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Abstract. Electrochemical interfaces present a serious challenge for atomistic

modelling. Electrochemical thermodynamics are naturally addressed within the

grand canonical ensemble (GCE) but the lack of fixed potential rate theory impedes

fundamental understanding and computation of electrochemical rate constants.

Herein, a generally valid electrochemical rate theory is developed by extending

equilibrium canonical rate theory to the GCE. The extension provides a rigorous

framework for addressing classical reactions, nuclear tunneling and other quantum

effects, non-adiabaticity etc. from a single unified theoretical framework. The rate

expressions can be parametrized directly with self-consistent GCE-DFT methods.

These features enable a well-defined first principles route to address reaction barriers

and prefactors (proton-coupled) electron transfer reactions at fixed potentials. Specific

rate equations are derived for adiabatic classical transition state theory and adiabatic

GCE empirical valence bond (GCE-EVB) theory resulting in a Marcus-like expression

within GCE. From GCE-EVB general free energy relations for electrochemical systems

are derived. The GCE-EVB theory is demonstrated by predicting the PCET rates and

transition state geometries for the adiabatic Au-catalyzed acidic Volmer reaction using

(constrained) GCE-DFT. The work herein provides the theoretical basis and practical

computational approaches to electrochemical rates with numerous applications in

physical and computational electrochemistry.

Keywords: electrochemical kinetics, grand canonical, free energy relations, Volmer
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1. Introduction

Electrochemical reactions and especially electrocatalysis are at the forefront of current

green technologies to mitigate climate change. To realize and utilize the full

potential of electrocatalysis, selective and active catalysts are needed for various

applications and reactions including e.g. oxygen and hydrogen reduction/evolution

reactions, nitrogen reduction to ammonia and CO2 reduction.[1] These and other

electrocatalytic/electrochemical reactions are based on successive proton-coupled

electron transfer (PCET), electron transfer (ET), and proton transfer (PT) reactions;

the unique aspect of electrochemistry is the ability to directly control PCET, ET, and

PT kinetics and thermodynamics by the electrode potential.[2]

Besides the catalyst material, electrocatalytic performance is controlled by the

electrolyte composition and electrode potential. To translate these to microscopic,

computationally treatable quantities, it is the combination of the electrolyte and electron

electrochemical potentials which determine and control the (thermodynamic) state of

electrochemical systems. Therefore, an atomic-level computational model needs to

provide an explicit control and description of these chemical potentials as depicted

in Figure 1. In thermodynamics fixing the chemical potentials is achieved through

a Legendre transformation from a canonical ensemble to a grand-canonical ensemble

(GCE) for both electrons and nuclei.[3] This calls for theoretical and computational

methods to treat systems where the particle numbers are allowed to fluctuate and the

chemical potentials are fixed.

The theoretical basis for fixed potential electronic structure calculations was

developed by Mermin who formulated electronic density functional theory (DFT) within

GCE.[4, 5]. Later, GCE-DFT has been generalized for treating nuclear species either

classically or quantum mechanically [3, 6, 7, 8, 9]. The GCE-DFT provides a fully DFT,

atomistic approach for computing free energies of electrochemical and electrocatalytic

systems at fixed electrode and ionic/nuclear chemical potentials.[3] Importantly, the

free energy from a GCE-DFT calculation is in theory exact and unique to a given

external potential. In practice, the (exchange-)correlation effects in both quantum and

classical systems need to be approximated. The thermodynamic GCE framework has

already been adopted by the electronic structure community to model electrocatalytic

thermodynamics at fixed electrode[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3] and ion

potentials[3, 14, 12]. Based on the large number of theoretical and computational works

utilizing GCE-DFT, the computational framework for thermodynamics within GCE

seems generally accepted. The thermodynamic approach has provided fundamental

atomic level insight on reactions at complex electrochemical interfaces and enabled

computational catalyst screening using free energy relations, Volcano curves, and scaling

relations.[1]

However, it has been shown that a purely thermodynamic perspective on

electrocatalysis is not sufficient for understanding and predicting activity, selectivity,

or catalytic trends.[21, 22, 23, 24] Besides applications in catalysis and material science,
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Figure 1. Pictorial description of a proper electrochemical interface at fixed electron

µ and solvent/electrolyte µ̃± chemical potentials.

electrochemical kinetics are fundamentally important and provide a way to understand

complex solvent effects, electron and nuclear tunneling, and non-adiabatic reactions.

Ideally both fundamental and applied kinetic computational/theoretical studies should

make use of general and self-consistent first principles Hamiltonians within GCE.

This has, unfortunately, remained unattainable due to theoretical and methodological

difficulties and omissions.[25] Surprisingly, a general GCE rate theory has not yet been

established; mending this deficiency is the central goal of the present work.

Before diving to the development of the GCE rate theory, it is worth considering

what new and important information can be obtained from a general electrochemical

rate theory. First and foremost, the theory needs to accurately capture the intricacies of

ET, PT, and PCET reactions as function of the electrode potential. Therefore, a general

treatment of electrochemical reaction rates needs to be applicable to 1) both inner-sphere

and adiabatic as well as outer-sphere and non-adiabatic reactions, 2) sequential ET/PT

or decoupled reactions as well as simultaneous PCET reactions, 3) tunneling of both

electrons and nuclei, and 4) be combined with general first principles GCE Hamiltonians.

The motivation for including each of these four requirements is discussed next.

First, adiabatic inner-sphere reactions present a large and important class of

electrocatalytic reactions as demonstrated by a large body of computational works

aiming to evaluate rate constants for this class of reactions[11, 12, 20, 19, 21, 26, 27, 28,

29, 30, 31, 32]. However important adiabatic reactions are, all electrochemical reactions

are certainly not inner-sphere nor adiabatic. In particular, both vibronic and electronic

non-adiabatic effects are frequently encountered in outer-sphere and long-range ET, PT,

and PCET reactions.[25, 33] Even for electrocatalytic reactions, non-adiabaticity may

be present and the importance and contribution of non-adiabaticity may depend on

the electrode potential.[34, 35] As a concrete example, it has been shown that only the

inclusion of vibronic non-adiabaticity in electrochemical hydrogen evolution reaction

can explain experimentally observed Tafel slopes and kinetic isotope effects.[34]
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Second, there are several reactions where the PT and ET are decoupled for

kinetic reasons. For example, in alkaline ORR pure ET has been proposed as the

rate determining step[36, 37, 38, 39]. Recent experiments of ORR on carbon-based

materials conclusively demonstrate that ET is the rate- and potential-determining

step.[40, 41]. Also solution pH can alter the reaction mechanism and e.g. CO2

reduction can proceed through simultaneous PCET in acidic and through decoupled

PCET (ET-PT) in alkaline solutions[42, 43]. In general, decoupled ET and PT are

expected to play an important role on weakly bonding electrode surfaces in oxygen, CO2,

CO, alcohol etc. reduction reactions.[44] In such reaction-catalyst combinations long-

range ET/PT may take place warranting the inclusion non-adiabaticity effects. From

an applied perspective, decoupled steps may enable circumvention of thermodynamic

scaling relations and lead to identification of novel electrocatalysts.[45]

Third, ET, PT, and PCET include the transfer of very light particles and therefore

quantum effects may be very important. Especially nuclear tunneling has a long

tradition in electrochemistry[46] and experiments have conclusively demonstrated that

room-temperature hydrogen tunneling takes place during ORR on Pt, and at low

over-potentials tunneling is the prevalent reaction pathway.[47] Tunneling contributions

are rarely considered in the field of computational electrocatalysis which is mainly

due to tradition and methodological difficulties; the computational electrochemistry

community has adopted tools and classical transition state theory (TST) from

computational heterogenous catalysis where reactions take place at high temperatures

and quantum effects are considered negligible. On the other hand, the theoretical

electrochemistry community has traditionally considered ET, PT, and PCET in the

non-adiabatic, tunneling framework[36, 48, 49, 50, 51, 52, 53, 34, 54, 55, 56, 57, 58,

59, 60, 61, 62]. The computational community has been slow in adopting the language

and approaches developed in the theory community which has resulted scarcity of first

principles study of tunneling in electrochemical environments.

Fourth, theoretical electrochemistry has a long tradition of using model Hamilto-

nian formulations to understand reaction kinetics. For instance, Marcus[62], Dogonadze-

Kutzetnotsov-Levich[48, 49], Schmickler-Newns-Anderson[63, 64], or Soudackov-

Hammes-Schiffer[33, 34, 53, 60, 61, 65] theories have provided the basis for understand-

ing electrochemical kinetics. The main drawback of these methods is that they are

difficult to parametrize in a self-consistent manner and require effective parameters ob-

tained from either experiments, simple DFT calculations, or a mixture of these. Yet,

widely different parametrizations for the same reaction can result in similar rates. For

instance, differences as larges as ∼ 3-4 eV in reorganization energy and the coupling

matrix elements[66, 67, 35, 68] lead to practically identical reaction rates; it is clear

that some unphysical error or parameter cancellation takes place. The difficulty of pa-

rameter estimation and error cancellation limits the physical/chemical insight obtained

from model Hamiltonians. Furthermore, model Hamiltonians are static and (usually)

not self-consistent. Typically, the electrode potential serves to role of changing the

Fermi-level in an otherwise static electronic structure. Even when potential-dependent
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electrostatic interactions and work terms are included [35, 51, 67, 69], most parame-

ters such as the solvent reorganization energy, chemical bonding characterized by Morse

potentials, electrode structure, tunneling matrix elements etc. remain unchanged by

the electrode potential. As such, it is unlikely that model Hamiltonians can quanti-

tatively capture the complexity of electrochemical reactions. Besides issues related to

self-consistency, model Hamiltonians studies of non-adiabatic reactions implicitly rely

on the single orbital picture which is highly problematic for first principles Hamiltonians

as discussed in the Supporting Information Section 1. Instead, modern fixed potential

first-principles methods explicitly incorporate the effect of electrode potentials on the

interfacial properties and bonding. Especially the GCE-DFT has proven to provide a

well balanced and rigorous description electrochemical interfaces. However, using gen-

eral first principles methods for addressing ET/PCET kinetics in general have remained

largely elusive thus far.

The above discussion highlights how different reactions and phenomena have been

and can be addressed in the theoretical and computational communities. Computational

works utilize high-quality ab initio Hamiltonians but rate constants are based on tools

derived from heterogeneous catalysis and electrocatalytic reactions have been studied

only using classical adiabatic TST theory. These computational studies describe the

electrochemical interfaces in a self-consistent way and there is no need for empirical

parametrization of the TST rate equation. Thus far, these methods have only given

access to the reaction barrier but not the prefactor beyond the TST approximation.

Estimates on importance of the prefactor has relied on perturbative rate theories with

model Hamiltonians at the non-adiabatic limit to describe electron/proton tunneling.

Other theoretical works extend the Newns-Anderson-Schmickler model Hamiltonian to

study both classical adiabatic TST and non-adiabatic tunneling reactions. While both

barriers and prefactor have been computed, the models are evaluated using non-self-

consistent parametrization. Therefore researchers have been be faced with a difficult

choice: Should the study include all the complexity addressed in a self-consistent manner

using an ab initio approach but with the restriction of classical TST approximation

without general prefactors? Or should the studies include prefactors to reflect non-

adiabaticity or tunneling but with a empirically-parametrized model Hamiltonian?

In this work this difficulty is resolved by developing a generally valid electrochemical

rate theory which can be directly combined with fixed-potential ab initio methods.

This is achieved by deriving a grand canonical rate theory building on Miller’s general

equilibrium (micro)canonical rate theory [70, 71, 72]. As Miller’s theoretical framework

is equally valid for adiabatic and non-adiabatic as well as quantum, semiclassical,

and classical rate expressions[73] and can utilize both model or first principles

Hamiltonians[33, 57, 58, 59, 60, 61, 74, 75] the presented novel GCE extension provides

a generally valid electrochemical rate theory; the developed GCE rate theory enables

using all canonical rate theories in constant potential simulations. In particular, the

work herein provides a unified rate theory for computing reaction barriers as well as the

prefactors making the theory applicable to treat adiabatic and non-adiabatic reactions,
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classical and tunneling reactions, and PT, ET, and PCET on equal footing using GCE-

DFT methods.

Besides developing a general and exact GCE rate theory, approximate techniques

for adiabatic reactions are developed; non-adiabatic reactions are treated using the same

formalism in a future publications. First, for adiabatic ET, PT and PCET reactions a

generalized GCE transition state theory (TST) is derived. Second, adiabatic Marcus-

like[62] empirical valence bond theories (GCE-EVB) are developed. These lead to

well-defined non-linear free energy relationships ideally suited for materials’ screening

purposes with kinetic information as demonstrated for the acidic Volmer reaction on

Au(111) in Section 4. Crucially, the developed rate theories can be seamlessly combined

with modern computational methods based on (GCE-)DFT to facilitate self-consistent

evaluation of rate constants without experimental parameters. The fixed potential rate

theory will expand the type of systems, conditions, and phenomena in electrocatalysis

amenable for first principles modelling.

The paper is organized as follows. In Section 2 a general rate theory and TST

within GCE are developed. Rest of the paper focuses on ET and PCET kinetics within

GCE. Section 3 shows how the adiabatic barrier and rate of ET and PCET reactions

are computed using GCE-EVB and free energy perturbation theory to developed a

fixed potential version of Marcus theory. Tafel slopes and other useful quantities as

extracted from GCE-EVB are analyzed. A simple computational demonstration of the

GCE-EVB for Au-catalyzed Volmer reaction is presented in Section 4. Next, additional

computational aspects for evaluating the rate constants are discussed in 5. Finally, the

advances and results are summarized.

2. Rate theory in the grand canonical ensemble

2.1. Ensemble considerations

The GCE is open and the system exchanges matter with its surroundings. The

thermodynamics of GCE are well understood[76] and we have recently shown that

both electrochemical thermodynamic quantities for both classical and quantum particles

can obtained rigorously from GCE multi-component DFT[3]. GCE provides a rigorous

and natural way to compute all thermodynamic expectation values at fixed electrode

potentials by including the electrode potential explicitly in the ab initio Hamiltonian.

This is also the case for rate constants and fixed potential rate constants are GCE

expectation values of canonical rate constants as shown below.

To address the GCE rate constants, one needs to consider the dynamics of open

(quantum) systems which is still an active area of research.[77, 78]. The treatment of

open system dynamics directly affects the GCE rate theory. First, GCE phase space

volume is not globally conserved and the Liouville theorem does not hold in general and

computed ensemble properties will depend on time if the system is not in equilibrium or

is non-stationary.[79, 78, 80]. For the present work it is important that equilibrium and
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short-time properties are unique and time-independent in the GCE[79, 81]. At other

times the expectation values depend sensitively on the coupling between the system

with the particle reservoir and introduces the reservoir time scales.[80] As a result,

time-dependent quantities such as particle fluxes and correlation functions entering the

general flux formulation of rate theory (see below) would require extensive sampling

and careful computation.[78, 80] To avoid the treatment of explicitly time-dependent

quantities, the GCE theory developed herein only utilizes equilibrium and instantaneous

quantities. Therefore, non-equilibrium processes cannot be treated using the approach

taken here. Neglecting the bath time-scale and coupling also means that electron transfer

kinetics from the electron ”bath” to system (see Figure 1) are assumed fast, a condition

satisfied by well-conducting electrodes. Neither of the the above restrictions on treating

the bath coupling and time scale are expected to greatly affect the use or validity of the

developed GCE rate theory in electrochemical and electrocatalytic systems.

A related consideration from on the treatment of open systems is particle

conservation. If a quantum system is characterized by particle conserving

operators (Ĥ Hamiltonian, Ŝ entropy, and N̂ particle number), even time-dependent

observables are obtained as ensemble weighted (pn) expectation values from O(t) =

Tr
[
ρ̂Û(t0, t)Ô(t)Û(t, t0)

]
=
∑

n pn 〈ψn|Û(t0, t)Ô(t)Û(t, t0)|ψn〉. Note, that changes

between states with different number of particles are not included in the propagator

when both the propagator Û and the operator Ô are particle conserving.[82] Hence,

even explicit propagation of the wave function does not allow sudden jumps in particle

numbers. Therefore, in the extension of (micro)canonical rate theory to the GCE, only

particle conserving reactions are considered. Then, all equilibrium quantities are always

well-defined but jumps between states with unequal number of particles are suppressed.

While this is not an issue for adiabatic reactions with smooth changes in the number of

particles, the prefactors entering e.g. non-adiabatic rate constants need to be formulated

so that particle conservation is respected. Therefore, all rate expressions derived herein

will only utilize particle conserving operators.

2.2. General grand canonical rate theory

After establishing the particle conserving and equilibrium nature of the rate constants,

the GCE rate constants can be formulated. To allow various types of reactions to be

described, the exact equilibrium canonical rate expression due to Miller[70, 71, 72, 83]

is adopted:

k(T, V,N)QI =

∫
dEP (E) exp[−βE] = lim

t→∞
Cfs(t) (1)

where QI is the canonical partition function of the initial state, and β = (kBT )−1.

The first expression is written in terms of transition probability at a given energy

P (E). The second expression utilizes a canonical flux-side correlation function Cfs(t) =
1

(2πh̄)f
∫
dpfdqf exp(−βH)δ[f(q)]q̇h[f(qt)] for f degrees of freedom. δ[f(q)] constrains
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the trajectories to start from the dividing surface, q̇ is the initial flux along the reaction

coordinate, and h[f(qt)] is the side function which includes the dynamic information

whether a trajectory is reactive or not.

Based on the discussion in Section 2.1 on the dynamics of open systems, only

the t → 0+ and t → ∞ should be considered for the flux-side correlation function in

the equilibrium rate expressions. Depending on the choice of P (E) or H and h[f ] non-

adiabatic and adiabatic (nuclear) quantum effects are included in the rate.[84, 85, 86, 87].

It is noteworthy that P (E) and Cfs are computed using only particle conserving

operators[71] and the conditions discussed above are satisfied when (1) is used as the

starting point for formulating GCE rate constants.

To compute reaction rates at fixed potentials a straight-forward, yet novel, extension

of the canonical rate theory to the GCE is made:

k(µ, V, T )ΞI =
1

2π

∞∑
N=0

exp[βµN ]

∫ ∞
−∞

dE exp[−βEN ]P (EN)

=
∞∑
N=0

exp[βµN ]k(T, V,N)Q0 = lim
t→∞

Cµ
fs(t)

(2)

where ΞI = exp[βµN ]QI is the initial state grand partition function and k(T, V,N)

was introduced in (1). Above, N is the number of species (nuclear or electronic) in the

system and Cµ
fs is the GCE flux-side function. The previous equation shows that all

canonical rate equations can be applied to electrochemistry within GCE approach and

that fixed potential electrochemical rate constants are GCE averaged canonical rates

constants.

The above equations are completely general and various flavors of rate theories can

be extracted by invoking different Hamiltonians and transition probabilities, but they

are somewhat cumbersome for computational purposes. Indeed, it would be convenient

if the GCE rates could be directly evaluated without explicitly summing over different

particle numbers. One way to achieve this is to make the transition state theory

(TST) assumption[72, 71, 70] but generalized to GCE herein. In canonical TST, the

instantaneous limt→0+ Cfs(t) is considered corresponding to the assumption that there

are no recrossings of the dividing surface. Both quantum/classical and adiabatic/non-

adiabatic TSTs are written as [88, 89, 90, 91]

kTST (T, V,N)QI(T, V,N) = lim
t→0+

Cfs(t) (3)

and the exact rate is recovered by introducing a correction

k(T, V,N) = lim
t→∞

κ(t)kTST (T, V,N)

with κ(t) =
Cfs(t)

Cfs(t→ 0+)

(4)
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where κ(t) is the time-dependent transmission coefficient which at long times is

κ = k(T, V,N)/kTST (T, V,N).[92] Inserting this equation in (2) results in the most

general grand canonical rate constant. Significantly simplified rate constants are

obtained when focusing on classical nuclei and using TST. As derived in the SI Section

2, for classical nuclei the TST result is [71, 72]:

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]

∫
dEPcl(E) exp[−βE]

≈
∑
N

exp[βµN ]
kBT

h
Q† ≡ kBT

h
Ξ†

(5)

where Pcl(E) denotes transition probability for classical nuclei but the electrons are

of course quantum mechanical[75, 93] with details given in [72] and the SI Section 2.

The previous equation shows that the structure of GCE-TST and canonical TST are

similar which is true for open system in general if memory effects are neglected[94]. To

obtain the GCE rate constant without invoking the TST approximation, one can use

the transmission coefficient κ to write

k(T, V, µ) =

∑∞
N=0 exp[βµN ]κ(T, V,N)

kBT

h
Q‡

ΞI

≈ 〈κµ〉
kBT

h

Ξ‡

ΞI

= 〈κµ〉
kBT

h
exp
[
−β∆Ω‡

] (6)

where it is assumed that an effective transition probability 〈κµ〉 can be used. To

complete the derivation for the classical GCE rate constant, the rate is expressed in

terms of grand energies with the definition Ωi = − ln(Ξi)/β and ∆Ω‡ = Ω‡ − ΩI for

the GCE barrier. Above the only new assumption besides grand canonical equilibrium

distribution and TST, is that the flux out of the transition state 〈κµ〉 can be treated

as an expectation value and separated from the barrier. For large enough systems and

small variations in the particle number this is a justified assumption.

The above development establishes the general fixed chemical potential rate theory.

For classical, adiabatic reactions the rate constants in GCE are essentially the same as

in the canonical ensemble. Within TST approximation the rate constant is determined

by the grand free energy barrier and effective prefactor. The transmission coefficient

needs to be approximated but this depends on the case at hand; examples for the

adiabatic and non-adiabatic harmonic GCE-TSTs expression valid for fully open system

are derived in Supporting Information section 3. A more thorough treatment on the

theory and computation of non-adiabatic and tunneling corrections will be presented in

forthcoming work.
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2.3. Semi-grand canonical ensemble

The above development is valid when both nuclear and electronic subsystems are

open. A significant simplification results if one assumes that the reaction rate does

not explicitly depend on the number of some nuclei in the system. In a typical

first principles calculation this simplification is often exploited when the system can

be divided to two subsystem: 1) classical electrolyte species consisting of nuclei and

electrons and 2) electrode + reactants treated either classically or quantum mechanically.

Typically the number of nuclei constituting the electrode and reactant are fixed while

the electrolyte and electron chemical potential are fixed. Fixing only the electron and

electrolyte chemical potentials defines a semi-grand canonical ensemble used for deriving

the thermodynamics of electrocatalytic systems within GCE-DFT[3]. In this treatment

is often utilized in e.g. Poisson-Boltzmann type models where the electrolyte is at a

fixed chemical potential but the energetics do not explicitly depend on the number of

electrolyte species. Then, summation over the number of electrode/reactant nuclei or

the electrolyte species is not needed.

Herein the semi-GCE is applied to derive rate constants as a function of the

electrode potential. From now on, I assume that the reaction rates depend explicitly

only on the number and/or chemical potential of electrons in the system. Then, the state

of the system is determined by T , V , number of nuclei of the electrode+reactant NN ,

chemical potential of the electrolyte, chemical potential of the electrons µn, and number

of electrons in the system N unless explicitly specified otherwise. Electroneutrality

is maintained by the electrolyte. A widely utilized harmonic TST rate for constant

number of nuclei and constant electrochemical potentials are derived in section 3 of the

Supporting Information.

3. Adiabatic barriers and rates from GCE-EVB

To compute the GCE-TST rate at a given electrode potential, the grand energy barrier

in (6) needs to be obtained. For electronically adiabatic reactions methods like the

constant-potential[20] nudged elastic band[95] can be used. An alternative method

for computing the grand energy barrier is to formulate a Marcus-like[62] approach or

empirical valence bond (EVB) theory[96] within GCE. Such models are commonly

utilized in electron[62] and proton transfer theories.[65, 96, 97, 98, 99] Here, the

treatment is based novel development of GCE diabatic states and the extension of

the canonical thermodynamic perturbation theory to the GCE to facilitate derivation

of a GCE-EVB rate theory (see SI sections 3 and 4). The GCE-EVB theory provides a

theoretically well-justified and computationally affordable way to obtain fixed potential

barriers at various electrode potentials; the adiabatic barrier needs to be explicitly

computed only at a single electrode potential while barriers at other potentials can be

obtained using well-defined extrapolation of (17). The utility of the GCE-EVB theory

is demonstrated in Section 4.
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In canonical EVB and Marcus theories use diabatic states, effective wave functions

and free energies[62]. This can be extended to GCE by using two fixed potential,

diabatic ground state surfaces which represent a GCE-statistical mixture of states with

probabilities given by the density operator in GCE[3]. Importantly, the diabatic states

obtained using the GCE density operator naturally include many-body effects of the

coupled electrode-reactant-solvent system and the complexity of the electrochemical

interface is explicitly included in the model. Also, there is no need to decompose the rate

constants to orbital dependent quantities(see Section 1 in the Supporting Information for

additional discussion). Then, two grand canonical diabatic all-electron wave functions

are used to form an effective diabatic GCE Hamiltonian. This is analogous to molecular

Marcus theory utilizing a canonical diabatic Hamiltonian containing an initial (oxidized)

I and final(reduced) molecule F .

Following the treatment in the Supporting Information Section 3, a diabatic

2 × 2 grand canonical Hamiltonian in (7) can be formed from two diabatic GCE

states. The resulting form is analogous to the canonical EVB methods[96], electron[62],

proton[98, 99] and proton-coupled electron[65] theories. The present form is, however,

crucially different from its predecessors; based on the approach developed in this work,

all quantities are defined and computed at fixed electrode potentials. In the basis two

GCE diabatic states the GCE Hamiltonian is

HGCE−dia =

[
ΩII ΩIF

ΩFI ΩFF

]
(7)

as derived in Supporting Information Section 3. Here the diagonal elements are

the grand energies of the initial (II) and final (FF) systems. The off-diagonal elements

account for the interaction and mixing between the initial and final states. They can

be computed as GCE expectation values of contributions from different N-electron

states ψNi as ΩFI =
∑

N pN(µ)
〈
ψNF
∣∣ĤN

∣∣ψNI 〉. This is rather straight-forward for ET

reactions using e.g. constrained DFT discussed in Sections 4 and 5. For PT and PCET

reactions computing these matrix elements would require computing the vibronic matrix

elements using e.g. the semiclassical approach of Georgievskii and Stuchebrukhov[100]

This direct computation is particularly useful for non-adiabatic rate constants which

are investigated in future work.

For adiabatic reactions, the direct calculation can be replaced by the diagonalization

of the 2×2 diabatic Hamiltonian in Eq. (7). This diagonalizating produces the adiabatic

ground and first excited states as

Ω±ad =
1

2

(
ΩII + ΩFF ±

√
(ΩII − ΩFF )2 + 4Ω2

IF

)
(8)

As shown below, the diabatic states cross (ΩII = ΩFF ) at the transition state. This

makes it possible to compute the coupling matrix element as the difference between the

diabatic states and the adiabatic states. For the ground state one has ΩIF = ΩII −Ω−ad.

The adiabatic ground transition state grand free energy can be computed using e.g.
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NEB calculations and the coupling matrix element is simply the difference between the

diabatic transition state grand energy and the adiabatic one as shown below in Eq. (18).

Finally, the (diabatic) grand canonical states correspond to a single electron density

which is guaranteed by the Hohenberg-Kohn-Mermin[4, 3] to be unique for a given

electrode potential. By definition, GCE diabatic states are unique ground states. Such

diabatic statas also include the interaction and exchange between all the electrons in

the system and for adiabatic, ground state reactions there is no need to include addition

excited states despite the continuum of (single-electron) states of the electrode. In

principle it is possible to add other, possibly excited states as basis states but here the

focus in on treating adiabatic reaction and excited states beyond the first excited state

are neglected. If a general quantum mechanical Hamiltonian is used, bond breaking is

naturally included in the GCE-EVB model. The only disambiguity is the definition

of diabatic states. In practice the GCE diabatic energies, (ΩII and ΩFF ), can be

computed directly by applying using e.g. cDFT[101, 102, 103] with fixed potential

DFT as discussed in Section 5 and shown in Section 4.

3.1. Computation of diabatic GCE energy surfaces and barriers

An approach often used in molecular simulations for constructing the diabatic free

energy curves is to sample the diabatic potentials along a suitable reaction coordinate.

For canonical ET, PT, and PCET reactions the reaction coordinate is the energy

gap between the two diabatic states as shown by Zusman[104] and Warshel[105]:

∆Egap(R) = EF (R)−EI(R).[76, 106] From the sampled energy gap, free energy curves

are obtained as A(R) = −kBT ln(p(Egap(R))) + c. If the distribution is Gaussian

(p(Egap(R)) = c exp[−(∆Egap − 〈∆Egap〉)2/2σ2]), the resulting free energy curves a

parabolic. The diabatic barrier in EVB or Marcus theory is then obtained from the

intersection of the initial and final diabatic curves[106, 107, 108, 109].

Within GCE, the energy gap is simply Egap(R;µ) =
∑

N,i pN,iEgap(Ri, N). As

shown in the SI section 4, the gap distributions can be formulated and computed by

generalizing Zwanzig’s[110] canonical free energy perturbation theory to the GCE. This

provides a rigorous way to derive the reaction barrier in terms of diabatic states and

energies as presented in the Supporting Information Section 4. The reaction energy rate

can be computed from the initial-final state energy gap distribution functions using a

well-known formula[105, 111, 112, 113, 114, 115, 116]

kIF = κ
exp
[
−βgI(∆E‡)

]∫
d∆E exp[−βgI(∆E)]

= κpI(∆E
‡) (9)

where gi(∆E) is the free energy curve in state i as a function of the energy gap,

pI(∆E
‡) is the gap distribution at the transitions state, and κ denotes an effective

prefactor. The reaction rate is determined by the energy gap distribution function

pI(∆E) = 〈δ(∆E(R)−∆E)〉I from equation (S30) of the Supporting information.

While the approach is general and valid for complex reactions, assuming that
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Egap(R;µ) is Gaussian leads to a closed form equation. In this case the GCE-diabatic

states are parabolic and the Marcus barrier in GCE is given by (13). As shown in the

Sections 4 of the SI, the (Gaussian) gap distribution may be derived using a second

order cumulant expansion resulting in

pI(∆E) =
1√

2πσI
exp

[
−(∆E − 〈∆E〉I)2

2σ2
I

]
(10)

where 〈∆E〉I is the energy gap expectation value in the initial state obtained from

equation (S27) in the Supporting Information and σI = 〈(∆EI − 〈∆EI〉)2〉I is the gap

variance. The Marcus relation is then obtain after standard manipulations[106, 112]

yielding

pI(∆E
‡) =

1√
4kBTΛ

exp

[
−β (∆Ω + Λ)2

4Λ

]
(11)

where σ2
I = σ2

F = 2kBTΛ = kBT (〈∆E〉I − 〈∆E〉F ), Λ is the fixed potential

reorganization energy and ∆Ω = (〈∆E〉I + 〈∆E〉F )/2 is the reaction grand energy

as depicted in Figure 2. These gap identities are valid for symmetric reactions and

have been previously established well for the canonical ensemble[112] and generalized

here to the GCE. In practice, the reorganization energy is computed as an average of

the reorganization energies which are differences of the diabatic free energy at the final

geometries

Λ =
1

2
[ΩII(RF )− ΩII(RF )I + ΩFF (RI)− ΩFF (RI)]

=
1

2
[ΛI + ΛF ]

(12)

shown in Figure 2. Finally, the GCE-EVB rate equation using the above

assumptions results in an expression analogous to Marcus equation

k =
κ√

4kBTΛ
exp

[
−β (∆Ω + Λ)2

4Λ

]
(13)

The energy barrier of (13) is the diabatic energy barrier. The adiabatic barrier

is estimated from (7) using the methods discussed in Section 3.2 below. One caveat

to keep in mind is the more involved computation of κ within the GCE as discussed

in Section 2 and forthcoming work for non-adiabatic reactions. The above result may

safely be used when κ ≈ 1 for all particle numbers meaning that the reaction is always

fully adiabatic and classical.

3.2. Implications of the canonical GCE-EVB rate theory

If the diabatic grand energy surfaces are symmetric and quadratic they have the same

curvature and reorganization energy. In this case, the diabatic grand energy barrier is
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Figure 2. Schematic depiction of the important GCE-EVB quantities. The blue

(orange) dashed lines is initial (final) diabatic surface while the black solid line is the

adiabatic surface.

estimated from (13). The assumption on equal curvature can be relaxed[117] (see also

SI section 5). One easy approach to realize this is to utilize an asymmetry parameter

αas as[118]

αas =
ΛI − ΛF

ΛI + ΛF

(14)

in terms of the reorganization energies for both the initial and final states ΛI and

ΛF , respectively. The transition state is located at the crossing point

x‡/ξ = − 1

αas
+

1

αas

√
1− αas

(
αas −

4∆Ω

ΛI + ΛF

)
(15)

With these definitions the asymmetric diabatic Marcus barrier and rate become

∆Ω‡ =
1

4
ΛI

(
x‡/ξ − 1

)2
(16a)

k ≈ κ√
4kBTΛI

1 + αas
1 + αasx‡/ξ

exp
[
−β∆Ω‡

]
(16b)

When αas → 0, the regular Marcus barrier and crossing point are obtained. In

Figure 3 the effect of asymmetry and reaction energy to the reaction barrier and location

of the transition state are compared. It can be seen that both the barrier heights and

its location are affected by the asymmetry and reaction energy.

While the Marcus-like equation results in a diabatic barrier, the adiabatic reaction

barrier can be extracted from the diabatic barrier by diagonalizing (7). The adiabatic

barrier can also be obtained from (13) using the Hwang-Åqvist-Warshel adiabaticity

correction[119, 120]

∆Ω‡ad,EV B =
(∆Ω + Λ)2

4Λ
− ΩIF (x‡) +

(ΩIF (xI))2

∆Ω + Λ

= ∆Ω‡dia − ΩIF (x‡) +
(ΩIF (xI))2

∆Ω + Λ

(17)
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Figure 3. Left: EVB curves at different different asymmetries αas. The final

state reorganization energy is ΛF = 40 while the initial state reorganization energy

ΛI ∈ [10, 80]. The reaction energy is ∆Ω = 0 for all curves. Right: EVB curves as

a function of the reaction energy: ∆Ω ∈ [−15, 15] and ΛF =40. The blue (red) curve

corresponds to ΛI = 40 (ΛI=60). Both: The dashed line at x = 0 indicates the

position of the transition state when ΛI = ΛF and ∆Ω = 0. The curve crossing point

equals ∆Ω‡dia

.

where ΩIF is the off-diagonal matrix of the GCE-EVB Hamiltonian in (7). If

the Condon approximation is used, the above equation is greatly simplified as ΩIF ≈
ΩIF (x‡) ≈ ΩIF (xI) becomes a geometry-independent constant.

Next changes in the adiabatic GCE-EVB barrier as function of the parameters is

analyzed. From the schematics shown in Figures 2 and 3, one can observe that changes

of the minima along the reaction coordinate correspond to horizontal displacements

of the diabatic states and changes in Λ. Vertical changes correspond to changes in

the reaction grand energy ∆Ω. In general, the reorganization energy of inner-sphere

reactions taking place on or near the electrode surface may depend on the electrode

potential and investigations along this direction are on their way.

Under equilibrium conditions, ∆Ω = 0 and the corresponding reorganization energy

Λ0, the adiabatic barrier is

∆Ω0,‡
ad,EV B =

Λ

4
− ΩIF +

(ΩIF )2

Λ
≈ Λ0

4
− ΩIF (18)

which leads to Λ0 = 4(∆Ω0,‡
ad,EV B + ΩIF ) ≈ 4∆Ω0,‡

dia assuming that ΩIF << Λ0 (this

is the case for e.g. the Au-catalyzed Volmer reaction in Section 4). At the equilibrium

point, the overpotential is, η = ∆Ω = 0. Assuming for a moment that Λ ≈ Λ0 and

replacing the solution for Λ0 in (17) gives the diabatic barrier as

∆Ω‡dia = ∆Ω0,‡
dia +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(19)

Inserting (19) in (17) results in the adiabatic reaction barrier as

∆Ω‡ad,EV B = ∆Ω0,‡
ad,EV B +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(20)
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This result is well-known in the canonical EVB and Marcus theories. However,

in GCE this relation is valid only when constant reorganization energy is assumed. In

general, the driving force can be manipulated easily by changing the electrode potential

which is in turn directly related to the absolute electron electrochemical potential as

EM(abs) ∼ −µ̃n .[3, 121, 122] An experimentally meaningful approach is to study

−∂r(T, V, µ̃n)/∂µ̃n as done in a Tafel analysis, for example. Tafel analysis can also

be understood in a more general context of Brønsted-Evans-Polanyi (BEP) and other

free energy relations measuring the change of reaction rate when the reaction energy is

changed[123, 124, 125], as both Tafel and BEP analyses measure the reaction rate as

a function the reaction driving force - Tafel analysis focuses on the over-potential and

BEP on the free energy. These two quantities are linked by |∆η| = |∆µ̃n| = |∂∆Ω/∂n|.
Defining the rate constant as a function of the electrode potential E as k(E) = k(E =

0)A(E) exp(−βαE) in terms of the prefactor A and the Tafel-BEP coefficient α and the

Tafel-BEP coefficient is [2, 123, 124]

d ln k(E)

dE
≈ −βα→ α = −β−1d ln k(E)

dE
(21)

where constant α and prefactor are assumed. Within GCE-EVB α is obtained in

terms of the reorganization and reaction energies

−βα =
d ln k(∆Ω,Λ)

dE

= −∂ ln k

∂∆Ω

∂∆Ω

∂µ̃n

∂µ̃n
∂E
− ∂ ln k

∂Λ

∂Λ

∂µ̃n

∂µ̃n
∂E

= −γ∆Ω′ − c∆Λ′

(22)

where the first term measures how the rate changes as a function of the reaction

energy, γ denotes a BEP coefficient and ∆Ω′ denotes the grand energy change as a

function of the over-potential. The second contribution is novel and unique to the GCE

formulation. It measures the sensitivity of the rate to changes in the reorganization

energies as a functional of the potential. This unconventional contribution can be

observed in e.g. the Volmer reaction treated in [67] with a model Hamiltonian and

will be discussed in more detail in a future publication.

To facilitate understand the BEP term, one recognizes that ∆Ω = (AF (〈NF 〉) −
AI(〈NI〉)−µ̃n(〈NF 〉−〈NI〉). For macroscopic systems, chemical reactions have NF = NI

while simple electrochemical steps have NF = NI±1. For chemical reactions ∆Ω = ∆A

and the variation ∆Ω′ is small. Within the computational hydrogen electrode (CHE)

concept[126] the reaction energy ∆Ω ≈ ∆A0 ∓ η for PCET steps with ∆A0 computed

without any bias potential. Then, αCHE = γ for PCET steps and zero otherwise. In

general such a simple relationship does not hold in general and models such as GCE-

DFT can be used for computing ∆Ω′ explicitly. Thus far, ∆Ω′ has been reported in

only few studies[20, 21, 127]. In these works and in Section 4, ∆Ω is found to exhibit a

roughly linear dependence on the applied potential.
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Next the BEP γ of Eq (22) is analyzed. Using the diabatic barriers in (19) (obtained

assuming constant reorganization energy and constant prefactor), one obtains

γ =
∂ ln k(T, V, µ̃n)

∂∆Ω

∣∣∣∣
T,V

≈ −− β 1

2

[
1 +

∆Ω

Λ0

]
(23)

which results in α = −∆Ω′(1/2 + ∆Ω/2Λ0). It is seen that γ is not a simple

constant but depends linearly on the reaction driving force. If the reorganization energy

is small the dependence on the reaction grand energy becomes more pronounced as

demonstrated for the Au-Volmer reaction in Section 4. In general, non-linearity of the

grand energy barrier has two contributions: non-linearity of the diabatic barrier and

the potential-dependent reorganization energy. For macroscopic systems non-linearity

is established by including the quadratic part of the diabatic barrier in the model.

Lately[29, 31, 20, 21] this has been observed computationally and it is pleasing that the

GCE-EVB picture seems qualitatively correct.

To summarize, the generalized BEP-Tafel relationships have been derived from a

microscopic perspective using grand canonical rate theory. Both variation in the reaction

energy barrier and the transition state location as a function of the potential can be

predicted using just a few parameters. This is demonstrated for the acidic Volmer

reaction in Section 4. The general form of the BEP-Tafel relation is given in (22). For

small over-potentials, the rate is expected to depend linearly on the applied potential.

For larger over-potentials non-linear dependence is predicted when the reorganization

energy is small. The GCE perspective also predicts a novel potential-dependent

reorganization energy which is supported by model Hamiltonian calculations[67] and

will be addressed carefully in future publications.

4. Application of the GCE-EVB theory to the Au-catalyzed Volmer

reaction

Here the first demonstration of the GCE rate theory is provided. I consider the acidic

Volmer reaction i.e. proton discharge which is arguably the simplest and yet relevant

electrocatalytic reaction for hydrogen production and other electrocatalytic reactions.

Similarly, gold can be considered as the simplest electrode material. Yet, the Volmer

reaction, even on gold, is not fully understood[128] and the reaction is considered to

exhibit nuclear quantum effects and even vibronic non-adiabaticity.[34, 35] As a first

application of the theory and methodology derived and developed in this work, I consider

mostly an adiabatic and classical model for the acidic Volmer reaction – quantum effects

and a non-adiabaticity are studied separately in forthcoming publications. The results

are discussed in the GCE-EVB framework of Section 3.

The Volmer reaction is modelled as a single hydronium ion on a 3x3x5 Au(111)

surface as shown in Figure 5. The needed free energies were computed using GCE-DFT

as implemented in GPAW[129] within the solvated jellium method (SJM) [20] with a
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continuum solvent model for water[130]. This approach gives all the thermodynamic

quantities at a fixed electrode potential. The absolute electrode potentials used in the

calculations are converted to the SHE scale using the equilibrium potential i.e. the

potential where the initial and final states are at equal energy and comparing the to the

equilibrium potential of by Kastlunger et al.[20]. This gives the equilibrium potential

at -1 V vs. SHE and reactions around this potential are examined as shown in Figure 5.

The potential-dependent minimum energy pathways are computed using a nine image

nudged elastic band[95] (NEB) discretization. Geometries and NEB pathways were

considered converged when the maximum force was below 0.05 eV/Å.

Constant-potential diabatic states and reorganization energies were computed using

constrained DFT (cDFT) as implemented in GPAW[131]. As in the canonical case, the

constraining potential in GCE-cDFT is introduced as an external potential to the GCE-

DFT giving

Ω[n(r), Vc;T, V, µn]cDFT =

Ω[n(r);T, V, µn]DFT + Vc
∑
σ

(∫
drwσc (r)nσ(r)−Nc

)
(24)

where Ω[n(r);T, V, µn]DFT is the GCE-DFT energy functional[3] and n(r) is the

electron density. wσi (r) is the weight function which defines how the charge is to

be partitioned, i.e. the regions where charge is to be localized, Nc is the desired

number of excess electrons within the constrained region, and Vc is the Lagrange

multiplier enforcing the charge/spin localization. In the GPAW implementation, the

weight function is based on Hirshfeld partition with Gaussian-like atomic orbitals. The

introduction of constraining terms in Eq. (24) leads to a new effective potential defined

as

vσeff =
δΩ[n(r), Vc]

δn(r)
=
δΩKS[n(r)]

δn(r)
+
∑
c

Vcw
σ
c (r) (25)

Thus, the cDFT potential is just the sum of the usual KS potential and the

constraining potential which is also used in the self-consistent calculation. The

constraint is further enforced by introducing the convergence criteria

C ≥
∣∣∣∣∑

σ

∫
drwσc (r)nσ(r)−Nc

∣∣∣∣ , ∀ c (26)

The optimize grand canonical free energy under the specified constraint is[131]

Ω[Vc] = max
Vc

min
n
{Ω[n, Vc;T, V, µ̃n]cDFT} (27)

To fulfill the cDFT constraints and to perform fix potential calculations, the

approach in Fig. 4 has been utilized. When the GCE-cDFT calculation has converged,

the electrode potential, constrained charges and their distribution, constraining cDFT
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Figure 4. The two phase optimization loop used for obtaining fixed potential diabatic

states. The cDFT optimization is given the outer loop of Eq. (27) and the SJM loop

is the inner optimization performed using the algorithm from Ref.[20] to change the

number of electrons N to satisfy the set electrode potential

.

potentials, and energies have all been self-consistently calculated. An example of GPAW

scripts used for performing GCE-cDFT calculations is given in the SI section 6.

The charge states to define diabatic states are chosen as Nc = +1 state for the

hydronium (H3O
+) such that the fragment of three protons and oxygen are constrained

to carry a net +1 charge and the total charge of +1 is allowed to delocalize within

the hydronium ion. The final state is neutral and Nc = 0 is chosen for the water and

adsorbed hydrogen (H2O+H∗) such that fragment consisting of the three protons and

oxygen are constrained to be charge neutral. The same definitions for the diabatic

states was used for all geometries and potentials. cDFT diabatic states are always

chosen using chemical intuition and the quality of the diabatic states depends on the

choice of the cDFT and implementation. Therefore, it is important to verify that the

constrained states are physically sensible. In this work, the physicality and sensibility

of charge distribution within the constrained regions was verified by computing the

atomic charges of the constrained states using the Bader partition scheme[132]. This

analysis showed that in the final state both the H∗ and H2O were charge neutral at all

geometries. In the initial state diabat the oxygen carries a net charge of ∼ -0.5e while

each hydrogen carries charge of ∼ +0.5e at all geometries.

Using the above definitions for the initial and final states the reorganization energies

are computed from Eq. (12) at the equilibrium potential. This resulted in ΛF = 2.1

eV for the initial state geometry, and ΛI = 3.2 eV for the final state geometry. The

average Λ = 2.65 eV is used in calculating the Marcus barrier of Eq. (13). These cDFT

computed reorganization values are in good agreement with the values used for model

Hamiltonian parametrizations of Huang[68] and Santos[66] but much larger than the one

used by Lam[67]. The reaction asymmetry from (14) is 0.2 meaning that the transition
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Figure 5. Above: The reaction pathways at different potentials. The stars show

the DFT-NEB computed TST geometry along reorganization coordinate. The stars

correspond to TST geometries predicted using equation (14a). Below:The fixed

potential Au(111) Volmer barrier as a function of the reaction energy. NEB[*] refers to

NEB calculations of the present paper with an implicit solvent while NEB[20] are from

[20] with explicit, ice-like solvent. Also the barrier and reorganization energy used in

the model Hamiltonian work of [67] are shown and extrapolated using (20).

state geometry along the reorganization coordinate is closer to the initial state. Analysis

of the TST geometries at different potentials shows that that reorganization energy is

best presented either by the Au-O distance or the dihedral angle between the H2O and

surface.

In Figure 5 the adiabatic reaction barrier as obtained from NEB calculation

is plotted as a function of the reaction energy corresponding to different electrode

potentials in the high over-potential regime around the equilibirum potential of -1 V

vs. SHE. First, one observes that the barriers are very small for all considered electrode

potentials which is due to being in the very high over-potential region. The obtained

results are in line with explicit water DFT results[20] at all electrode potentials and

reaction energies. The figure also shows the adiabatic TST location as a function of the

reaction energy from both NEB-DFT and extrapolation using (16a). The extrapolation
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reproduces the TST geometries very well, and captures the trends in the TST location.

For comparison, explicit solvent calculations exhibit a similar trend in the TST position

as a function of the potential[20] as the one found here using an implicit solvent. This

example demonstrates the Au-O distance is good reorganization coordinate and that the

TST location is effectively captured by Eq. (16a). Unlike DFT-NEB calculations, the

GCE-EVB requires just one NEB and two reorganization energy calculations to capture

the TST geometry for a range of reaction energies and electrode potentials.

The results in Figure 5 also show the GCE-EVB barrier as obtained from Eq.

(20) which is evaluated using the cDFT computed average reaorganization energy. The

adiabatic equilibrium barrier (∆Ω0,‡
ad in Eq. (20)) is computed from a NEB calculation

close to the equilibrium potential. As the results in Figure 5 show, the extrapolation

with Eq. (20) provides a very accurate way for computing the adiabatic potential-

dependent energy barrier. It is also observed that the estimate for the reorganization

energy used in the model Hamiltonian work of [67] is very small (∼ 0.3 eV) and cannot

be used for predicting barriers using GCE-EVB.

Next, the validity of the adiabatic assumption is tested using the coupling matrix

elements of Eq. (7). The coupling matrix element is obtained using Eq. (8) at the

equilibrium potential transition state and results in ΩIF = 0.37eV . The coupling

constant maybe used for estimating transmission coefficient 〈κµ〉 of Eq. (6) the

adiabaticity from the the Landau-Zener factor (PLZ) for PCET reaction [133, 35]

adopted to the GCE.

〈κµ〉 =
2PLZ

1 + PLZ
(28a)

PLZ = 1− exp[−2πγ] (28b)

2πγ =
π3/2 |ΩIF |2

hνn
√

ΛkBT
(28c)

and 〈κµ〉 = 1 is a signature of an electronically adiabatic reaction whereas non-

adiabatic reactions have 〈κµ〉 << 1. Eq. (28a) is valid for reactions in the normal

region.[133, 35] νn is the vibrational frequency along the reaction coordinate.[134]

As discussed above, the reaction coordinate n the Au-catalyzed Volmer is the water

reorientation and νn = 1/τL ≈ 0.5 × 109s−1 computed from the water reorientation

time τL ≈ 2 ps[135]. The expression for γ in Eq. (28c) is valid for quadratic free

energy surfaces as derived in Eq. S.15 of the Supporting Information. Evaluating the

transmission coefficient at room temperature using the computed average reorganization

energy, coupling matrix element, and water reorganization time gives 〈κµ〉 = 1.0 - this

shows that the reaction is adiabatic and justifies the treatment in this section.

In addition to enabling a reliable prediction of reaction barriers and TST geometries,

the results demonstrate the first GCE-cDFT calculations. Besides showing that GCE-

cDFT is technically possible, the results show that ab initio computed diabatic states

offer new insight to electrocatalytic reactions. In particular, the results provide a proof-

of-principle that GCE-EVB can be used to accurately estimate barriers using just a
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single NEB calculations and a few cDFT calculations with an expense similar to a

standard DFT calculation.

5. Discussion

The distinct advantage of the formalism and theory developed in this paper is that

all rate equations can be readily evaluated with GCE-DFT or other first principles

approaches. The presented formalism enables the treatment electrochemical and

electrocatalytic thermodynamics and kinetics in terms of the prefactor and barriers

in the same self-consistent framework – the GCE-DFT. Therefore, the same DFT-based

tools can be used to address inner-sphere and outer-sphere kinetics and thermodynamics

instead of modifying or changing the theoretical and computational framework for

different reaction steps[36].

By construction the rate constants include the interplay between the electronic

structure, solvent, electrode potential etc. All quantities can be computed using self-

consistent DFT energies and ”wave functions” to include exchange and correlation effects

between all the electrons in the system. The Fermi-Dirac distribution is fulfilled at the

DFT level and, therefore, there is no need to integrate over the filled/empty orbitals

weighted by the Fermi-Dirac distribution in the rate expression as done is traditional

single-orbital descriptions (see SI Section 1 and below). Also, the Kohn-Sham-Mermin

theorem[3] guarantees that GCE-DFT and GCE-EVB states are unique to a given

electrode potential and that the GCE-EVB diabatic inlcude that interactions between

all electrons in the metal and the reactants.

The electrode potential is self-consistently treated and all free energies and

prefactors depend explicitly on the potential. This is in contrast with traditional

model Hamiltonian treatments where the electrode potential rigidly shifts the Fermi-

level without modifying any interactions or prefactors [64, 69] or modifies only the

electrostatic interactions[34, 67]. Also, separate computation of work terms[67, 69,

68, 136] is not needed because all relevant interaction can be directly included in the

general Hamiltonian. Evaluation of chemisorption functions entering adiabatic Newns-

Anderson-based models[63, 66, 67, 64, 68, 136] is also avoided. Therefore, the current

models are free of approximate treatment of semi-elliptic DOSs[67, 66, 136] or fitting

the chemisorption functions to a computed DOS[66, 136].

As the developed rate theory utilizes general ab initio Hamiltonians, bond

formation/breaking are naturally included. This is again in contrast with model

Hamiltonians which require approximate potential-independent terms to describe

changes in atomic bonding [137, 138, 136]. Instead, as demonstrated herein, ET, PT,

or PCET and bond rupture/formation are naturally captured with GCE-DFT. Bond

formation s is also captured by diabatic models using cDFT as demonstrated herein

for the Volmer reaction and previously for ET[139], PCET[140] and general chemical

reactions[141, 142].

As all necessary terms can be computed from GCE-(c)DFT, adoption and
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evaluation of the rate expressions is straight-forward (but potentially laborious). While

applicability and usefulness of combined DFT and GCE-EVB was demonstrated for

the Volmer reaction, it is worth discussing the additional computational requirements

in some detail. First, the simulation of charged systems is needed to sample the

electrode potential. Electroneutrality can be enforced using some variant of the Poisson-

Boltzmann model, for details see [3]. Fixed potential calculations can be accomplished

within a single SCF cycle[10], or iteratively [143, 20]. Second, the solvent effects should

be included in the model. In traditional TST-based models for adiabatic reactions the

main solvent contribution is thermodynamic and stems from (de)stabilization of different

structures. GCE-EVB models need to involve the solvent as the reaction barrier is

directly related to the solvent/environment reorganization energy and neglecting the

solvent contributions will most likely lead to incorrect results.

Given a software capable of handling charged systems and performing constant

potential calculations, adiabatic TST rate constants can be readily evaluated. As

shown for the Volmer reaction, reaction barriers and adiabatic prefactors at constant

potential are obtainable using e.g. the NEB[95] method. Evaluation of GCE-EVB

rate constants requires additional software capabilities for constructing charge/spin

localized diabatic states and to evaluate the electronic coupling between these states

either through direct calculation or diagonalization of the diabatic Hamiltonian of Eq.

(7). Also the reorganization energy, which is an excited state quantity, needs to be

computed. One widely implemented and available tool for evaluating the additional

parameters is the cDFT methodology[101, 102, 103] which is implemented in several

DFT codes[131, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153]. The extension of

cDFT to GCE was, for the first time, demonstrated and applied in this work. GCE-

EVB should be accompanied with a constant potential simulations to compute fixed

potential reaction and reorganization energies.

The general framework can also be extended to treating reactions beyond adiabatic

reactions to include e.g. non-adiabatic effects, nuclear tunneling, and solvent-dynamics

controlled reactions - treatment of these effects is under current study and will be

published separately. Non-adiabatic effects are expected for e.g. outer-sphere ET

reactions and several PCET reactions[33]. Several PT and PCET reactions are also

likely include adiabatic or non-adiabatic nuclear tunnelling effects. Also, solvent

dynamics should be included as these are likely to become increasingly important or even

dominant when the reaction is adiabatic and the reaction barrier becomes very small or

vanishes.[154] Under such conditions the reorganization will be the slowest process and

the reaction prefactor should reflect this. Last, well-defined interpolation[155, 156, 157]

between adiabatic – solvent dynamic –non-adiabatic should be developed or adapted to

the fixed-potential rate theory.

Finally, a spectacular feature of canonical Marcus and EVB theory is the

observation of an inverted region i.e. the rate constant starts to decline as the reaction

becomes more exothermic. However, the inverted region has not been observed for

electrochemical reactions even at large over-potentials. The grand canonical Marcus rate



Grand canonical rate theory 24

of (13) seems to predict an inverted region for highly exothermic conditions and warrants

additional discussion. First, the Marcus-like expression is based on linear response or

second order cumulant treatment[158] which leads to quadratic free energies along the

reaction coordinate - the prediction of the inverted region is a direct consequence of

the linear response assumption. To go beyond the quadratic free energy surfaces higher

order cumulants can be added (see SI section 5) to modify the existence of the inverted

region.[159] For instance, the inverted region is not predicted for Morse potentials.[160]

Secondly, the inverted region is very sensitive to tunneling effects, excited states, and

solvent effects.[161] For example, nuclear quantum effects are needed to achieve accurate

ET rates in the inverted region ET[162] while excited proton vibronic states dominate

PCET reaction rate[160]. Even if the inherent approximations on quadratic, classical,

and adiabatic nature are acceptable, in GCE-EVB the reorgnization energy is potential-

dependent and the inverted region is suppressed if ∆Ω′ ≈ 0. Also the reorganization

energy should saturate at large overpotentials.

The prediction of non-existing inverted region is inherent to several non-adiabatic

single orbital approaches. In these treatments the inverted region is avoided by taking

the manifold of single-electron states into account and integrating over the Fermi-Dirac

weighted transition rates, as discussed in Supporting Information Section 1. This

has resulted in e.g. Marcus-Hush-Chidsey[163], Dogonadze-Levich-Kuztnetsov[49, 48],

Soudackov-Hammes-Schiffer[53] models of ET and PCET. On the other hand, adiabatic

rate computed using the Newns-Anderson-Schmickler Hamiltonian [63, 64] does not the

include the orbital-to-orbital contributions separately as the redox orbital is coupled

with all levels on the metal by definition. In the adiabatic Newns-Anderson-Schmickler

model, the free energy surface becomes as single well and the reactant and product

become indistinguishable. As the vanishing barrier cannot be treated[63, 155], the

barrier is simply extrapolated to zero in the inverted region and the rate is controlled

by the prefactor as discussed next.

The rate of (nearly) barrierless reactions has a long tradition in chemical physics and

has been widely considered for especially electrochemical and photochemical reactions.

For such reactions the equilibrium rate theory does not hold anymore and one has

to explicitly consider time evolution and dynamics of the system; this is an issue for

most if not all current electrochemical rate theories and not a special issues faced in

the proposed GCE framework. Working explicitly with dynamics does not require

that the initial state is in thermal equilibrium as is often observed for photochemical

reactions. In condensed phase systems the reaction dynamics are often computed using

some coarse-grained presentation for the reaction proceeding on some collective reaction

coordinates[107]. Different approaches have been based on models such as generalized

Langevin equation in the Kramers-Grote-Hynes theory[164], Liouville equation with

a Smoluchovski diffusion term is used by Zusman-Rips-Jortner approaches[104, 165],

or Fokker-Planck equation in the Sumi-Marcus theory[166]. The key physical insight

in these models is that both activated and barrierless reactions, the diffusion along

the reaction coordinate (often the solvent reorganization) has finite time which sets the
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slowest time scale for the reaction. Using this observation at least the Sumi-Marcus[167]

and Zusman-Rips-Jortner[165] approaches have been successfully utilized for barrierless

reactions.

The general conclusion from these explicitly time-dependent approaches is that

while the rate constant is in principle time-dependent, the reaction kinetics or

transfer probabilities is exponential which allows approximation the rate constants

even for barrierless reactions[167, 168, 169]; this time scale is set typically set by the

solvent/surrounding reorganization time τL which is also consistent several experimental

studies in reaction kinetics[167, 168, 169, 170, 171]. For practical approximations,

an important theoretical result is that the Zusman[104] extrapolation formula used in

ET[104] and PCET reactions[35] to describe the kinetics of both activated and solvent

dynamics controlled reactions (k−1tot = k−1solvent + k−1activated) is valid also for activationless

reactions[172, 157]. Then the rate of barrierless reactions is controlled by solvent

dynamics which is proportional to τ−1L .

Based on the above discussion, the barrierless and inverted regions are more

complicated than the normal region and requires careful consideration of excited states,

tunneling effect, and solvent dynamics, for example. The vanishing inverted region is

for non-adiabatic single-orbital models and not for adiabatic models where the exchange

between all metallic states and the redox molecule are treated. In the GCE-EVB

picture the inverted region is inherent to the quadratic grand energy surfaces and simply

extrapolation of the barrier to zero removes the inverted region. However, this is not fully

satisfactory and more studies are needed to study non-quadratic free energy surfaces,

tunneling, excited states, and solvent dynamics.

6. Conclusions

In this work a new theoretical formulation for computing electrochemical and

electrocatalytic rate constants at a fixed potential is developed. The rate expressions are

obtained by extending the universally valid and exact canonical rate theory[70, 71, 72]

to the grand canonical, fixed potential ensemble. General conditions and limitations

for the fixed potential rate theory are developed. It is shown that all rate theories

developed within the canonical ensemble can be transferred to the GCE; electrochemical

rate constants are ”just” GCE-weighted canonical rate constants. This is conceptually

important because the fixed-potential rate theory enables treating all potential-driven

reactions within a single formalism instead of relying on separate theories for different

cases.

This provides a unified framework for computing and understanding both the

barrier and prefactor from a single formalism towards modelling beyond adiabatic

inner-sphere reactions to include e.g. non-adiabaticity and tunneling. Herein,

specific rate expressions are derived for typical electrocatalytic adiabatic ET, PT, and

PCET reactions. Fixed potential rate expression have been derived for i) general

electrocatalytic reactions with ((5)) and without ((2)) the TST approximation, ii)
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electronically adiabatic ET, PT and PCET reactions using a grand canonical Marcus-

like GCE-EVB theory in (13).

The GCE-EVB formalism enables computing the grand energy barrier in terms of

fixed potential reorganization energy and the reaction grand energy in analogy with the

canonical EVB or Marcus theory. GCE-EVB can explain and predict the electrocatalytic

”Marcus-like” behavior in energy barriers and TST geometries as a function of the

thermodynamic driving force. GCE-EVB enables also the computation of non-linear

energy relationships and Tafel slopes and general BEP-Tafel relations in goo accuracy

using just few DFT parameters; this has shown for the Volmer reaction using fixed

potential (constrained) DFT developed here. Also, quantitatively accurate barriers and

TST geometries can be predicted using a few self-consistent GCE-DFT calculations.

These features are expected to make the GCE-EVB approach particularly suitable for

electrocatalyst screening studies.

The developed theory can be directly combined with modern, solid-state ab initio

methods to capture the complexity of the electrochemical interface at constant potential

in a self-consistent manner. In this sense, the model is fully ab initio and all parameters

can be directly computed. A set of widely implemented DFT-based tools suffices to

compute all the needed parameters in a self-consistent manner. This should enable

the computational community adopt the theoretical framework and to progress from a

thermodynamics-based description of electrocatalysis to addressing also electrocatalytic

kinetics under experimentally realistic conditions.

The advances herein enable further development of theory and computational

methods to address e.g. tunnelling pathways and non-adiabaticity in electrochemical

systems from first principles. Understanding and controlling (non-adiabatic) tunneling

can open up new reaction pathways to avoid constraining scaling relations[173, 174, 175]

encountered for adiabatic PCET reactions. Besides applications, the advanced rate

theories will improve fundamental understanding of electrochemical kinetics in e.g.

de-coupled and non-adiabatic ET, PT, and PCET. This contributions are especially

important for weakly-binding catalysts, but neglected in computational studies thus

far.
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