
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

The hyplet : Joining a Program and a Nanovisor for real-time and Performance

© 2020 IEEE

Accepted version (Final draft)

Ben Yehuda, Raz; Zaidenberg, Nezer Jacob

Ben Yehuda, R., & Zaidenberg, N. J. (2020). The hyplet : Joining a Program and a Nanovisor for
real-time and Performance. In SPECTS 2020 : International Symposium on Performance
Evaluation of Computer & Telecommunication Systems. IEEE.
https://ieeexplore.ieee.org/abstract/document/9203743/

2020

The hyplet - Joining a Program and a Nanovisor for
real-time and Performance

Raz Ben Yehuda
University of Jyväskylä

Jyväskylä, Finland
raziebe@gmail.com

Nezer Jacob Zaidenberg
College of Management Academic Studies

Israel
scipio@scipio.org

Abstract—This paper presents the concept of sharing a hyper-
visor address space with a standard Linux program. In this work,
we add hypervisor awareness to the Linux kernel and execute
code in the HYP exception level through using the hyplet. The
hyplet is an innovative way to code interrupt service routines and
remote procedure calls under ARM. The hyplet provides high
performance and run-time predictability. We demonstrate the
hyplet implementation using the C programming language on an
ARM8v-a platform and under the Linux kernel. We then provide
performance measurements, use cases, and security scenarios.

Index Terms—Hypervisor, real time, Linux, Virtualization,
Security

I. INTRODUCTION

There are various techniques to achieve real-time comput-
ing. One is to use a single operating system that provides
real-time computing, such as standalone VxWorks or RT PRE-
EMPT which is a Linux kernel extension. Another technique is
the microvisor that co-exist with the general purpose operating
system. A microvisor is an operating system that employs
some characteristics of a hypervisor and some characteristics
of a microkernel. A typical architecture of a microvisor. OKL4
[8] is an example for operating system that uses a microvisor.
The hyplet (Figure 1) is a software, code and data, shared
between a process and a nanovisor. It is a hybrid of a normal
user program and a nanovisor that offers real-time processing
and performance. A hyplet program (1) maps parts of code
and data to the nanovisor, then it associates (2) the hyplet
handler with an event, IRQ or RPC (or both). At this point
(3), RPC that traps to the nanovisor, or IRQ (4) that upcalls
the nanovisor would trigger an (5) hyperupcall to the hyplet.

We introduce the hyplet for the purpose of interrupt han-
dling in user-space and for the purpose of efficient interprocess
communication. The fast RPC and the user-space interrupts
are done in a standard Debian, and with little modifications
to the user program. This paper aims to provide Real-Time
responsiveness to interrupts and fast RPC in cases where it
is not cost-effective to run a standalone RTOS or Linux RT
PREEMPT.
We present the hyplet ISR (Interrupt Service Routine) as a
technique to reduce hardware to user-space latency. The hyplet
is not aimed to replace a kernel space drivers in user-space,
but to propagate the interrupt to a process. Thus, the hyplet
can affect a driver’s behavior. For example, should the driver

Fig. 1. The hyplet nanovisor

process the packet or not. We will use the term hypISR to
distinguish a normal ISR from an ISR in hyplet mode.
In addition to hypISR, we present hypRPC. HypRPC is a
reduced RPC mechanism which has a latency of a sub-
microsecond on average, and 4 microseconds worst case. Our
RPC is a type of a hypervisor trap where the user process
sends a procedure id to the hypervisor to be executed with
high privilege without interrupts in another process address
space. We use the term hypRPC for our RPC as a mixture
between hyperuprcall and RPC.
One motivation for hypRPC is safety. In many cases, Real-
Time programmers tend to encapsulate most of the software
functionality in a single address space, so that the various
threads would easily access shared data. However, this comes
with the cost of a single thread crashing the entire process
in case of an error in this thread. Through the use of the
hypRPC we can separate a single multi-threaded process to
multiple processes. Other RPC solutions, as we show later in
the paper, are slower.
The hyplet is based on the concept of a delicate address
space separation within a process. Instead of running multiple
operating systems kernels, the hyplet divides the Linux process
into two execution modes: HYP and Normal. Part of the
process (HYP mode) would execute in an isolated, non-
interrupted privileged safe execution environment. The other
part of the process would execute in a regular user mode
(Normal mode). To summarize, the hyplet is meant to reduce
the latency of hardware interrupt to a user-space program,

and program to program local communication in user-space
programs to sub microsecond order of magnitude.
In the taxonomy of virtualization, hyplets are classified as
bare metal type 2 hypervisors. A type 2 hypervisor is a
hypervisor that is loaded by the host operating system. A
type 1 hypervisor is a hypervisor which is loaded by the boot
loader, prior to the general operating system (GPOS). The
hyplet does not require to be a virtual machine; thus it may
execute in hardware that does not have support for interrupts
virtualization. It is meant to be simple to use and adapt to the
existing code. It does not require any modifications to the boot
loader, only minor changes to the Linux kernel.

II. BACKGROUND

ARM has a unique approach to security and privilege
levels that is crucial to the implementation of the hyplet.
In ARMv7, ARM introduced the concept of secured and
non-secured worlds through the implementation of TrustZone,
and starting from ARMv7a. ARM presents four exception
(permission) levels as follows.
Exception Level 0 (EL0) Refers to the user-space code.
Exception Level 0 is analogous to ”ring 3” on the x86
platform.
Exception Level 1 (EL1) Refers to operating system code.
Exception Level 1 is analogous to ”ring 0” on the x86
platform.
Exception Level 2 (EL2) Refers to HYP mode. Exception
Level 2 is analogous to ”ring -1” or ”real mode” on the x86
platform.
Exception Level 3 (EL3) Refers to TrustZone as a special
security mode that can monitor the ARM processor and may
run a real-time security OS. There are no direct analogous
modes, but related concepts in x86 are Intel’s ME or SMM.

Each exception level provides its own set of special
purpose registers and can access these registers of the lower
levels, but not higher levels. The general purpose registers
are shared.
Microvisors, Microkernels, virtualization and para virtualizion
are all possible in this architecture. Microvisors are operating
systems that execute in EL2, Microkernels virtual memory
management (and some other parts) are kept mostly in EL1,
while the user services are kept in EL0. Virtualization is kept
in EL2 and para virtualization is kept both in EL1 and EL2.

III. THE HYPLET

The hyplet is a native C function that runs in a nanovisor
and a Linux process. It does not require any special
compilation or pre-processing. But before diving into the
technical details, we describe our motivation through use
cases.
Trusted Interrupts
The hyplet can be used to mask the handling of an interrupt
so that it will not be visible by the OS driver. Interrupts
handled by the hyplet can be verified by TPM or TrustZone,
and pose an extra layer of protection to reverse or modify,

unlike OS-based interrupt handler.
To modify a normal OS interrupt it is sufficient to elevate
privileges to the OS level. To modify a hyplet one must first
elevate permissions to the OS level, and then attack and
subvert the hypervisor itself.

The hyplet a malware detector
We showed that the hyplet RPC is the fastest in Linux.
For this reason, we used this technology for C-FLAT [1].
C-FLAT is a run time remote attestation technique that detects
malware-infected devices. It does so by recording a program
runtime behavior and monitoring the execution path of an
application running on an embedded device. [1] presents
C-FLAT through the use of the TrustZone. We implemented
C-FLAT through the use of hypRPC. We replaced the various
branch opcodes with the trap opcode. This effort is completed,
and due to the low overhead of the hypRPC, we can present
this technology in Linux and not in bare metal as in [1].

Protection against reverse engineering
On x86 platforms, TrulyProtect provides anti-reverse
engineering , end-point security, video decoding, forensics etc.
TrulyProtect relies on Dynamic Root of Trust Measurement
(DRTM) attestation to create a trusted environment in the
hypervisor to receive encryption keys [12]. We have used the
hyplet to implement a TrulyProtect-like system on the ARM
platform. We have encrypted parts of the software and used
the hyplet in order to switch context and elevate privileges.
Our systems then decode the code in the hypervisor context
(a hyplet), so that the code or decryption keys will not be
available to the OS. Our system for protection against reverse
engineering has a cost affiliated with first execution and
decryption of the code, but very low per iteration overhead
as demonstrated in the table below.

Iterations Encrypted Clear
1 1185 1127
10 2737 2597
100 18022 18018
1000 173925 171251
10000 1758997 1670811

TABLE I
DURATION OF STACK ACCESS IN TICKS

A. The hyplet explained

ARM8v-a specifications offer to distinct between user-space
addresses and kernel space addresses by the MSB (most
significant bits). The user-space addresses of Normal World
and the hypervisor use the same format of addresses.
These unique characteristics are what make the hyplet
possible. The nanovisor can execute user-space position-
independent code without preparations. Consider the code
snippet at Figure 2. The ARM hypervisor can access this
code’s relative addresses (adrp), stack (sp el0) etcetera without
pre-processing. From the nanovisor perspective, Figure 2 is a
native code. Here, for example, address 0x400000 is used both
by the nanovisor and the user.

400610: foo:
400614: stp x16, x30, [sp,#-16]!
400618: adrp x16, 0x41161c
40061c: ldr x0, [sp,#8]
400620: add x16, x16, 0xba8
400624: br x17
400628: ret

Fig. 2. A simple hyplet

So, if we map part of a Linux process code and data to a
nanovisor it can be executed by it.
When interrupt latency improvement is required, the code is
frequently migrated to the kernel, or injected as the eBPF
framework suggests [5]. However, kernel programming re-
quires a high level of programming skills, and eBPF is
restrictive. A different approach would be to trigger a user-
space event from the interrupt, but this would require an
additional context switch. A context switch in some cases
is time-consuming. We show later that a context switch is
over 10 µs in our evaluation hardware. To make sure that the
program code and data are always accessible and resident, it
is essential to disable evacuation of the program’s translation
table and cache from the processor. Therefore, we chose to
constantly accommodate (cache) the code and data in the
hypervisor translation registers in EL2 cache and TLB. To
map the user-space program, we modified the Linux ARM-
KVM, [6] mappings infrastructure to map a user-space code
with kernel space data.

Process

EL0
EL1
EL2MMU EL2

MMU EL0,EL1

Two exception Levels access the
same physical frame with the same
virtual address of some process.
However, the page tables of the two
exception levels are not identical.

Fig. 3. Asymmetric dual view

Figure 3 demonstrates how identical addresses may be
mapped to the same virtual addresses in two separate exception
levels. The dark shared section is part of EL2 and therefore
accessible from EL2. However, when executing in EL2, EL1
data is not accessible without previous mapping to EL2. Figure
3 presents the leverage of a Linux process from two exception
levels to three.
The natural way of memory mapping is that EL1 is responsible
for EL1/EL0 memory tables and EL2 is responsible for its
memory table, in the sense that each privileged exception level
accesses its memory tables. However, this would have put the
nanovisor at risk, as it might overwrite or otherwise garble
its page tables. As noted earlier, on ARM8v-a hypervisor has
a single memory address space. (unlike TrustZone that has

two, for kernel and user). The ARM architecture does not
coerce an exception level to control its memory tables. This
makes it possible to map EL2 page table in EL1. Therefore,
only EL1 can manipulate the nanovisor page tables. We refer
to this hyplet architecture as a Non-VHE hyplet. Also, to
further reduce the risk, we offer to run the hyplet in injection
mode. Injection mode means that once the hyplet is mapped to
EL2, the encapsulating process is removed from the operating
system kernel, but its hyplet’s pages are not released from the
nanovisor, and the kernel may not re-acquire them. It is similar
to any dynamic kernel module insertion.
In processors that support VHE (Virtual Host Extension), EL2
has an additional translation table, that would map the kernel
address space. In a VHE hyplet, it is possible to execute
the hyplet in the user-space of EL2 without endangering the
hypervisor. A hyplet of a Linux process in EL0EL1 (EL0
is EL1 user-space) is mapped to EL0EL2 (EL2 user-space).
Also, the hyplet can’t access EL2 page tables because the
table is accessible only in the kernel mode of EL2. VHE
resembles TrustZone as it has two distinct address spaces,
user and kernel. Operating systems such as QSEE (Qualcomm
Secure Execution Environment) and OP-TEE [18] are accessed
through an upcall and execute the user-space in TrustZone.
Unfortunately, at the time of writing, only modern ARM
boards offer VHE extension (ARMv8.2-a) and therefore this
paper demonstrates benchmarks on older boards.

B. The hyplet security & Privilege escalation in RTOS

As noted, VHE hardware is not available at the time of this
writing, and as such we are forced to use software measures
to protect the hypervisor. On older ARM boards it can be
argued that a security bug at hypervisor privilege levels may
cause greater damages compared to a bug at the user process
or kernel levels thus poising system risk.
The hyplet also escalates privilege levels, from exception level
0 (user mode) or 1 (OS mode) to exception level 2 (hypervisor
mode). Since the hyplet executes in EL2, it has access to EL2
and EL1 special registers. For example, the hyplet has access
to the level 1 exception vector. Therefore, it can be argued
that the hyplet comes with security cost on processors that do
not include ARM VHE.
The hyplet uses multiple exception levels and escalates privi-
lege levels. So, it can be argued that using hyplets may damage
application security. Against this claim, we have the following
arguments.
We claim that this is risk is superficial and an acceptable risk,
for processors without VHE support. Most embedded systems
and mobile phones do not include a hypervisor and do not run
multiple operating system.
In the case where no hypervisor is installed, code in EL1
(OS) has complete control of the machine. It does not have
lesser access code running in EL2 since no EL2 hypervisor is
present. Likewise code running in EL2 can affect all operating
systems running under the hypervisor. Code running in EL1
can only affect the current operating system. When only one
OS is running the two are identical.

Therefore, from the machine standpoint, code running in EL1
when EL2 is not present has similar access privileges to code
running in EL2 with only one OS running, as in the hyplet
use case.
The hyplet changes the system from a system that includes
only EL0 and EL1 to a system that includes EL0, EL1, and
EL2. The hyplet system moves a code that was running on
EL1 without a hypervisor to EL2 with only one OS. Many
real-time implementations move user code from EL0 to EL1.
The hyplet moves it to EL2, however, this gains no extra
permissions, running rogue code in EL1 with no EL2 is just
as dangerous as moving code to EL2 within the hyplet system.
Additionally, it is expected that the hyplet would be a signed
code; otherwise, the hypervisor would not execute it.
The hypervisor can maintain a key to verify the signature and
ensure that lower privilege level code cannot access the key.
Furthermore, Real-time systems may eliminate even user and
kernel mode separation for minor performance gains. We argue
that escalating privileges for real performance and Real-time
capabilities is an acceptable on older hardware without VHE
where hyplets might consist of a security risk. On current
ARM architecture with VHE support the hyplet do not add
extra risk.

C. Static analysis to eliminate security concerns

Most memory (including EL1 and EL2 MMUs and the
hypervisor page tables) is not mapped to the hypervisor. The
non-sensitive part of the calling process memory is mapped
to EL2. The hyplet does not map (and thus has no access to)
kernel-space code or data. Thus, the hyplet does not pose a
threat of unintentional corrupting kernel’s data or any other
user process unless additional memory is mapped or EL1
registers are accessed.
Thus, it is sufficient to detect and prevent access to EL1
and EL2 registers to prevent rogue code affecting the OS
memory from the hypervisor. We coded a static analyzer that
prevents access to EL1 and EL2 registers and filters any special
commands.
We borrowed this idea from eBPF. The code analyzer scans
the hyplet opcodes and checks that are no references to
any black-listed registers or special commands. Except for
the clock register and general-purpose registers, any other
registers are not allowed. The hyplet framework prevents new
mappings after the hyplet was scanned to prevent malicious
code insertions. Another threat is the possibility of the in-
sertion of a data pointer as its execution code (In the case
of SIGBUS of SEGFAULT, the hyplet would abort, and the
process terminates). To prevent this, we check that the hyplet’s
function pointer, when set, is in the executable section of the
program.
Furthermore, the ARM architecture features the TrustZone
mode that can monitor EL1 and EL2. The TrustZone may be
configured to trap illegal access attempts to special registers
and prevent any malicious tampering of these registers.

D. The hyplet - User-Space Interrupt

In Linux and other operating systems, when an interrupt
reaches the processor, it triggers a path of code that serves the
interrupt. Furthermore, in some cases, the interrupt ends up
waking a pending process.
The hyplet is designed to reduce the time from the interrupt
event to the program. To achieve this, as the interrupt reaches
the processor, instead of executing the user program code in
EL0 after the ISR (and sometimes after the bottom half), a
special procedure of the program (Figure 4) is executed in
HYP mode at the start of the kernel’s ISR.

EL1
ISR

ISR

EL2
Q in EL0

hypISR
ERET

HVC

Fig. 4. HypISR flow

The hyplet does not change the processor state when it is
in interrupt; thus, once the hyplet is completed, the kernel
interrupt can be processed.
The hyplet does not require any new threads and because the
hyplet is an ISR, it can be triggered in high frequencies. As a
result, we can have high-frequency user-space timers in small
embedded devices.
Some may argue that the hyplet should have been implemented
as a virtual interrupt. However, many ARMv8-a platforms
do not support VGIC (virtual Interrupt Controller). Rasp-
berry PI3, for example, does not fully support VGIC (as
a consequence, ARM-KVM does not run on a Raspberry
PI3). Interrupts are then routed to the hypervisor by upcalls
from the kernel main-interrupt routine, and the nanovisor
communicates with the guest through a hyperupcall [2]. Nested
hyplet interrupts are not possible.

E. Hypervisor based RPC

The remote procedure call is a type of interprocess commu-
nication (IPC) in which parameters are transferred in the form
of function arguments. The response is returned as the function
return value. The RPC mechanism handles the parsing and
handling of parameters and the returned values. In principle,
RPC can be used locally as a form of IPC and remotely over
TCP/IP network protocols. In this paper, we only consider the
local case.

IPC in real-time systems is considered a latency challenge.
Thus system developers refrain from using IPC in many
cases. The solution many programmers use is to put most of
the logic in a single process. This technique decreases the
complexity but increases the program size and risks.
In multicore computers, one reason for the latency penalty is
because the receiver may not be running when the message
is sent. Therefore, the processor needs to switch contexts.

HypRPCs are intended to reduce this latency to the sub-
microsecond on average by eliminating the context switch (in
some way the hyplet is viewed as a temporary address-space
extension to the sending program).
If the receiving program exits, then the API immediately
returns an error. If the function needs to be replaced in
real-time, there is no need to notify the sending program;
instead, the function in the hypervisor only needs to be
replaced.

EL0
P

P

EL2
Q in EL0

hypRPC
ERET

BRK

Fig. 5. HypRPC flow

Figure 5 demonstrates the hypRPC flow. Program P is a
requesting program, and Q is a serving program. As program
P loads, it registers itself as a hypRPC requesting program. A
hypRPC program, unlike hypISR, is a program that when it
executes the BRK instruction, it traps into HYP mode. The
reason for that is that user-space programs are not permitted
to perform the upcall instruction. When P calls BRK, the
first argument is the RPC id, i.e; x0 = rpcid. As the processor
executes BRK, it shifts to HYP mode. Then the hypervisor
checks the correctness of the caller P and the availability of
Process Q, and if all is ok, it executes in EL2 the function
with this id.
The semantics of hypRPC is different from the common
RPC. In a common RPC, the receiver is required to assign a
thread to wait for the caller, and if a single thread is used,
a serialized access provides protection. In Q, accessing a
resource shared from the nanovisor and Normal world must
be protected, even if Q has no threads. The protection is
achieved by disabling context-switch and disabling access
from another processor, using synchronization primitives we
provide.

The hyplet has some additional benefits:
Safety
The hypISR provides a safe execution environment for the
interrupt. In Linux, if there is a violation while the processor
is in kernel mode, the operating system may stop. In the
hyplet case, if there is a fault in the hypISR, the nanovisor
would trigger a violation (for instance, a SEGFAULT). The
nanovisor would send, through the kernel, a signal to the
process containing the hyplet. This signal is possible because
the fault entry of the nanovisor handles the error as if it is
a user-space error. For example, if a divide-by-zero failure
happens, the operating system does not crash, but the hyplet
capable-program exits with a SIGFPE.
Some may claim that endless loops may hog the processor.

For this, we argue that OP-TEE shares the same vulnerability
because in OP-TEE the tee-supplicant blocks on a session
until the TA (trusted application) finishes. However, we still
offer to handle endless loops by replacing the hyplet code by
the NOP (no operation) opcode. The hyplet will exit back to
the nanovisor, the nanovisor will put back the original code
and send a SIGKILL signal to the process.
We offer to handle code injection by caching the original
code and overwriting it once an injection is detected. It is
possible to checksum the hyplet code and see if it is changed,
and if so re-write the original code [15].
Another facet of hypISR is sensitive data protection. We can
use the hyplet to securely access data, and I/O data may be
hidden from EL1 and accessible only in EL2.
Scope of Code Change
The hyplet patch does not interfere with the hardcore of
the kernel code, and the hyplet patch does not require any
modification to any hardware driver. The modifications are
in the generic ISR routine. As a result, it is easy to apply
this technology as it does not change the operating system
heuristics. Microvisors, such as seL4 and Xvisor, are not
easily applied to arbitrary hardware because they require
a modified boot loader, making it impossible to apply the
microvisors in some cases, for example, when the boot-loader
code is closed (mobile phones). Jailhouse [3] and KVM do
not even run on many devices because virtualization does
not suffice (the GIC virtualization is incompatible) in some
cases, and raspberry PI3 is an example of such virtualization
hardware. In Android OS, it is undesirable to apply RT
PREEMPT because it changes the entire operating system
behavior. Our nanovisor does provide any service other than
bridging to the hyplet. A user chooses to add services to the
microvisor as part of the hyplet-utils library.

IV. EVALUATION

We demonstrate that the hyplet is suitable for hard real-
time systems. We provide synthetic microbenchmarks, and
compare our solution to Normal Debian Linux, RT PRE-
EMPT Linux(kernel version 4.4.92), seL4 microkernel (ver-
sion 10.0.0.0) [10], and Xvisor (v0.2.11), all on a Raspberry
PI3. PI3 main specifications are a 19.2 MHz, 4 ARM Cortex
A53 1.2GHz cores and 1GB RAM 900 MHz.
We selected Xvisor because Xvisor is a thin microvisor.
We chose RT PREEMPT because it is considered a free
open source non-commercial RTOS Linux OS, and we chose
seL4 because it is a hard real-time mathematically proven
microkernel. The time units we use are due to the clock
granularity, which is 109

19.2∗106 = 52 nanoseconds per tick. We
start by evaluating PI3 interrupt latency.

A. Interrupt Latency

To understand the possible time deviations in the Timer’s
test(in the next section), we start first by evaluating the latency
of an interrupt in PI3.
We measured the delay from the attached hardware to the start
of the hyplet. For this purpose, we connected an Invensense

mpu6050 to the PI, and configured this IMU to work in
i2c protocol. In i2c, for every 8 bits of data, there is an
acknowledgment signal, that generates an interrupt to the PI.
We wanted to measure the time interval between the moment
of the i2c ACK, to the moment the processor runs the main
interrupt routine. So, we connected a logic analyzer probe to
the SDA of the IMU and programmed one of the PI’s GPIO to
trigger a signal in the kernel’s main interrupt routine. This way
we could take the time of the IMU ACK signal, and the kernel
ISR time. We generated the i2c signals in random times. The
results were an average of 3.9 µs, a maximum of 9µs, and the
minimum was 1.7µs.
First, we should not expect interrupts to be processed in
deterministic times. A deviation of nearly 5 µs from the
average (3.9 µs) is a lot. This can happen for various reasons,
such as interrupts congestion or TLB latency and so on.
Also, this benchmark means that if we connect a device that
ticks in a high frequency, such as 100Khz, two consequent
interrupts may appear in 1.9µ delta. So, while the kernel can
handle these interrupts in-accuracy, the user-space will miss
the second interrupt.

B. Timer

We continue the evaluation and construct a hyplet timer.
Table II presents the measured delay latencies of the timer
programs in various operating systems. We conducted a delay
of 1 ms for 5 minutes. In RT PREEMPT and Normal Raspbian
Linux we used cyclictest, a real-time test suit for Linux.
Cyclictest is a test software that measures timer latency in
Linux. Cyclictest implements a sleeper thread, takes a time
sample, goes to sleep, and when woken it records the time
differences and goes back to sleep again. Cyclictest binds the
waiting thread to a single processor.
Since Cyclictest is not available in seL4 and Xvisor, we wrote
a timer microbenchmark that sleeps for 1 ms and records the
time differences. In Xvisor, to make the test equal to the hyplet
as much as possible, in terms of which privilege level the code
was executed, our simple timer ran in HYP mode (not in the
VM/guest OS).

ranges RT Hyplet Nrmal Xvsr seL4
in µs PRPT
0 0 99.9477 0 0 0
1 0 0.0523 0 0 0
2-5 0 0.0020 0 0 100
6-10 0 0 47.7 99.9 0
11-15 69 0 49.7 0 0
16-20 28 0 1.6 0 0
21-25 2 0 0.25 0 0
26-30 0.085 0 0.26 0 0
31-35 0.01 0 0.0874 0 0
36-40 0.05 0 0.034 0 0
41-45 0.001 0 0.034 0 0
46-50 0.0003 0 0.05 0 0
51-55 0 0 0.0321 0 0
56-100 0 0 0.18 0 0
101+ 0 0 0.0014 .1 0

TABLE II
: LATENCIES DISTRIBUTION IN PERCENTAGE

Table II presents the delay deviations of each OS. The tests
were conducted while the operating systems were idle. This
is because it is not easy to load the operating systems and
measure the load in all the operating systems we tested, and
in some cases, the operating systems were not stable enough
to sustain a load. For the analysis, we assume a deviation of
approximately 5% soft real-time and below hard real-time.
In the hyplet case, 99.96% of the samples are below 1µs
latency, and 100% are below 5µs. The deviation is probably
because of the interrupt latency we showed earlier. The maxi-
mum latency of 9 µs is probably not reflected here, because, in
this test, the interrupt source is the local timer. The deviation
is below 5

1000 = 1
2%.

In the RT PREEMPT case, the upper boundary was 47µs, and
14µs on average. RT PREEMPT’s deviation in PI3 is nearly
5% = 50

1000 . We consider RT PREEMPT on PI3 soft real-time.
In Normal Linux, the maximum value was 144µs, and the
distribution of the values was higher. So the deviation is 14
%, which, as expected, shows that Normal Linux is a non-
real-time OS.
Xvisor presents an impressive benchmark where 99.9% of
samples jitter is less than 8 µs, the rest, unfortunately, were
nearly 500 µs. Xvisor is not RTOS.
SeL4 is an RTOS. SeL4 produces a remarkable latency of less
than 5 µs, approximately 1

2 % maximum deviation.
To conclude, it is evident that hypISR can provide hard real-
time in a regular Linux kernel, and since seL4 is not abundant
software as Linux, hypISR can be used as a real-time solution
in some cases.

C. Fast RPC

Here we demonstrate an RPC that eliminates context
switches and therefore increases the remote call predictability.
This section focuses on performance. We evaluated the round
trip delay of calling a function that returns the time. For
Xvisor, Native Linux and RT PREEMPT we used ptsematest,
which is part of the Linux rt-test suite. Ptsematest measures
interprocess latency communication with POSIX mutexes.
Ptssematest starts two threads and synchronizes them with
pthread lock and pthread unlock APIs. The receiving thread
locks the mutex, and the sending thread releases the mutex.
The time difference between the unlock to lock is the IPC
duration.
In seL4 we used ptsematest-like test (sync.c) because pt-
sematest is not available in seL4. We used two threads, a
consumer and a producer, the consumer waits on a semaphore
(sync bin sem t) and the producer signals the semaphore.
The hyplet test was a C program that made an RPC to a
hyplet’ed process. The RPC returned the time stamp from the
hyplet’ed process. The traveling time from the sender to the
hyplet was recorded.
The reference test is to evaluate the cost of the function of the
hyplet when not in HYP mode. We measured how much time
it costs to call the function in the hyplet’ed process. Table III
depicts the results. The tests were conducted on an idle system.
The hyplet is the fastest RPC, even in the worst case. Xvisor

Name Avg Max
Ref 156ns 520ns
Hyplet 520ns 4.2µs
Normal 13µs 56µs
RT PRMT 15 µs 59µs
Xvisor 203µs 7067µs
seL4 8µs 17µs

TABLE III
ROUND TRIP RPC

results are the worst, it seems that its hypervisor preempts the
OS for long durations. SeL4 RPC is on average is 13 times
slower than the hyplet.
The maximum latency of the hyplet is may be due to the clock
deviation, which is 140ppm. It is not cache misses or TLB EAT
(Effective Access Time) because each exception level in ARM
has its private cache and TLB, which is never evacuated.
Normal and RT PREEMPT results are close, which leads to
the understanding that a context switch, on average, between
two threads of the same process, on Linux in PI, is 14 µs
compared to seL4’s context switch which is on average 8 µs.

V. USABILITY

Due to the limitations of this paper, we do not present
the full API. HypletUtil is a library that provides a services
such as memory mappings to the nanovisor, synchronization
primitives, events, printing and many others. Our library also
provides delicate mapping. Delicate mapping is used when
we want to map only certain global variables and functions to
the nanovisor. For this, we use GCC sections. For example:

__attribute__ ((section("hyp"))) unsigned int a = 0;
unsigned int b = 0;

In this case, we want only to map the variable ”a” and
not ”b”. So, we grab the ELF (Executable Linkable Format)
section ”hyp” and map it to the nanovisor. For example, the
below maps the section ”hyp” to the nanovisor.
In non-inject mode, the hyplet can be removed the minute
the process terminates, gracefully or not, or by explicitly
unregisters the hyplet. Also, it is mandatory to lock the hyplet
memory to the RAM to avoid relocation, invalidation, or
swapping.

VI. RELATED WORK

The extended Berkely Packet Filter (eBPF) [5] is described
as an in-kernel VM, and eBPF provides the ability to attach
a program to a certain tracepoint in the kernel. Whenever the
kernel reaches the tracepoint, the program is executed without
a context switch. eBPF is undergoing massive development
and is mainly used for packet inspection, tracing, and probing.
It runs in kernel mode, which is considered unsafe, but it
uses a verifier to check that there are no illegal accesses to
kernel areas or some tampering registers. Access to the user-
space is enabled through memory maps. Also, eBPF uses
LLVM and requires clang to generate a JIT code and has
a small instruction set. As a consequence, eBPF has serious

limitations. Particularly, only a subset of the C language can
be compiled into eBPF; as such eBPF has no loops, no native
assembly, no static variables, and no atomics. Furthermore,
using eBPF may not take a long time and is restricted to 4096
instructions. This is not the case with the hyplet. The hyplet is
not a program that executes in the kernel’s address space, but
in the user’s address space. So, there is no need for maps to
share data between the user and the kernel. The hyplet does
not require any special compiler extensions and is much less
restricted (what mapped prematurely can be accessed) and less
complicated to use compared to eBPF. In general, the hyplet
is meant to process events in user-space while eBPF collects
data and processes it in kernel mode.
Hyperupcalls [2], which are ePBF extensions for a hypervisor,
are a means to run hypervisor code in the guest’s kernel
context. Hyperupcalls are intended mainly for monitoring the
health of the guest VM and are available only for the x86
architecture. The hyplet, in contrast, only uses the hypervisor
and is not intended for the control and management of VMs.
Nevertheless, it is possible to combine eBPF and the hyplet
technologies so an eBPF program invokes a hyplet directly.
There has been a significant amount of research on secure
microkernels and microvisors. A prominent microvisor is
the OKL4 by Open kernel labs. The OKL4 microvisor [8]
is a secure hypervisor that is supported by Cog systems
and General Dynamics. The OKL4 microvisor supports both
paravirtualization and pure virtualization. It is designed for
the IoT and mobile industries and supports ARMv5, ARMv6,
ARMv7, and ARMv8. Unlike the hyplet, the OKL4 microvisor
is a full kernel executing in HYP mode. OKL4 microvisor
has an open source sister project microkernel called seL4.
Installing seL4 and running it is a challenging task because
seL4 requires expertise and the adoption of the hardcore of
the code. Another L4 para-virtualization technology is the
L4Linux [7] para-virtualized Linux kernel, that runs on top
of the L4Re [13] microkernel. This system demonstrates real-
time when threads execute in the microkernel. It transparently
migrates a Linux thread to an L4Re thread. This is possible
since the L4Linux reuses address spaces and threading APIs
of the L4Re microkernel. [11] presents a hard real-time in
x86 and ARM. However, this technology requires a special
Linux variant kernel and an SMP machine. The hyplet was
ported to several kernel versions, (3.18 (android), 4.4, 4.1,
4.10, and 4.17) and several SOMs (Mediatech phone, Hikey,
or any other ARMv8a processors) and it can execute on a
single processor. This is possible because we re-used many of
Linux virtualization capabilities (KVM).
Dune [4] is a system that provides a process rather than
a machine abstraction through virtualization. Dune offers a
sandbox for untrusted code, a privilege separation facility, and
a garbage collector. Dune is implemented on Intel architecture
and can be implemented with hyplets. However, this imple-
mentation means coercing a VM on hyplets, which is not the
intended use of a hyplet.
In the area of pure virtualization, some efforts, such as
Jailhouse and Xvisor, were made to run a guest OS as an

RTOS. Jailhouse demonstrates that it is possible to run an
RTOS guest on top of a thin hypervisor and still achieve low
latencies.
In the Linux area, the topic of user-space drivers handling
IO events and exists in the Linux kernel inside the Universal
I/O (UIO) framework. The UIO device driver is a user-space
driver that blocks until an interrupt arrives. UIO offers an easy
way to interact with various hardware devices. However, UIO
device drivers are not suitable for devices with a high interrupt
frequency.

VII. SUMMARY

A. Future work

We intend to implement the hyplet for PowerPC. PowerPC
shares some ARM capabilities, and the results will determine
whether using the hyplet is efficient. We expect that ARM
virtualization host extension becomes available for commercial
use, and test the VHE hyplet performance.

B. Conclusions

We have introduced a new way ARM hypervisor instruc-
tions can enhance Linux performance in real-time systems.
These features allow for security and performance benefits.
The hyplet allows coding interrupts with a predictable µs la-
tency and highly efficient RPC. We have implemented hyplets
variant as security solutions for ARM.

REFERENCES

[1] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg,
Thomas Nyman, Andrew Paverd, Ahmad-Reza Sadeghi,
and Gene Tsudik. C-flat: control-flow attestation for
embedded systems software. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 743–754. ACM, 2016.

[2] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages 97–
112, 2018.

[3] Maxim Baryshnikov. Jailhouse hypervisor. B.S. thesis,
České vysoké učenı́ technické v Praze. Vypočetnı́ a
informačnı́ centrum., 2016.

[4] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged cpu features. In Osdi,
volume 12, pages 335–348, 2012.

[5] Jonathan Corbet. Bpf comes to firewalls, 2018.
[6] Christoffer Dall and Jason Nieh. Kvm/arm: The design

and implementation of the linux arm hypervisor. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 333–348, New
York, NY, USA, 2014. ACM.

[7] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, and Jean Wolter. The performance
of µ-kernel-based systems. ACM SIGOPS Operating
Systems Review, 31(5):66–77, 1997.

[8] Gernot Heiser and Ben Leslie. The okl4 microvisor:
Convergence point of microkernels and hypervisors. In
Proceedings of the First ACM Asia-pacific Workshop on
Workshop on Systems, APSys ’10, pages 19–24, New
York, NY, USA, 2010. ACM.

[9] Wataru Kanda, Yu Yumura, Yuki Kinebuchi, Kazuo Mak-
ijima, and Tatsuo Nakajima. Spumone: Lightweight cpu
virtualization layer for embedded systems. In Embedded
and Ubiquitous Computing, 2008. EUC’08. IEEE/IFIP
International Conference on, volume 1, pages 144–151.
IEEE, 2008.

[10] ”Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood”.
sel4: formal verification of an os kernel. In Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XIII, pages 168–178, New York, NY,
USA, 2008. ACM.

[11] Adam Lackorzynski, Carsten Weinhold, and Hermann
Härtig. Predictable low-latency interrupt response
with general-purpose systems. In Proceedings of OS-
PERT2017, the 13th Annual Workshop on Operating
Systems Platforms for Embedded Real-Time Applications
OSPERT 2017, pages 19–24, 2017.

[12] William Rosenblatt, Stephen Mooney, and William
Trippe. Digital rights management: business and tech-
nology. John Wiley & Sons, Inc., 2001.

[13] Alexander Warg and Adam Lackorzynski. The fiasco. oc
kernel and the l4 runtime environment (l4re). avail.

[14] Bruno Xavier, Tiago Ferreto, and Luis Jersak. Time
provisioning evaluation of kvm, docker and unikernels in
a cloud platform. In Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Sympo-
sium on, pages 277–280. IEEE, 2016.

[15] Raz Ben Yehuda and Nezer Jacob Zaidenberg. Protection
against reverse engineering in arm. International Journal
of Information Security, 19(1):39–51, 2020.

[16] Jun Zhang, Kai Chen, Baojing Zuo, Ruhui Ma, Yaozu
Dong, and Haibing Guan. Performance analysis towards
a kvm-based embedded real-time virtualization architec-
ture. In Computer Sciences and Convergence Information
Technology (ICCIT), 2010 5th International Conference
on, pages 421–426. IEEE, 2010.

[17] Baojing Zuo, Kai Chen, Alei Liang, Haibing Guan, Jun
Zhang, Ruhui Ma, and Hongbo Yang. Performance
tuning towards a kvm-based low latency virtualization
system. In Information Engineering and Computer Sci-
ence (ICIECS), 2010 2nd International Conference on,
pages 1–4. IEEE, 2010.

[18] Op tee , linaro limited: Open portable trusted execution
environment

