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ABSTRACT
We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account
the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled
oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Sig-
natures of this failure are the temperature dependent minimum point of the polariton peak splitting, the uneven polariton peak height
at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed “zero-detuning” point.
Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depend-
ing on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a
sanity check of the experiments trying to “prove” results originating from strong coupling, such as vacuum-enhanced chemical reaction
rate.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0036905., s

I. INTRODUCTION

Strong coupling between electromagnetic modes and electronic
excitations has emerged as a tool to modify internal material prop-
erties and dynamics in various systems from light harvesting1 and
energy transport2–5 to controlling photochemical reactions.6–9 The
strong coupling regime is typically reached when the interaction-
driven splitting of the dressed state, or polariton, eigenenergies
becomes larger than their linewidth. Only then, the avoided cross-
ing in the energy spectrum can be identified. This is rather clear
in systems with a Lorentzian response that can be described by
adding imaginary parts to the photon/exciton eigenenergies. How-
ever, in the case of molecules, the main cause of linewidth broaden-
ing often originates from vibrational dissipation, which does not typ-
ically produce a Lorentzian response. Here, we consider in detail a
rather generic model system (two-level system and harmonic vibra-
tions) to explore the effects of Brownian vibrational dissipation to
the polaritonic spectrum. Comparing the results of such a model
to the experimentally obtained polariton fingerprints then provides
a sanity check of those experiments, helping to rule out spurious
effects.

Our approach is based on the open quantum system model that
we introduced in Ref. 10 to study the polariton response in the case
where surface plasmon polaritons couple strongly with molecular
excitations. Here, we modify this approach to concentrate on the
case of a cavity containing a large number of molecules interacting
with the cavity mode. The qualitative difference between these sys-
tems is that in the cavity case the molecular excitations are coupled
with the free field only via the cavity field. We also focus on study-
ing the role of vibrational dissipation on renormalizing the effective
strong coupling parameters, especially in the case approaching the
overdamped vibrations.

We consider the setup shown in Fig. 1. It consists of a cavity
with eigenfrequency ωc and linewidth κc, probed externally via a
field coupling through one of the cavity mirrors. Inside the cavity,
there are a (large) number N of molecules with excitation frequency
ωm. We denote the coupling energy between the cavity fundamen-
tal mode and a single exciton by g j. At the same time, the molec-
ular excitation couples to its vibration mode with eigenfrequency
ωv via a coupling strength

√
Sωv , where S is the Huang–Rhys

factor.11 We assume the vibrations to reside in a bath with tempera-
ture T, providing them with a linewidth γ. This vibrational coupling
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FIG. 1. Schematic picture of a measurement setup in which the cavity eigenfre-
quency ωc is controlled by both the length L between the mirrors and the angle α of
incident light of frequency ωd . This confined light mode couples to molecules with
harmonic vibrations. In this article, we focus on the elastic cavity emission or trans-
mission, that is, the observed light power at frequency ω = ωd . For explanation of
other parameters, see the main text.

gives the individual molecules their Stokes shift and provides their
inhomogeneous broadening.12

We illustrate the effects of this inhomogeneous broadening on
the polariton eigenmodes via the system response in Fig. 2. Com-
pared to the model in which the molecule response is taken as
Lorentzian—known as the coupled oscillator model—the polari-
tonic spectrum has a few distinct features. First, the vibrations cause
an asymmetry between the upper and lower polariton peaks, which
is similar to that obtained by changing the detuning between the cav-
ity and molecular frequency. However, this effect cannot be imitated
by using a Lorentzian molecular response because this asymmetry is
caused by the asymmetry of the molecular response. Second, we find

FIG. 2. Example of the polariton spectra under the coupled oscillator model
(orange dashed line) and our P(E) model (blue solid line), assuming a very high
finesse cavity tuned so that the spacing between the polariton peaks is at its small-
est. The inset shows the respective absorption profiles. Since the cavity dissipation
κc is negligible, in the Lorentzian model, we find the Lorentzian polariton peaks
whose linewidth is half of the “molecular” linewidth κm. When the vibrations and
their dissipation are taken into account, one can find the non-Lorentzian behavior,
renormalization of Rabi splitting, and changes in the linewidths.

that the polaritonic frequencies are renormalized, which affects the
observed Rabi splitting.

A. Coupled oscillators
We briefly motivate the upcoming discussion with the often-

used “coupled oscillators” model of polaritonics. It describes the
cavity and excitonic modes as effectively harmonic oscillators; the
cavity mode has the eigenfrequency ωc, while for the exciton, it is
ωm. The rotating wave approximation is often made to simplify the
coupling between these modes.13 Then, in the single-excitation sub-
space, the Hamiltonian for a single molecule in a cavity is given by
(h̵ = 1 throughout the text)

H = (
ωc g
g∗ ωm

). (1)

This is the Jaynes–Cummings Hamiltonian.14 The polariton eigen-
frequencies are then obtained by diagonalizing this matrix, which
gives

ω± =
ωc + ωm

2
±
√
∣g∣2 + (ωc − ωm)2/4. (2)

Perhaps, the most straightforward and often-used way to model dis-
sipation is to introduce an imaginary shift in the eigenfrequencies.
That is, we set ωc → ωc − iκc for the cavity and similarly ωm → ωm
− iκm for the exciton. This method leads to Lorentzian line shapes
for the cavity and the exciton alone. Consequently, if the dissipation
is inserted to the polaritonic frequencies at resonance ωc = ωm, one
finds

ω± = ωm − i
κc + κm

2
±
√
∣g∣2 − (κc − κm)2/4, (3)

from which one infers (κc + κm)/2 to be the polariton linewidth.15

However, the molecular vibrations cannot often be neglected in
molecular polaritonics. It is quite obvious that the vibrational modes
have their own complex dynamics as well as coupling to their envi-
ronment, which shape the absorption and fluorescence spectra of
molecules. We show that even in the simplest vibrational models,
the dissipative properties of the molecular vibrations, which in fact
are the main source of line broadening, have quite intricate physics
and thus effects on the polariton spectrum.

II. INPUT–OUTPUT THEORY OF MOLECULE-CAVITY
SPECTROSCOPY

In this article, we consider a simplified model of a molecule
as a two-level system with harmonic vibrations. In the language
of operators, we associate a lowering operator σ to the electronic
two-level system, while the phonons of vibrations are destroyed by
b. The Hamiltonian is then characterized by the eigenenergies, ωm
and ωv , of the two-level system and vibrations, respectively, and the
dimensionless Huang–Rhys factor S quantifying their coupling

Hmol = ωmσ†σ + ωvb†b + ωv

√
Sσ†σ(b + b†). (4)

We assume that there are N identical particles that are described by
this Hamiltonian.
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Here, we consider that these molecules are embedded in a
Fabry–Pérot cavity of eigenfrequency ωc. For instance, the cav-
ity eigenfrequency may be tuned by controlling the length of
the cavity L and the incident light angle α by the relation
ωc = πc

L /
√

1 − sin2(α)/n2
eff, where c is the speed of light and neff is the

effective refractive index inside the cavity.16 The electronic coupling
strength is described by a constant g j. When we denote the cavity
photon annihilation operator by c, the full Hamiltonian under the
rotating wave approximation is

H = ωcc†c +
N

∑
j=1
(Hmol,j + gjc†σj + g∗j σ

†
j c), (5)

which is often referred to as the Holstein–Tavis–Cummings Hamil-
tonian.17 Under the assumption of identical particles, the relevant
strong coupling constant is∑N

j=1 ∣gj∣2 ≡ g2
N .

In order to observe anything spectroscopically, the cavity must
be driven by an external light source, which we assume to have a
low power so that we can concentrate on the lowest order response.
We assume a laser drive at a driving frequency ωd. Then, some light
will leak out of the other side of the cavity. We are interested in
this transmission spectrum ST(ω; ωd), where, in general, ω is the
frequency of the transmitted light. Any observed polaritonic emis-
sion is mediated by the cavity—there is no direct emission from the
molecules. This simplifies the description of the spectrum as there
cannot be interference between the cavity and molecular emission.
In addition, the light emission should mostly be observed at the
driving frequency. In this article, we neglect all processes that could
cause inelastic behavior. This may be experimentally guaranteed by
fixing the outgoing angle to be the same as the incident angle and
measuring light power only at the frequency equal to the driving
frequency ω = ωd.

We assume that there exists an environment for each of the
vibrational, excitonic, and cavity modes; coupling to these environ-
ments leads to dissipation. Both the driving and dissipation may
be taken into account in the input–output formalism of quantum
optics.18 It describes the quantum dynamics in the Heisenberg pic-
ture and can be considered an open quantum system modification
to the Heisenberg equation. Without vibrations, this method gives
similar results to those alluded in Eq. (3). However, the vibrations
complicate finding the cavity reflection and transmission spectra
notably as the equations of motion are nonlinear. The solution is
obtained by moving into a polaron frame, i.e., finding the dynam-
ics of σS = σe

√
S(b†−b), which allows for simplifying approxima-

tions that in the end decouple the vibrational dynamics from those
of the cavity-exciton system.10,19 The cavity transmission or emis-
sion spectrum is in this model ST(ω;ωd) ∝ ∣r(ωd)∣2δ(ω − ωd)
where the physics is contained in the cavity response
function10

r(ωd) = [i(ωd − ωc) −
κc
2

+ g2
NA(ωd − ωm + Sωv)]

−1
. (6)

The molecular contribution to the polaritonic spectrum is the
absorption function

A(ω) = ∫ dE
P(E)

i(ω − E) − κm/2
. (7)

The absorption profile of the molecule without the cavity is given
by Re[−A(ω)]. Here, P(E) describes the probability to emit (E > 0)
or absorb (E < 0) energy E to/from the vibrations. It can be
expressed as

P(E) = ∫
dt
2π

eiEt⟨eφ(t)e−φ(0)⟩ = ∫
dt
2π

eiEteJ(t)−J(0), (8)

where φ(t) =
√
S[b†(t) − b(t)] is proportional to the momen-

tum operator of the vibrations in the Heisenberg picture, while
J(t) = ⟨φ(t)φ(0)⟩ is proportional to the momentum correlator.
The Fourier convention has been chosen this way to allow for a
probability interpretation: The energy integral over P(E) amounts
to unity. Furthermore, the same formalism extends to many vibra-
tional modes: The total P(E) in Eq. (7) is then a convolution of all
the single-mode P(E) functions.10

The expression of A is the convolution of the vibrational P(E)
and the electronic susceptibility. The latter alone would produce a
Lorentzian line shape with linewidth κm. This linewidth follows from
the assumption of excitonic dissipative environment, which does not
couple to the observed far-field mode. It is renormalized by the cou-
pling to vibrations as κm = κ̃ + Sγ, where κ̃ represents the dissipation
rate of the electronic transition and γ is the dissipation rate of the
vibrations.10 However, P(E) ultimately determines the line shape in
the presence of vibrations.

If there are no vibrations, S = 0 and P(E) = δ(E), the solu-
tion of 1/r(ω) = 0 gives exactly the polariton frequencies in Eq. (3).
However, in this context, the frequencies are real. When ωc, ωm,
|g|≫ κc, κm, one can first neglect the dissipation rates and minimize
the imaginary part to find the polariton frequencies in Eq. (2). It is
then straightforward to show that the behavior around these eigen-
frequencies is Lorentzian and the real part gives the dissipation rate
(κc + κm)/2. The proper way to find the polariton peaks would be to
find the extremal points of |r(ω)|2, which gives the dissipative correc-
tion. A closed form solution is possible to obtain only at resonance
ωc = ωm. It reads

ω± = ωm ±

¿
ÁÁÁÀ∣g∣2

¿
ÁÁÀ1 +

κm(κm + κc)
2∣g∣2

− κ2
m/4. (9)

The square root term may be approximated by
√
∣g∣2 + κcκm/4 when

|g| ≫ κm, κc. This result differs from the coupled oscillator model
in two ways: First, the dissipation strictly increases the spacing
between polariton frequencies, or the Rabi splitting, when the cou-
pling is large compared to the dissipation rates. This changes at
the opposite limit when the dissipation rates dominate the cou-
pling |g|2, leading eventually to the disappearance of the polari-
ton peaks. Second, the dissipation in the cavity and the molecule
are, in general, not interchangeable as in the coupled oscillator
model. This is a direct consequence of our assumptions: We only
couple the external light source to the cavity and observe only its
emission.
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III. P (E ) THEORY UNDER BROWNIAN DISSIPATION
We now derive the P(E) function assuming that the molecu-

lar vibrations are coupled to a bath of harmonic oscillators. This
means solving the correlator ⟨eφ(t)e−φ(0)⟩ and then evaluating its
Fourier transform. We note the recent similar approaches of Refs. 20
and 21 that model molecules embedded in a crystal taking into
account coupling between the lattice vibrations and molecular
vibrations.

The correlator ⟨eφ(t)e−φ(0)⟩ can be evaluated for different mod-

els,10,19,20 so let us make a general argument: Since the vibrations
are harmonic, their fluctuations follow Gaussian statistics. Fur-
thermore, we assume that these fluctuations are stationary, i.e.,
all correlators depend only on time differences and not on any
specific time. By introducing a time ordering operator T that
always orders φ(t) before φ(0), we can write the correlator as
T ⟨eφ(t)−φ(0)⟩. This may be identified as the characteristic func-
tion of the stochastic quantity φ(t) − φ(0), which has a vanishing
mean.22,23 In the case of Gaussian fluctuations, the correlator is fully
determined by the variance T ⟨[φ(t) − φ(0)]2⟩/2, which equals to
J(t) − J(0).

Because vibrational modes are often low frequency compared
to optical frequency, the quantum optical models of dissipation are
not justified. This is because in the quantum optical case, the time
scales of the system are generally assumed to be much smaller than
its relaxation time. However, this is not a typical limit for molecu-
lar vibrations. This leads to a failure of the rotating wave approx-
imation that is made to the system–environment coupling in the
quantum optical formulation.24 In the Brownian case (also called the
Caldeira–Leggett model25), the equations of motion for the position
x and momentum p are

ẋ = ωvp, ṗ = −ωv(x +
√

2Sσ†σ) − γp + ξ, (10)

where ξ is the Langevin force of thermal fluctuations obeying a noise
correlator,26

⟨ξ(ω)ξ(ω′)⟩ = γω
2πωv

[coth( ω
2kBT

) + 1]δ(ω + ω′). (11)

On average, the molecules are in their ground state since ωm ≫ kBT,
so we neglect the σ†σ-term in Eq. (10). This assumption decouples
vibrational dynamics from those of the exciton. The solution of x
and p can then be obtained in the Fourier space in terms of the
force ξ.

By using φ(t) =
√

2Sp(t) and taking a few algebraic steps, we
find an integral expression

J(t) = Sγ
πωv
∫ dω e−iωt

ω3

(ω2 − ω2
v)2 + ω2γ2 [coth( ω

2kBT
) + 1].

(12)

It should be noted that this integral does not converge when t = 0,
that is, the variance of momentum diverges. This is akin to the free
Brownian particle for which the variance of the position diverges.
We may solve the integral for t ≠ 0 and deal with this divergence at
a later point.

Whereas Ref. 10 computes P(E) in the limit γ ≪ ωv , here we
solve the problem with an arbitrary γ/ωv . We employ the method
of residues to solve the integral for t > 0 by choosing an infinite
radius semi-circle in the lower complex half-plane as the integra-
tion contour. Formally, we then set J(t) − J(0) ≡ J̃(t) to vanish
at time t = 0 and cut off the divergence. Finally, we can use the
stationarity of vibrations to expand to negative times by the rela-
tion J(−t) = J(t)∗. These steps are taken to ensure the consistency
of P(E).

The integral in Eq. (12) may be separated into two contri-
butions by the singularities of the integrand that lie inside the
integration contour (see Fig. 3). On the one hand, there is the
contribution of the singularities of the rational function g(ω)
≡ ω3/[(ω2 − ω2

v)2 + ω2γ2], which is determined by the quality
factor Q = ωv/γ of vibrations. Especially, when Q > 1/2, there
are two singularities with non-zero real frequencies, which are
associated with underdamped motion. The value Q = 1/2 repre-
sents the critical damping of harmonic motion, while Q < 1/2
corresponds to the overdamped motion with two singularities on
the imaginary axis. On the other hand, the hyperbolic cotan-
gent has an infinite series of singularities at complex frequencies,
which are related to the temperature. We term this the Matsubara
contribution.

Since we want to calculate the Fourier transform of P(t)
= exp[J̃(t)], it is useful to use the convolution theorem. It allows us
to Fourier transform the individual components (each correspond-
ing to one singularity/residue) and convolve the Fourier transforms
together only in the end.

The calculation is tractable due to a group property of
Lorentzian distributions under convolutions. We find that the
Fourier transforms may be written in terms of two functions,

fL(ω;ω0, Γ) = 1
π

Γ
(ω − ω0)2 + Γ2 , (13a)

gL(ω;ω0, Γ) = 1
π

ω − ω0

(ω − ω0)2 + Γ2 . (13b)

FIG. 3. Sketch of the singularities of g(ω) (blue circles) in the lower complex half-
plane as a function of the quality factor Q. The singularities of coth(ω/2kBT) that lie
on the imaginary axis are depicted by gray crosses. The red dotted line represents
the integration contour for t > 0. This residue structure is mirrored in the upper
complex half-plane.
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We recognize f L to be the Cauchy–Lorentz probability distribution
function and gL to be its Hilbert transform. We use these normal-
ized functions as they integrate to unity (f L) or to zero (gL) for
all parameters. In addition, these functions follow the convolution
table,

[ fL(ω1, Γ1) ∗ fL(ω2, Γ2)](ω) = fL(ω;ω1 + ω2, Γ1 + Γ2), (14a)

[gL(ω1, Γ1) ∗ fL(ω2, Γ2)](ω) = gL(ω;ω1 + ω2, Γ1 + Γ2), (14b)

[gL(ω1, Γ1) ∗ gL(ω2, Γ2)](ω) = −fL(ω;ω1 + ω2, Γ1 + Γ2). (14c)

Often, only the Lorentzian component is taken into account. How-
ever, the role of gL is to provide the emission–absorption asymmetry
to P(E). This general physical rule simply states that the temperature
(of the environment) dictates the ratio of probabilities between the
absorption and emission of energy E between the environment and
the vibrations. To be more exact, this ratio is given by P(E)/P(−E)
= e−βE. This relation follows from the definition of P(E) as a Fourier
transform of ⟨eφ(t)e−φ(0)⟩ by using the definition of Heisenberg
operators and the cyclic property of the trace when the vibration
mode is in thermal equilibrium.23

Next, we find the contributions of individual singularities to J(t)
and then calculate their Fourier transforms. The algebraic details of
the Fourier transform are given in the Appendix.

A. Residues of the rational function g (ω)
Let us consider underdamped motion with Q > 1/2. We

then find singular points at ω = ±ω̃v ± i γ2 . The frequency ω̃v

= ωv

√
1 − 1

4Q2 is the renormalized vibrational frequency. By the
method described above, we find, for all times t,

J̃±(t) = [Re(D±) + iIm(D±) sgn t](e∓iω̃v t− γ
2 ∣t∣ − 1), (15)

where sgn t is the sign function (sgn t = t/|t| for t ≠ 0 and sgn t = 0 if
t = 0) and

D− = S
i
Q −

ωv

ω̃v
( 1

2Q2 − 1)

eβ(ω̃v+i γ2 ) − 1
≡ SN[ i

Q
− ωv

ω̃v
( 1

2Q2 − 1)], (16a)

D+ = S(N∗ + 1)[− i
Q
− ωv

ω̃v
( 1

2Q2 − 1)]. (16b)

The constant N defined in D− seems to be a complexification of the
Bose function. If we set γ = 0, N would be the number nth of thermal
excitations. One can then readily associate D+ to emission and D− to
absorption.

The Fourier transform of exp[J̃±(t)] is given by the following
series representation:

P±(E) =F [exp[J̃±(t)]](E) = e−Re(D±)
∞
∑
n=0

1
n!
∣D±∣n

× [cos(ϕ±n )fL(E;±nω̃v ,n
γ
2
) + sin(ϕ±n )gL(E;±nω̃v ,n

γ
2
)],

(17)

where ϕ±n = Im(D±) − n arg(D±) is the angle that depends directly
on the complex phase of the coefficient D±. This series repre-
sents all the possible vibronic peaks: P+ describes all the processes
where a certain number of vibronic excitations are created when
the molecule is excited, while P− describes the anti-Stokes pro-
cesses of exciting the molecule from an excited vibrational state.
Since we assume harmonic vibrations, there is no limit to the num-
ber of vibrational states, but accessing higher vibrational states is
unlikely because of the dissipation. Note that without the angle
dependence, ϕ±n = 0, which happens when γ = 0 or Q → ∞, the
prefactors would follow the Poisson distribution with D+ = S(nth
+ 1) and D− = Snth. Thus, the non-zero ϕ±n can be regarded as a
sign of correlation between processes that involve multiple quanta of
vibration.

In the overdamped limit, Q < 1/2, only a few changes are
required in Eq. (17). First, there is no harmonic motion and, thus,
∓ω̃v → 0. We rather have two dissipation rates so that

γ
2
→ Γ± = ωv

¿
ÁÁÀ 1

2Q2 − 1 ± 1
Q

√
1

4Q2 − 1. (18)

In addition, the coefficients change to

D± →
S

2Q
[−i + cot( Γ±

2kBT
)]
⎛
⎝

1 ±Q
√

1 − 2Q2

1 + 2Q2

⎞
⎠

, (19)

assuming that the singularities of g(ω) do not occur at the same point
as those of the hyperbolic cotangent. Such coincidences would take
place only at numerable points of continuous variables. We hence
expect such double poles to have no observable consequences.

B. Matsubara contribution
The function coth(ω/(2kBT)) has singularities at ω = i2πkBTk

for k ∈ {1, 2, . . .}. For any k, the contribution to J̃(t) is given by

J̃k(t) = Ck(e−ωk ∣t∣ − 1),Ck =
4S
βQ

ω3
k

(ω2
k + ω2

v)2 − γ2ω2
k

. (20)

Since there is no imaginary part in J̃k(t), its Fourier transform is
simply a Lorentzian. The resulting Pk is then a series of E = 0 cen-
tered Lorentzians with a width that is multiples of the Matsubara
frequency ωk. Furthermore, it admits to a representation in terms of
the incomplete Gamma function27 as

Pk(E) = F [exp[J̃k(t)]](E)

= e−Ck
⎛
⎝
δ(E) − Re

⎡⎢⎢⎢⎢⎣

(−Ck)
i E
ωk

πωk
Γ(−i E

ωk
;−Ck, 0)

⎤⎥⎥⎥⎥⎦

⎞
⎠

. (21)

The Matsubara contribution only widens P(E).
When we consider the sum ∑k J̃k(t), we encounter a

logarithmic divergence as the sum behaves asymptotically as the
harmonic series ∑k1/k. This is a well known feature of Ohmic
dissipation,28 which is characterized by the asymptotically linear
ω dependence of the noise correlator in Eq. (11). Thus, we must
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introduce a cutoff to the integral (12), which we may consider at
the level of residues. Since the divergence is logarithmic, the results
depend only weakly on the chosen cutoff. In this context, the Mat-
subara frequency ωk is also the width parameter of Pk so that the
corresponding distribution becomes wider and wider as higher and
higher Matsubara frequencies are considered. Here, we choose the
number of Matsubara modes by first choosing some cutoff fre-
quency ωL and then calculating kmax = ⌊ωL/(2πkBT)⌋. For very
low temperatures corresponding to ωv/kBT ≫ 2π, one may also
choose to approximate the k-sum as an integral. However, this is
not the limit we consider below. We set ωv/kBT ∈ [0.5; 4] and
choose the cutoff frequency to be ωL = 25ωv in our numerical
analysis.

C. Absorption function
Using the results of Secs. III A and III B, we may now express

the absorption function as a convolution

A(ω) = [P+ ∗ P− ∗ P1 ∗⋯ ∗ Pkmax ∗ χ](ω) (22)

with the electronic susceptibility χ(ω) = [iω − κm/2]−1 defined in
Eq. (7). With the value of A, it is then straightforward to calculate the
elastic spectrum ST(ω) using the response function r(ω) of Eq. (6).

Due to the associativity of convolution, we may change
the order of convolutions in A. This is numerically useful; as
χ(ω) = −π[ f L(ω; 0, κm/2) + igL(ω; 0, κm/2)], the susceptibility χ
provides a constant to all the width parameters. By dividing the
susceptibility into parts using the convolution rules, especially all
the delta functions in Eq. (17) acquire a finite width proportional
to κm. This facilitates a numerical method for the calculation of
the convolutions, although it is possible also analytically. There
are only a few numerical issues to be aware of: One must have a
dense enough discretization of frequencies so that the peaks are
well represented and a large range of values must be included
so that there are no spurious edge effects in the calculation of
convolutions.29–31

Without numerical analysis, one can already have some insight
to P(E) and the resulting absorption function A. The effect of the
Huang–Rhys factor S is twofold: Because the prefactors in P± are
similar to those of Poisson distribution, increasing S increases the
support of the P(E) function, i.e., there are more terms in the
sum, which differ appreciably from zero. In addition, increasing
S increases the effective dissipation rate κm in the molecular sus-
ceptibility χ, which further widens the absorption function A and
increases the linewidth of individual vibronic peaks. The role of
temperature T is similar to this because it allows for thermal exci-
tations. Then, the molecular linewidth increases as the temperature
is increased since there are more processes available, which result in
the same amount of energy absorbed. The role of the Matsubara con-
tribution is essentially to be a correction to this thermal broadening.
In conjunction with S and T, the quality factor of Q then determines
whether individual vibronic peaks may be observed and what the
molecular linewidth is.

The derivation of P(E) and A is here done for a single vibra-
tional mode. As mentioned below Eq. (8), the definition of P(E)
extends to many vibrational modes through convolution. One can
then identify each element of P(E) (P±, Pk) as in the single mode case

and convolve these elements together. For instance, if we have M
identical but independent vibrational modes, the convolution over
all P±’s is straightforward to do and it only multiplies the Huang–
Rhys factor S by M, i.e., S→MS. Here, we assume this kind of case:
The Huang–Rhys factors can be large, but we want to retain the
tractability of the problem, so we use only the minimal number of
free parameters.

IV. POLARITONIC SPECTRUM
Next, we discuss different features of the polaritonic spectrum,

which change due to vibrational dissipation. The interest especially
lies in the quantities that are inferred from experimental data: Rabi
splittings, linewidths, and peak amplitudes.

Vibrations provide an asymmetry to the absorption due to the
emission–absorption asymmetry, which manifests itself as a renor-
malization of the resonance condition. In the coupled oscillator
model, there are three distinct features at resonance ωc = ωm: (1)
The difference between the upper and lower polariton frequen-
cies is at minimum, (2) the linewidths are the same and equal to
the mean of cavity and exciton linewidths, and (3) the intensities
of the peaks are equal. In the presence of vibrations, these condi-
tions bifurcate to different values of detuning. The role of Brownian
vibrational dissipation to this “bifurcation” has not been investi-
gated to our knowledge. This phenomenon is often framed con-
versely as the asymmetry of the upper and lower polariton peaks,
which has garnered both theoretical10,19,32–38 and experimental39–43

interest. The notion of asymmetry often follows in theory even
after fixing the detuning to zero by setting ωc = ωm. However, this
might not give the minimum polariton peak separation, i.e., the
Rabi splitting. This is demonstrated in Fig. 4(a) where the polari-
ton spectrum is plotted as a function of the detuning and the driving
frequency.

A. Rabi splitting
Let us first discuss in detail the renormalization of the observed

polariton frequencies ω± and especially the Rabi splitting R. Here,
we define the Rabi splitting as R = minωc−ωm(ω+ − ω−), and we
denote the value ωc − ωm at which this minimum is obtained

FIG. 4. Polaritonic spectrum ST (ω) for (a) Q = 0.9 and gN = 7ωv and (b) Q = 5
and gN = 3.5ωv . In (a), the gray dotted lines denote the position of the polariton
peaks, while the black dashed line represents the detuning δR on which the Rabi
splitting R is determined. We set S = 1, gN /κc = gN /kBT = 3.5, and the dissipation
rate of the electronic transition κ̃/gN = 0.01 in both the panels.
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by δR. To avoid ambiguities, we only look at parameter regimes
where the vibrational sub-peaks are suppressed. For instance, in
Fig. 4(b), it is unclear how the Rabi splitting should be eval-
uated. This is rarely a problem in experiments with organic
molecules.

We show in Fig. 5(a) how such an “experimentally inferred”
Rabi splitting depends on the temperature T, vibration quality factor
Q, and Huang–Rhys factor S. As in the case of the coupled oscilla-
tor model, the Rabi splitting depends on the molecular linewidth.
For example, R increases with an increasing temperature, which
may be attributed to the increase in the overall linewidth. How-
ever, the molecular line shape plays an important role. In Fig. 5,
we have chosen two pairs of values for S and Q so that there are
two different effective linewidths indicated by the solid and dashed
lines. These linewidths are determined as the full width at half max-
imum (FWHM) of the absorption profile Re(−A). We find that
the Rabi splitting is closer to the value expected from the coupled
oscillator model (2gN without any dissipation) with larger quality
factors Q.

Contrary to the coupled oscillator model, the vibrational dis-
sipation affects the relative position of the polariton frequencies to
the uncoupled eigenfrequencies ωm and ωc. It is especially evident
when the vibrations are of low quality. This follows from our def-
inition of P(E): If the vibrations are very dissipative, P(E) becomes
centered around E = 0 because a vibronic peak at E = ±nω̃v has
the width of nγ/2. Consequently, the absorption function A(ω − ωm
+ Sωv) in the response function and thus the absorption profile is
peaked at ω = ωm − Sωv. This results to a shift of Sωv of the polariton
peaks, which is most clearly seen as a shift in the local minimum
of the polaritonic spectrum (see Fig. 2). If the vibrational quality

FIG. 5. (a) Rabi splitting R and (b) the corresponding detuning δR as a function
of the temperature. The values of Q and S are chosen so that the absorption pro-
file’s linewidth at kBT = ωv is approximately equal for the circles and the crosses
(9.7ωv and 6.2ωv , respectively). The temperatures are chosen so that the
spacing between inverse temperatures is constant and each point corresponds
to a different number of Matsubara modes. Here, gN = 7ωv , κc = 2ωv ,
κ̃ = 0.01ωv .

factor is very high, Q≫ 1, then ω = ωm becomes again the absorption
maximum.

An interesting consequence of the renormalization of polariton
frequencies is that the detuning δR between the bare cavity mode
and the molecular exciton at which the Rabi splitting is determined
changes. This change is plotted in Fig. 5(b) as a function of temper-
ature. A part of the shift in the detuning by the vibrations is caused
by the renormalization of the absorption frequency described in the
previous paragraph. However, even if this renormalization is taken
into account, the effect still remains due to the change in the molec-
ular line shape. The frequency range of the change in detuning is of
the order of one vibrational frequency.

B. Linewidths
Next, we consider the issue of polaritonic linewidth. A natu-

ral point of comparison is the coupled oscillator model from which
one infers the rule that the polariton linewidth is the mean of cav-
ity and molecular linewidth, although only at resonance ωc = ωm.
However, when vibrations are present, it is unclear what should
be chosen as the molecular linewidth. One option is the full width
at half maximum (FWHM) of the molecular absorption spectrum.
Another option would be to deduce the value using a Lorentzian
fit. We choose the former method because of its simplicity. Like-
wise, we use FWHMs as polariton linewidths. To this end, we
choose larger Rabi splittings so that the polariton peaks are clearly
separated.

In Fig. 6(a), we compare the polariton linewidths in the cases
where the molecular broadening is Lorentzian (orange) or mostly
caused by vibrations (blue). We observe that the vibrations change
the detuning δΓ at which the upper and lower polaritons are of equal
width Γ+ = Γ−. Since at ωc = ωm we have Γ+ > Γ−, as is well estab-
lished, it is not surprising that δΓ > 0. The same effect may be seen
in the ratio of upper/lower polariton peak intensities in Fig. 6(b),
although to a much lesser extent. Together with the change in the

FIG. 6. (a) Estimated polariton linewidths Γ± [the solid (dashed) line represents
the lower (upper) polariton] and (b) the ratio of peak intensities of the upper and
lower polariton as a function of detuning. The insets show the polaritonic spectrum
ST (ω) corresponding to negative and positive detuning. Here, we have chosen
the effective molecular linewidth (FWHM of absorption) as the dissipation rate κm

in the coupled oscillator model S = 0 (in orange). The parameters are Q = 4,
gN = 10ωv , κc = 0.2 gN , ωv /kB T = 1, κ̃ = 0.06ωv .
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detuning δR, it appears that the ratio is below unity, i.e., the lower
polariton peak is of higher intensity than the upper polariton at
the detuning at which the Rabi splitting is determined. This is in
line with the previous experimental and theoretical analysis.10,19,32–43

We also find that the polariton linewidths Γ± under vibrational
dissipation are in general larger than those of the coupled oscilla-
tor model. In our model, this is a consequence of the absorption
function A whose real part is even more tail-heavy than Lorentzian
distributions.

C. Limits of vibrational dissipation: Overdamping
and high quality vibrations

So far, we have only considered the case in which the vibra-
tions are underdamped and there exists a well defined vibra-
tional frequency. For completeness, we briefly comment the
changes of the polaritonic spectrum induced by the overdamped
vibrations.

The effect of overdamping is that the absorption function
becomes extremely tail-heavy as all the possible vibrational tran-
sitions are fully smeared by the dissipation. Consequently, the
emission–absorption asymmetry causes a very notable asymmetry
to the absorption, which is visible in the orange dashed line of
Fig. 7. Compared to the blue curve that is closer to a Lorentzian
profile, the renormalization of the Rabi splitting becomes very large.
This is similar to what is observed in Fig. 5 for low Q values. The
change in the polariton line shape is also notable but difficult to
quantify.

FIG. 7. Three examples of different line shapes that follow from the P(E) theory to
(a) the polariton spectrum and (b) absorption profile with the change of parameters.
The blue line represents a Lorentzian-like case in which the vibrational dissipation
dominates. The orange dashed line is in the overdamped limit, while the brown
dotted line is in the opposite limit of high quality vibrations. The parameters are
chosen so that FWHMs are the same for each case, approximately 9.1ωv . The
vibrational parameters are S = {4, 1,0.51}, κ̃/ωv = {0.01, 0.01, 1.6}, ωv /kB T
= {1, 0.56, 1} for Q = {4, 0.3, 15}, respectively. The polariton spectrum is calculated
with gN = 9ωv and κc /gN ≈ 0.11 and the detuning ωc = ωm.

We have considered here mainly the cases in which the vibra-
tional dissipation is in fact the main source of dissipation. However,
it is possible that the vibrations are of very high quality, but there
is a large dissipation rate of the electronic transition. In our model
with only a single vibrational mode, this appears to be the only way,
which leads to a Gaussian-like absorption profile. It is the opposite
limit to the overdamped vibrations as the tails of absorption pro-
file become less pronounced than in Lorentzian profiles. The effect
on the results presented in Figs. 5 and 6 is that the values change,
while the trends remain the same. These changes may be inferred
by comparing the brown dotted line in Fig. 7 to the blue line that
represents a Lorentzian-like case: The Rabi splitting is larger, while
the polariton linewidths are smaller than those in the corresponding
Lorentzian case.

V. CONCLUSIONS
In summary, we have presented an analytical model on the

effect of Brownian vibrational dissipation to the polariton spec-
trum in a cavity measurement. Even though our approach is math-
ematically involved, it can provide richer physics than the cou-
pled oscillator model. For most organic molecules, it should work
as a much better approximation. The associated cost is that there
are a few parameters more regarding vibrations whose determi-
nation from experimental data requires more work. However, our
work provides some general checks to which the experimental
data may be compared, such as the different detunings, which
give the Rabi splitting, equal polariton linewidths, and equal peak
intensities.
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APPENDIX: FOURIER TRANSFORM OF exp[J̃(t)]
Formally, all the Fourier transforms in this work are of the form

1
2π ∫ dteiEt exp[(a + ib sgn t)(eiω0t−Γ∣t∣ − 1)], (A1)

where a, b,ω0, Γ ∈ R and Γ > 0. We use the convolution theorem to
separate the Fourier transform into two parts before expanding the
exponential into a Taylor series. Thus, we have

1
2π ∫ dteiEte−a−ib sgn t = e−a

∞
∑
n=0

(−ib)n
n!

1
2π ∫ dt(sgn t)neiEt

= e−a[δ(E) cos b +
sin b
πE
], (A2)

which holds true when treated as the Cauchy principal value integral.
At this point, we can recognize that formally δ(E) = f L(E; 0, 0) and
1/(πE) = gL(E; 0, 0). The second part of the transform is
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1
2π ∫ dteiEt exp[(a + ib sgn t)eiω0t−Γ∣t∣]

=
∞
∑
n=0

1
n!

n

∑
k=0
(nk)I

n
k , (A3)

where, with the help of the binomial theorem,

Ink =
an−k

2π ∫ dt(ib sgn t)k exp[i(E + nω0)t − nΓ∣t∣]. (A4)

Again, the expressions with even k differ from those of odd k. By
direct evaluation, one can confirm that

1
2π ∫ dt(sgn t)k exp[i(E + nω0)t − nΓ∣t∣]

= {fL(E;−nω0,nΓ), k even
igL(E;−nω0,nΓ), k odd.

(A5)

This result in conjunction with the convolution theorem leads
directly to the convolution rules of f L and gL in Eq. (14). Further-
more, it can be used in Ink , which allows us to write expression
(A3) as

∞
∑
n=0

1
n!
(fL

n

∑
k even

+gL
n

∑
k odd
)(nk)a

n−k(ib)k. (A6)

We omit the arguments of f L and gL for brevity. The even and odd
binomial sums may be simplified by the relation

1
2
[(a + ib)n ± (a − ib)n] =

n

∑
k even
k odd

(nk)a
n−k(ib)k, (A7)

which follows from the binomial theorem. We denote now z = a
+ ib = |z|eiθ, which simplifies expression (A6) to

∞
∑
n=0

∣z∣n

n!
[cos(nθ)fL + sin(nθ)gL]. (A8)

The last step of convolving the results together is then straight-
forward with the convolution rules and by using the sum rules of
trigonometric functions. Thus, the Fourier transform (A1) is

e−a
∞
∑
n=0

∣z∣n

n!
[cos(b − nθ)fL(E;−nω0,nΓ)

+ sin(b − nθ)gL(E;−nω0,nΓ)]. (A9)

We find Eqs. (17) and (21) of the main text by applying this result to
J̃± and J̃k.
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