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ABSTRACT

In this study we apply 3D convolutional neural network
(CNN) for tree species identification. Study includes the three
most common Finnish tree species. Study uses a relatively
large high-resolution spectral data set, which contains also a
digital surface model for the trees. Data has been gathered
using an unmanned aerial vehicle, a framing hyperspectral
imager and a regular RGB camera. Achieved classification
results are promising by with overall accuracy of 96.2 % for
the classification of the validation data set.

Index Terms— Tree species, spectral imaging, 3D, con-
volutional neural network, UAV

1. INTRODUCTION

This study is continuum for [1], where the individual tree de-
tection and classification pipeline for the hyperspectral and
point cloud data is clearly described. We are interested to
see if deep learning methods could improve or simplify the
data processing chain for identifying the species of individual
trees.

There exists plenty of research concerning tree species
identification, but it is mainly concentrated on large scale re-
mote sensing, which uses forest stand and plot level data. For
example in Scandinavia combination of airborne laser scan-
ning and aerial images is used in forest inventory [2]. There
are less studies and applications for the tree species identi-
fication from unmanned aerial vehicles (UAV) using hyper-
spectral sensors. If hyperspectral data has been used for tree
species identification, the platform for data gathering has been
manned aircraft or satellite.

As in [1], these remote sensing studies use quite tradi-
tional feature extraction and selection methods before clas-
sification. Deep learning methods have dramatically im-
proved performance of pattern recognition [3]. Especially
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deep convolutional neural networks (CNN) have provided
breakthroughs in image, video and audio processing. If we
consider hyperspectral data, it seems that they should handle
hyperspectral data combined with 3D data as well. There
is currently increasing number of research, which applies
CNN’s and 3D CNN’s to hyperspectral imager [4, 5].

In this paper we first test performance of 3D CNN for
tree species classification. Neural networks has the nature of
being a black box, that doesn’t reveal how it has reasoned its
results. However, while doing classification we can calculate
saliency maps, which will give us hints on which parts of the
input data are relevant for the CNN [6].

This paper has the following structure. First, in Section
2 we describe the used data set, its acquisition and prepro-
cessing. Then the structure and functionality of the used 3D
CNN is described. In Section 3, the results are presented and
Section 4 includes the conclusion.

2. MATERIALS AND METHODS

2.1. Data gathering and preprocessing

The research data is the same as reported in [1]. The col-
lected remote data was captured in Vesijako research forest
area in the municipality of Padasjoki in southern Finland (ap-
proximately 61o24’N and 25o02’E). Area has been used for
forestry research by Natural Resources Institute of Finland.
The area contains experimental plots with different research
setups. All the trees with the diameter of at least 50 mm at the
breast-height were measured and estimated with various met-
rics, such as the tree species, diameter, height and volume.
Locations of these trees were collected with GPS.

In total, 4142 trees were selected for further study. The
data set contained three most common species of Finnish
forests: scots pine ( Pinus sylvestris, 2821 samples), norway
spruce ( Picea abies, 742 samples) and silver birch (Betula
bendula, 579 samples). These selected trees were compared
to aerial orthoimage mosaics to ensure that the GPS coordi-



nates were in the centres of the treetops.

The used remote sensing data was a combination of two
data modalities captured by the UAV remote sensing system,
which belongs to Finnish Geospatial Research Institute. Sys-
tem consist of a Tarot 960 hexacopter and a Pixhawk autopi-
lot. System is capable of carrying 3 kg payload at maximum.
Average flying time of the system is 30 minutes. As a pay-
load, we had a tunable Fabry-Pérot inteferometer based spec-
tral imager (FPI) and an ordinary RGB camera, the Samsung
NX1000 (RGB). Flying height from ground level varied be-
tween 83-94 meters.

The FPI imager captures raw data, which is processed to
radiance based on the radiometric laboratory calibration [7].
The geometric imaging model was then determinated. The
model includes both the interior and exterior orientations of
the images. The digital surface model is calculated by dense
image matching. Because of the slight variations between
bands in the FPI camera, we had to apply registration of the
spectral bands of FPI images. To make data cubes and further
mosaics radiometrically homogenous, the radiometric imag-
ing model has to be determined [8, 9]. The hyperspectral im-
age mosaic is calculated after the radiometric model is applied
to each cube. The detailed radiometric and geometric pro-
cessing of the data set is explained in [1]. Finally, the spectral
mosaics with 33 bands and digital surface model (DSM) both
with 10 cm GSD are created.

For the tree species identification, 4 × 4 meter windows
surrounding each treetop were extracted. The windows con-
tained both DSMs as rasters and spectral cubes. For each tree-
top, the extracted DSMs were scaled by the minimum value
of the whole DSM. The DSM and spectral cube for each tree-
top were concatenated in spectral axis to unified data cubes
(41 × 41 × 34). In Finland there exist laser scanned nation
wide ground surface elevation model, which is freely avail-
able. Thus, canopy surface model could have been calculated,
but it isn’t actually needed, because we are only using height
of the treetops.

Figure 1 illustrates average treetops for each species. We
can see that there are slight differences between the shapes.
Pine’s treetops are quite symmetric. Spruce’s treetops are
more of ellipses and aligned on north-west to south-east axis.
Birch is more irregular, but its leaves and branches are to-
wards south where the Sun shines.

Figure 2 represents how spectral distribution diverges to
different wavelengths for each tree species. The line in the
figure represents the average spectra for each treetop. Quite
obvious differences can be found between birches and Nordic
coniferous trees. Birches have stronger reflection in green and
infrared regions. Birches have steeper spectrum at red edge
area.

Fig. 1. Avarage shape of treetop for each tree species.

Fig. 2. Histogram spectra of each tree species. Black line is
average spectrum.

2.2. Convolutional Neural Network

Originally CNN’s were presented by LeCun and Bengio [10].
The idea was to tackle feature extraction and selection prob-
lem in fully connected feed-forward networks. The network
uses a convolution matrices. Traditional neural network lay-
ers are usually based on consecutive dense (fully connected)
neurons. In convolutional neural networks, there exists at
least one convolution operation in the network. We applied
quite simple structure to our CNN, using four types of lay-
ers: 3D convolutional, pooling, dropout and fully connected
layers. Our network’s structure is presented in Table 1.

In general, convolutional layers have trainable filters,
which use convolution operations to extract features. In our
implementation, the convolution layer uses activation called
rectified linear unit (ReLU). ReLU has advantages of being
efficient with non-linear relations and having less vanishing
gradient problems during the network optimisation compared
to other popular activation functions [11]. Pooling layers,
which usually follow convolutional layers, are non-linear
downsampling functions, which reduce dimensions of input
data. Dropout layer is a regularization method for reducing
overfitting in the neural network by introducing noise to the
network. Flatten layer translates data to one dimensional
stack.



Layer Kernel / Output Shape Parameters
pool size or
Activation

Conv3D (3,3,1) ReLU (39, 39, 33, 64) 640
Conv3D (3,3,3) ReLU (37, 37, 31, 64) 110656
MaxPooling3D (2,2,1) (18, 18, 31, 64) 0
Conv3D (3,3,3) ReLU (16, 16, 29, 128) 221312
MaxPooling3D (2,2,3) (8, 8, 9, 128) 0
Conv3D (3,3,3) ReLU (6, 6, 7, 256) 884992
MaxPooling3D (2,2,3) (3, 3, 2, 256) 0
Flatten (4608) 0
Dense ReLU (128) 589952
Dropout (0.25) (128) 0
Dense SoftMax (3) 387
Total params: 1,807,939
Trainable params: 1,807,939
Non-trainable params: 0

Table 1. Structure of our experimental CNN.

A dense layer is a fully connected layer, which consists of
parallel neurons which are connected to all previous layer’s
outputs. Weights of the connections and activation functions
determine which features are correlating with different tree
species. The last dense layer is activated with softmax func-
tion, whose output is the final classification.

If the amount of data is limited, meaning that the number
of training samples is low, then there is option to apply data
augmentation. Basically this means that we will generate new
training data from existing ones. In this study we fivefold our
training data by using simple rotation and flipping operations.
Selected training data was flipped both horizontally and ver-
tically. Data was also rotated 90 degrees to left and right.

In machine learning structures like neural networks are
so called ”black box“ solutions. We don’t have clear vision
how data is classified. It is reasonable to ask, is the classifi-
cation based on real feature of wanted object or something
secondary such as ground type in tree species recognition.
Luckily there are methods to see where network is putting
weight in classified data. It is possible to calculate gradient
over layers from output to input. This way to get actually im-
age, where areas with higher values contributes most to clas-
sification result. These maps are called saliency maps.

Stochastic gradient decent was used to tune weights be-
tween layers. We used categorical cross entropy as a loss
function, which basically calculates cross entropy between
categories probability distributions. Primary metric for model
evaluation was accuracy

acc =
TP + TN

TP + FP + FN + TN
,

where TP is true positive, TN is true negative, FP is false
positive and FN is false negative classification result.

CNN’s were trained by using IBM PowerAI platform
which includes two Tesla V100-SXM2 16 GB GPU units.
Tensorflow was used as a computational backend [12]. All
machine learning phase coding was done using Python 3.6

and Keras library [13]. Saliency maps were calculated using
Keras-vis library [14].

3. RESULTS

Altogether 3311 trees were randomly selected for the training
of the 3D CNN. After data augmentation there was 16555
samples. Training was performed with batch size 128 and
with 100 epocs. Training took two and half hours (approx.
88 seconds/epoch). Results were validated with 831 samples,
which weren’t included in training set.

Figure 3 shows that accuracy of trained model is relatively
high. It seems that we can with quite large confidence identify
tree species from each other. Overall accuracy for classifica-
tion of validation set was 96.2%, which is higher with earlier
results achieved in [1]. Producer accuracies were for each
tree species were 96.2% (Pine), 86.6 % (Spruce) and 98.2 %
(Birch). Respectively users accuracies were 96.3 %, 83.8 %
and 95.7 %.

Fig. 3. Confusion matrices show good separation between
tree species.

Figure 4 is presenting average saliency maps in spatial
domain over all input bands of validation data. It seems that
most of the important features are handling data surround-
ing tree top. This is shown more clear in the figure 5, where
figure’s 4 maps are rendered over validation sets average 3D
treetops. Thus, we can be quite confident that, at least in spa-
tial domain, tree top’s shape is relevant feature in classifica-
tion.

In spectral domain most characterising features seems to
be located between wavelengths from 600 to 720 nm. Figure
6 presents average salience in each spectral band. It can seen
that there is differences between tree species. For example
birch has lower saliency in 560 nm and higher in 700 nm than
coniferous trees.

If we consider individual trees, it seems that classifying is
working quite efficiently. In figure 7 there is one tree of each
species from the validation set. It can be seen that for example
pine in this case doesn’t have very clear treetop, but classifier
is able to find one and saliency map seems to confirm the
result.



Fig. 4. Average saliency maps in spatial domain over all input
bands of validation data for each tree species. Brighter pixel
indicates that band is probably more meaningful in classifica-
tion.

Fig. 5. Here figure’s 4 saliency maps are rendered over val-
idation set’s average 3D treetops. It can be seen that maps
surround quite well treetops.

4. CONCLUSIONS

In this paper we demonstrate how 3D hyperspectral data can
be analysed using 3D convolutional neural networks. As a
concluded result we can see that even with quite simple 3D
CNN, it is possible to create network, which has good capa-
bility to classify single trees based on their shape and spectral
features.

In classical machine learning one of the most time con-
suming thing for data analysist has been feature extraction and
selection. In case of convolutional neural network this phase
is now automated. After preprocessing there is quite limited
amount of things to do, if you want to utilize trained network.
Network training itself is time consuming, but before hand
trained network can deliver results almost in realtime. In our
case training took two and half hours.

Compared to earlier work [1] we actually used all cap-
tured test areas. In original paper one area was left behind,
because of the poor quality of image block. Based on that, our
results seems to show that trained 3D CNN is actually more
robust as a classifier than methods used in previous study.

It is obvious that more studies is needed. Used network
structure is one of the most simple ones. With more sophis-
ticated structures it might be possible to improve learning re-
sults. One of the tested things in the future is, how general
trained model actually is. If we have another data set, can
we have similar classification results? We used quite limited
amount of data augmentation. Even tough overfitting wasn’t

Fig. 6. Average saliencies of spectral domain for each tree
species. Higher value indicates that band is probably more
meaningful in classification.

observed based loss and accuracy curves during the training,
it would be useful to do more cross-validation within data.

One potential research question is that how many bands
and what GSD is needed, if we want to gain similar results.
Our next steps include more augmented data to training such
as scaling, adding noise, chancing lightness and adding more
rotation to see if we could detect trees also with lower resolu-
tion.

The used data set has more parameters for single trees
(height, estimated volume, etc..) and there is also 300 fixed
radius (9 m) sample plots, which have been used for area
based forest inventory. In near future we will also test how
well 3D CNN approach is able to estimate these parameters.

Our consortium has ongoing research project where our
aim is to produce real time processing for the DSM and hy-
perspectral mosaics. This combined with pre-trained CNN
classifier, could be significant tool to provide forest tree iden-
tification and parameter estimation without wasting time on
massive preprocessing.
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