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Abstract
Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning 
models understand why models behave the way they do. The most popular explanation technique is feature importance. 
However, there are several different approaches how feature importances are being measured, most notably global 
and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 
penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of 
them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from 
the UCI Archive and a recently collected running injury data. Our results show that the most important features differ 
depending on the technique. We argue that a combination of several explanation techniques could provide more reliable 
and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives.

Keywords  Feature importance · Explainable artificial intelligence · Interpretable models · Random forest · Logistic 
regression

1  Introduction

Classification models have two main objectives [9]. First, 
they should perform well, meaning they should forecast 
the output for new given input features as accurately as 
possible. Second, they should be interpretable, that is, pro-
vide some understanding between the input features and 
the output. Usually, there is some tradeoff between these 
two objectives. For example, simple linear classification 
models are easy to understand and interpret but typically 
perform worse than non-linear models [10, 19, 24, 44], 
while complex prediction models with non-linear combi-
nations of features tend to perform better (e.g., [32, 33, 41]) 
but are less interpretable. In other words, they often do a 
better job in classifying new instances correctly, but the 
reasons why a certain classification was made is hidden. As 
a result, these models often do not provide enough insight 

to the classification, which would be needed to employ 
them in sensitive domains.

The demand for explainable or interpretable models 
has been especially pronounced in the medical domain 
[18, 36, 38, 40]. For example, it is not only of great signifi-
cance to predict the clinical outcome of a patient, but also 
to take features of this patient (e.g., age, drug use) into 
account in an explainable and quantifiable manner [26]. 
Moreover, models should ideally provide actionable advice 
for prevention [43]. Simply classifying a patient into a cer-
tain health status is not very helpful. The explanations of 
what has to be improved to change an undesirable status 
or the identification of early risks determine the usefulness 
of a model [39].

The most common explanations for classification mod-
els are feature importances [3]. Similar to [10], we use 
the term feature importance to describe how important 
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the feature was for the classification performance of the 
model. More precisely, we refer to feature importance as a 
measure of the individual contribution of the correspond-
ing feature for a particular classifier, regardless of the 
shape (e.g., linear or nonlinear relationship) or direction 
of the feature effect [10, 15]. This means that the feature 
importances of the input data depend on the correspond-
ing classification model and that a feature important for 
one model may be unimportant for another model.

Generally, feature importances can be divided into mod-
ular global and local importances [18, 26]. While a modular 
global feature importance measures the importance of the 
feature for the entire model, a local importance measures 
the contribution of the feature for a specific observation. 
An example of modular global feature importances are the 
coefficients in L1 regularized logistic regression. L1 regu-
larized logistic regression assigns coefficients based on the 
importance of a feature, forcing coefficients of unimpor-
tant features to exactly zero and providing a magnitude 
and direction for the remaining coefficients that directly 
allow an interpretation of the corresponding features.

A local feature importance, in comparison, refers to the 
contribution of a feature to the results of a trained model 
on a specific input. An example of the latter are the local 
interpretable model-agnostic explanations (LIME) devel-
oped by Ribeiro et al. [30]. LIME provides features and 
rules of features that were important for classifying a spe-
cific observation. It accomplishes this by learning locally 
weighted linear models on the neighborhood data of this 
specific observation to explain its class in an interpretable 
way. Thus, local feature importances for two individuals 
can be very different and both might vary from the modu-
lar global feature importances.

The purpose of this paper is to compare different 
classification explanations (i.e., feature importances) for 
tabular data from the medical domain. The first medical 
data set we analyze is the well-known publicly available 
breast cancer data. The second data set is from the field of 
sports medicine and includes recently collected running 
injury data. The comparison of explanations is realized by 
building a linear (logistic regression with L1 penalization) 
and a non-linear (random forest) model and utilizing their 
coefficients (logistic regression) and feature importances 
(random forest) respectively. In addition, for both models 
the most interesting cases are explained using LIME. LIME 
is model-agnostic, that is, it can be applied to any non-
linear or linear classifier.

Our research questions are

–	 What features are the most important?
–	 Do the most important features differ depending on 

the technique and if so, which technique should we 
trust?

–	 When can local explanations enhance the global modu-
lar explanations of a model and should be reported in 
medical studies?

The motivation of this study is two-fold. First, we empiri-
cally test the classification performance of the linear 
and non-linear classifier. Second, through using modu-
lar global and local feature importance techniques we 
comprehensively compare the explanations provided by 
these different classifiers. Thus, we are directly addressing 
a research need pointed out by Tjoa et al. in their 2020 
review paper [36]. According to them, the number of med-
ical studies addressing explainability is limited and more 
studies should compare existing explainability methods.

The remainder of this paper is organized as follows: 
Sect. 2 provides a short literature review on explainabiblity 
in machine learning. Section 3 discusses the medical data 
we used for our analysis. Section 4 explains our analysis 
framework as well as all used techniques. Section 5 pre-
sents the results. Finally, Sect. 6 answers our research ques-
tions and summarizes the main findings and implications 
of this study.

2 � About explainability in machine learning

Our work broadly falls under the new research direc-
tion of explainable artificial intelligence (XAI). XAI refers 
to approaches and methods that attempt to explain 
machine learning decisions and predictions in such a way 
that human domain experts can understand them. Sev-
eral XAI review papers were published in recent years [17, 
18, 24, 36]. According to the 2020 XAI survey by Tjoa et al. 
[36], XAI is a young research field that emerged along the 
research progress in machine learning and the need to 
justify the decisions and predictions made by the machine 
learning techniques, particularly if these techniques are 
applied in sectors that require a top level of accountability 
and transparency. For example, interpretable models are 
required more in high stake (such as prison sentencing, 
medical diagnosis, or loan decisions) than low stake (such 
as movie recommendations) applications [2].

Different taxonomies for XAI techniques have been 
introduced. In our article, we focus on feature importance 
or saliency techniques, that is, techniques that explain 
the decision of an algorithm by assigning values that 
reflect the importance of input components in their con-
tribution to that decision [36]. These feature importance 
techniques can be divided into modular global and local 
techniques. As explained in the introduction, a modular 
feature importance attempts to describe the importance 
of the feature for the entire model, while a local feature 
importance describes the importance of that feature for a 
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specific input. Moreover, one distinguishes model-specific 
and model-agnostic techniques [26]. Feature importance 
techniques that work only for (classes of ) particular mod-
els are model-specific. Feature importance techniques that 
can be used for any machine learning model and that are 
applied after model training, are model-agnostic. In this 
paper, we are comparing the following explanations: fea-
ture importances of i) logistic regression (modular global 
and model-specific), ii) random forest (modular global and 
model-specific), iii) LIME after logistic regression (local and 
model-agnostic), and iv) LIME after random forest (local 
and model-agnostic).

Although related and partially overlapping in their tech-
niques, there is a difference between feature importances 
and feature selection. Feature selection is a preprocessing 
technique [29]. It refers to the general process of detecting 
the relevant features and discarding the irrelevant ones [4, 
34]. One can distinguish filter, wrapper, and embedded 
feature selection techniques [35]. Filter techniques select 
features independent of any classifier. Wrapper models 
utilize the classifier to evaluate on it and find the optimal 
features. Embedded techniques search the optimal fea-
ture subset during the model building process [4]. The 
process of penalizing irrelevant features and setting their 
coefficients to zero is an example of embedded feature 
selection, and at the same also an example of a modular 
global model-specific feature importance explaining why 
some features were not important in a logistic regression 
model. Thus, feature selection and feature importance 
sometimes share the same technique but feature selection 
is mostly applied before or during model training to select 
the principal features of the final input data, while feature 
importance measures are used during or after training to 
explain the learned model.

3 � Data retrieval and preprocessing

We used two different data sets with binary classification 
tasks. The first data set is the openly available breast cancer 
data from the UCI Archive.1 This set includes benign and 
malignant cell samples from 569 patients, 212 with cancer 
and 157 with fibrocystic breast masses. Each sample con-
tains thirty features, ten real valued features for each cell 
nucleus (radius, texture, perimeter, area, smoothness, com-
pactness, concavity, concave points, symmetry, and fractal 
dimension) [42]. The classes in the breast cancer data are 
linearly separable, making the classification a simple task.

The second set includes running injury data collected 
at the University of Calgary. These data are more complex 
and the classification into healthy or knee-injured runners 
is most probably a non-linear problem. Running kinematic 
data were queried from an existing database [14] and 207 
knee-injured (n=117) and healthy (n=90) runners (92F, 
40.05±14.48 age years) were included in this study. Three-
dimensional motion data were collected using an 8-cam-
era motion capture system (MX3+, Vicon Motion Systems, 
Oxford, UK) while participants ran on a treadmill (Bertec 
Corporation, Columbus, OH). Spherical retro-reflective 
markers (9 mm diameter, Mocap Solutions, Huntington 
Beach, USA) were placed over anatomical landmarks as 
described in [28]. Joint angles were extracted using 3D 
GAIT custom software (Running Injury Clinic Inc., Cal-
gary, Alberta, Canada), and time normalized to 101 data-
points per gait cycle (stance and swing), as described 
more detailed in [27]. In addition, runners participated in 
strength and flexibility tests. Altogether, the data set con-
tains 154 features.

The breast cancer data has no missing value but some 
features in the running injury data were not measured 
for a large part of the runners. To deal with the missing 
values, we excluded all features that had more than 5% 
of values missing, ending up with 85 features for the run-
ning injury data. The rest of the missing values seemed 
to be missing at random (MAR) [25] and were imputed 
using k-nearest neighbour (knn) imputation. Knn imputa-
tion works by finding the k most similar observations and 
then imputing the missing value with a summary metric 
from those k observations. We used Euclidean distance 
to measure similarity of observation and a value k = 10 , 
as recommended in [37] and imputed with the mean of 
observations. Both data sets were normalized so that each 
column had a mean of zero and standard deviation of one 
with the formula

where x̄ is the mean and � the standard deviation of the 
observations. All preprocessing and data analysis was 
performed with Python 3.6, using scikit-learn and LIME 
libraries. For knn-imputation a MATLAB (R2018b) script 
was called.

4 � Methods

4.1 � L1 regularized logistic regression

L1 regularized logistic regression works by penalizing the 
feature coefficients with the L1 norm, shrinking some of 
the feature coefficients to exactly zero. Consider 

(1)x� =
x − x̄

𝜎
,

1  The data can be downloaded from https​://archi​ve.ics.uci.edu/ml/
datas​ets/Breas​t+Cance​r+Wisco​nsin+(Diagn​ostic​).

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic)
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datapoints {(xi , yi), i = 1,… ,N} , where N is the number of 
observations in data and xi ∈ ℝ

d , d is the number of fea-
tures in data, and yi ∈ {0, 1} is a binary class label. For clas-
sification, the probability of an observation x belonging to 
class y is given as P(y|x) = 1

1 + e−(�0+�
T x)

, where � is a vec-

tor containing d feature coefficients and �0 is the intercept 
term.

The cost function to be minimized can be formulated 
as the negative of the regularized log-likelihood function:

The last term in the equation is a regularization parameter 
that is simply the sum of the L1 norms of the feature coef-
ficients where � controls the strength of regularization. 
The greater the value of parameter � , the more coefficients 
are shrunk to exactly zero. Having less features included 
makes the model more simple and interpretable. The 
magnitude of feature coefficients can be interpreted as 
the importance of that feature, a larger coefficient mean-
ing the feature had more relevance in the classification. In 
addition, the direction of the coefficient tells whether the 
feature increases or decreases the probability of belonging 
to a certain class. The model was trained with the Logis-
ticRegressionCV function and five-fold cross-validation to 
choose the amount of penalization to use.

4.2 � Random forest

Random forest is a nonlinear classification and regression 
method that is based on building an ensemble of decision 
trees [8]. Decision trees are tree-like models, where data is 
split recursively at each decision node into subsets using 
some rule. The leaf nodes represent the outcome for the 
observation. The predicted outcome of a random forest 
model is the mode or mean of the predictions (majority 
vote) from the individual trees.

Random forests have become very popular, especially in 
medicine [6, 12, 33], as despite their nonlinearity, they can 
be interpreted. They provide feature importance measures 
by calculating the Gini importance, which in the binary 
classification can be formulated as [23]

where p1 and p2 are the probabilities of class 1 and 2. The 
Gini index is minimized when either of the probabilities 

(2)

L(�0, �) = −

N∑

i=1

[
yilog(P(y|x))

+ (1 − yi)log(1 − P(y|x))
]

+ �

d∑

j=1

|�j|.

(3)Gini = p1(1 − p1) + p2(1 − p2),

approaches zero and a total decrease in Gini index (node 
impurity) is calculated after each node split and then aver-
aged over all trees. The more impurity decreases, the more 
important the input feature is. The model was trained with 
the RandomForestClassifier function. The maximum num-
ber of features to sample at each node and the minimum 
number of samples required to be at a leaf node were 
selected with GridSearchCV using five folds and values 
(3,5,9,11) and (1,5,20), respectively.

4.3 � Local interpretable model‑agnostic 
explanations

LIME [30] is a recently developed tool providing local inter-
pretability on top of any supervised algorithm. It works 
by weighting neighbouring observations by their proxim-
ity to the observation being explained. The explanation 
is obtained by training a local linear model based on the 
weighted neighbouring observations. More precisely, if f 
is the prediction (in our case classification) model, x is the 
specific observation for which the prediction f(x) should 
be explained, g is an explanation model, and �x the prox-
imity of the neighborhood around x, LIME minimizes the 
objective function

where � penalizes the complexity of g. This means that 
from the family of all possible explanations G, the explana-
tion g is chosen that is closest to the prediction of f, while 
the model complexity �(g) is kept low.

The explainer was trained with the LimeTabularExplainer 
function. As looking at every individual observation would 
be impractical, we decided to focus on the four most inter-
esting observations with LIME. These include the obser-
vation correctly classified as benign/healthy with highest 
probability, correctly classified as malignant/injured with 
highest probability, misclassified as benign/healthy with 
highest probability, and misclassified as malignant/injured 
with highest probability. For each observation, LIME out-
puts a rule and an importance value for each feature 
separately.

4.4 � Performance estimation

To estimate the performance of the classification models, 
we used five-fold cross-validation. Inside each fold, train-
ing data were normalized and then test data normalization 
was done using coefficients estimated from the training 
data. The missing values in the running injury data were 
imputed inside each fold, separately for training and test 
data. The performance was measured using area under 
the receiver operating characteristic curve (AUC-ROC) [7, 

(4)� = argmin
g∈G

L(f , g, �x) +�(g),
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13], averaged over the five folds. Due to random split of 
folds, results from k-fold validation tend to vary [21, 22]. 
Therefore, to get a reliable estimate of the performance 
as well as the feature importances, the whole analysis was 
repeated a hundred times.

To confirm the significance of the important features 
and achieved performance, we apply an approach intro-
duced in [20] based on permutations tests. By shuffling 
the class labels in the training data we made sure that 
the model was not simply learning some noise in data 
and therefore achieving higher performance and feature 
importance values than the chance level [11]. Cross vali-
dation splits were the same as in the runs with true labels. 
Pairwise comparisons of the hundred runs with true and 
shuffled labels were done with Wilcoxon signed-rank 

test for the achieved AUC values as well as for the feature 
importance values of logistic regression and random for-
est. Limit of significance was set to � = 0.05 and Bonferroni 
corrected. The whole analysis process is outlined in Fig. 1.

5 � Results

5.1 � Breast cancer data

The feature coefficient and importance values from the 
classification methods are listed in Table 1. An example 
plot of feature importance values can be seen in Fig. 2. 
With logistic regression, all except one (compactness 
3) features were significant (Fig. 3). The mean AUC over 

Fig. 1   Flowchart of the applied analysis. For the running injury 
data, data and feature selection included exclusion of features with 
more than 5% of missing values as well as inclusion of only knee-
injuries from the database for a binary classification task. To identify 
the most interesting local explanations, the observations classified 
as true negative, false negative, true positive, and false positive 

with the highest probability were analyzed with LIME. To identify 
the significant features of the whole models (modular global expla-
nations), the whole analysis was repeated a hundred times for both 
the real and the shuffled responses and then, the results were com-
pared with the Wilcoxon signed rank test (cf. [20])
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five folds and hundred repetitions was 0.99 ± 0.002 and 
for randomized response the AUC values were signifi-
cantly ( p < 0.001, T = 0.0 ) lower ( 0.50 ± 0.03 ). The mean 
AUC for training data was 0.99 ± 0.00 . With random for-
est, nine features were significant and the mean AUC was 
0.99 ± 0.001 . Again, the randomized runs had a signifi-
cantly ( p < 0.001, T = 0.0 ) lower mean AUC ( 0.51 ± 0.08 ). 
The training AUC was 0.99 ± 0.00.

Nine features (radius 1, perimeter 1, area 1, concavity 
1, concave points 1, radius 3, perimeter 3, area 3, concave 

points 3) were detected by both classification methods. 
However, if only looking at the set of nine most important 
features in logistic regression (Table 1), they differ from the 
set detected by random forest. Feature importance values 
from LIME for the four assessed observations can be seen 
in Table 2. For a few observations the set of most impor-
tant features was largely the same with the classification 
methods (global explanation) as well as with with LIME 
(local explanation). However, for most observations new 
features were detected with LIME.

Table 1   Logistic regression 
feature coefficients and 
random forest feature 
importances for the breast 
cancer data

Bolded are the nine features detected with random forest and nine most important features with 
regression, ranked based on the p-value

Feature Coefficient Importance Feature Coefficient Importance

Radius 1 − 0.088 0.034 Texture 1 0.103 0.016
Perimeter 1 − 0.061 0.041 Area 1 − 0.020 0.041
Smoothness 1 0.061 0.006 Compactness 1 − 0.702 0.011
Concavity 1 0.831 0.042 Concave points 1 1.114 0.105
Symmetry 1 − 0.062 0.004 Fractal dimension 1 0.031 0.004
Radius 2 2.207 0.014 Texture 2 − 0.396 0.004
Perimeter 2 0.042 0.013 Area 2 0.729 0.032
Smoothness 2 0.211 0.004 Compactness 2 − 0.464v 0.005
Concavity 2 − 0.133 0.007 Concave points 2 0.322 0.005
Symmetry 2 − 0.204 0.004 Fractal dimension 2 − 0.827 0.005
Radius 3 3.170 0.113 Texture 3 1.723 0.019
Perimeter 3 0.482 0.145 Area 3 0.747 0.120
Smoothness 3 0.573 0.013 Compactness 3 − 0.089 0.015
Concavity 3 0.766 0.032 Concave points 3 1.185 0.130
Symmetry 3 0.692 0.010 Fractal dimension 3 0.423 0.006

Fig. 2   Modular global feature importance values of the random 
forest model for breast cancer data. Light bars correspond to the 
results with real response, darker ones to the results with rand-
omized response. The significant features (i.e., those with a high 

real feature importance compared to the randomized response) 
can also be detected visually in this case. One example is the perim-
eter 3 feature that was the most significant feature for this model



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:272  | https://doi.org/10.1007/s42452-021-04148-9	 Research Article

For all ten correctly classified observations (benign/
malignant from five folds) with random forest, the four 
most important LIME features were also recognized by 
random forest. In addition, the four most important LIME 
features were the same for all ten observations, just in 
different orders. However, for those misclassified there 
were some observations where the top 4-5 most impor-
tant LIME features were not detected by random forest. 
Especially in the case of misclassified as bening, LIME could 
provide very beneficial information on why that specific 
observation was not recognized as malignant. On aver-
age out of the top 9 LIME features, 5.1 were detected with 
random forest as well.

In general, as logistic regression detected all but one 
of the features, the most important LIME features were 
detected by the method as well. Compared to random 
forest, the most important LIME features were not as con-
sistent between the ten correctly classified observations; 
the set of four most important LIME features included 13 
different features.

5.2 � Running injury data

The feature coefficient and importance values from the 
classification methods are listed in Table 3. With logistic 
regression, 61 features were found significant. The mean 
AUC was 0.70 ± 0.03 , while for randomized response 
the AUC values were significantly ( p < 0.001, T = 0.0 ) 
lower ( 0.50 ± 0.02 ). The mean AUC for training data was 
0.89 ± 0.03 . With random forest, 22 features were detected. 

The mean AUC was 0.74 ± 0.01 and again, the randomized 
runs had a significantly ( p < 0.001, T = 0.0 ) lower mean 
AUC ( 0.51 ± 0.06 ). The training AUC was 0.95 ± 0.02.

With the running injury data, features detected with 
classification methods differed more; out of the 22 fea-
tures detected by random forest, only 13 were among the 
61 detected by logistic regression. Both methods were 
quite consistent in choosing the features from both legs. 
The 13 features detected by both classification methods 
are age, run level, left hip abductor and right hip external 
rotation strength, right hip internal rotation flexibility, knee 
flexion peak of both legs, left knee adduction excursion and 
pelvis drop peak, left stride rate, swing time and both right 
and left stance time.

Feature importance values from LIME for the four 
assessed observations can be seen in Table 4. With ran-
dom forest, the four most important LIME features of the 
ten correctly classified (healthy/injured from five folds) 
observations were also recognized by the method. For 
the ten misclassified, all but one also had their four most 
important LIME features among those detected by ran-
dom forest. So with this data, the locally and globally most 
important features seem to be similar. On average out of 
the top 22 LIME features, 16 were detected with random 
forest as well.

Again, as logistic regression detected most of the fea-
tures (61/85), the most important LIME features were 
detected by the regression method as well. On average 
out of the top 61 LIME features, 42 were detected with 
logistic regression as well.

Fig. 3   Modular global feature importance values showing the aver-
age of how often (i.e., in each of the 5 folds within the 100 repeti-
tions) a feature was selected by the L1 regularized logistic model 
for the breast cancer data. Light bars correspond to the results with 

real response, darker ones to the results with randomized response. 
Some features, such as the radius 3, were chosen almost every time 
with the real response, indicating that they are extremely impor-
tant for the model
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6 � Discussion

The purpose of this paper was to compare explanation 
measures for linear and non-linear classification models 

in the medical field. Similarly to previous studies, we also 
found that the non-linear method (random forest) outper-
formed the linear method (L1 penalized logistic regres-
sion). However, despite the general notion that linear 

Table 2   LIME results for four 
people from the first fold on 
columns, nine most important 
features from logistic 
regression (LR) and then 
random forest (RF) on rows

Bolded are those features that were detected also by both classification methods

Correctly classified bening LR Correctly classified malignant LR

Radius2 0.23 Concavity1 0.34
Fractal dimension2 − 0.21 Area2 0.25
Concave points2 0.19 Radius2 0.23
Fractal dimension3 0.18 Concave points1 0.18
Compactness1 − 0.17 Concave points2 0.17
Texture3 − 0.15 Radius3 0.15
Radius3 − 0.15 Texture3 0.15
Symmetry2 − 0.14 Fractal dimension2 0.13
Compactness2 − 0.13 Area3 0.12
Misclassified bening LR Misclassified malignant LR
Concavity1 0.33 Texture3 0.16
Fractal dimension2 − 0.24 Symmetry3 − 0.11
Compactness1 − 0.18 Symmetry2 0.08
Concave points2 0.18 Fractal dimension3 0.07
Fractal dimension3 0.18 Symmetry1 0.06
Symmetry2 − 0.15 Concave points2 − 0.04
Symmetry3 0.14 Texture2 -0.04
Compactness2 − 0.14 Concave points3 − 0.03
Texture3 0.14 Compactness1 − 0.03
Correctly classified bening RF Correctly classified malignant RF
Area3 − 0.08 Perimeter3 0.14
Perimeter3 − 0.08 Area3 0.13
Radius3 − 0.07 Concave points3 0.13
Concave points3 − 0.07 Radius3 0.12
Texture3 − 0.05 Area2 0.07
Concave points1 − 0.03 Concave points1 0.06
Concavity3 − 0.03 Texture3 0.05
Area2 − 0.03 Area1 0.05
Texture1 − 0.02 Texture1 0.04
Misclassified bening RF Misclassified malignant RF
Perimeter3 − 0.08 Area3 0.14
Area3 − 0.08 Perimeter3 0.14
Radius3 − 0.06 Radius3 0.12
Texture3 0.06 Concave points3 − 0.07
Concavity3 0.04 area2 0.06
Area2 − 0.04 Area1 0.05
Smoothness3 0.02 Texture3 − 0.05
Area1 − 0.01 Texture1 − 0.04
Concave points1 0.01 Concavity3 − 0.03
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models provide better interpretability, we also found that 
the non-linear method offered a better explainability as it 
selected fewer features in the analyzed cases.

The logistic regression feature importances were 
harder to interpret. More penalization would result less 
features in the model but then the performance might 
decrease even more. Moreover, if there are highly cor-
related features logistic regression might just arbitrary 
choose one of those [5]. Another point to consider when 
comparing the techniques is that feature coefficients in 
logistic regression are calculated with all features as 
input in the model, while random forest calculates the 
importance values separately for each feature.

To answer our first research question: The feature 
importance measures selected different features but 
overall, radius, perimeter, area, and concave points 3 and 
1 as well as concavity 1 were the features selected by 
both for breast cancer data while for the running injury 
data, most important features included knee and hip/
pelvis features as well as age, running level and some 
functional features. A previous study found 14 important 
features in the breast cancer data with a genetic algo-
rithm [1], out of which only three were among the nine 
most important in this study. This shows that different 
features are detected with different methods. In addi-
tion, the features are highly correlated and the classifica-
tion task very simple in the breast cancer data, so high 
accuracy can be achieved using different sets of features.

This also answers the first part of our second research 
question. The most important features indeed differed 
depending on the used technique. Concerning the sec-
ond part of our second question, our experiments seem 
to provide better results for random forest. However, 
we believe that a triangulated approach [31] of several 
techniques would enhance trust the most. As already 
emphasized by Gifi [16] if different techniques lead to 
the same conclusion, it is more likely that these reflect 
genuine aspects of the data.

With regard to our last question we think that in the 
medical domain, those cases that were classified wrong 
as benign/healthy (false negatives) are of most interest 
and should be accompanied with local explanations. 
False positives are also interesting, but a little less criti-
cal than false negatives. The most important features for 
misclassified cases are of interest as they are misleading.

Naturally, the results are limited to the used data 
and techniques. In future work, we intend to repeat the 
presented analysis scheme in a larger scale. More spe-
cifically, we are interested in comparing the techniques 
utilized here to such as neural networks. Using more 
complex non-linear models can lead to better perfor-
mance with large real world data sets while LIME can 
provide interpretability for the results.

Table 3   Logistic regression feature coefficients and random forest 
feature importances for the running injury data

Bolded are the 22 features detected with random forest and 22 
most important features with regression, ranked based on the 
p-value. Left are the features measured from left leg; Right from 
right leg. The last five rows contain general demographic features

Feature Coefficient Importance

Left Right Left Right

Q angle 0.170 − 0.580 0.005 0.004
Leg length − 0.086 0.042 0.006 0.006
Hip abduction strength − 0.894 0.095 0.058 0.050
Hip internal rotation strength − 0.067 − 0.064 0.024 0.017
Hip external rotation strength 0.498 -0.355 0.005 0.006
Hip internal rotation flexibility − 0.046 0.646 0.012 0.023
Hip flexion flexibility 0.247 0.025 0.008 0.005
Hip external rotation flexibility 0.163 − 0.172 0.015 0.009
IT band flexibility − 0.306 − 0.129 0.008 0.008
Dorsiflexion peak − 0.065 − 0.160 0.007 0.009
Ankle eversion peak 0.116 − 0.113 0.010 0.006
Ankle eversion pct of stance − 0.174 0.851 0.005 0.005
Ankle eversion excursion 0.352 − 0.330 0.011 0.006
Ankle eversion velocity peak 0.093 0.154 0.010 0.011
Ankle pronation onset 0.622 − 0.737 0.005 0.004
Ankle pronation offset − 0.073 -0.031 0.005 0.006
Ankle progression angle − 0.072 0.043 0.007 0.011
Foot heelstrike angle 0.176 − 0.034 0.009 0.012
Hip extend peak − 0.048 0.211 0.019 0.010
Hip adduction peak 0.194 − 0.294 0.008 0.008
Hip adduction excursion − 0.109 0.188 0.009 0.021
Hip abduction velocity peak 0.331 -0.432 0.010 0.007
Hip adduction velocity peak − 0.035 − 0.044 0.006 0.014
Knee flexion peak − 0.209 − 0.516 0.022 0.030
Knee adduction peak 0.123 0.348 0.006 0.008
Knee adduction excursion − 0.286 0.115 0.007 0.008
Knee adduction velocity peak 0.021 0.098 0.005 0.006
Knee abduction peak 0.011 − 0.209 0.005 0.008
Knee abduction excursion 0.032 − 0.150 0.005 0.005
Knee abduction velocity peak 0.114 0.385 0.009 0.012
Pelvis drop peak 0.588 -0.174 0.024 0.006
Pelvis drop excursion 0.269 0.343 0.009 0.006
Pelvis drop velocity peak 0.027 − 0.397 0.006 0.007
Step width − 0.093 − 0.093 0.007 0.007
Stride rate − 0.160 − 0.048 0.025 0.025
Stride length − 0.094 − 0.109 0.007 0.007
Swing time 0.433 − 0.402 0.011 0.007
Stance time − 0.245 0.232 0.017 0.018
Heel whip excursion toe off 0.284 0.021 0.008 0.007
Vertical oscillation − 0.008 0.089 0.025 0.017
Height cm 0.080 0.004
Sex 0.221 0.002
Weight − 0.108 0.006
Age − 0.751 0.065
Run level − 0.070 0.026
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Table 4   LIME values, four 
people from first fold in 
separate cells and nine most 
important features from 
logistic regression and random 
forest on rows in each cell

Correctly classified healthy LR Correctly classified injured LR

df peak L − 0.24 df peak L 0.22

Knee add excur L 0.10 eve vel peak R 0.15

q angle L − 0.09 Drop vel peak L 0.12

Hip ext rot F R − 0.07 Heel whip excur L 0.11

Hip add vel peak R − 0.06 eve pct stance L 0.10

Drop vel peak L − 0.06 knee add excur L 0.08

eve vel peak R 0.05 Hip add vel peak R − 0.06

Stance time L 0.04 Hip add excur R − 0.07

Hip int rot S L 0.04 Pron offset L 0.05

itband R − 0.04 Vert osc R − 0.04

Pron onset R − 0.03 Pron onset R − 0.04

Heel whip excur L − 0.02 itband R 0.03

Misclassified healthy LR Misclassified injured LR

eve vel peak R − 0.14 itband R 0.14

Drop vel peak L − 0.12 Drop vel peak R − 0.11

eve pct stance L 0.10 Heel whip excur L 0.10

q angle L 0.09 eve pct stance L 0.10

knee add excur L − 0.07 q angle 0.08

Pron offset L 0.07 Hip int rot F R 0.08

Hip ext rot F R − 0.06 Knee add excur L − 0.07

df peak L − 0.06 Pron offset L 0.06

Hip add vel peak R − 0.05 df peak L 0.06

Hip add excur R − 0.06 Knee abd vel peak R 0.05

Step width L − 0.05 Stance time L 0.04

Vert osc R − 0.04 Hip add excur R − 0.04

Stance time L − 0.04 Step width R − 0.04

Correctly classified healthy RF Correctly classified injured RF

Hip abd L − 0.01 df peak R 0.01

Hip abd R − 0.01 Drop excur L 0.01

df peak R − 0.01 df peak L 0.01

Heel whip excur L 0.01 Flex peak L 0.01

Drop excur L − 0.01 Knee add excur L 0.01

Drop vel peak R − 0.01 Hip abd R 0.01

knee add excur L − 0.01 Extend peak R 0.01

drop vel peak R − 0.01 Heel whip excur L 0.01

Extend peak L − 0.01 Extend peak L 0.01

Extend peak R − 0.01 itband R 0.01

Heelstrike ang L − 0.01 Hip abd L 0.01

Flex peak L − 0.01 itband L 0.01

Hip ext rot S R 0.01 step width R 0.01

eve excur L − 0.01 Leg length L 0.01

Misclassified healthy RF Misclassified injured RF

itband R − 0.02 df peak R − 0.01

hip abd L − 0.01 Hip abd L 0.01

df peak R − 0.01 Hip flex R 0.01

itband L − 0.01 Sub age − 0.01

Flex peak L − 0.01 Hip abd R 0.01

Hip abd R − 0.01 Extend peak L 0.01

Heel whip excur L 0.01 Flex peak L 0.01

Drop vel peak R − 0.01 Knee add excur L − 0.01

Extend peak R − 0.01 eve vel peak R − 0.01

Step width R 0.01 itband R 0.01

Drop excur L − 0.01 Run level 0.01

Hip flex R 0.01 Heel whip excur L − 0.01

Knee abd vel peak R − 0.01 Leg length L 0.01

Bolded are those that were detected by both classification methods as well. (L=left, R=right, S=strength, 
F=flexibility)
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