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To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous 
approaches based on spatial independent component analysis (ICA) have recently been used to ongoing 
electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy 
subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level 
spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain 
networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive 
disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis 
between individual time courses of Fourier-ICA components and musical features. We found that 1) three 
components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, 
were involved in music processing among most healthy subjects; and that 2) one alpha lateral component located in 
the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed 
the statistical group comparison, and we found that: 1) the alpha lateral component was activated more strongly in 
healthy subjects than in the MDD individuals, and that 2) the derived frequency-dependent networks of musical 
feature processing seemd to be altered in MDD participants compared to healthy subjects. The proposed pipeline 
appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms. 

Keywords: Major depressive disorder; naturalistic music listening; ongoing EEG; independent component analysis; 
brain networks; neural oscillations. 

1. Introduction 

A number of robust brain networks have recently been revealed by neuroimaging tools 1, 2. Those networks are thought to 
involve cognition and attention or reflect fundamental neural processes and dysfunctions in neurological and psychiatric 
disorders 3-7. Most brain networks can be observed even during resting state and are therefore referred to as resting state 
networks (RSNs). The description of RSNs gives new insight into how separated brain regions dynamically integrate. One 
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of the RSNs, the default mode network, which is composed of brain areas demonstrating the greatest spontaneously 
metabolic activity at rest, has been assumed to reflect the brain’s intrinsic default pattern 8, 9. In addition to RSNs, some 
task-relevant transient networks related to self-paced movement, perception and working memory have been observed 10, 
where temporal courses of dynamic connectivity were analyzed based on envelope correlation with time-windowed data 
and between pairs of spatially separate regions defined by cortical segmentation 11, 12.  

Recently, increased interest has been directed to exploring functional brain networks during natural paradigms such as 
music, movies, and video 13-18. Unlike the repetitions of abstracted stimuli in order to improve the signal to noise ratio of 
recorded data 19-24, it is a challenge to uncover brain activity during naturalistic paradigms 25. Nevertheless, many methods 
and techniques have been applied to explore the electrophysiological processes underlying naturalistic stimuli. Inter-
subject correlation approaches have been used to show inter-subject synchronization during natural viewing in functional 
magnetic resonance imaging (fMRI) 26, magnetoencephalography (MEG) 27 and electroencephalography (EEG) 28. By 
combining fMRI, computational acoustic feature extraction and behavioral psychology, Alluri et al. found that large-scale 
brain networks emerged when participants freely listened to music 13. Zhu et al. recently combined acoustic feature 
extraction, spatial Fourier independent component analysis (ICA) and clustering to examine the frequency-specific brain 
networks involved in music listening in healthy participants, which demonstrated that functional brain patterns for 
processing of musical feature are frequency-specific 29. These findings also demonstrated common spatio-spectral patterns 
(frequency-specific bran networks) are similar across participants under music listening.  

Major depressive disorder (MDD), is a mental disorder characterized by low mood, loss of interest in normally 
enjoyable activities, and low self-esteem, as well as cognitive impairment, psychomotor agitation, and functional 
impairment 30. Treatment for MDD is usually inadequate, and the underlying mechanisms of such disease are not well 
understood 31. Within the last decade, a number of neuroimaging studies using different methodologies have demonstrated 
that MDD is related to altered brain network function 32-38. Altered brain networks were observed across those coordinating 
interactions between several spatially separate brain regions supporting multiple specific cognitive functions, such as 
emotion, attention and self-referential processing. Moreover, the neuropathology of MDD is associated with altered 
connections between different brain systems 39. Even though findings concerning altered neural, connections within and 
between these networks vary among studies, it is argued that MDD can be understood as a “network disease” with 
pathological changes in functional connectivity patterns 40. Also, some studies explored music listening as a potential 
complementary intervention to reduce depressive symptoms, which demonstrated that music could be offered as a way to 
help patients reduce anxiety 41-43. Yet, the neurobiological mechanisms underlying symptom improvement in depression 
during music listening remain unclear.  

Up to now, many group comparison studies using group-level methods of resting state data have been reported across 
many pathologies 44, 45. Nugent et al. performed group ICA on the Hilbert envelope of MEG data in MDD and healthy 
control groups to investigate group differences in RSNs 45. In contrast, studies applying ICA techniques to brain data under 
naturalistic stimuli have investigated only healthy participants. For example, individual-level spatial Fourier ICA was 
successfully applied to ongoing EEG of healthy subjects while they freely listened to music in our previous study, which 
demonstrated that there are similar frequency-specific networks emerging across healthy subjects under music listening 29. 
Few studies have attempted to investigate the differences in brain networks under naturalistic stimuli between healthy 
control subjects and MDD participants. Here, we present an approach that extends the individual analysis and allows us to 
examine group-level comparisons between a sample of healthy control participants and MDD participants while freely 
listening to music. We expected to see different frequency-specific networks of music processing in MDD subjects 
compared to healthy subjects. Additionally, we expected to find a plausible relationship between frequency-specific 
networks and depressive symptoms, as evaluated in clinical samples through depression questionnaire ratings. 

2. Material and methods 

Figure 1 demonstrated the analysis pipeline and we here introduced the overview. Two stages were performed in the 
proposed approach. In the individual-level stage, short-time Fourier transform (STFT) was performed on EEG data 
collected during music listening from MDD participants and healthy controls. A three-way array of data (time × frequency 
× channel) for each subject was obtained, and cortical source data were obtained via source localization based on minimum 
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norm estimation. The cortical three-way array was then reshaped into a two-way matrix (time × frequency ∗ channel) for 
each subject. In the group-level stage, the individual matrix from each subject was temporally concatenated since we 
assume that subjects shared the spatial profiles. The Fourier ICA was applied to obtain independent components including 
spatio-spectral factors and the temporal courses. The temporal courses were segmented into separate epochs, each of which 
was corresponding to an individual participant. Five musical (tonal and rhythmic) features were then extracted from the 
music stimuli. Finally, statistical analysis was performed to find music-induced brain activity in each group by correlating 
the time courses with musical feature time serials, and the components showing differences between groups were retained 
for further analysis. In addition, we also investigated the relationship between the activation strength of frequency-specific 
networks and depressive symptoms, as measured by questionnaire ratings of depression. 

2.1.  Data description 

2.1.1.  Participants 

There were 20 psychiatrically healthy adults (4 males; 16 females) and 20 MDD adults (6 males; 14 females) in the current 
study. The mental health of each subjects was evaluated through the Structured Clinical Interview for DSM-IV-TR (SCID) 
and unstructured interviews with a psychiatrist. The Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety 
Rating Scale (HAMA), and Mini-Mental State Examination (MMSE) were used in the mental assessment. The HRSD is a 
multi-item questionnaire adopted to provide an indication of depression, and as a guide to assess recovery. The HAMA is 
a psychological questionnaire adopted by clinicians to assess the severity of a depressed patient’s anxiety. The MMSE is 
a 5-minute bedside test that is used as a screen of mental status and to evaluate the degree of cognitive dysfunction in 
patients with diffuse brain disorders. The values of those indexes from all participants are listed in Table 1. The 
experimental procedure in this study was approved by the research ethics committee of the Dalian University of 
Technology and all the participants were informed about the experiment and have signed an informed written consent 
before participation. 

2.1.2.  Stimulus 

The music clip adopted in the current experiment was the tango “Adios Nonino,”, which has a duration of 8 minutes and 
32 seconds. This music clip had been used in previous studies 46, 47 for its suitable length and high variance in several 

acoustical musical features such as tonality and rhythm. 

2.1.3.  EEG recording 

The EEG measurements were conducted according to the International 10-20 system with 64 electrodes. The signals were 
amplified using Neuroscan amplifiers and sampled at a rate of 1,000 Hz. During the EEG measurements, subjects were 
asked to listen to music clip with their eyes open. Electrode impedances were kept below 5 KΩ. Common average channels 
were used to re-reference EEG data. Artifacts were corrected using infomax ICA in EEGLab toolbox 48. A 50 Hz notch 

Table 1.  Demographic information of the participants. 

 Controls (CON) Patients with MDD CON ∙ MDD 
 Mean (SD) n Mean (SD) n p values 
Age, years 37.8 (11.4) 20 42.8 (10.7) 20 0.17 
Gender (M:F) 4:16  6:14  0.96 
Education (EDU) 13.7 (3.6) 20 12.8 (3.3) 20 0.40 
HRSD 2.4 (1.2) 20 23.3 (3.5) 20 < 0.001 
HAMA 2.3 (1.3) 20 19.2 (3.0) 20 < 0.001 
MMSE 28.3 (0.9) 20 28.1 (1.0) 20 0.53 
Duration of disease, months - - 12.8 (8.3) 20 - 

Notes: M, male; F, female; HRSD, Hamilton Rating Scale for Depression; HAMA, Hamilton Anxiety Rating 
Scale; MMSE, Mini-Mental State Examination 
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filter, 1 Hz high-pass and 40 Hz low-pass filters were used to reduce noise. The EEG data were then downsampled to 256 
Hz. 

2.1.4.  Acoustic feature processing 

We extracted the musical features using the computational extraction approach adopted in previous studies 46, 47. Five long-
term musical features, including Fluctuation Centroid, Fluctuation Entropy, Key Clarity, Mode, and Pulse Clarity, were 
obtained from the musical stimuli using the Music Information Retrieval (MIR) Toolbox 49, which captures tonal and 
rhythmical properties. In brief, Fluctuation Centroid yields an estimate of the rate of musical events in the music; 
Fluctuation Entropy provides a measure of rhythmic complexity; Key Clarity indicates the degree to which the music 

 

Fig. 1.  Pipeline of group source-space ICA. At the individual-level stage, STFT was performed on the EEG data 𝒀𝟎 (𝑁" channel x 𝑁# 
time point) to extract spectrogram data 𝒀𝟏 (𝑁", 𝑁%, 𝑁&). The inverse operator 𝐆 (see the main text) was left-multiplied to sensor-level 
data 𝒀𝟏 to obtain the spectrogram data 𝒀𝟐 (𝑁(,𝑁%,𝑁&) in source space. The three-order data  𝒀𝟐 was reshaped to the matrix 𝒀𝟐 (𝑁&, 
𝑁( ×𝑁%). Dimension reduction was performed using PCA subject by subject. At the group-level stage, reduced data were temporal 
concatenated to matrix 𝑿𝟎. ICA decomposition was performed on this matrix. The columns of the mixing matrix represent the temporal 
courses of spatio-spectral patterns and the rows of independent source-level matrix were divided into the spatial maps and the 
corresponding spectra. 
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conforms with Western tonality structure; Mode indicates whether the music is in a major or minor key; and Pulse Clarity 
estimates the salience of a regular pulse in the music. We adopted a frame-by-frame analytical procedure used in the MIR 
field to extract musical features. We set the length of frames to 3-s and the adjacent overlap to 2 s (see 46, for the details). 
For each feature, this process yielded a time series with a 1 Hz sampling rate representing its temporal evolution. All 
processes were performed in the MATLAB environment. 

2.2.  Group source-space ICA 

2.2.1.  Source analysis 

First, STFT (3s time window, 2s overlap and Hamming window) was applied to the preprocessed EEG data 𝑌!  (𝑁" 
channels x 𝑁#  sampling points) in the sensor space to obtain the corresponding spectrogram 𝑌$ (𝑁" ,𝑁% ,𝑁&). For each 
participant, the brain surface was reconstructed from an anatomical MRI template mesh, based upon the Montreal 
Neurological Institute human brain in Brainstorm 50. Individual electrode positions of each EEG dataset were co-registered 
with the brain template based upon the three fiduciary points and electrode locations. At cortically separate constrained 
discrete locations (source points), we estimated the dipolar current sources. Each cerebral hemisphere was modeled by a 
cortical surface of around 2,000 source points (vertices), resulting in a mesh-grid of around 4,000 vertices modeling the 
brain surface for each participant. A single-compartment boundary element model (BEM) was used to model the 
conductivity of the cranium. The linear inverse operator G with dimension 𝑁' ×𝑁" ( 𝑁' denotes the number of vertices 
and 𝑁" denotes the number of channels:𝑁' ≫ 𝑁") was calculated using MNE with a loose orientation constraint favoring 
source currents perpendicular to the local cortical surface by a factor of 2.5 with respect to the currents along the surface 
in Brainstorm Toolbox. The spectrogram data 𝑌( (𝑁', 𝑁&, 𝑁%) at the cortical level was produced by left-multiplying the 
inverse operator matrix G (𝑁', 𝑁") to the sensor-space matrix 𝑌$ (see Fig. 1).  

2.2.2.  Group ICA 

After source localization, we reorganized the three-way array data 𝑌( into two-way array 𝑌) (𝑁& , 𝑁' ×𝑁%). In the obtained 
matrix 𝑌), its rows consisted of the STFT coefficient from each cortical voxel for the corresponding time point, and its 
columns comprised a time stamp corresponding to a time window in a specific frequency bin and source point. We 
performed PCA to reduce the dimension of the matrix 𝑌) and whiten them. The selection of PCA dimensions was based 
upon fMRI studies 51 suggesting that the choice of dimensions was slightly greater than the expected number of underlying 
oscillatory sources. It has been suggested that 10–12 resting-state networks can be identified from the brain cortex using 
ICA with a model order around 25–40 dimensions 52. Although there are information theoretic methods (e.g., AIC and 
BIC), such empirical rules appear to be more commonly used during dimensional reduction of neuroimaging data 52, 53. In 
this study, we assume the number of the underlying sources to be 25 and set the order to 40. It should be noted that the 
above analysis was performed at the individual level. Then the reduced data from all subjects were concatenated in time 
domain. Temporal concatenation does not require the consistency across all subjects in time dimension for group ICA. It 
is required that all subjects share the spatio-spectral pattern. The consistency of spatio-spectral profiles (frequency-specific 
networks) was examined across subjects during music listening in our previous study 29. The general issue of the spatial 
consistency assumption under the inter-subject differences has already been discussed in the related literature 54, and we 
will discuss this further below (see Discussion). We reduced the concatenated data to 40 dimensions at the group level. 
The spatial ICA was performed to estimate 25 underlying independent components (ICs) using fastICA in the MATLAB 
environment. The estimation of ICA maximized the independence in the spatial-spectral domain at the same time and the 
recovered spatial spectral ICs were independent with no requirement of temporal independence. The rows of the extracted 
component matrix S represent the independent spatio-spectral profiles, which were transformed to spatial maps and power 
spectrum by extracting the absolute value and by averaging across cortical points and frequency bins, separately. The 
absolute value of the column of the obtained mixing matrix A  represents the temporal course corresponding to the 
independent spatio-spectral pattern. The details and interpretation can be found in previous studies 55, 56. Fig. 1 
demonstrates the flow chart with data matrix representation.  
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Since ICA estimation is not stable and depends on the randomly initialized procedure, there may be slight but 
quantifiable fluctuations in the resulting ICs among different runs. In the preliminary analysis, we noted that these 
fluctuations may cause small differences in group level results. To investigate the stability of ICA estimate, we used a 
well-developed Icasso toolbox 57. This tool has already been adopted to assess stability among repeated runs of the fast-
ICA algorithm and get more precise ICA estimations than any single ICA decomposition. All the ICs obtained from all 
ICA estimates were clustered using the absolute values of the correlation coefficient in the squared estimated sources. 
Then, the stability index, referred to as Iq, was calculated for each IC. Iq index represents the compactness and isolation 
of a cluster. Iq can be computed as:   
𝐼𝑞 = 𝑆̅(𝑖)*+& − 𝑆̅(𝑖),-&	,			𝑖 = 1,… , 𝐽	,                          (1) 
where 𝑆̅(𝑖)*+&  represents the averaged similarity of intra-cluster and 𝑆̅(𝑖),-&  denotes the averaged similarity of inter-
cluster. J indicates the underlying number of clusters. Note that the range of 𝐼𝑞 is 0 to 1. Larger Iq means that the estimated 
ICs from all runs are more stable. In other words, if all the component clusters were separated from each other, the current 
ICA estimate were supposed to be stable. In general, ICA decomposition is considered to be stable if the Iq index is larger 
than 0.7.   

The resulted ICs are spatio-spectral profiles. In order to obtain group level spatial maps and spectra for each IC, a 
matrix (𝑁% , 𝑁') in the spatio-spectral domain was obtained by rearranging each row of 𝑆, which means that a Fourier 
coefficient spectrum existed for each cortical source point. The spatial map (profile) was obtained by computing the 
average of the squared magnitude of the Fourier coefficient across those frequency bins satisfied with the top 5% squared 
Fourier amplitude. Similarly, the power spectrum of each IC was obtained by calculating the average of the Fourier power 
spectra across those source points satisfied with the 5% squared Fourier amplitude. Finally, the column of the mixing 
matrix 𝐴 was considered as the concatenated time course across subjects, corresponding to the row of the estimated IC. 
The concatenated time courses were divided into individual segments, each of which corresponded to a single subject. 
After the back projection of PCA, the individual time courses of each participant were obtained for each ICs. Thus, we had 
N (number of subjects) time courses, a spatial map and a spectrum for each IC. The time courses reflect the temporal 
evolution of the spectro-spatial patterns. 

2.2.3.   Components related to music-induced activity 

After ICA estimation, we obtained 25 ICs. The challenge was how to separate music-induced brain oscillations from 
spontaneous oscillations. In this study, we calculated Pearson’s correlation coefficient between the musical feature time 
series and the individual temporal courses of the ICs. The permutation tests and Monte Carlo procedure presented in our 
previous work 46, 47 were applied to compute the threshold of the significant correlation coefficient for multiple 
comparisons. Then we counted the number of subjects whose time course was significantly correlated with music features 
in each group (CON and MDD) for every IC. If the number of subjects with significantly correlated time courses was more 
than half of participants for one IC, it was concluded that the IC reflected the brain activity linked to music stimuli across 
most participants in one specific group, and it was considered as a component associated with this group. 

2.2.4.  Group differences between components 

For each IC, the variance of individual time courses was computed and used as a magnitude of activation for each 
participant. This magnitude can be considered an activation index of the spatio-spectral pattern (frequency-dependent 
network) during the whole duration of music listening. Thus, each subject had an activation index representing the 
activation magnitude of the spatio-spectral pattern for each IC. An one-factor (group) statistical analysis was performed to 
examine the group difference in the activation index for each IC. We demonstrated the group difference with a boxplot 
(see Fig. 3E). The ICs with activation p-value smaller than 0.05 were considered candidate ICs for further analysis. It 
should be noted that Bonferroni correction was used for p-values to correct for multiple comparisons across components. 
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2.2.5.  Correlation between components and behavioral features 

Modulation in the power amplitude of neuronal oscillations has been functionally related to sensory, motor and cognitive 
function. Such relationship is commonly established by linking the power modulations to specific target variables such as 
task ratings or personality 58. In this study, we examined the amplitude modulation of the frequency-dependent networks 
by the factors representing depressive symptoms via correlating the activation index with the behavioral data. Each subject 
had one activation index (see the section 2.2.4) and a behavioral scale index (e.g., the HAMA). For each IC, we computed 
the correlation coefficients between activation index sequences with behavioral index sequences in each group 
respectively. The threshold of significant correlation coefficient was obtained using the above procedure (see the section 
2.2.3). If the activation index sequences in one of the groups were significantly correlated with one of the behavioral 
indexes for each IC, we considered this IC to be a candidate IC reflecting modulation by behavior for further analysis. 

3. Results 

3.1.  Time series of musical Features 

We extracted five long-term musical features using MIRtoolbox 49 with 3 seconds time window and 2 seconds overlap, 
yielding 1 Hz sampling rate of time courses. They include two tonal features, Mode and Key Clarity, and three rhythmic 
features, Fluctuation Centroid, Fluctuation Entropy, and Pulse Clarity. The time courses of these five features have 512 
samples with 1Hz sampling rate, which could match the size and sampling rate of the temporal courses of the ICs extracted 
from EEG. We correlated those time series of musical features with the temporal courses of the extracted components to 
select the music-induced components.  

3.2. Stability analysis of ICA decomposition 

25 ICs were extracted by Icasso with 100 repeated runs for the concatenated data and calculated the stability index 𝐼𝑞 
according to Eq. 1. Fig. 2 demonstrates the magnitudes of Iq, larger than 0.7 for the majority of ICs. The 25 ICs were 
isolated from each other from the viewpoint of cluster. Hence, the ICA decomposition was reliable and the estimated 
results in the current study could be considered for further analysis. 

 

Fig. 2.  Iq of each extracted component. 
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3.3. Notable components from ICA decomposition 

After 25 ICs derived from combined group data, we visualized the spatial profile, spectral profile, the number of subjects 
whose time courses were associated with the time courses of each musical feature in each group, the correlation of 
behavioral data (depressive symptoms) and the activation magnitude differences between groups for each IC. Fig. 3 
demonstrates seven ICs showing group difference between CON and MDD group. 

3.3.1.  Components associated with the CON group 

We found one unilateral auditory component at ~20 Hz (see Fig. 3 I). In the control group there were 12 subjects whose 
temporal courses were significantly correlated with musical features and 5 subjects whose temporal courses were 
significantly correlated with musical features in the MDD group, suggesting this ~20 Hz auditory network in healthy 
subjects is more engaged in musical feature processing than in the participants with MDD. No significant correlations 
between the activation magnitudes with behavioral data were observed in either group. There was also no significant 
difference between the two groups about the activation index. A bilateral 15 Hz sensorimotor component was found (see 
Fig. 3 II), which has been previously observed with fMRI of healthy subjects listening to music 46. In the control group, 
11 subjects’ temporal courses were associated with stimuli features; in the MDD group the temporal courses of eight 
subjects were associated with stimuli features. The activation strength of the MDD group was significantly correlated with 
HAMA scores. We also found a unilateral visual component at ~10 Hz (Fig. 3 III). There were 11 control subjects and 5 
MDD subjects whose temporal courses were significantly correlated with musical features. The statistical analysis revealed 
no significant difference between the two groups. Also, this component was unrelated to the behavioral scores.  
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3.3.2.  Components associated with the MDD group 

A unilateral lateral visual component (located in the left angular gyrus) at ~10 Hz (Fig. 3 IV) was found. There were 11 
subjects with MDD and 6 healthy subjects in the control group whose time courses significantly correlated with musical 
features. Moreover, the activation magnitude of subjects with MDD was significantly correlated with cognitive score 
(quantified by the MMSE) and smaller than the activation magnitude of healthy subjects (p < 0.01). 

 

Fig. 3.  A. Spatial map averaging the independent component across the Fourier bins; B. Spectra averaging the independent component 
across source points exceeding the 95th percentile threshold; C. Number of subjects whose temporal courses significantly correlated 
with musical features; D. Correlation coefficient between the variance of time courses with behavioral features (asterisk reflects 
significant correlation). E. Differences in activation strength between control and MDD groups. 
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3.3.3.  Components with a significant difference between groups 

A unilateral lateral visual component (located in the left angular gyrus) at ~10 Hz. We also found a sensorimotor 
component at ~ 5 Hz and two lateral visual components at ~15 Hz and ~ 30 Hz respectively (Fig. 3 V, VI&VII). For these 
components, the number of participants showing temporal courses significantly correlated with the musical features was 
less than half of the participants in both groups. The power of the ~5 Hz sensorimotor (located in the postcentral gyrus) 
component in the control group was negatively correlated with HSRD score. The activation of this network in the control 
group was stronger than the activation in MDD group (p < 0.01) (Fig. 3 V). The amplitude of the ~15 Hz lateral visual 
network component (located in left angular gyrus) of the MDD group was positively correlated with HSRD score. There 
was a significant difference in the activation of the networks between groups (p < 0.05; Fig. 3 VI). For the ~30 Hz lateral 
visual network component (also located in the left angular gyrus), the power of the subjects with MDD was negatively 
correlated with HRSD score. The power of the healthy subjects was negatively correlated with MMSE. The average 
activation of the subjects with MDD was stronger than that of the healthy subjects (Fig. 3 VII). 

4. Discussion 

In this study, we investigated group differences in frequency-specific brain patterns during music listening between 
participants with MDD and healthy controls using a technique combining group-level spatial Fourier ICA and acoustic 
feature extraction. The spatial Fourier ICA was used to extract independent spatio-spectral profiles. The individual 
temporal courses of the frequency-dependent networks were obtained by dividing the row of mixing matrix into N (number 
of subjects) segments. Then, musical features were extracted by music information retrieval. Music-induced frequency-
specific networks for each group were identified by correlating temporal courses of spatio-spectral patterns with time series 
of the musical features. We further examined between group differences of network activation magnitude via statistical 
analysis and analyzed how magnitudes of networks were modulated by behavioral factors (specifically, depressive 
symptoms). The applied spatial Fourier ICA technique was first presented by Ramkumar and colleagues 55, which was 
able to capture the interactions between spatial profiles and spectral band. Shortly thereafter, a group-level spatial ICA 
was performed on a single healthy group of subjects to probe resting-state spatio-spectral patterns 56. Recently, Zhu et al. 
also applied individual spatial Fourier ICA to the ongoing EEG of healthy subjects during music listening and found the 
brain networks of music processing to be frequency-dependent 29. For spatial Fourier ICA, the meaning of independence 
is different from the meaning of independence in standard spatial ICA as used in fMRI 56 or as a feature extractor 59. In 
spatial ICA, the independent components should be a set of statistically independent spatial maps together with similar 
temporal courses. Likewise, in spatial Fourier ICA, the estimated components should be independent in the spatio-spectral 
domain. This means that two components might be strongly overlapping in spatial domain, if they have very different, 
completely non-overlapping spectral profiles; the theoretical details can be found in previous studies 55, 56. Until now, 
studies using this spatial Fourier ICA approach have focused on a single group of healthy subjects, and no studies have yet 
been presented for group comparisons under naturalistic music listening. We extended the spatial Fourier ICA to enable 
group comparisons under music listening and demonstrated the technique in a sample of subjects with MDD. In addition, 
the stability of the decomposition was examined by a well characterized tool, Icasso 57. Nugent et al. also developed a 
MEG-ICA technique to examine the group-level differences in resting-state networks in subjects with MDD, which only 
investigated the beta frequency band 60.  

We applied the proposed method to a group of 20 subjects with MDD under a music listening condition. We observed 
a ~20 Hz unilateral auditory component, a ~15 Hz bilateral sensorimotor component, and a ~10 Hz medial visual 
component associated with music processing among most healthy controls (see Fig. 3 I, II&III).  The ~20 Hz unilateral 
auditory component and ~10 Hz medial visual component are in line with our previous work where the individual-level 
spatial ICA was performed to analyze electrophysiological networks of healthy subjects during a similar music listening 
condition 29. The ~15 Hz bilateral sensorimotor component emerged in the current group-level analysis. Those brain 
networks seem to be more involved in music processing in healthy subjects than in patients with MDD. In other words, 
these spatial spectral patterns of MDD patients were not sensitive to natural music due to the severity of self-focused 
rumination in depressive patients. MDD has been linked to the predominance of default mode network over the task 
positive network, which is considered as a neurobiological basis for ruminative responding and multiple studies have 
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explored the depression-related changes in oscillatory brain activity 61-63. Functional magnetic resonance imaging (fMRI) 
uncovered a modification in the functioning of frontal and temporal regions 64. In addition, the magnitude of activation of 
the ~15 Hz bilateral sensorimotor component was modulated by anxiety score in the MDD group, seemingly indicating 
that depressive symptoms were associated with altered sensorimotor areas at the beta frequency band. Those results were 
consistent with earlier studies, demonstrating that depressive symptoms were associated with electrophysiological changes. 
In the resting state condition, major depression disorder was characterized by unique EEG rhythm in beta frequencies that 
were dominant in relation to delta, theta, and alpha oscillations and beta oscillations were associated with higher cognitive 
systems 65. 

The ~10 Hz temporo-occipital component with spatial maxima over the left angular gyrus was engaged in music 
processing among most subjects with MDD (see Fig. 3 IV).  The activation magnitude of this pattern was modulated by 
cognitive score in MDD subjects. Furthermore, the activation magnitude in the control group was significantly stronger 
than in the MDD group (p < 0.01). Previous studies demonstrated that connectivity of the temporal cortex centered in the 
precentral and angular gyri was increased in the MDD group 60. In contrast, in the current study, the activation magnitude 
of the angular gyri was weaker in MDD participants. Alpha power in the left hemisphere was significantly larger than in 
the right. This alpha asymmetry was related to depressive mood, which corresponds to findings from an earlier study 66.  

The activation magnitude of the ~5 Hz sensorimotor network was larger in the control group than in the MDD group 
(p <0.001). A ~15 Hz and ~30 Hz temporo-occipital components were both examined. The magnitude of the ~15 Hz 
temporo-occipital network was positively correlated with HRSD depressive symptoms in the MDD group and was weaker 
than in the control group. In contrast, the activation magnitude of the ~30 Hz network was positively correlated with HRSD 
depressive symptom and was larger than in the CON group. Although the brain areas are the same in both components, 
the spectral peak is different. These results suggest that MDD is associated with disrupted oscillatory brain networks (see 
review by 67).  

In all group ICA-based methods, a general question is which dimension is consistent across subjects and should be 
concatenated. In our previous work, we applied individual spatial Fourier ICA to ongoing EEG under a music listening 
condition; the common patterns in spectro-spatial domain were confirmed across healthy subjects but temporal courses 
were quite different among subjects 29. In addition, Nugent et al. applied group-level MEG-ICA techniques to patients with 
MDD and heathy subjects to examine group difference in connectivity, where temporal concatenation in group ICA was 
performed and all subjects shared the same mixing matrix in spatial dimension 60. Thus, those prior works motivated us to 
adopt a standard approach of temporal concatenation across subjects to organize the group data, which imposes a degree 
of spectro-spatial consistency due to the shared components in the spectro-spatial domain. Generally, concatenation in 
time dimension might result in spurious correlations in the data. Despite the fact that we are not aware of any study that 
has shown such spurious correlations (whether linear or nonlinear) in the context of group-level ICA, such a possibility 
could not be completely ruled out 56. Moreover, the three-way tensor data were rearranged into a two-way matrix to 
facilitate ICA estimation, which may inevitably lose some potentially existing interactions between the spatial mode and 
the spectral mode. In the future, we would apply tensor decomposition to probe the underling interactions among multiple 
modes of the tensor 68-70. We here used the tango Adios Nonino by Astor Piazzolla since dynamic functional networks 
during this piece of music listening are well described using healthy subjects in our previous studies 46, 47, where the spatial 
or temporal patterns of brain activity during listening to this music are synchronized participants. Another limitation of the 
current study is that a template head model was adopted for co-registration instead of individual MRI-derived head shape 
models. Due to the measurement of the position of each electrode for co-registration, the individual head shape was taken 
into account by the Brainstorm toolbox; thus, the accurate source localization of observed effects should be interpreted 
with caution. The most important limitation of this study is the small sample size (20 control subjects, 20 MDD subjects). 
Therefore, the results require replication in an independent dataset. In addition, the design of this study did not allow us to 
compare gender differences. Future studies may investigate the variants of gender. 

5. Conclusions 

We proposed an approach combining extended group spatial Fourier ICA and acoustic feature extraction to investigate the 
group differences in frequency-specific networks under music listening conditions between MDD subjects and healthy 
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control subjects. We also examined the relationship between depressive symptoms (measured by self-report questionnaire) 
and frequency-specific patterns. The results were partly in agreement with those reported in earlier literature on MDD 
using fMRI and MEG/EEG and demonstrated the flexibility of group ICA to study disrupted brain oscillations in 
psychiatric disorders. 
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