/1708.06557
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.06557
https://doi.org/10.1007/JHEP09(2014)026
https://arxiv.org/abs/1405.7676
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.7676
https://doi.org/10.1007/JHEP11(2016)149
https://arxiv.org/abs/1606.00419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.00419
https://doi.org/10.1103/PhysRevLett.119.072002
https://arxiv.org/abs/1612.08026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.08026
https://doi.org/10.1103/PhysRevD.101.034028
https://arxiv.org/abs/1911.04530
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.04530
https://doi.org/10.1103/PhysRevD.91.074016
https://arxiv.org/abs/1502.02400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.02400
https://doi.org/10.1103/PhysRevLett.112.012302
https://arxiv.org/abs/1307.4057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.4057
https://doi.org/10.1103/PhysRevD.90.014047
https://doi.org/10.1103/PhysRevD.90.014047
https://arxiv.org/abs/1405.6311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.6311
https://doi.org/10.1103/PhysRevD.92.034026
https://arxiv.org/abs/1505.05183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05183

[34]
[35]

[36]

[43]

[44]
[45]

[46]

B. Ducloué, T. Lappi and Y. Zhu, Single inclusive forward hadron production at
next-to-leading order, Phys. Rev. D 93 (2016) 114016 [arXiv:1604.00225] [INSPIRE].

G. Beuf, Improving the kinematics for low-r QCD evolution equations in coordinate space,
Phys. Rev. D 89 (2014) 074039 [arXiv:1401.0313] [INSPIRE].

E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Resumming
double logarithms in the QCD evolution of color dipoles, Phys. Lett. B 744 (2015) 293
[arXiv:1502.05642] [INSPIRE].

E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos,
Collinearly-improved BK evolution meets the HERA data, Phys. Lett. B 750 (2015) 643
[arXiv:1507.03651] [INSPIRE].

T. Lappi and H. Méntysaari, Next-to-leading order Balitsky-Kovchegov equation with
resummation, Phys. Rev. D 93 (2016) 094004 [arXiv:1601.06598] INSPIRE].

Y. Hatta and E. Iancu, Collinearly improved JIMWLK evolution in Langevin form, JHEP
08 (2016) 083 [arXiv:1606.03269] [INSPIRE].

B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Non-linear
evolution in QCD at high-energy beyond leading order, JHEP 04 (2019) 081
[arXiv:1902.06637] InSPIRE].

B. Ducloué, E. Iancu, G. Soyez and D.N. Triantafyllopoulos, HERA data and
collinearly-improved BK dynamics, Phys. Lett. B 803 (2020) 135305 [arXiv:1912.09196]
[INSPIRE].

G. Beuf, H. Hianninen, T. Lappi and H. Mantysaari, Color Glass Condensate at
next-to-leading order meets HERA data, Phys. Rev. D 102 (2020) 074028
[arXiv:2007.01645] [INSPIRE].

E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, CGC factorization for forward particle
production in proton-nucleus collisions at next-to-leading order, JHEP 12 (2016) 041
[arXiv:1608.05293] [INSPIRE].

S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering
beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy
flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

B. Ducloué, T. Lappi and Y. Zhu, Implementation of NLO high energy factorization in single
inclusive forward hadron production, Phys. Rev. D 95 (2017) 114007 [arXiv:1703.04962]
[INSPIRE].

B. Ducloué D.N. Triantafyllopoulos et al., Use of a running coupling in the NLO calculation
of forward hadron production, Phys. Rev. D 97 (2018) 054020 [arXiv:1712.07480] [INSPIRE].

B. Ducloué, H. Hénninen, T. Lappi and Y. Zhu, Deep inelastic scattering in the dipole picture
at next-to-leading order, Phys. Rev. D 96 (2017) 094017 [arXiv:1708.07328] [INSPIRE].

C. Marquet, Forward inclusive dijet production and azimuthal correlations in p(A) collisions,
Nucl. Phys. A 796 (2007) 41 [arXiv:0708.0231] INSPIRE].

J.L. Albacete and C. Marquet, Azimuthal correlations of forward di-hadrons in d+Au
collisions at RHIC in the Color Glass Condensate, Phys. Rev. Lett. 105 (2010) 162301
[arXiv:1005.4065] [INSPIRE].

F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon
Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

— 63 —


https://doi.org/10.1103/PhysRevD.93.114016
https://arxiv.org/abs/1604.00225
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.00225
https://doi.org/10.1103/PhysRevD.89.074039
https://arxiv.org/abs/1401.0313
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.0313
https://doi.org/10.1016/j.physletb.2015.03.068
https://arxiv.org/abs/1502.05642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05642
https://doi.org/10.1016/j.physletb.2015.09.071
https://arxiv.org/abs/1507.03651
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.03651
https://doi.org/10.1103/PhysRevD.93.094004
https://arxiv.org/abs/1601.06598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.06598
https://doi.org/10.1007/JHEP08(2016)083
https://doi.org/10.1007/JHEP08(2016)083
https://arxiv.org/abs/1606.03269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.03269
https://doi.org/10.1007/JHEP04(2019)081
https://arxiv.org/abs/1902.06637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.06637
https://doi.org/10.1016/j.physletb.2020.135305
https://arxiv.org/abs/1912.09196
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09196
https://doi.org/10.1103/PhysRevD.102.074028
https://arxiv.org/abs/2007.01645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01645
https://doi.org/10.1007/JHEP12(2016)041
https://arxiv.org/abs/1608.05293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05293
https://doi.org/10.1016/0550-3213(94)90636-X
https://arxiv.org/abs/hep-ph/9405388
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9405388
https://doi.org/10.1016/0550-3213(91)90055-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB366%2C135%22
https://doi.org/10.1103/PhysRevD.95.114007
https://arxiv.org/abs/1703.04962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.04962
https://doi.org/10.1103/PhysRevD.97.054020
https://arxiv.org/abs/1712.07480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07480
https://doi.org/10.1103/PhysRevD.96.094017
https://arxiv.org/abs/1708.07328
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.07328
https://doi.org/10.1016/j.nuclphysa.2007.09.001
https://arxiv.org/abs/0708.0231
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.0231
https://doi.org/10.1103/PhysRevLett.105.162301
https://arxiv.org/abs/1005.4065
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.4065
https://doi.org/10.1103/PhysRevD.83.105005
https://arxiv.org/abs/1101.0715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.0715

[52]

[53]

[54]

A. Stasto, B.-W. Xiao and F. Yuan, Back-to-Back Correlations of Di-hadrons in dAu
Collisions at RHIC, Phys. Lett. B 716 (2012) 430 [arXiv:1109.1817] [InSPIRE].

E. Tancu and J. Laidet, Gluon splitting in a shockwave, Nucl. Phys. A 916 (2013) 48
[arXiv:1305.5926] [INSPIRE].

T. Lappi and H. Mantysaari, Forward dihadron correlations in deuteron-gold collisions with
the Gaussian approzimation of JIMWLK, Nucl. Phys. A 908 (2013) 51 [arXiv:1209.2853]
[INSPIRE].

P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta and A. van Hameren, Improved
TMD factorization for forward dijet production in dilute-dense hadronic collisions, JHEP 09
(2015) 106 [arXiv:1503.03421] [INSPIRE].

C. Marquet, E. Petreska and C. Roiesnel, Transverse-momentum-dependent gluon
distributions from JIMWLK evolution, JHEP 10 (2016) 065 [arXiv:1608.02577] INSPIRE].

A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, Forward di-jet
production in p+Pb collisions in the small-x tmproved TMD factorization framework, JHEP
12 (2016) 034 [Erratum ibid. 02 (2019) 158] [arXiv:1607.03121] [INSPIRE].

J.L. Albacete, G. Giacalone, C. Marquet and M. Matas, Forward dihadron back-to-back
correlations in pA collisions, Phys. Rev. D 99 (2019) 014002 [arXiv:1805.05711] [INSPIRE].

A. Metz and J. Zhou, Distribution of linearly polarized gluons inside a large nucleus, Phys.
Rev. D 84 (2011) 051503 [arXiv:1105.1991] [InSPIRE].

A. Dumitru, T. Lappi and V. Skokov, Distribution of Linearly Polarized Gluons and Elliptic
Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy, Phys.
Rev. Lett. 115 (2015) 252301 [arXiv:1508.04438] INSPIRE].

T. Altinoluk, N. Armesto, G. Beuf and A.H. Rezaeian, Diffractive Dijet Production in Deep
Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate, Phys.
Lett. B 758 (2016) 373 [arXiv:1511.07452] [INSPIRE].

Y. Hatta, B.-W. Xiao and F. Yuan, Probing the Small- x Gluon Tomography in Correlated
Hard Diffractive Dijet Production in Deep Inelastic Scattering, Phys. Rev. Lett. 116 (2016)
202301 [arXiv:1601.01585] [INSPIRE].

A. Dumitru, V. Skokov and T. Ullrich, Measuring the Weizsicker- Williams distribution of
linearly polarized gluons at an electron-ion collider through dijet azimuthal asymmetries,
Phys. Rev. C' 99 (2019) 015204 [arXiv:1809.02615] [INSPIRE].

F. Salazar and B. Schenke, Diffractive dijet production in impact parameter dependent
saturation models, Phys. Rev. D 100 (2019) 034007 [arXiv:1905.03763] [INSPIRE].

H. Méntysaari, N. Mueller, F. Salazar and B. Schenke, Multigluon Correlations and Evidence
of Saturation from Dijet Measurements at an FElectron-Ion Collider, Phys. Rev. Lett. 124
(2020) 112301 [arXiv:1912.05586] [INSPIRE].

A H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard
processes in the small-x saturation formalism, Phys. Rev. D 88 (2013) 114010
[arXiv:1308.2993] [INSPIRE].

E. Braidot, Two-particle azimuthal correlations at forward rapidity in STAR, Ph.D. thesis,
Utrecht U., 2011. arXiv:1102.0931 [INSPIRE].

PHENIX collaboration, Suppression of back-to-back hadron pairs at forward rapidity in
d+Au Collisions at \/syn = 200 GeV, Phys. Rev. Lett. 107 (2011) 172301
[arXiv:1105.5112] [INSPIRE].

— 64 —


https://doi.org/10.1016/j.physletb.2012.08.044
https://arxiv.org/abs/1109.1817
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.1817
https://doi.org/10.1016/j.nuclphysa.2013.07.012
https://arxiv.org/abs/1305.5926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.5926
https://doi.org/10.1016/j.nuclphysa.2013.03.017
https://arxiv.org/abs/1209.2853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.2853
https://doi.org/10.1007/JHEP09(2015)106
https://doi.org/10.1007/JHEP09(2015)106
https://arxiv.org/abs/1503.03421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.03421
https://doi.org/10.1007/JHEP10(2016)065
https://arxiv.org/abs/1608.02577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02577
https://doi.org/10.1007/JHEP12(2016)034
https://doi.org/10.1007/JHEP12(2016)034
https://arxiv.org/abs/1607.03121
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03121
https://doi.org/10.1103/PhysRevD.99.014002
https://arxiv.org/abs/1805.05711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.05711
https://doi.org/10.1103/PhysRevD.84.051503
https://doi.org/10.1103/PhysRevD.84.051503
https://arxiv.org/abs/1105.1991
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.1991
https://doi.org/10.1103/PhysRevLett.115.252301
https://doi.org/10.1103/PhysRevLett.115.252301
https://arxiv.org/abs/1508.04438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.04438
https://doi.org/10.1016/j.physletb.2016.05.032
https://doi.org/10.1016/j.physletb.2016.05.032
https://arxiv.org/abs/1511.07452
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.07452
https://doi.org/10.1103/PhysRevLett.116.202301
https://doi.org/10.1103/PhysRevLett.116.202301
https://arxiv.org/abs/1601.01585
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01585
https://doi.org/10.1103/PhysRevC.99.015204
https://arxiv.org/abs/1809.02615
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.02615
https://doi.org/10.1103/PhysRevD.100.034007
https://arxiv.org/abs/1905.03763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03763
https://doi.org/10.1103/PhysRevLett.124.112301
https://doi.org/10.1103/PhysRevLett.124.112301
https://arxiv.org/abs/1912.05586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.05586
https://doi.org/10.1103/PhysRevD.88.114010
https://arxiv.org/abs/1308.2993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.2993
https://arxiv.org/abs/1102.0931
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.0931
https://doi.org/10.1103/PhysRevLett.107.172301
https://arxiv.org/abs/1105.5112
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5112

[69] L. Zheng, E.C. Aschenauer, J.H. Lee and B.-W. Xiao, Probing Gluon Saturation through
Dihadron Correlations at an Electron-Ion Collider, Phys. Rev. D 89 (2014) 074037
[arXiv:1403.2413] [INSPIRE].

[70] F. Dominguez, C. Marquet, A.M. Stasto and B.-W. Xiao, Universality of multiparticle
production in QCD at high energies, Phys. Rev. D 87 (2013) 034007 [arXiv:1210.1141]
[INSPIRE].

[71] F. Dominguez, A.H. Mueller, S. Munier and B.-W. Xiao, On the small-z evolution of the
color quadrupole and the Weizsicker-Williams gluon distribution, Phys. Lett. B 705 (2011)
106 [arXiv:1108.1752] [INSPIRE].

[72] E. Iancu and D.N. Triantafyllopoulos, Higher-point correlations from the JIMWLK evolution,
JHEP 11 (2011) 105 [arXiv:1109.0302] [INSPIRE].

[73] E. Iancu and D.N. Triantafyllopoulos, JIMWLK evolution in the Gaussian approximation,
JHEP 04 (2012) 025 [arXiv:1112.1104] [INSPIRE].

[74] J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass
condensate approach. 2. Quark production, Nucl. Phys. A 743 (2004) 57 [hep-ph/0402257]
[INSPIRE].

[75] A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke and R. Venugopalan, Renormalization
group evolution of multi-gluon correlators in high energy QCD, Phys. Lett. B 706 (2011) 219
[arXiv:1108.4764] [INSPIRE].

[76] T. Altinoluk, N. Armesto, G. Beuf and A. Moscoso, Next-to-next-to-eikonal corrections in
the CGC, JHEP 01 (2016) 114 [arXiv:1505.01400] [iNSPIRE].

[77] T. Altinoluk and A. Dumitru, Particle production in high-energy collisions beyond the
shockwave limit, Phys. Rev. D 94 (2016) 074032 [arXiv:1512.00279] INSPIRE].

[78] T. Altinoluk, G. Beuf, A. Czajka and A. Tymowska, Quarks at next-to-eikonal accuracy in
the CGC I: Forward quark-nucleus scattering, arXiv:2012.03886 [INSPIRE].

[79] G.A. Chirilli, Sub-eikonal corrections to scattering amplitudes at high energy, JHEP 01
(2019) 118 [arXiv:1807.11435] [INSPIRE].

[80] P. Agostini, T. Altinoluk and N. Armesto, Non-eikonal corrections to multi-particle
production in the Color Glass Condensate, Eur. Phys. J. C 79 (2019) 600
[arXiv:1902.04483] [iNSPIRE].

[81] A. Kovner, M. Lublinsky and H. Weigert, Treading on the cut: Semi inclusive observables at
high energy, Phys. Rev. D 74 (2006) 114023 [hep-ph/0608258| [INSPIRE].

[82] A. Kovner and M. Lublinsky, One gluon, two gluon: Multigluon production via high energy
evolution, JHEP 11 (2006) 083 [hep-ph/0609227] [INSPIRE].

[83] E. Iancu and D.N. Triantafyllopoulos, JIMWLK evolution for multi-particle production in
Langevin form, JHEP 11 (2013) 067 [arXiv:1307.1559] [INSPIRE].

— 65 —


https://doi.org/10.1103/PhysRevD.89.074037
https://arxiv.org/abs/1403.2413
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.2413
https://doi.org/10.1103/PhysRevD.87.034007
https://arxiv.org/abs/1210.1141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.1141
https://doi.org/10.1016/j.physletb.2011.09.104
https://doi.org/10.1016/j.physletb.2011.09.104
https://arxiv.org/abs/1108.1752
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.1752
https://doi.org/10.1007/JHEP11(2011)105
https://arxiv.org/abs/1109.0302
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.0302
https://doi.org/10.1007/JHEP04(2012)025
https://arxiv.org/abs/1112.1104
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1104
https://doi.org/10.1016/j.nuclphysa.2004.07.006
https://arxiv.org/abs/hep-ph/0402257
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0402257
https://doi.org/10.1016/j.physletb.2011.11.002
https://arxiv.org/abs/1108.4764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.4764
https://doi.org/10.1007/JHEP01(2016)114
https://arxiv.org/abs/1505.01400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.01400
https://doi.org/10.1103/PhysRevD.94.074032
https://arxiv.org/abs/1512.00279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00279
https://arxiv.org/abs/2012.03886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.03886
https://doi.org/10.1007/JHEP01(2019)118
https://doi.org/10.1007/JHEP01(2019)118
https://arxiv.org/abs/1807.11435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.11435
https://doi.org/10.1140/epjc/s10052-019-7097-5
https://arxiv.org/abs/1902.04483
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04483
https://doi.org/10.1103/PhysRevD.74.114023
https://arxiv.org/abs/hep-ph/0608258
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0608258
https://doi.org/10.1088/1126-6708/2006/11/083
https://arxiv.org/abs/hep-ph/0609227
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0609227
https://doi.org/10.1007/JHEP11(2013)067
https://arxiv.org/abs/1307.1559
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.1559

	Introduction
	 Dijet cross-section at leading-order
	Kinematics
	The quark-gluon component of the quark light-cone wavefunction
	The quark-gluon cross-section at leading order

	Trijet cross-section at leading order
	The tri-parton components of the quark outgoing state
	The tri-quark final state
	The final state with one quark and two gluons

	The trijet cross-section
	The q q bar(q) final state
	The qgg final state


	Next-to-leading order corrections: the real terms
	The di-quark jet production
	The quark-antiquark di-jets
	The two-gluon di-jets
	The quark-gluon dijets

	Soft gluon emissions: recovering the B-JIMWLK evolution
	Direct emissions by the quark
	Direct contributions involving the 3-gluon vertex
	Interference graphs

	Collinear divergences: recovering the DGLAP evolution
	DGLAP evolution for the initial quark
	DGLAP evolution for the final quark
	DGLAP evolution for the final gluon: g to gg splitting
	DGLAP evolution for the final gluon: g to q bar(q) splitting

	Definitions of states and field quantization 
	Matrix elements

