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Abstract

We introduce a method for solving Calderón type inverse problems for semilin-
ear equations with power type nonlinearities. The method is based on higher
order linearizations, and it allows one to solve inverse problems for certain non-
linear equations in cases where the solution for a corresponding linear equation
is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann
map, we determine both a potential and a conformal manifold simultaneously
in dimension 2, and a potential on transversally anisotropic manifolds in dimen-
sions n ≥ 3. In the Euclidean case, we show that one can solve the Calderón
problem for certain semilinear equations in a surprisingly simple way without
using complex geometrical optics solutions.

Résumé

Dans cet article, on introduit une méthode pour résoudre les problèmes inverses
de type Calderón pour les équations semi-linéaires avec des non-linéarités poly-
nomiales. La méthode est basée sur des linéarisations d’ordre supérieur et elle
permet de résoudre des problèmes inverses pour certaines équations non linéaires
dans les cas où la solution d’une équation linéaire correspondante n’est pas
connue. En supposant la connaissance de l’opérateur Dirichlet-Neumann non
linéaire, nous déterminons simultanément un potentiel et une variété conforme
en dimension 2, et un potentiel sur des variétés transversalement anisotropes de
dimensions n ≥ 3. Dans le cas euclidien, nous montrons que l’on peut résoudre
le problème de Calderón pour certaines équations semi-linéaires d’une manière
étonnamment simple sans utiliser de solutions optiques géométriques complexes.
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1. Introduction

In this paper we study inverse boundary value problems for nonlinear elliptic
equations. A standard example of inverse problems for linear elliptic equations
is the problem introduced by Calderón [11], where the objective is to determine
the electrical conductivity of a medium by making voltage and current mea-
surements on its boundary. It is closely related to the problem of determining
an unknown potential q in a Schrödinger operator ∆ + q from boundary mea-
surements, first solved in [22] in dimensions n ≥ 3. There is an extensive theory
concerning inverse boundary value problems for linear elliptic equations, and
we refer to [33] for a survey.

It is also natural to consider analogous inverse problems under nonlinear
settings. Let Ω ⊂ Rn be a bounded domain with C∞ boundary, and consider
the reaction-diffusion equation

∂tw −∆w = a(x,w) in Ω× {t > 0}.

Equations of this type arise in the modelling of chemical reactions, popula-
tion dynamics and pattern formation [44]. Examples include the Fisher, Kol-
mogorov or logistic diffusion equations with quadratic nonlinearity (i.e. a(x,w)
is quadratic in w), the Newell-Whitehead-Segel equation with cubic nonlinearity,
and equations in combustion involving polynomial or exponential nonlinearities.

A stationary solution w(x, t) = u(x) satisfies the elliptic equation

∆u+ a(x, u) = 0 in Ω.

The Dirichlet problem for this equation is related to maintaining a temperature
(or concentration or population) f on the boundary. The boundary measure-
ments for such an equation, provided that it is well-posed for some class of
boundary values, may be encoded by a Dirichlet-to-Neumann map (DN map)
Λa, which maps the boundary value f to the flux Λa(f) = ∂νu|∂Ω of the corre-
sponding equilibrium state across the boundary.

In fact, inverse problems for nonlinear elliptic equations have also been
widely studied. A standard method, introduced in [55] in the parabolic case,
is to show that the first linearization of the nonlinear DN map is actually the
DN map of a linear equation, and to use the theory of inverse problems for
linear equations. For the semilinear Schrödinger equation ∆u+ a(x, u) = 0, the
problem of recovering the potential a(x, u) was studied in [66, 77] in dimensions
n ≥ 3, and in [88, 77, 99] when n = 2. In addition, inverse problems have been
studied for quasilinear elliptic equations [1010, 1111, 1212, 1313, 1414], the degenerate
elliptic p-Laplace equation [1515, 1616], and the fractional semilinear Schrödinger
equation [1717]. Certain Calderón type inverse problems for quasilinear equations
on Riemannian manifolds were recently considered in [1818]. We refer to the sur-
vey articles [1919, 33] for further details on inverse problems for nonlinear elliptic
equations.
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Inverse problems have also been studied for hyperbolic equations with vari-
ous nonlinearities. Many of the works mentioned above rely on a solution to a
related inverse problem for a linear equation. This is in contrast to the study of
inverse problems for nonlinear hyperbolic equations, where it has been realized
that the nonlinearity can actually be beneficial in solving inverse problems.

By using the nonlinearity as a tool, some still unsolved inverse problems for
hyperbolic linear equations have been solved for their nonlinear counterparts.
For the scalar wave equation with a quadratic nonlinearity, Kurylev-Lassas-
Uhlmann [2020] proved that local measurements determine the global topology,
differentiable structure and the conformal class of the metric g on a globally
hyperbolic 4-dimensional Lorentzian manifold. The authors of [2121] studied in-
verse problems for general semilinear wave equations on Lorentzian manifolds,
and in [2222] they studied analogous problem for the Einstein-Maxwell equations.
For more inverse problems of nonlinear hyperbolic equations, we refer readers
to [2323, 2424, 2525, 2626] and references there in.

In this work we introduce a method which uses nonlinearity as a tool that
helps in solving inverse problems for certain nonlinear elliptic equations. The
method is based on higher order linearizations of the DN map, and essentially
amounts to using sources with several parameters and obtaining new linearized
equations after differentiating with respect to these parameters. We demon-
strate the scope of the method by solving Calderón type problems for three
mathematical models.

The first model is the Calderón problem for a semilinear Schrödinger equa-
tion with quadratic nonlinearity,

∆u+ qu2 = 0 in Ω ⊂ Rn, (1.1)

where q ∈ C∞(Ω) and n ≥ 2. The solution to a related inverse problem with
a(x, u) in place of qu2 is known under assumptions like ∂ua(x, u) ≤ 0 [66, 88, 77].
Theorem 1.11.1 proves uniqueness for the nonlinearity qu2, which appears to be
a new result. The method applies to more general models, but we begin with
the equation (1.11.1) in order to introduce our approach in the simplest possible
setting.

The second new result is Theorem 1.21.2, where we simultaneously deter-
mine the metric, the manifold and the potential up to gauge symmetry from
the knowledge of the DN map of a semilinear Schrödinger equation on two-
dimensional Riemannian surfaces. The analogous result for a linear Schrödinger
equation is not known in this generality. Here we use nonlinearity to simulta-
neously determine the topology and the conformal structure of the Riemannian
surface, as well as the potential, up to a natural gauge transformation.

The third result, Theorem 1.31.3, is the recovery of the potential q from the
knowledge of the DN map of a Schrödinger operator with nonlinearity of the
form qum, m ≥ 3, on transversally anisotropic manifolds in dimensions n ≥ 3.
Transversally anisotropic manifolds are product type manifolds which appear
in several works related to the anisotropic Calderón problem. Again, the so-
lution to the analogous inverse problem for a linear equation is not known in
this generality. Existing results will be discussed in more detail later in this
introduction.

Let us introduce the mathematical setting for this article. We will de-
note by (M, g) a compact Riemannian manifold with C∞ boundary ∂M , where
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dim(M) = n, n ≥ 2. For example, one could have M = Ω where Ω is a bounded
C∞ domain in Rn, and g could be the Euclidean metric. Let q ∈ C∞(M). We
will consider semilinear elliptic equations of the form

{
∆gu+ qum = 0 in M,

u = f on ∂M,
(1.2)

where
m ∈ N and m ≥ 2.

Here ∆g is the Laplace-Beltrami operator, given in local coordinates by

∆gu =
1

det(g)1/2

n∑
a,b=1

∂

∂xa

(
det(g)1/2gab

∂u

∂xb

)
,

where g = (gab(x)) and g−1 = (gab(x)).
We will show that the Dirichlet problem (1.21.2) has a unique small solution

u for sufficiently small boundary data f ∈ Cs(∂M), where s > 2 with s /∈ N.
More precisely this means that there is δ > 0 such that whenever ‖f‖Cs(∂M) ≤ δ
, there is a unique solution uf to (1.21.2) with sufficiently small Cs(M) norm (see
Section 22 for more details on well-posedness). We will call uf the unique small
solution. Here Cs is the standard Hölder space for s > 2 with s /∈ N (often
written as Ck,α if s = k + α where k ∈ Z and 0 < α < 1), see e.g. [2727, Section
13.8]. Hence, the DN map is defined by using the unique small solution in a
following way:

ΛM,g,q : Cs(∂M)→ Cs−1(∂M), f 7→ ∂νuf |∂M ,

where ∂ν denotes the normal derivative on the boundary ∂M . In what follows,
we use the notation ΛM,g to denote the DN map when q = 0. When M = Ω ⊂
Rn and g is the identity matrix, we denote the DN map by Λq.

As a warm-up, we begin with a theorem that illustrates our method in a
simple setting. This theorem is in Rn for n ≥ 2, where ∆g is the Euclidean
Laplacian and M = Ω with Ω a bounded smooth domain in Rn.

Theorem 1.1 (Global uniqueness for a quadratic nonlinearity). Let n ≥ 2, and
let Ω ⊂ Rn be a bounded domain with C∞ boundary ∂Ω. Let q1, q2 ∈ C∞(Ω).
Assume the DN maps Λqj for the equations{

∆u+ qju
2 = 0 in Ω,

u = f on ∂Ω,
(1.3)

for j = 1, 2 satisfy
Λq1(f) = Λq2(f)

for all f ∈ Cs(∂Ω) with ‖f‖Cs(∂M) < δ, where δ > 0 is any sufficiently small
number. Then q1 = q2 in Ω.

We will offer a detailed proof of Theorem 1.11.1 in Section 33, but let us briefly
discuss the idea how to prove the theorem by using the method of higher order
linearization. The second order linearization of the nonlinear DN map has
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already been used in the works [1010, 1111] related to nonlinear equations with
matrix coefficients. First and second order linearizations were also used in [1212]
for a nonlinear conductivity equation (see also [2828]). Under certain assumptions
on the nonlinearity, by using the second order linearization, they can recover
quadratic parts of the nonlinearity (see [1212, Theorem 1.2 and Theorem 1.3]).
In this work, we use similar ideas but obtain interesting new phenomena for
related nonlinear inverse problems.

For the equation (1.31.3) with quadratic nonlinearity, the first linearization of
the nonlinear DN map Λq, linearized at the zero boundary value, is just the DN
map for the standard Laplace equation:

(DΛq)0 : Cs(∂Ω)→ Cs−1(∂Ω), f 7→ ∂νvf |∂Ω,

where vf is the unique solution of ∆vf = 0 in Ω with vf |∂Ω = f . Thus the first
linearization does not carry any information about the unknown potential q.
However, for a quadratic nonlinearity the second linearization (D2Λq)0, which
is a symmetric bilinear map from Cs(∂Ω)× Cs(∂Ω) to Cs−1(∂Ω), turns out to
be very useful: it is characterized by the identity (see (2.92.9))∫

∂Ω

(D2Λq)0(f1, f2)f3 dS = −2

∫
Ω

qvf1vf2vf3 dx

where vfj is the harmonic function with boundary value fj . See formula (1.41.4)
bel . Thus we have the implications

Λq1(f) = Λq2(f) for small f

=⇒ (D2Λq1)0 = (D2Λq2)0

=⇒
∫

Ω

(q1 − q2)v1v2v3 dx = 0

for any functions v1, v2, v3 ∈ Cs(Ω) that are harmonic in Ω.
The last statement is very close to the linearized Calderón problem for a

linear Schrödinger equation (the difference is that here one has the product
of three harmonic functions, instead of two). Choosing v1 and v2 to be har-
monic exponentials as in the work of Calderón [11], and choosing v3 ≡ 1, shows
that the Fourier transform of q1 − q2 vanishes and hence q1 = q2. Thus, some-
what strikingly, we can solve a Calderón type inverse problem for the nonlinear
equation ∆u + qu2 = 0 in a much simpler way than for the linear equation
∆u+ qu = 0 (the latter requires complex geometrical optics solutions as in [22]).
The method also provides extremely simple reconstruction of the potential q,
see Corollary 3.13.1.

We also mention that the second order linearization can be described as

(D2Λq)0(f1, f2) = ∂ε1∂ε2uε1f1+ε2f2 |ε1=ε2=0 on ∂Ω. (1.4)

That is, one considers boundary data

f = ε1f1 + ε2f2 ∈ Cs(∂Ω),

where ε1, ε2 are sufficiently small parameters, and takes the mixed derivative

∂

∂ε1

∂

∂ε2

∣∣∣∣
ε1=ε2=0
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of the equation (1.31.3). This idea is similar to the recent works on inverse problems
for nonlinear hyperbolic equations mentioned above, and it yields the equations

∆wj = −2qjvf1
vf2

, (1.5)

for j = 1, 2, where wj = ∂
∂ε1

∂
∂ε2

∣∣∣
ε1=ε2=0

uj and vfj are harmonic functions, i.e.

solutions to the linearized equation ∆v = 0. Taking the mixed derivative of the
DN maps yields (see Section 22)

∂νw1 = ∂νw2 on ∂Ω.

Subtracting the equations (1.51.5) for j = 1, 2 and integrating the resulting equa-
tion against the harmonic function vf3

yields the desired formula∫
Ω

(q1 − q2)vf1
vf2

vf3
dx = 0

which was mentioned in the discussion above.
We move on to describe our next result. By using higher order linearizations

we prove the following simultaneous recovery on a two-dimensional Riemannian
surface.

Theorem 1.2 (Simultaneous recovery of metric and potential). Let (M1, g1)
and (M2, g2) be two compact connected manifolds with mutual C∞ smooth bound-
aries ∂M1 = ∂M2 =: ∂M and dim(M1) = dim(M2) = 2. Let m ≥ 2, and let
ΛMj ,gj ,qj be the DN maps of

∆gju+ qju
m = 0 in Mj (1.6)

for j = 1, 2. Let s > 2 with s /∈ N and assume that

ΛM1,g1,q1f = ΛM2,g2,q2f on ∂M,

for any f ∈ Cs(∂M) with ‖f‖Cs(∂M) ≤ δ, where δ > 0 is sufficiently small.
Then:

(1) There exists a conformal diffeomorphism J : M1 → M2 and a positive
smooth function σ on M1 such that for x ∈M1 we have

(σJ∗g2)(x) = g1(x),

with J |∂M = Id and σ|∂M = 1.

(2) Moreover, one can also recover the potential up to a natural gauge invari-
ance in the sense that

σq1 = q2 ◦ J in M1.

We see that the conformal factor σ (and also the diffeomorphism J) couples
to the potential. This is due to the gauge symmetry of the inverse problem:

ΛM1,σJ∗g,σ−1J∗q = ΛJ(M1),g,q

where J is a conformal diffeomorphism and σ is a positive smooth function sat-
isfy the boundary conditions J |∂M = Id and σ|∂M = 1. For the linear equation
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∆gu + qu = 0, an analogous result has been proved when M is a domain in
R2 with a Riemannian metric [2929], when M is a manifold and the potentials
are zero [3030], and when the manifold M is a priori known [3131]. The recovery of
properties of both the manifold and potential is stated as an open question in
[3232], where further references to two-dimensional results are given. The proof
of Theorem 1.21.2 uses the first linearization of the DN map to recover the metric
and the manifold up to a conformal transformation. Then the second lineariza-
tion is used to recover the potential on a single fixed manifold (up to the gauge
symmetry).

The final new result in this article is to consider inverse problems for the
semilinear Schrödinger equation on transversally anisotropic manifold. Let us
recall the definition of a transversally anisotropic manifold.

Definition 1.1. Let (M, g) be a compact oriented manifold with a C∞ boundary
and with dimM ≥ 3. (M, g) is called transversally anisotropic if (M, g) ⊂⊂
(T, g), where T = R×M0 and g(x) = g(x1, x

′) = e(x1)⊕ g0(x′) for x1 ∈ R and
x′ ∈M0. Here (R, e) is the Euclidean line and (M0, g0) is an (n−1)-dimensional
compact manifold with a smooth boundary.

Figure 1: An example of a transversally anisotropic manifold (M, g).

An example of a transversally anisotropic manifold is visualized in Figure 11.
Especially, if Ω is a domain in Rn and g0 is any Riemannian metric on Ω, then
R× Ω equipped with the metric

g(x1, x
′) =

[
1 0
0 g0(x′)

]
is transversally anisotropic. For more details of inverse problems in transversally
anisotropic geometries for linear equations, we refer readers to [3333, 3434].

We prove the following.

Theorem 1.3. Let (M, g) be a transversally anisotropic manifold, let qj ∈
C∞(M), and let Λqj be the DN maps for the equations

∆gu+ qju
m = 0 in M

for j = 1, 2, where we assume that

m ∈ N, m ≥ 3.
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If the DN maps satisfy

Λq1(f) = Λq2(f)

for all sufficiently small f , then q1 = q2 in M .

The higher order linearization method in this case reduces the proof of The-
orem 1.31.3 to showing for any m ≥ 3 that the identity∫

M

fv1 · · · vm+1 dV = 0 (1.7)

holding for any vj ∈ C∞(M) with ∆gvj = 0 in M , implies f ≡ 0. Thus we
prove that the products of at least four harmonic functions on a transversally
anisotropic manifold form a complete set. The main point is that the argument
works for arbitrary transversally anisotropic manifolds without any restriction
on the transversal geometry.

The solution to the analogous inverse problem for a linear equation ∆gu +
qu = 0 on transversally anisotropic manifolds is only known under the additional
assumption that the transversal manifold (M0, g0) has injective geodesic X-ray
transform [3333]. In the linearized version of that problem, the identity (1.71.7) only
holds for m = 1 and one needs to prove that products of pairs of harmonic
functions form a complete set. In [3333] this is done by using complex geometrical
optics solutions that concentrate near two-dimensional surfaces that are trans-
lates of geodesics on M0. Using products of such solutions and their complex
conjugates recovers certain integrals over geodesics in M0, but does not yield
pointwise information. In [3434] products of solutions concentrating near two
intersecting geodesics were used instead to recover microlocal information in
the linearized inverse problem. The products are supported near finitely many
points in M0, but there is oscillation that prevents recovering more information.
We also mention [3535] that deals with the linearized problem on certain complex
manifolds.

The idea behind the proof of Theorem 1.31.3 is that since one can use products
of at least four harmonic functions, we can use solutions related to two inter-
secting geodesics on M0 as well as their complex conjugates. The product of
these four solutions is supported near finitely many points in M0 and the prod-
uct does not have high oscillations. This allows one to recover the potential
completely.

We mention that the aim of this paper is not to work in the highest possible
generality or to provide an extensive list of all possible applications of the higher
order linearization method. For example, it is clear that the method applies to
certain more general nonlinearities and less regular coefficients. These are left
to forthcoming works. Here we have included applications that illustrate the
power of the higher order linearization method.

Finally, we mention that before submitting this paper we became aware of
an upcoming preprint of Ali Feizmohammadi and Lauri Oksanen, which simul-
taneously and independently proves a result similar to Theorem 1.31.3, and we
agreed with them to publish the preprints of the results at the same time on
the same preprint server. See [3636].

The paper is organized as follows. In Section 22, we lay out the basic prop-
erties for semilinear elliptic equations that we use. This includes the well-
posedness of the Dirichlet problem and higher order linearizations of the DN
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map. We use the higher order linearization approach to prove Theorem 1.11.1 in
Section 33, Theorem 1.21.2 in Section 44, and Theorem 1.31.3 in Section 55, respectively.

Acknowledgements. All authors were supported by the Finnish Centre of Ex-
cellence in Inverse Modelling and Imaging (Academy of Finland grant 284715).
M.S. was also supported by the Academy of Finland (grant 309963) and by the
European Research Council under Horizon 2020 (ERC CoG 770924). Y.-H. L.
is partially supported by the Ministry of Science and Technology Taiwan, under
the Columbus Program: MOST-109-2636-M-009-006, 2020-2025. The authors
would like to thank the anonymous referees for some useful comments to improve
this paper.

2. Preliminaries

In this section, we prove well-posedness of the Dirichlet problem for semilin-
ear elliptic equations on Riemannian manifolds with small boundary data, and
study higher order linearizations of the DN map. We assume that the Rieman-
nian manifolds we consider are compact, C∞ smooth and have C∞ boundary.

We state the first result of this section for a general nonlinearity satisfying
two conditions: Let Q be the semilinear elliptic operator

Q(u) := ∆gu+ a(x, u), (2.1)

where a ∈ C∞(M × R) satisfies the following two conditions:

a(x, 0) = 0, (2.2)

The map v 7→ ∆gv + ∂ua( · , 0)v is injective on H1
0 (M). (2.3)

The first condition ensures that u ≡ 0 is a solution, and the second states that
the equation linearized at u ≡ 0 is well-posed.

The next result considers mappings between Banach spaces which are Fréchet
differentiable. We refer the reader to [3737, Section 10] and [3838, Section 1.1] for
basics about Fréchet differentiability.

Proposition 2.1 (Well-posedness). Let (M, g) be a compact Riemannian man-
ifold with C∞ boundary ∂M and let Q be the semilinear elliptic operator given
by (2.12.1) satisfying (2.22.2) and (2.32.3). Let s > 2 with s /∈ Z. There exist δ, C > 0
such that for any f in the set

Uδ := {h ∈ Cs(∂M) ; ‖h‖Cs(∂M) < δ},

there is a solution u = uf of{
∆gu+ a(x, u) = 0 in M,

u = f on ∂M,
(2.4)

which satisfies

‖u‖Cs(M) ≤ C‖f‖Cs(∂M).

The solution uf is unique within the class {w ∈ Cs(M) ; ‖w‖Cs(M) ≤ Cδ},
and if f ∈ C∞(∂M), then uf ∈ C∞(M). Moreover, there are C∞ Fréchet
differentiable maps

S : Uδ → Cs(M), f 7→ uf ,
Λ : Uδ → Cs−1(∂M), f 7→ ∂νuf |∂M .
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Proof. We prove the existence of solutions by using the implicit function theorem
in Banach spaces [3737, Theorem 10.6]. Let

X = Cs(∂M), Y = Cs(M), Z = Cs−2(M)× Cs(∂M).

Consider the map

F : X × Y → Z, F (f, u) = (Q(u), u|∂M − f).

We wish to show that F indeed maps to Z and is a C∞ map. Note that since
a is smooth, the map

u 7→ a(x, u)

takes Cs(M) to Cs(M), and if ‖u‖Cs(M) ≤ K then ‖a(x, u)‖Cs(M) ≤ C(a, s,K)
(these facts follow from a local coordinate computation). Thus F is well defined.
If u, v ∈ Cs(M) we use the Taylor formula

a(x, u+ v) =
m∑
j=0

∂jua(x, u)

j!
vj +

∫ 1

0

∂m+1
u a(x, u+ tv)

m!
vm+1(1− t)m dt.

Since Cs(M) is an algebra, we have that when ‖v‖Cs(M) ≤ 1 one has∥∥∥∥∥∥a(x, u+ v)−
m∑
j=0

∂jua(x, u)

j!
vj

∥∥∥∥∥∥
Cs(M)

≤ Cm,a,u‖v‖m+1
Cs(M).

This shows that u 7→ a(x, u) is a C∞ map Cs(M) → Cs(M). Since the other
parts of F are linear, F is a C∞ map in the standard sense of [3737, Definition
10.2].

Note that F (0, 0) = 0 by (2.22.2). The linearization of F at (0, 0) in the u-
variable is

DuF |(0,0) (v) = (∆gv + ∂ua(x, 0)v, v|∂M ).

This is a homeomorphism Y → Z by (2.32.3). To see this, let (w, φ) ∈ Z =
Cs−2(M)× Cs(∂M), and consider the Dirichlet problem{

(∆g + ∂ua(x, 0))v = w in M,

v = φ on ∂M.
(2.5)

If a solution to (2.52.5) exists, it is unique by (2.32.3). Consequently, by using the
Fredholm alternative (see e.g. [2727, Proposition 1.9]), we may solve (2.52.5) in
H1

0 (M) for any source in H−1(M) and zero boundary value. Thus, we have
solutions v1 and v2 in H1

0 (M) to (2.52.5) with sources w and −(∆g + ∂ua(x, 0))Φ
respectively, where Φ ∈ Cs(M) is a function with Φ|∂M = φ ∈ Cs(∂M). Then
v = v1+v2+Φ is the unique solution in H1(M) to (2.52.5). We have the well-known
Schauder estimate

‖v‖Cs(M) ≤ C
(
‖w‖Cs−2(M) + ‖Φ‖Cs(M)

)
,

for some constant C > 0 independent of w ∈ Cs−2(M) and Φ ∈ Cs(M), which
shows that solutions to (2.52.5) depend continuously on w and φ. (We have in-
cluded a proof of the Schauder estimate in the manifold setting in Appendix
Appendix BAppendix B.)
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The implicit function theorem in Banach spaces [3737, Theorem 10.6 and Re-
mark 10.5] now yields that there is δ > 0 and an open ball Uδ = BX(0, δ) ⊂ X
and a C∞ map S : Uδ → Y such that whenever ‖f‖Cs(∂M) ≤ δ we have

F (f, S(f)) = (0, 0).

Since S is Lipschitz continuous and S(0) = 0, u = S(f) satisfies

‖u‖Cs(M) ≤ C‖f‖Cs(∂M).

Moreover, by redefining δ if necessary u = S(f) is the only solution to F (f, u) =
(0, 0) whenever ‖f‖Cs(∂M) ≤ δ and ‖u‖Cs(M) ≤ Cδ. We have proven the
existence of unique small solutions of the Dirichlet problem (2.42.4) and the fact
that the solution operator S : Uδ → Cs(M) is a C∞ map. Since the normal
derivative is a linear map Cs(M)→ Cs−1(∂M), it follows that also Λ is a well
defined C∞ map Uδ → Cs−1(∂M).

In the rest of the paper, we consider power type nonlinearities of the form
a(x, u) = q(x)um, where m ∈ N and m ≥ 2. For such nonlinearities, the higher
order linearizations of the DN map will be particularly simple. We will consider
complex solutions u to the boundary value problem (2.42.4). We remark that even
though the Proposition 2.12.1 was proven for real valued solution the proposition
remains valid for the nonlinearity a(x, u) = q(x)um by analyticity in u. In the
rest of the work we will consider complex valued solutions without separate
notice.

The next proposition justifies the formal calculation that we may differenti-
ate the equation

∆guf + q(x)umf = 0 in M, uf |∂M = ε1f1 + · · ·+ εmfm (2.6)

in the εj variables to have equations corresponding to first and mth lineariza-
tions,

∆gvfk = 0 and ∆gw = −(m!)qvf1 · · · vfm .

The normal derivative of w is the mth linearization of the DN map of (2.62.6).
Below, we write

(Dkf)x(y1, . . . , yk)

to denote the kth derivative at x of a mapping f between Banach spaces, consid-
ered as a symmetric k-linear form acting on (y1, . . . , yk). We refer to [3838, Section
1.1], where the notation f (k)(x; y1, . . . , yk) is used instead of (Dkf)x(y1, . . . , yk).

For f ∈ Cs(∂M) with s > 2, s /∈ N, let us denote by vf the unique solution
of the Laplace equation

∆gvf = 0 in M, vf |∂M = f. (2.7)

By using this notation, we have the following result.

Proposition 2.2. Let q ∈ C∞(M), and let Λq be the DN map for the semilinear
elliptic equation

∆gu+ q(x)um = 0 in M, (2.8)

where
m ∈ N and m ≥ 2.
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The first linearization (DΛq)0 of Λq at f = 0 is the DN map of the Laplace
equation (2.72.7) such that

(DΛq)0 : Cs(∂M)→ Cs−1(∂M), f 7→ ∂νvf |∂M .

The higher order linearizations (DjΛq)0 are identically zero for 2 ≤ j ≤ m− 1.
The m-th linearization (DmΛq)0 of Λq at f = 0 is characterized by the

following identity: for any f1, . . . , fm+1 ∈ Cs(∂M) one has∫
∂M

(DmΛq)0(f1, . . . , fm)fm+1 dS = −(m!)

∫
M

qvf1
· · · vfm+1

dV (2.9)

here each vfk , k = 1, . . . ,m + 1, is the solution to (2.72.7) with boundary value
f = fk.

Proof. The nonlinearity a(x, u) = q(x)um satisfies the conditions in Proposition
2.12.1, and thus the DN map Λq = ∂νS|∂M is well defined for small data. Here S :
f 7→ uf is the solution operator for the Dirichlet problem of the equation (2.82.8).
To compute the derivatives of Λq at 0, it is enough to consider the derivatives of
S. Let us write f = f(ε1, . . . , εk) := ε1f1+· · ·+εkfk. The function uf = S(ε1f1+
· · · + εkfk) ∈ Cs(M) depends smoothly on ε1, . . . , εk since S : Uδ → Cs(M) is
C∞ Fréchet differentiable by Proposition 2.12.1. Applying ∂ε1 · · · ∂εk |ε1=···=εk=0

to the Taylor’s formula for C∞ Fréchet differentiable mappings (see e.g. [3838,
Equation 1.1.7])

S(f) =
k∑
j=0

(DjS)0(f, . . . , f)

j!
+

∫ 1

0

(Dk+1S)tf (f, . . . , f)

k!
(1− t)k dt

implies that (DkS)0 may be computed using the formula

(DkS)0(f1, . . . , fk) = ∂ε1 · · · ∂εkuf |ε1=···=εk=0.

Moreover, since uf is smooth in the εj variables and ∆g is linear, we may
differentiate the equation

∆guf + q(x)umf = 0, uf |∂M = f (2.10)

freely in the εj variables.
Let first k = 1, so that u = uε1f1

. Since u0 = 0 and m ≥ 2, the derivative of
(2.102.10) in ε1 evaluated at ε1 = 0 satisfies

∆g(∂ε1uf |ε1=0) = 0, ∂ε1uf |∂M = f1.

Thus the first linearization of the map S at f = 0 is

(DS)0(f1) = ∂ε1uε1f1 |ε1=0 = vf1 ,

where vf1
satisfies (2.72.7) with f = f1.

For 2 ≤ k ≤ m− 1, applying ∂ε1 · · · ∂εk |ε1=···=εk=0 to (2.102.10) gives that

∆g(∂ε1 · · · ∂εkuf |ε1=···=εk=0) = 0, ∂ε1 · · · ∂εkuf |∂M = 0,
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since ∂ε1 · · · ∂εk(q(x)umf ) is a sum of terms containing positive powers of uf ,
which are equal to zero when f = 0. Uniqueness of solutions for the Laplace
equation implies that

(DkS)0(f1, . . . , fk) = 0, 2 ≤ k ≤ m− 1.

When k = m, the only term in ∂ε1 · · · ∂εm(q(x)umf ) which does not contain
second or higher order power of uf is q(x)(m!)(∂ε1uf ) · · · (∂εmuf ). This is the
only nonzero term after setting ε1 = . . . = εm = 0, and thus the function

w := (DmS)0(f1, . . . , fm) = ∂ε1 · · · ∂εmuf |ε1=...=εm=0

solves
∆gw = −q(x)(m!)vf1 · · · vfm in M (2.11)

with zero Dirichlet boundary values.
By linearity one has

(DkΛq)0 = ∂ν(DkS)0|∂M .

The claims for (DkΛq)0 when 1 ≤ k ≤ m− 1 follow immediately. For k = m we
observe that (DmΛq)0(f1, . . . , fm) = ∂νw|∂M satisfies∫

∂M

(∂νw)fm+1 dS =

∫
M

(〈dw, dvfm+1
〉g + (∆gw)vfm+1

) dV,

where d denotes the exterior derivative on M . The integral of 〈dw, dvfm+1〉g
vanishes since w|∂M = 0 and vfm+1 is harmonic. The proposition follows by
using (2.112.11).

3. Proof of Theorem 1.11.1

In this section, we use the higher order linearization approach (in fact, the
second order linearization of the DN map) to prove Theorem 1.11.1. We could use
Proposition 2.22.2 to have the integral equation (3.63.6) below directly, even for the
product of three harmonic functions instead of two (this is a stronger statement
since one can always take the third harmonic function to be constant). The
theorem would follow from this by using harmonic exponentials. However, we
choose to give a direct hands-on approach that explains how to use the method.

Proof of Theorem 1.11.1. Let ε1, ε2 be sufficiently small numbers and let f1, f2 ∈
C∞(∂M). Let the function uj := uj(x; ε1, ε2) ∈ Cs(M) be the unique small
solution of {

∆uj + qju
2
j = 0 in Ω,

uj = ε1f1 + ε2f2 on ∂Ω,
(3.1)

for j = 1, 2 provided by Proposition 2.22.2. Let us differentiate (3.13.1) with respect
to ε` so that {

∆
(
∂
∂ε`
uj

)
+ 2qjuj

(
∂
∂ε`
uj

)
= 0 in Ω,

∂
∂ε`
uj = f` on ∂Ω.

(3.2)
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Inserting ε1 = ε2 = 0 into (3.23.2), shows that

∆v
(`)
j = 0 in Ω with v

(`)
j = f` on ∂Ω,

where

v
(`)
j (x) =

∂

∂ε`

∣∣∣
ε1=ε2=0

uj(x; ε1, ε2) .

Here we used uj(x; 0, 0) ≡ 0. The functions v`j are just harmonic functions
defined in Ω with boundary data f`|∂Ω. By uniqueness of the Dirichlet problem
for the Laplacian we have that

v(`) := v
(`)
1 = v

(`)
2 in Ω for ` = 1, 2. (3.3)

Next, let us differentiate (3.23.2) with respect to εk for k 6= `. Then we have
that{

∆
(

∂2

∂ε1∂ε2
uj

)
+ 2qjuj

(
∂2

∂ε1∂ε2
uj

)
+ 2qj

(
∂uj
∂ε1

)(
∂uj
∂ε2

)
= 0 in Ω,

∂2

∂ε1∂ε2
uj = 0 on ∂Ω.

(3.4)

Again, evaluating at ε1 = ε2 = 0, the equation (3.43.4) becomes{
∆wj + 2qjv

(1)v(2) = 0 in Ω,

wj = 0 on ∂Ω,
(3.5)

where wj(x) =
(

∂2

∂ε1∂ε2
uj

)
(x; 0, 0) and we used uj(x; 0, 0) ≡ 0 for j = 1, 2 again.

By using the fact that Λq1(ε1f1 + ε2f2) = Λq2(ε1f1 + ε2f2) for small ε1, ε2, we
have

∂νu1|∂Ω = ∂νu2|∂Ω,

and applying ∂ε1∂ε2 |ε1=ε2=0 to this identity gives that

∂νw1|∂Ω = ∂νw2|∂Ω.

Thus, by integrating the equation (3.53.5) over Ω (i.e. integrating against the har-
monic function v(3) = 1) and by using integration by parts we have

0 =

∫
∂Ω

(∂νw1 − ∂νw2) dS =

∫
Ω

∆(w1 − w2) dx = 2

∫
Ω

(q2 − q1)v(1)v(2) dx

(3.6)

where v(1) and v(2) are defined in (3.33.3). Therefore, by choosing f1 and f2 as the
boundary values of the Calderón’s exponential solutions [11],

v(1)(x) := exp((k + iξ) · x), v(2)(x) := exp((−k + iξ) · x), (3.7)

where k, ξ ∈ Rn, k ⊥ ξ and |k| = |ξ|, we obtain that the Fourier transformation
of the difference q2 − q1 at −2ξ vanishes. As ξ ∈ Rn is arbitrary, we obtain
q1 = q2.

In the proof above we did not need to construct special solutions for an
elliptic equation with unknown coefficients, such as complex geometrical optics
solutions. The linearization technique allowed us to simply use known harmonic
functions. This fact gives an extremely simple reconstruction in the setting of
Theorem 1.11.1.
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Corollary 3.1. Let n ≥ 2, and let Ω ⊂ Rn be a bounded domain with C∞

boundary ∂Ω. Assume that q ∈ C∞(Ω), and let Λq be the DN map for the
equation

∆u+ qu2 = 0 in Ω. (3.8)

Then

q̂(−2ξ) = −1

2

∫
∂Ω

∂2

∂ε1∂ε2

∣∣∣
ε1=ε2=0

Λq(ε1f1 + ε2f2) dS, (3.9)

where f1 and f2 are the boundary values of the exponential solutions (3.73.7) and
q̂ stands for the Fourier transform of q.

Proof. The proof of the reconstruction can be directly read from (3.63.6) in the
proof of Theorem 1.11.1.

We end of this section with a remark about the stability of the reconstruction
formula in Corollary 3.13.1.

Remark 3.2. Let us consider the stability of the solution of the inverse problem
of Theorem 1.11.1, which regards determination of the potential q from the DN map
of the equation ∆u + qu2 = 0. Let us assume as in Corollary 3.93.9 and adopt
its notation with the difference that we consider the equation (3.83.8) with two
different potentials q1 and q2 and the corresponding DN maps Λq1 and Λq2 . By
the reconstruction formula (3.93.9) we have

q̂j(−2ξ) = −1

2

∫
∂Ω

(D2Λqj )0(f1, f2) dS, for j = 1, 2.

By subtracting the above formula for j = 1 and j = 2 from each other, we obtain

(q̂1 − q̂2)(−2ξ) = −1

2

∫
∂Ω

((D2Λq1)0 − (D2Λq2)0)(f1, f2) dS.

Now, we assume that

(1) ‖Dk(Λq1 − Λq2)0‖∗ is sufficiently small for k = 0, 1, 2, and

(2) ‖qj‖H1(Ω) ≤ R for j = 1, 2,

where
‖T‖∗ = sup

‖f1‖Cs(∂Ω)=···=‖fk‖Cs(∂Ω)=1

‖T (f1, . . . , fk)‖Cs−1(∂Ω)

for a bounded k-linear form T : Cs(∂Ω)× · · · × Cs(∂Ω)→ Cs−1(∂Ω). Next, by
taking harmonic functions vf1 = v(1), vf2 = v(2)in Ω, where v(1), v(2) are the
functions defined in (3.73.7), one can obtain that

‖q1 − q2‖L2 ≤ ω
(
‖D2(Λq1 − Λq2)0‖∗

)
, (3.10)

where ω(t) is a modulus of continuity satisfying, for some C = C(R),

ω(t) ≤ C| log t|−
2

n+2 , 0 < t <
1

e
.

One can directly prove the logarithmic stability (3.103.10) by using standard argu-
ments in stability for the Calderón problem, for example, see [3939, Section 4].
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4. Simultaneous recovery on two-dimensional Riemannian surfaces

We use the higher order linearization approach to simultaneously recover,
from the DN map, the conformal class of a Riemannian surface and the potential
of a semilinear Schrödinger operator up to the gauge symmetry. We use first
order linearization to recover the conformal class of the manifold by using the
result [3030] (see also [1818] for a recent alternative proof). Then by using the
result [3131] we recover the potential on the known conformal manifold (up to
gauge).

Proof of Theorem 1.21.2. The proof is divided into two steps. We first recover
the manifold and the conformal class of the Riemannian metric. After that we
recover the potential on a known manifold up to the gauge symmetry.

Step 1. Recovering the conformal manifold.

Notice first by Proposition 2.22.2 that the equality

ΛM1,g1,q1(f) = ΛM2,g2,q2(f)

for all f ∈ Cs(∂M) with ‖f‖Cs(∂M) ≤ δ, δ > 0, implies that

(DΛM1,g1,q1)0 = (DΛM2,g2,q2)0.

By Proposition 2.22.2, the maps (DΛMj ,gj ,qj )0, for j = 1, 2, are the DN maps
of the linearizations of the equations ∆gju + qju

m = 0 in Mj at zero. The
linearized equations are Laplace equations on (Mj , gj). Since D(ΛM1,g1,q1)0 =
D(ΛM2,g2,q2)0 we have that the DN maps of the Dirichlet problems{

∆gjvj = 0 in Mj ,

vj = f on ∂M

agree. We are in the setting of the standard anisotropic Calderón problem on
2-dimensional Riemannian manifolds. We apply [1818, Theorem 5.1] (with Γ =
∂M) to determine the manifold and the Riemannian metric up to a conformal
transformation. That is, there exists a C∞ smooth diffeomorphism J : M1 →
M2 such that

σJ∗g2 = g1

with J |∂M = Id. Here σ ∈ C∞(M1) is a positive function with σ|∂M = 1. This
completes the Step 1. of the proof.

Step 2. Recovering the potential.

We transform the equation (1.61.6) on the manifold (M2, g2) into an equation on
the manifold (M1, g1) as follows. We denote

q̃2 = σ−1q2 ◦ J ≡ σ−1J∗q2.

Let f ∈ Cs(∂M) with ‖f‖Cs(∂M) ≤ δ and let u2 be the unique solution to

∆g2
u2 + q2u

m
2 = 0 in M2 with u2 = f on ∂M
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given by Proposition 2.12.1. Let us denote

ũ2 := J∗u2 ≡ u2 ◦ J.

Then ũ2 solves

∆g1
ũ2 + q̃2(ũ2)m = ∆σJ∗g2

ũ2 + q̃2(ũ2)m

= σ−1∆J∗g2 ũ2 + σ−1(J∗q2)(ũ2)m

= σ−1J∗(∆g2
u2) + σ−1(J∗q2)(J∗u2)m

= σ−1J∗ [∆g2u2 + q2u
m
2 ] .

Here we used the conformal invariance of the Laplace-Beltrami operator in di-
mension 2 in the second equality. In the third equality, the coordinate invariance
of Laplace-Beltrami operator was used. Since u2 solves ∆g2

u2 + q2u
m
2 = 0 in

M2, we consequently have that{
∆g1

ũ2 + q̃2(ũ2)m = 0 in M1,

ũ2 = f on ∂M.
(4.1)

Here we also used J |∂M = Id.
Next, let u1 be the unique solution to the nonlinear equation (1.61.6) on (M1, g1)

with potential q1 and boundary value f . We show that the following equation

∂ν1u1 = ∂ν1 ũ2 on ∂M, (4.2)

holds by the assumption that ΛM1,g1,q1(f) = ΛM2,g2,q2(f). Since ΛM1,g1,q1 =
ΛM2,g2,q2 , it follows that if u1 = u2 = f on ∂M , then by definition

∂ν1
u1 = ∂ν2

u2 on ∂M. (4.3)

We calculate

∂ν2
u2 = ν2 · du2 = ν2 · d(u2 ◦ J ◦ J−1) = (J−1

∗ ν2) · dũ2 = ν1 · dũ2 = ∂ν1
ũ2. (4.4)

Here · denotes the canonical pairing between vectors and covectors, and d is
the exterior derivative of a function. For example ν2 · du2 = g(ν2,∇u2) =∑2
k=1 ν

k
2 ∂ku2. In calculating (4.44.4), we used that J : M1 → M2 is conformal

diffeomorphism, σJ∗g2 = g1, with J |∂M = Id and σ|∂M = 1. By combining (4.34.3)
and (4.44.4) we have (4.24.2). Since the solution ũ2 is unique, we have that

ΛM1,g1,q1(f) = Λ̃M1,g1,q̃2(f), (4.5)

for all f ∈ Cs(∂M) with ‖f‖Cs(∂M) ≤ δ, where Λ̃M1,g1,q̃2 stands for the DN
map of the Dirichlet problem (4.14.1).

We apply Proposition 2.22.2 on the single Riemannian manifold (M1, g1) for

the DN maps ΛM1,g1,q1 and Λ̃M1,g1,q̃2 , which agree by (4.54.5). By Proposition 2.22.2
we have

(D2ΛM1,g1,q1)0 = (D2Λ̃M1,g1,q̃2)0

and ∫
M1

(q1 − q̃2)v1v2v3 dV = 0,
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where v1, v2, v3 ∈ Cs(M1) are harmonic functions in (M1, g1). Choosing v3 = 1,
we get ∫

M1

(q1 − q̃2)v1v2 dV = 0

for any harmonic functions v1 and v2 in (M1, g1). We choose v1 and v2 to be
complex geometrical optics solutions constructed in [3131]. (See the construction
in the proof of Proposition 5.1 in [3131]. We note that the construction can in fact
be significantly simplified in our case where v1 and v2 are actually harmonic. In
this case, Carleman estimates are not needed and the construction in [3535] would
suffice.) As in [3131, Proposition 5.1], this yields that

q1 = q̃2 in M1.

This concludes the proof.

5. Transversally anisotropic manifolds: simplified case

In this and the next section we prove Theorem 1.31.3, which will be a conse-
quence of the following proposition. The proof of the proposition is based on the
existence of special harmonic functions on transversally anisotropic manifolds.
These harmonic functions were constructed in [3333]. They have the property
that if (M, g) is a transversally anisotropic manifold, i.e. (M, g) ⊂⊂ R ×M0,
g = e⊕ g0, then on the transversal manifold M0 these harmonic functions con-
centrate near the geodesics of (M0, g0).

Proposition 5.1. Let (M, g) be a transversally anisotropic manifold and as-
sume that m ≥ 4. If f ∈ C1(M) satisfies∫

M

fu1 · · ·um dV = 0 (5.1)

for any uj ∈ C∞(M) with ∆guj = 0 in M , then f ≡ 0.

Theorem 1.31.3 follows immediately from Proposition 5.15.1:

Proof of Theorem 1.31.3. Let Λqj be the DN map for the equation ∆gu+ qum = 0
in M . If Λq1(f) = Λq2(f) for small f , then (DmΛq1)0 = (DmΛq2)0. Thus by
Proposition 2.22.2, one has∫

M

(q1 − q2)v1 · · · vm+1 dV = 0

where vj ∈ Cs(M) are harmonic functions in M . Since m ≥ 3, it follows from
Proposition 5.15.1 that q1 = q2.

The harmonic functions u` for ` = 1, 2, . . . ,m on M used in the proof of
Proposition 5.15.1 are of the form

e−sx1(ṽs(x
′) + rs(x))

where x1 is the coordinate along R and x = (x1, x
′). They may be consid-

ered as an analogue of complex geometrical optics solutions for transversally
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anisotropic manifolds. Here ṽs, s = τ + iλ, is a so called Gaussian beam quasi-
mode on M0, i.e. an approximate eigenfunction concentrating near a geodesic on
(M0, g0) with (slightly complex) large frequency s. The function rs is a small
correction term. Such harmonic functions were introduced in [4040] and [3333].
Since we need some additional properties of these harmonic functions, we in-
clude a few statements regarding these functions. We have placed their proofs
in Appendix Appendix AAppendix A for readers’ convenience.

We say that a geodesic γ : [0, T ]→M is nontangential if γ(0) and γ(T ) are
on ∂M , γ(t) ∈ M int for 0 < t < T , and γ̇(0) and γ̇(T ) are not tangential to
∂M . We remark that we will apply the following proposition in the case where
(M, g) is a transversal manifold (M0, g0).

Proposition 5.2 (Gaussian beams quasimodes). Let (M, g) be a compact Rie-
mannian manifold with smooth boundary ∂M , dim(M) = m. Let γ : [0, T ]→M
be a nontangential geodesic, and let λ ∈ C. For any K ∈ N and k ∈ N, there
is a family of functions (ṽs) ⊂ C∞(M), where s = τ + iλ ∈ C and τ ≥ 1, such
that

‖(−∆g − s2)ṽs‖Hk(M) = O(τ−K),

‖ṽs‖L4(M) = O(1), ‖ṽs‖L4(∂M) = O(1)
(5.2)

as τ →∞. The functions ṽs have the following properties: If p ∈ γ([0, T ]), then
there is P ∈ N such that on a neighborhood U of p the function ṽs is a finite
sum

ṽs = ṽ(1) + · · ·+ ṽ(P ) (5.3)

where t1 < . . . < tP are the times in [0, T ] such that γ(tl) = p. Each ṽ(l) has
the form

ṽ(l) = τ−
m−1

8 eisΘ
(l)

a(l), (5.4)

where each Θ = Θ(l) is a smooth complex function in U satisfying

Θ(γ(t)) = t, ∇Θ(γ(t)) = γ̇(t),

Im(∇2Θ(γ(t))) ≥ 0, Im(∇2Θ)(γ(t))|γ̇(t)⊥ > 0,
(5.5)

for t close to tl. Here a(l)(γ(t)) = τ
m−1

4 (a
(l)
0 (γ(t)) +O(τ−1)) where a

(l)
0 (γ(t)) is

nonvanishing and independent of τ , and the support of a(l) can be taken to be
in any small neighborhood of γ([0, T ]) chosen beforehand.

We remark that if the geodesic γ in Proposition 5.25.2 has no self-intersections,
then the formula for ṽs simplifies to

ṽs(x) = τ−
m−1

8 eisΘ(x)a(x), (5.6)

where Θ = Θ(x) satisfies (5.55.5). We use this fact in Section 55 below.
The following proposition describes complex geometrical optics (CGO) so-

lutions on transversally anisotropic manifolds.

Proposition 5.3 (CGO solutions). Let (M, g) ⊂⊂ (R×M0, g) be a transversally
anisotropic manifold with g = e⊕g0. We write x ∈M as x = (x1, x

′) ∈ R×M0.
Let R, k ∈ N. There exists τ0 ≥ 1 such that for any fixed real number λ and for
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any τ with |τ | ≥ τ0 there is a solution of the equation −∆gu = 0 in M having
the form

us(x) = e−sx1(ṽs(x
′) + rs(x)).

Here s = τ + iλ, ṽs is a family as in Proposition 5.25.2 in (M0, g0) (so that
m = n− 1) with K = K(R, k) chosen large enough, and

‖rs‖Hk(M) = O(τ−R) as |τ | → ∞.

Before we prove Proposition 5.15.1 in the general case, we show how the propo-
sition is proved in a simplified setting. The main idea of the proof of Proposition
5.15.1 is more transparent in the simplified setting.

Proof of Proposition 5.15.1 in a simplified setting. Let (M, g) ⊂⊂ (R×M0, g)
be a transversally anisotropic manifold, where (M0, g0) is a compact Riemannian
manifold with smooth boundary and g = e ⊕ g0. We call M0 the transversal
manifold, and denote by x1 the coordinate along R. Let us make the following
simplifying assumption:

Assumption A. For each point y0 in the transversal manifold M0, there exist
two distinct nontangential geodesics γ and η that intersect at y0 and which have
no other intersection points, and also γ and η do not self-intersect.

This assumption is valid for instance when g0 is a small perturbation of the
Euclidean metric on a domain M0 ⊂ Rn−1, or more generally if (M0, g0) is a
simple manifold (i.e. M0 is diffeomorphic to a ball, ∂M0 is strictly convex, and
no geodesic in M0 has conjugate points). We now prove Proposition 5.15.1 under
Assumption A. The situation of the proof under Assumption A is depicted in
Figure 55.

Figure 5: A product of once intersecting Gaussian beams localizes near their intersection point
and oscillate.

Let y0 ∈ M0 and let γ and η be geodesics as described above. By applying
Proposition 5.35.3, we have the following four harmonic functions in (M, g):

u1(x) = e−(τ+iλ)x1(ṽτ+iλ(x′) + r1(x)), u2(x) = e(τ+iλ)x1(ṽτ+iλ(x′) + r2(x)),

u3(x) = e−τx1(w̃τ (x′) + r3(x)), u4(x) = eτx1(w̃τ (x′) + r4(x)).

Here ṽτ+iλ and w̃τ are the Gaussian beams introduced in Proposition 5.25.2 cor-
responding to the geodesics γ and η, respectively. Since by assumption γ and η
do not have self-intersections, they are of the form

ṽτ+iλ(x′) = τ−
n−2

8 ei(τ+iλ)Φ(x′)a(x′) and w̃τ (x′) = τ−
n−2

8 eiτΨ(x′)b(x′).
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Here Φ and Ψ are phase functions that satisfy

Φ(γ(t)) = t, ∇Φ(γ(t)) = γ̇(t), Im(∇2Φ(γ(t))) ≥ 0, Im(∇2Φ)|γ̇(t)⊥ > 0,

Ψ(η(t)) = t, ∇Ψ(η(t)) = η̇(t), Im(∇2Ψ(η(t))) ≥ 0, Im(∇2Ψ)|η̇(t)⊥ > 0,

and the functions a and b are amplitude functions. In particular, if z are normal
coordinates on M0 centered at y0, one has

Im(Φ)(z) =
1

2
Hess(Φ)|y0

z · z +O(|z|3) (5.7)

where Hess(Φ)|y0
is the Hessian at y0 in normal coordinates, and similarly for

Im(Ψ). Without loss of generality, we may assume that the supports of a and
b are contained in any fixed neighborhood of the graphs of γ and η. Further-
more, the functions r`, 1 ≤ ` ≤ 4, are small correction terms, which satisfy
‖r`‖Hk(M) = O(τ−R) for any k, R ∈ N fixed beforehand. We choose some

k > n/4, so that Sobolev embedding gives ‖r`‖L4(M) = O(τ−R).
Since ṽτ+iλ and w̃τ are supported near γ and η, respectively, and since γ

and η intersect only at the single point y0, the product u1u2u3u4 is supported
near the point y0 on the transversal manifold M0. By applying the assumption
(5.15.1) of Proposition 5.15.1 to the solutions u`, 1 ≤ ` ≤ 4, and extending f by zero
to R×M0, we have that

0 =

∫
M

fu1u2u3u4 dV

=

∫ ∞
−∞

∫
M0

f e−2iλx1 |ṽτ+iλ|2|w̃τ |2 dVg0
dx1 +O

(
τ−R

)
=

∫
Bδ(y0)

f̂(2λ, · )e−2τIm(Φ+Ψ)AdVg0
+O

(
τ−R

)
.

(5.8)

In the second equality, we used that ‖f‖L∞ , ‖ṽτ+iλ‖L4(M0) and ‖w̃τ‖L4(M0) are
O(1) as τ → ∞ and that ‖r`‖L4(M) = O(τ−R). In the last equality, Bδ(y0) is
a geodesic ball of radius δ > 0 in M0 centered at y0 ∈ M0 that contains the
support of

A = A(τ) := τ−
n−2

2 e−2λRe(Φ)|a|2|b|2, (5.9)

and f̂ denotes the partial Fourier transform of f with respect to the x1-variable.
The point here is as follows. The Hessians of Im(Φ) and Im(Ψ) at y0 are

positive definite in directions orthogonal to γ̇ and η̇, respectively. Overall, the
Hessians of Im(Φ) and Im(Ψ) are also nonnegative definite. It follows that the
sum of the Hessians of Φ and Ψ at y0 is positive definite:

Im(Hess(Φ) + Hess(Ψ))|y0
> 0. (5.10)

By (5.105.10) and by choosing δ small enough, we have for some C, c > 0 that

|e−2τIm(Φ+Ψ)| ≤ Ce−cτ |z|
2

in Bδ(y0), (5.11)

where z are normal coordinates in Bδ(y0) such that z = 0 ∈ Rn−1 corresponds

to y0 ∈ M0. By plugging (5.95.9) into
∫
Bδ(y0)

f̂(2λ, · )e−2τIm(Φ+Ψ)AdVg0
, we will
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make use of the change of variables z → τ−1/2z in the last integral in (5.85.8),

which results in a Jacobian τ−
n−1

2 . Multiplying (5.85.8) by τ1/2, and using the
new variables, we have as τ →∞ that

O(τ−R+1/2) = τ1/2

∫
M

fu1u2u3u4 dVg

=τ1/2

∫
Bδ(y0)

f̂(2λ, z)e−2τIm(Φ(z)+Ψ(z))A(z) dVg0
(z)

=τ1/2τ−
n−2

2

∫
Rn−1

f̂(2λ, z)e−2τIm(Φ(z)+Ψ(z))e−2λRe(Φ(z))|a(z)|2|b(z)|2 dVg0
(z)

=τ1/2τ−
n−2

2 τ−
n−1

2

×
∫
Rn−1

f̂
(
2λ, z/τ1/2)e−2τIm(Φ(z/τ1/2)+Ψ(z/τ1/2))e−2λRe(Φ(z/τ1/2))

× |a(z/τ1/2)|2|b(z/τ1/2)|2|g0(z/τ1/2)|1/2 dz

=τ−n+2

∫
Rn−1

f̂
(
2λ, z/τ1/2)e−2τIm(Φ(z/τ1/2)+Ψ(z/τ1/2))e−2λRe(Φ(z/τ1/2))

× |τ
n−2

4

(
a0(z/τ1/2) +O(τ−1)

)
|2|τ

n−2
4

(
b0(z/τ1/2) +O(τ−1)

)
|2

× |g0(z/τ1/2)|1/2 dz
=:K(τ).

Then we have

lim
τ→∞

K(τ) = cf̂(2λ, y0).

Here the constant

c = |a0(y0)|2|b0(y0)|2
∫
Rn−1

e−(Im(Hess(Φ)+Hess(Ψ))|y0z)·z dz 6= 0.

Here we have used (5.75.7) and the Lebesgue dominated convergence theorem,
which was justified by the condition (5.115.11). We have also extended functions

in the above integrals by zero outside supp(A) ⊂ Bδ(y0). Thus f̂(2λ, y0) = 0.
Since λ ∈ R and y0 ∈ M0 were arbitrary, this proves Proposition 5.15.1 in this
simplified case.

6. Transversally anisotropic manifolds: general case

To prove Proposition 5.15.1 on general transversally anisotropic manifolds, we
need to consider the possibility where geodesics γ and η on M0 may intersect at
many different points and they may have self-intersections. The proof will be
achieved by introducing additional parameters to the complex geometrical optics
solutions of Proposition 5.35.3, and varying these parameters. These additional
considerations make the proof of Proposition 5.15.1 more technical than in the
simplified case considered in Section 55. We also use the following two lemmas,
which will be proved in Appendix Appendix BAppendix B.
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Lemma 6.1 (Finitely many intersecting geodesics). Let (M0, g0) be a compact
Riemannian manifold with strictly convex smooth boundary ∂M0. There is a
set E of measure zero in M0 such that if y0 ∈M0 \E, there exist nontangential
geodesics γ and η on M0 that intersect at y0, self-intersect only finitely many
times and intersect each other only finitely many times.

Lemma 6.2. Let f1, . . . , fN be compactly supported distributions in R such that
for some distinct real numbers a1, . . . , aN one has

N∑
j=1

f̂j(λ)eajλ = 0, λ ∈ R.

Then f1 = · · · = fN = 0.

We now prove Proposition 5.15.1 in the general case.

Proof of Proposition 5.15.1. We do the proof in several steps.

Step 1. Choice of the harmonic functions uj.

By taking uj = 1 for j ≥ 5, it is sufficient to prove the result when m = 4. By
the assumption we have that M ⊂⊂ R ×M0 with g = e ⊕ g0. The dimension
of M is denoted by n, and so dim(M0) = n − 1. We may enlarge M0 so that
it has strictly convex boundary (first embed M0 in some closed manifold M1,
remove a small geodesic ball from M1 \M0 and glue a part with strictly convex
boundary near the removed part). Let E ⊂ M0 be as in Lemma 6.16.1 and let
y0 ∈ M0 \ E. Let also γ and η be the geodesics on M0 given by Lemma 6.16.1.
That is, the nontangential geodesics γ and η intersect at y0, self-intersect only
finitely many times and intersect each other only finitely many times.

We denote the points x of R×M0 by (x1, x
′). We apply Proposition 5.35.3 in

the case where the parameter s in the proposition is set to L(τ + iλ), where
τ ≥ 1 is sufficiently large, L ≥ 1 is an additional large parameter that will be
fixed later, and λ ∈ R is fixed. Thus we have harmonic functions of the form

u1(x) = e−L(τ+iλ)x1(ṽL(τ+iλ)(x
′) + r1(x)),

u2(x) = eL(τ+iλ)x1(ṽL(τ+iλ)(x′) + r2(x)),

where ∆guj = 0 in M , j = 1, 2. Here

ṽL(τ+iλ)(x
′)

is a Gaussian beam quasimode concentrating near the geodesic γ in M0 of
Proposition 5.25.2 and rj , j = 1, 2, are remainder terms satisfying

‖rj‖Hk(M) = O(τ−R)

as τ →∞ where k, R > 0 can be chosen arbitrarily large. We have that

u1u2 = e−2iLλx1 |ṽL(τ+iλ)(x
′)|2 +OL2(M)((Lτ)−R). (6.1)

By using Proposition 5.35.3 again, we choose solutions u3 and u4 now related
to the geodesic η of the form

u3 = e−(τ+iµ)x1(w̃τ+iµ(x′) + r3), u4 = e(τ+iµ)x1(w̃τ+iµ(x′) + r4),
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where µ ∈ R is fixed, ‖rj‖Hk(M) = O(τ−R) as τ →∞. Here w̃τ+iµ is a Gaussian
beam quasimode concentrating near η as in Proposition 5.25.2. Similarly as for
u1u2 in (6.16.1), we have that

u3u4 = e−2iµx1 |w̃τ+iµ(x′)|2 +OL2(M)(τ
−R). (6.2)

Step 2. The integral of f against u1u2u3u4.

By the assumption that f integrates to zero against products of four harmonic
functions, we have ∫

M

fu1u2u3u4 dV = 0.

Using (6.16.1) and (6.26.2), this implies that

0 =

∫
M

f(x1, x
′)e−2i(Lλ+µ)x1 |ṽL(τ+iλ)(x

′)|2|w̃τ+iµ(x′)|2 dV +O(τ−R).

If we extend f by zero to R×M0 and denote the partial Fourier transform of f
with respect to the x1 variable by f̂(λ, x′), then the previous identity becomes

0 =

∫
M0

f̂(2(Lλ+ µ), · )|ṽL(τ+iλ)|2|w̃τ+iµ|2 dVg0 +O(τ−R). (6.3)

Note that ṽL(τ+iλ) and w̃τ+iµ can be chosen to be supported in arbitrarily
small but fixed neighborhoods of γ and η, respectively. Thus if p1, . . . , pN are
the distinct intersection points of geodesics γ and η in M0, then the integral
over M0 in (6.36.3) is actually over U1∪· · ·∪UN where Ur is a small neighborhood
of pr in M0, for r = 1, . . . , N .

In the following, we denote

F (x′) = FLλ+µ(x′) := f̂(2(Lλ+ µ), x′). (6.4)

Note for later purposes that

‖F‖C1(M0) . ‖f‖C1(M).

(Here and in the rest of the paper the notation a . b means, as usual, that there
is a constant c > 0 such that a ≤ cb.) Combining the above facts, we have that

N∑
r=1

τ
1
2

∫
Ur

F |ṽL(τ+iλ)|2|w̃τ+iµ|2 dVg0 = o(1) (6.5)

as τ →∞. Here we also have multiplied (6.36.3) by a normalization factor τ
1
2 . It

will be shown below that with the normalizing factor τ
1
2 , the left hand side has

a nontrivial limit as τ →∞.

Step 3. Analysis of the integrals in (6.56.5).

Fix now p to be one of the intersection points pr, for some r = 1, 2, · · · , P , and
let us denote U = Ur ⊂M0 and p = pr ∈M0. We consider the integral∫

U

F |ṽL(τ+iλ)|2|w̃τ+iµ|2 dVg0
. (6.6)
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By Proposition 5.25.2, in U the quasimode ṽL(τ+iλ) is a finite sum

ṽL(τ+iλ)|U = ṽ(1) + · · ·+ ṽ(P ),

where t1 < . . . < tP are the times in [0, T ] such that γ(tj) = p, each ṽ(j) has
the form

ṽ(j) = τ−
n−2

8 eiL(τ+iλ)Φ(j)

a(j),

where each Φ = Φ(j) is a smooth complex function in the neighborhood U of p
satisfying

Φ(γ(t)) = t, ∇Φ(γ(t)) = γ̇(t), Im(∇2Φ(γ(t))) ≥ 0, Im(∇2Φ)|γ̇(t)⊥ > 0,

for t close to tj , and each a(j) is supported in any fixed neighborhood of the
graph of γ and a(j)(p) 6= 0.

In a similar way, w̃τ+iµ in U is a finite sum

w̃τ+iµ|U = w̃(1) + . . .+ w̃(Q)

where s1 < . . . < sQ are the times in [0, S] such that η(sk) = p. The function
w̃(k) has the form

w̃(k) = τ−
n−2

8 ei(τ+iµ)Ψ(k)

b(k),

where each Ψ = Ψ(k) satisfies

Ψ(η(s)) = s, ∇Ψ(η(s)) = η̇(s), Im(∇2Ψ(η(s)) ≥ 0, Im(∇2Ψ)|η̇(s)⊥ > 0,

for s close to sk, and each b(j) is supported in any fixed neighborhood of the
graph of η and b(j)(p) 6= 0.

Inserting the formulas for ṽL(τ+iλ) and w̃τ+iµ in (6.66.6) yields that

τ
1
2

∫
U

F |ṽL(τ+iλ)|2|w̃τ+iµ|2 dVg0 =

P∑
j,k=1

Q∑
l,m=1

Ijklm (6.7)

where

Ijklm = τ
1
2

∫
U

F ṽ(j)ṽ(k)w̃(l)w̃(m) dVg0

= τ
n−1

2

∫
U

eiτΞjklmAjklmF dVg0

(6.8)

where

Ξjklm := LΦ(j) − LΦ
(k)

+ Ψ(l) −Ψ
(m)

, (6.9)

Ajklm := e−LλΦ(j)−LλΦ(k)
e−µΨ(l)−µΨ(m)

a(j)a(k)b(l)b
(m)

.

We will next analyze the integrals Ijklm in (6.86.8) and show that the only nontriv-
ial contribution as τ → ∞ comes from the terms where ∇Ξjklm(p) = 0. After
this, we will fix the parameter L so that ∇Ξjklm(p) = 0 will happen only when
j = k and l = m.

Step 4. Evaluation of Ijklm when ∇Ξjklm(p) = 0.
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Let j, k, l,m be the number such that Ξ = Ξjklm, which satisfies ∇Ξ(p) = 0,
and write

B := FAjklm,

where F is defined by (6.46.4). Writing z for a geodesic coordinate system in
(M0, g0) with the origin at p, the phase function Ξ has the Taylor expansion

Ξ(z) = Ξ(0) +
1

2
Hz · z +O(|z|3).

Here Ξ(0) = L(tj − tk) + sl − sm and

H = Hjklm = (∂zazbΞ)a,b

the Hessian of Ξ in the z coordinates. Note that the imaginary parts of Hessians
of Φ(j),Φ(k),Ψ(l),Ψ(m) at p are all positive semidefinite. Moreover, they are pos-
itive definite in the codimension one subspaces γ̇(tj)

⊥, γ̇(tk)⊥, η̇(sl)
⊥, η̇(sm)⊥,

respectively. Thus it follows that

Im(H) = Im(∇2(L(Φ(j) + Φ(k)) + Ψ(l) + Ψ(m)))|p

is positive semidefinite, and moreover it is positive definite since the above
codimension one subspaces span the whole tangent space at p. The last fact
holds since γ̇(tj) 6= ±η̇(sl), which follows the geodesics γ and η are distinct and
also not reparametrizations of each other.

By Proposition 5.25.2, we may assume that the functions ṽ(j) and w̃(k) are
supported in arbitrary small neighborhoods of γ and η respectively. Thus,
without loss of generality, we may assume that U is contained in any fixed open
geodesic ball Bδ centered at p. Since Im(H) is positive definite, by choosing
δ > 0 small enough, we have

|eiτ( 1
2Hz·z+O(|z|3))| ≤ e−cτ |z|

2

in U,

for some c > 0. This shows that one may indeed use Lebesgue dominated
convergence theorem in the argument below.

One has

Ijklm = τ
n−1

2

∫
U

eiτΞB dVg0

= τ
n−1

2 eiτΞ(0)

∫
Rn−1

eiτ( 1
2Hz·z+O(|z|3))B(z)|g0(z)|1/2 dz.

(6.10)

We make use of the change variables z → τ−1/2z again, which brings a Jacobian

factor τ−
n−1

2 that cancels the power of τ in front. Note that, as τ → ∞, one
has

|g0(z/τ1/2)| → 1,

B(z/τ1/2)→ F (p)e−Lλtj−Lλtke−µsl−µsma(j)(p)a(k)(p)b(l)(p)b(m)(p).

Combining these facts and using the Lebesgue dominated convergence theorem
yield that

Ijklm = eiτ(L(tj−tk)+sl−sm)cjklmF (p)e−Lλtj−Lλtke−µsl−µsm + o(1)
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where

cjklm = a(j)(p)a(k)(p)b(l)(p)b(m)(p)

∫
Rn−1

e
i
2Hjklmz·z dz.

The last integral is finite since Im(Hjklm) is positive definite. For later purposes
we observe that Hjjll is purely imaginary, hence

cjjll = |aj(p)|2|bl(p)|2
∫
Rn−1

e−
1
2 Im(Hjjll)z·z dz

where the last integral is positive. In particular, we have

Ijjll = cjjllF (p)e−2Lλtje−2µsl + o(1)

where cjjll > 0.

Step 5. Evaluation of Ijklm when ∇Ξjklm(p) 6= 0.

In Step 5, we showed that one always has Ijklm = O(1) as τ →∞. We will use
a non-stationary phase argument to show that

Ijklm = O(τ−1/2) when ∇Ξjklm(p) 6= 0, as τ →∞.

The argument is similar to [3333, end of proof of Proposition 3.1]. In order to
accomplish the argument, we rewrite the integral Ijklm to bring out the oscil-
lating part of eiτΞjklm . Let us denote ϕ = Re(Ξjklm). Since dΦ(j)(p), dΨ(l)(p)
etc are real, we have dϕ(p) 6= 0, and Ijklm may be written as

Ijklm = τ
1
2

∫
U

eiτϕF v̆(j)v̆(k)w̆(l)w̆(m) dVg0

where we define

v̆(j) = τ−
n−2

8 e−LτIm(Φ(j))−LλΦ(j)

a(j), w̆(l) = τ−
n−2

8 e−τIm(Ψ(l))−µΨ(l)

b(l).

Note that by Proposition 5.25.2, ‖v̆(j)‖L4(M0) . 1 and ‖v̆(j)‖L4(U∩∂M) . 1 and the

same bounds also hold for v̆(k), w̆(l) and w̆(m). Write

eiτϕ =
1

iτ
P (eiτϕ), Pw = 〈|dϕ|−2dϕ, dw〉,

where we assume that U has been chosen so small that dϕ is nonvanishing in
U . Since F ∈ C1, we can integrate by parts to derive

Ijklm = τ
1
2

∫
U

1

iτ
P (eiτϕ)F v̆(j)v̆(k)w̆(l)w̆(m) dVg0

=
1

iτ
1
2

∫
U

eiτϕP t
[
F v̆(j)v̆(k)w̆(l)w̆(m)

]
dVg0

+
1

iτ
1
2

∫
U∩∂M

∂νϕ

|dϕ|2
eiτϕF v̆(j)v̆(k)w̆(l)w̆(m) dS,

(6.11)

where the boundary term only appears if p ∈ ∂M . Note that P t is a first order
differential operator.
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The boundary term in (6.116.11) is O(τ−1/2) as τ →∞ since ‖v̆(j)‖L4(U∩∂M) .
1. Thus it remains to estimate the term

1

iτ
1
2

∫
U

eiτϕP t
[
F v̆(j)v̆(k)w̆(l)w̆(m)

]
dVg0

. (6.12)

In (6.126.12), if the differential operator P t acts F , one can estimate∣∣∣∣ 1

iτ
1
2

∫
U

eiτϕ(P tF )v̆(j)v̆(k)w̆(l)w̆(m) dVg0

∣∣∣∣
.τ−1/2‖F‖C1(M)‖v̆(j)v̆(k)w̆(l)w̆(m)‖L1(M0)

which is O(τ−1/2) as τ →∞ since ‖v̆(j)‖L4(M0), ‖v̆(k)‖L4(M0), ‖w̆(l)‖L4(M0) and

‖w̆(m)‖L4(M0) are bounded by some positive constant. The worst behavior with
respect to the parameter τ in (6.126.12) occurs when some derivative in P t acts one

of the factors e−LτIm(Φ(j)), e−LτIm(Φ(k)), e−τIm(Ψ(l)) or e−τIm(Ψ(m)). This brings
a factor behaving like τ∇(Im(Φ(j))) into the integrand, and since ∇(Im(Φ(j)))
vanishes on the geodesic γ, one can choose new coordinates z = (z′, zn−1) near
0 such that |∇(Im(Φ(j)))| . |z′|. Thus the integral that one needs to estimate
looks like

1

iτ
1
2

∫
U

eiτϕF
[
τ∇(Im(Φ(j)))

]
v̆(j)v̆(k)w̆(l)w̆(m) dVg0

.

Unwinding the definitions of v̆(j), v̆(k), w̆(l) and w̆(m), we may rewrite this
integral in the form given in (6.106.10), so that it is equal to

1

i
τ
n−1

2

∫
U

eiτΞ∇(Im(Φ(j)))B dVg0
. (6.13)

Evaluating the integral (6.136.13) as in Step 4, and using the change of variables
z → τ−1/2z together with |∇(Im(Φ(j)))| . |z′| brings an additional factor τ−1/2,
this shows that this kind of integral is O(τ−1/2). Then we conclude the proof
that

∇Ξjklm(p) 6= 0 =⇒ lim
τ→∞

Ijklm = O(τ−1/2).

Step 6. Evaluation of (6.56.5).

Recall from Step 3 that p1, . . . , pN are the distinct intersection points of γ and
η and that Ur were small neighborhoods of pr. As in Step 4, for each r with

1 ≤ r ≤ N let t
(r)
1 < · · · < t

(r)
Pr

be the times in [0, T ] such that γ(t
(r)
j ) = pr, and

let s
(r)
1 < · · · < s

(r)
Qr

be the times in [0, S] such that η(s
(r)
j ) = pr. Thus on Ur

we have that ṽL(τ+iλ) is of the form

ṽL(τ+iλ)|Ur = ṽ(1)
r + · · ·+ ṽ(Pr)

r ,

where
ṽ(j)
r = τ−

n−2
8 eiL(τ+iλ)Φ(j)

r a(j)
r ,

where Φ
(j)
r and a

(j)
r satisfy the properties of the phase and amplitude functions

in Proposition 5.25.2. We write similarly for w̃
(j)
r ,Ψ

(j)
r and b

(j)
r .
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Going back to (6.56.5) and using (6.76.7), we have

N∑
r=1

Pr∑
j,k=1

Qr∑
l,m=1

I
(r)
jklm = o(1) as τ →∞,

where

I
(r)
jklm = τ

n−1
2

∫
Ur

eiτΞ
(r)
jklmA

(r)
jklmF dVg0

where Ξ
(r)
jklm and A

(r)
jklm are defined in Ur as in (6.96.9) in Step 4.

The integrals I
(r)
jklm were evaluated in Steps 5 and 6. If we define

c
(r)
jklm :=

{
a

(r)
j (pr)a

(r)
k (pr)b

(r)
l (pr)b

(r)
m (pr)

∫
Rn−1 e

i
2H

(r)
jklmz·z dz, ∇Ξ

(r)
jklm(pr) = 0,

0, otherwise,

then we get from Steps 5 and 6 that

N∑
r=1

Pr∑
j,k=1

Qr∑
l,m=1

e
iτ
[
L(t

(r)
j −t

(r)
k )+s

(r)
l −s

(r)
m

]
c
(r)
jklmF (pr)

× e−L(λt
(r)
j +λt

(r)
k )e−µs

(r)
l −µs

(r)
m = o(1)

(6.14)

as τ →∞. In the above formula F (pr) = FLλ+µ(pr) is defined in (6.46.4).

Step 6. Choosing L so that ∇Ξ
(r)
jklm(pr) = 0 only when j = k and l = m.

Next, we choose L ∈ N large enough, but fixed, so that

∇Ξ
(r)
jklm(pr) 6= 0

for all 1 ≤ r ≤ N unless j = k and l = m. Once we have chosen such L, Step 5

shows that terms I
(r)
jklm with j 6= k or l 6= m are negligible. We have

∇Ξ
(r)
jklm(pr) = L∇Φ(j)

r − L∇Φ
(k)

r +∇Ψ(l)
r −∇Ψ

(m)

r

= L(γ̇(t
(r)
j )− γ̇(t

(r)
k )) + η̇(s

(r)
l )− η̇(s(r)

m ). (6.15)

Since the geodesic γ is transversal and thus it is not closed geodesic, we have

γ̇(t
(r)
j )− γ̇(t

(r)
k ) 6= 0

for all j 6= k for all r with 1 ≤ r ≤ N . Let us define two numbers α and β as

α := min
{
|γ̇(t

(r)
j )− γ̇(t

(r)
k )| : 1 ≤ r ≤ N, 1 ≤ j, k ≤ Pr

}
> 0,

β := max
{
|η̇(s

(r)
l )− η̇(s(r)

m )| : 1 ≤ r ≤ N, 1 ≤ l,m ≤ Qr
}
> 0.

We choose L that satisfies

L ≥ β + 1

α
.
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Then we have that

|L(γ̇(t
(r)
j )− γ̇(t

(r)
k )) + η̇(s

(r)
l )− η̇(s(r)

m )| ≥ |L(γ̇(tj)− γ̇(tk))| − |η̇(sl)− η̇(sm)|
≥ Lα− β ≥ 1 > 0.

Thus, by using (6.156.15), we have found that for any L ≥ β+1
α , and j 6= k, one has

∇Ξ
(r)
jklm(pr) 6= 0.

For 1 ≤ r ≤ N , assume then that j = k and l 6= m. Then we have

∇Ξ
(r)
jklm(pr) = L(γ̇(t

(r)
j )− γ̇(t

(r)
j )) + η̇(s

(r)
l )− η̇(s(r)

m ) = η̇(s
(r)
l )− η̇(s(r)

m ) 6= 0,

since η is transversal and l 6= m.

In conclusion, the only case when dΞ
(r)
jklm(pr) = 0 is when j = k and l = m.

Step 7. Conclusion of the proof.

Going back to the equation (6.146.14) and using the result in Step 6, and taking
τ →∞, we have

N∑
r=1

Pr∑
j=1

Qr∑
l=1

c
(r)
jjllFLλ+µ(pr)e

−2Lt
(r)
j λe−2s

(r)
l µ = 0, (6.16)

where we have used that e
iτ
[
L(t

(r)
j −t

(r)
k )+s

(r)
l −s

(r)
m

]
= 1, when j = k and l = m.

Let λ ∈ R and choose µ so that

2Lλ+ 2µ = 2λ,

which is equivalent to
µ = (1− L)λ ∈ R.

Then (6.166.16) reads

N∑
r=1

Pr∑
j=1

Qr∑
l=1

c
(r)
jjllFλ(pr)e

−2λ
[
L
(
t
(r)
j −s

(r)
l

)
+s

(r)
l

]
= 0, (6.17)

where Fλ(pr) = f̂(2λ, pr).
We will conclude the proof by using Lemma 6.26.2. In order to use Lemma 6.26.2,

we want to show that if

(r1, j1, l1) 6= (r2, j2, l2) (6.18)

then

L(t
(r1)
j1
− s(r1)

l1
) + s

(r1)
l1
6= L(t

(r2)
j2
− s(r2)

l2
) + s

(r2)
l2

. (6.19)

We will redefine L so that the above is true. We define two sets of real numbers
as follows:

Q1 = ∪Nr,r′=1 ∪
Pr
j,k=1

{
t
(r)
j − t

(r′)
k

}
, Q2 = ∪Nr,r′=1 ∪

Qr
l,m=1

{
s

(r)
l − s

(r′)
m

}
,
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and
α̃ = min

d1∈Q1,d2∈Q2,d1 6=d2

|d1 − d2|, β̃ = max
d∈Q2

|d|.

Finally, we redefine the number L in Step 6 as

L = max

{
β̃

α̃
+ 1,

β + 1

α

}
,

where α, β are the numbers given in Step 6.
Let (r1, j1, l1) 6= (r2, j2, l2), then we want to show that

L(t
(r1)
j1
− s(r1)

l1
) + s

(r1)
l1
6= L(t

(r2)
j2
− s(r2)

l2
) + s

(r2)
l2

. (6.20)

Let us set
d1 = t

(r1)
j1
− t(r2)

j2
and d2 = s

(r1)
l1
− s(r2)

l2
.

We have following cases:

(a) Assume that d1 = d2 and suppose that

L(t
(r1)
j1
− s(r1)

l1
) + s

(r1)
l1

= L(t
(r2)
j2
− s(r2)

l2
) + s

(r2)
l2

, (6.21)

then we have L(d1 − d2) + d2 = 0. It follows that s
(r1)
l1

= s
(r2)
l2

. Thus

l1 = l2 and r1 = r2. Since d1 = d2, we also have t
(r1)
j1

= t
(r2)
j2

. Thus,
j1 = j2 holds, which leads to a contradiction to (r1, j1, l1) 6= (r2, j2, l2).
Thus we must have (6.206.20).

(b) Assume then that d1 6= d2 and that (6.216.21) holds. Then we have

L =
d2

d1 − d2
.

However, this cannot be true since

L ≥ β̃

α̃
+ 1 >

d2

d1 − d2
.

Thus again we have (6.206.20).

We have shown that (r1, j1, l1) 6= (r2, j2, l2) implies (6.206.20). We now go back to
(6.176.17) and use Lemma 6.26.2 together with the condition (6.206.20) and the fact that

Fλ(pr) = f̂(2λ, pr). This yields that

c
(r)
jjllf̂(2λ, pr) = 0

for all (r, j, l). In Step 4 we proved that c
(r)
jjll > 0 for all (r, j, l), showing that

f̂(2λ, pr) = 0 for all λ ∈ R and all r. Since the point y0 in Step 1 was one of
the points pr, it follows that f(x1, y0) = 0 for all x1 ∈ R. By Step 1 this is true
for almost every y0 in (M0, g0), and by the continuity of f one gets that f ≡ 0
as required.
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Appendix A. Complex geometrical optics solutions

In this appendix we provide several results which were used in the previ-
ous sections, related to Gaussian beam quasimodes and CGO type solutions on
transversally anisotropic manifolds. The results are based on limiting Carle-
man weights, which were introduced in [4141] and applied to inverse problems on
conformally transversally anisotropic manifolds in [4040, 3333].

We first recall the construction of Gaussian beam quasimodes, i.e. approx-
imate eigenfunctions concentrating near a geodesic, from [3333]. Let (M, g) be a
compact Riemannian manifold with smooth boundary.

Proposition Appendix A.1 (Gaussian beams quasimodes). Let (M, g) be a
compact Riemannian manifold with smooth boundary ∂M , dim(M) = m. Let
γ : [0, T ]→M be a nontangential geodesic, and let λ ∈ C. For any K ∈ N and
k ∈ N, there is a family of functions (ṽs) ⊂ C∞(M), where s = τ + iλ ∈ C and
τ ≥ 1, such that

‖(−∆g − s2)ṽs‖Hk(M) = O(τ−K),

‖ṽs‖L4(M) = O(1), ‖ṽs‖L4(∂M) = O(1)
(A.1)

as τ →∞. The functions ṽs have the following properties: If p ∈ γ([0, T ]), then
there is P ∈ N such that on a neighborhood U of p the function ṽs is a finite
sum

ṽs = ṽ(1) + · · ·+ ṽ(P ) (A.2)

where t1 < · · · < tP are the times in [0, T ] such that γ(tl) = p. Each ṽ(l) has
the form

ṽ(l) = τ−
m−1

8 eisΘ
(l)

a(l) (A.3)

where each Θ = Θ(l) is a smooth complex function in U satisfying

Θ(γ(t)) = t, ∇Θ(γ(t)) = γ̇(t),

Im(∇2Θ(γ(t))) ≥ 0, Im(∇2Θ)(γ(t))|γ̇(t)⊥ > 0,
(A.4)

for t close to tl. Here a(l)(γ(t)) = τ
m−1

4 (a
(l)
0 (γ(t)) +O(τ−1)) where a

(l)
0 (γ(t)) is

nonvanishing and independent of τ , and the support of a(l) can be taken to be
in any small neighborhood of γ([0, T ]) chosen beforehand.

Proof. We choose

ṽs = τ−
m−1

8 vs, s = τ + iλ, (A.5)

where vs are the Gaussian beam quasimodes constructed in [3333, Proposition
3.1]. Recall from the displayed formula after [3333, equation (3.5)] that

vs =
r∑
j=0

χ̃jv
(j)
s (A.6)

where χ̃j are cutoff functions independent of s, and v
(j)
s are quasimodes of the

form v
(j)
s = eisΘ

(j)

a(j) near the geodesic segments γ(I(j)), where Θ(j) is a com-
plex phase function, a(j) is an amplitude and I(j) is a closed interval in [0, T ].
Then it follows that (A.2A.2), (A.3A.3) and (A.4A.4) are satisfied by (A.5A.5) and by the con-
struction in [3333, Proposition 3.1]. We only need to verify the conditions in (A.1A.1)
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about the Sobolev Hk decay estimate and the L4 normalization condition for

ṽs. By (A.6A.6) it is enough to do this for a single function ṽ
(j)
s = τ−

m−1
8 eisΘ

(j)

a(j).
For simplicity, we will drop the index j from the notation.

Let us write Γ = γ(I) and let p ∈ Γ. Recall from [3333, Proposition 3.1] that
a is a smooth function of the form

a(t, y) = τ
m−1

4

(
a0 + s−1a−1 + · · ·+ s−Na−N

)
χ(y/δ′). (A.7)

Here (t, y) are Fermi coordinates (see e.g. [3333, Lemma 3.5]) near γ(I), a0(t, 0) is a
nonvanishing function independent of s, χ is a smooth cutoff function supported
in the unit ball in Rm−1, and δ′ > 0 is a fixed number that can be taken to be
very small. From the latter it follows that the support of a can be taken to be
in any small neighborhood of Γ chosen beforehand. The constant N ∈ N will be

chosen sufficiently large depending on K and k. We have chosen τ−
m−1

8 as the
normalization factor in (A.5A.5), which will lead to the L4 normalization condition
in (A.1A.1).

As shown in [3333, Proposition 3.1], the functions vs are approximate eigen-
functions for −∆g in the sense that the function

f := (−∆g − s2)vs, (A.8)

which describes the error of vs from being a true eigenfunction, is of order
O(τ−K) in L2(M) if N is chosen large enough. We next show that the function
f is of the order O(τ−K) in Hk(M) when N is sufficiently large.

The function f in (A.8A.8) was calculated in [3333, Proposition 3.1] to have the
form

f = eisΘτ
m−1

4

(
s2h2a+ sh1 + · · ·+ s−(N−1)h−(N−1) − s−N∆ga−N

)
χ(y/δ′)

+ eisΘτ
m−1

4 sb χ̃(y/δ′), (A.9)

where for each j the function hj vanishes to orderN on Γ, the function b = b(t, y)
vanishes near Γ, and χ̃ is a smooth function with χ̃ = 0 for |y| ≥ 1/2. We have
that

|eisΘ| ≤ C1e
−τc|y|2 , (A.10)

for t ∈ I and |y| small enough by the latter two properties in (A.4A.4). We take δ′

to be so small that (A.10A.10) holds on the support of f . Thus we have that

|f | ≤ C2τ
m−1

4 e−τc|y|
2 (
τ2|y|N+1 + τ−N + τ O(|y|∞

)
),

where the term τ2|y|N+1 corresponds to the terms in (A.9A.9) with hj as a factor,
the term τ−N to the term s−N∆ga−N , and the term τ O(|y|∞) to the term
with b χ̃(y/δ′) (which vanishes near y = 0). Moreover, taking k derivatives of f
brings at most k powers of s ∈ C to the front of the expression, or reduces the
degree of vanishing of hj on Γ by at most k. This gives

|∇kf | ≤ C3τ
m−1

4 e−τc|y|
2

k∑
l=0

τk−l(τ2|y|N+1−l + τ−N + τO(|y|∞)).

Thus, by takingN = N(K, k) to be large enough, and by using polar coordinates

and the standard formula
∫∞

0
rle−τcr

2

dr ∼ τ− l+1
2 for l ≥ 0 we obtain that

‖(−∆g0
− s2)vs‖Hk(M) = O(τ−K).
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Since ṽs = τ−
m−1

8 vs, the same is true for ṽs.
It remains to show that ‖ṽs‖L4(M) = O(1) and ‖ṽs‖L4(∂M) = O(1). Again

it is enough to consider a single function vs = eisΘa. By (A.10A.10) and (A.7A.7), one
has

|vs(t, y)| ≤ Ce−τc|y|
2

τ
m−1

4 χ(y/δ′).

Computing the L4 norm gives

‖vs‖4L4 = O(τ
m−1

2 ).

Due to the normalization factor τ−
m−1

8 , we have ‖ṽs‖4L4(M) = O(1). To calculate

‖ṽs‖L4(∂M) (see [3333, Proposition 3.1] for a similar computation for the L2(∂M)
norm), we note that since γ is nontangential we may locally write ∂M in the
Fermi coordinates (t, y) as the the set {(t(y), y) : |y| < ε} for some smooth
function t = t(y) and for some ε > 0. Since the geodesic γ(t) intersects ∂M at
two points, it follows that ‖ṽs‖4L4(∂M) is a sum of two integrals of the form∫

{|y|<ε}
|ṽs(t(y), y)|4 dS(y) ≤ C3

∫
Rm−1

τ
m−1

2 e−τc|y|
2

dy = O(1).

Thus we also have ‖ṽs‖L4(∂M) = O(1), which concludes the proof.

We record next a Carleman estimate from [4040, Lemma 4.3]. The statement
involves the following technical assumptions. We assumed that (M, g) is a com-
pact Riemannian manifold with smooth boundary. Without loss of generality,
we may assume that (M, g) is embedded in a compact manifold (N, g) without
boundary. The function ϕ is assumed to be a limiting Carleman weight in (U, g),
where U is open in N and M is compactly contained in U (see [4040, Definition
1.1]).

Below, the space Hs
scl(N) stands for the semiclassical Sobolev space with

a small parameter h > 0, see e.g. [4040]. We define Hs
scl(M) by restriction, i.e.

Hs
scl(M) = {u|M ; u ∈ Hs

scl(N)}. If s ≥ 0 is an integer, then Hs
scl has the

equivalent norm

‖u‖Hsscl
∼

(
s∑
l=0

hl‖∇lu‖L2

)1/2

.

Lemma Appendix A.2 (Carleman estimate [4040]). Let (M, g), U , N , and the
limiting Carleman weight ϕ be as described above. Let s ∈ R. There exist two
constants Cs > 0 and 0 < hs ≤ 1 such that for all functions u ∈ C∞c (M int) and
all 0 < h < hs one has the inequality

‖e
ϕ
h u‖Hs+1

scl (N) ≤ Csh‖e
ϕ
h ∆gu‖Hsscl(N).

Proposition Appendix A.3 (Hs solvability). Let s ≥ 0. Under the condi-
tions in Lemma Appendix A.2Appendix A.2, there exist constants Cs, hs > 0 such that for
0 < h < hs and for any function f ∈ Hs

scl(M) there is a solution u ∈ Hs+1
scl (M)

to the equation
e
ϕ
h ∆ge

−ϕh u = f

satisfying
‖u‖Hs+1

scl (M) ≤ Csh‖f‖Hsscl(M).
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Proof. The proof is for the most parts the same as that of [4040, Proposition 4.4].
We consider the conjugated operator

P = e−
ϕ
h h2∆g e

ϕ
h .

Let f ∈ Hs
scl(M), so that by definition there is f̃ ∈ Hs

scl(N) with f̃ |M = f and

‖f̃‖Hsscl(N) ≤ C‖f‖Hsscl(M). Consider the subspace

E = P ∗(C∞(N))

of H−s−1
scl (N) and the linear form L defined on E by

L(P ∗v) = 〈f, v〉M = 〈f̃ , v〉N , v ∈ C∞c (M int).

By Lemma Appendix A.2Appendix A.2 the linear form L is well defined: if P ∗v1 = P ∗v2,
then

|〈f, v1−v2〉L2(M)| ≤ ‖f̃‖L2(N)‖v1−v2‖L2(N) ≤ Ch‖e
ϕ
h ∆g e

−ϕh (v1−v2)‖L2(N) = 0.

We also have that

|L(P ∗v)| ≤ ‖f̃‖Hsscl(N)‖v‖H−sscl (N) ≤ Cs‖f‖Hsscl(M)h‖e
ϕ
h ∆g e

−ϕh v‖H−s−1
scl (N)

= Cs‖f‖Hsscl(M)h
−1‖P ∗v‖H−s−1

scl (N).

By the Hahn-Banach theorem, there is an extension L̂ of L which is a bounded
functional on H−s−1

scl (N) with norm ‖L̂‖ ≤ Csh
−1‖f‖Hs(M). Since the dual of

H−s−1
scl (N) is Hs+1

scl (N), there exists a function ũ ∈ Hs+1
scl (N) such that L̂(v) =

〈ũ, v〉L2(N) and ‖ũ‖Hs+1
scl (N) ≤ Csh

−1‖f‖Hsscl(M). Then u = ũ|M is the desired

solution, since for all v ∈ C∞c (M int) we have that

〈Pu, v〉 = 〈u, P ∗v〉 = L̂(P ∗v) = L(P ∗v) = 〈f, v〉.

This completes the proof.

Recall that by definition a transversally anisotropic manifold is a Riemannian
manifold (M, g) compactly contained in R×M0 with the metric g = e⊕g0. The
coordinate x1 along R is then a limiting Carleman weight [4040, Lemma 2.9]. The
following proposition constructs complex geometrical optics (CGO) solutions in
this setting, based on the Gaussian beam quasimodes given in Proposition 5.25.2.

Proposition Appendix A.4 (CGO solutions). Let (M, g) be a transversally
anisotropic manifold compactly contained in I ×M0 with g = e ⊕ g0. Let also
R, k ∈ N. There exists τ0 ≥ 1 such that for any fixed real number λ and for any
τ with |τ | ≥ τ0 there is a solution of the equation −∆gu = 0 in M having the
form

us = e−sx1(ṽs + rs), (A.11)

where s = τ + iλ, x1 is the coordinate along R, ṽs is a family as in Proposition
5.25.2 in (M0, g0) (so that m = n−1) with K = K(R, k) chosen large enough, and

‖rs‖Hk(M) = O(τ−R) as |τ | → ∞.
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Proof. A straightforward calculation, done in [3333] after Proposition 2.1 there,
shows that a function us of the form (A.11A.11) is a solution to ∆gus = 0 provided
that

eτx1(−∆g)e
−τx1(e−iλx1rs) = f, (A.12)

where
f = −eiλx1(−∆g0

− s2)ṽs.

Since ṽs is independent of x1, we have by (A.1A.1) that

‖f‖Hkscl(M) = O(τ−K).

Proposition Appendix A.3Appendix A.3 with h = τ−1 shows that there is a solution rs ∈
Hk(M) to (A.12A.12) satisfying

‖rs‖Hk+1
scl (M) ≤

C

τ
‖f‖Hkscl(M) = O(τ−K−1).

Thus
‖rs‖Hk(M) ≤ τk‖rs‖Hkscl(M) = O(τk−K−1),

and the required decay ‖rs‖Hk(M) = O(τ−R) follows by taking K > R + k −
1.

Appendix B. Some lemmas

We prove some lemmas which we have used in the previous sections. We
begin with a well-known Schauder estimate (see e.g. [4242] for domains in Rn and
[4343, Proposition 8.10] for manifolds with boundary). We include a proof since
we could not find a direct reference for the statement that we need. The spaces
Cs(M), s ∈ R and s ≥ 0, of functions on a smooth manifold are equipped with
a norm, which is given with respect to a partition of unity {ϕα} subordinate to
an atlas {(Gα, Uα)} of the manifold as

‖v‖Cs(M) =
∑
α

‖(G−1
α )∗(ϕαv)‖Cs(Rn).

Using a different partition of unity gives an equivalent norm on a compact
manifold. We refer to [4444, Theorem 2.23] for properties of a partition of unity
on a manifold with boundary.

Lemma Appendix B.1 (Schauder estimate). Let (M, g) be a compact C∞

Riemannian manifold with C∞ boundary ∂M . Let F ∈ Cs−2(M) and f ∈
Cs(∂M), for some s > 2 and s /∈ N. Assume that the map

v 7→ (∆g + c(x)) v (B.1)

is injective on H1
0 (M).

Let v ∈ H1(M) be the unique solution of{
∆gv + cv = F in M,

v = f on ∂M.
(B.2)

Then there exists a positive constant C > 0 independent of v, f and F such that

‖v‖Cs(M) ≤ C
(
‖F‖Cs−2(M) + ‖f‖Cs(∂M)

)
. (B.3)
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Proof. Consider the linear map

S : Cs−2(M)× Cs(∂M)→ H1(M), S(F, f) = v.

This map is well defined since Cs−2(M) ⊂ H−1(M) and Cs(∂M) ⊂ H1/2(∂M),
and since the assumption that v 7→ (∆g + c(x)) v is injective on H1

0 (M) ensures
that there is a unique weak solution v ∈ H1(M). The map S is also bounded
since

‖v‖H1(M) ≤ C(‖F‖H−1(M) + ‖f‖H1/2(∂M)) ≤ C(‖F‖Cs−2(M) + ‖f‖Cs(∂M)).

We claim that the range of S is in Cs(M). If this is the case, then S will
be continuous Cs−2(M) × Cs(∂M) → Cs(M) by the closed graph theorem (if
(Fj , fj) → (F, f) in Cs−2(M) × Cs(∂M) and S(Fj , fj) → w in Cs(M), then
S(Fj , fj) → S(F, f) in H1(M) showing that w = S(F, f)). This implies (B.3B.3)
for some C > 0 independent of v, F and f and proves the theorem.

The fact that the range of S is in Cs(M) follows directly from the corre-
sponding statement on subsets of Rn after passing to local coordinates. Let
{(Ωα, Gα)}Kα=1 be an atlas of M , where

Gα : Ωα → Ω′α ⊂ Rn.

Let us introduce notations for the coordinate representations of the relevant
functions and the operator P . We define a family elliptic operators {Pα}Kα=1 as

Pαh := (G−1
α )∗ [(∆g + c(x))G∗αh] , h ∈ C∞c (Ω′α).

These are second order elliptic operators with C∞-smooth coefficients on Ω′α ⊂
Rn. Let us also denote

vα = (G−1
α )∗v, Fα = (G−1

α )∗F and fα := (G−1
α )∗f.

We have that vα solves {
Pαvα = Fα on Ω′α ⊂ Rn

vα = fα on ∂Ω′α
(B.4)

by the coordinate invariance of the operator ∆g + c. By Schauder estimates for
domains in Rn, see [4242, Section 6.4], we have that vα ∈ Cs(Ω′α). This proves
that v ∈ Cs(M) as required.

Lemma Appendix B.2. Let f1, . . . , fN be compactly supported distributions
in R such that for some distinct real numbers a1, . . . , aN one has

N∑
j=1

f̂j(λ)eajλ = 0, λ ∈ R.

Then f1 = . . . = fN = 0.

Proof. Suppose without loss of generality that a1 > a2 > . . . > aN . Then

f̂1(λ) = −
N∑
j=2

e−(a1−aj)λf̂j(λ).
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By the Paley-Wiener-Schwartz theorem there are C,M > 0 so that

|f̂j(λ)| ≤ C(1 + |λ|)M , λ ∈ R.

Write δ = a1 − a2 > 0. Since a1 − aj ≥ δ for j ≥ 2, it follows that

|f̂1(λ)| ≤

{
C(1 + |λ|)M , λ ≤ 0,

C(1 + λ)Me−δλ, λ ≥ 0.

However, no nontrivial compactly supported distribution f1 can have the
above decay for its Fourier transform. To see this, note that

eελf̂1(λ) ∈ S ′(R), 0 ≤ ε < δ.

Thus using [3838, Theorem 7.4.2] there exists an analytic function U in {0 <

Im(t) < δ} so that the Fourier transform of eελf̂1(λ) is U( · + iε). By [3838,
Remark after Theorem 7.4.3] the limit of U( · + iε) in S ′(R) as ε → 0 is the

Fourier transform of f̂1(λ), i.e. 2πf1(− · ). Fix some interval I ⊂ R that is
outside the support of f1(− · ), and consider the rectangle Z = I × (0, δ). For ε
close to 0, one has

|U(t+ iε)| ≤ ‖eελf̂1(λ)‖L1 . ‖(1 + |λ|)Meελ‖L1(R−) + 1 . ε−M .

Since the limit of U( · + iε) in D ′(I) is 2πf1(− · )|I = 0, by [3838, Theorem 3.1.15]
one has U = 0 in Z. Now U is analytic, so U = 0 in {0 < Im(t) < δ} and
f1 = 0. Repeating this argument gives that f2 = . . . = fN = 0.

Lemma Appendix B.3 (Intersecting geodesics). Let (M0, g0) be a compact
Riemannian manifold with strictly convex smooth boundary. There is a set E
of zero measure in (M0, g0) such that if y0 ∈ M0 \ E, there exist nontangential
geodesics γ and η on M0 that intersect at y0, self-intersect only finitely many
times and intersect each other only finitely many times.

Proof. By [4545, Lemma 3.1], there is a set E of zero measure in (M0, g0) so
that all points in M0 \E lie on some nontangential geodesic between boundary
points. Fix a point y0 ∈M0 \E and a direction v0 ∈ Sy0

M0 so that the geodesic
γ : [0, T ] → M0 through (y0, v0) is a nontangential geodesic between boundary
points. Without loss of generality, we may assume that γ is a unit speed geodesic
(i.e. |γ̇| = 1). The property of a geodesic being nontangential is not changed
under small perturbations. Therefore, we may find w0 ∈ Sy0

M0 close to v0 so
that w0 6= v0 and the unit speed geodesic η : [0, S] → M0 through (y0, w0) is
also a nontangential geodesic between boundary points. We may arrange so
that the geodesics γ and η are such that their graphs do not coincide (in fact,
γ can only self-intersect at y0 finitely many times [4646, Lemma 7.2], and it is
enough choose w0 near v0 that is different from the corresponding finitely many
tangent vectors of γ and their negatives).

We next show that two distinct geodesics γ and η whose graphs do not
coincide can intersect only finitely many times. Assume the opposite, that there
are infinitely many intersection points {pk}k∈N and intersection times {tk}k∈N,
{sk}k∈N satisfying

γ(tk) = pk = η(sk), for all k ∈ N.



REFERENCES 39

Since M is compact, tk ∈ [0, T ] and sk ∈ [0, S], by passing to subsequences
and using continuity of unit speed geodesics γ, η, we may assume that γ(tk)→
γ(t0) = p0 and η(sk) → η(s0) = p0 as k → ∞, for some t0 ∈ [0, T ], s0 ∈ [0, S]
and p0 ∈M .

In addition, we denote the tangent vectors Vγ := γ̇(t0) and Vη := η̇(s0). By
using the continuity of γ̇(t), η̇(s) and the compactness of the unit sphere, we
have (by passing to subsequences again) that

lim
k→∞

γ̇(tk) = Vγ and lim
k→∞

η̇(sk) = Vη.

Now, it is clear that Vγ 6= ±Vη, by using the fact that the graphs of γ and η
do not coincide. The injectivity radius at p0 is positive. However, since γ and
η intersect in all geodesic balls Bε(p0) for any ε > 0, this is a contradiction.
This shows that two different nontangential geodesics can only intersect finitely
many times.
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[28] C. I. Cârstea, G. Nakamura, M. Vashisth, Reconstruction for the coeffi-
cients of a quasilinear elliptic partial differential equation, Applied Mathe-
matics Letters 98 (2019) 121–127.

[29] O. Imanuvilov, G. Uhlmann, M. Yamamoto,
Partial Cauchy data for general second order elliptic operators in two dimensionsPartial Cauchy data for general second order elliptic operators in two dimensions,
Publ. Res. Inst. Math. Sci. 48 (4) (2012) 971–1055.
doi:10.2977/PRIMS/94doi:10.2977/PRIMS/94.
URL https://doi.org/10.2977/PRIMS/94https://doi.org/10.2977/PRIMS/94

[30] M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the
Dirichlet-to-Neumann map, in: Annales Scientifiques de L’Ecole Normale
Superieure, Vol. 34, No longer published by Elsevier, 2001, pp. 771–787.

[31] C. Guillarmou, L. Tzou, Calderón inverse problem with partial data on
Riemann surfaces, Duke Mathematical Journal 158 (1) (2011) 83–120.

[32] C. Guillarmou, L. Tzou, The Calderón inverse problem in two dimensions,
in: Inverse problems and applications: inside out. II, Vol. 60 of Math. Sci.
Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2013, pp. 119–166.

[33] D. D. S. Ferreira, Y. Kurylev, M. Lassas, M. Salo, The Calderón problem in
transversally anisotropic geometries, J. Eur. Math. Soc. (JEMS) 18 (2016)
2579–2626.

[34] D. D. S. Ferreira, Y. Kurylev, M. Lassas, T. Liimatainen, M. Salo, The
linearized Calderón problem in transversally anisotropic geometries, arXiv
preprint arXiv:1712.04716 (to appear IMRN).

[35] C. Guillarmou, M. Salo, L. Tzou, The linearized Calderón problem on
complex manifolds, Acta Mathematica Sinica, English Series 35 (6) (2019)
1043–1056.

[36] A. Feizmohammadi, L. Oksanen, An inverse problem for a semi-linear el-
liptic equation in riemannian geometries, arXiv:1904.00608.

[37] M. Renardy, R. C. Rogers, An introduction to partial differential equations,
Vol. 13, Springer Science & Business Media, 2006.

[38] L. Hormander, The Analysis of Linear Partial Differential Operators. I-IV,
1983-1985.

[39] M. Salo, Calderón problem, Lecture Notes.

https://doi.org/10.1007/978-1-4419-7055-8
http://dx.doi.org/10.1007/978-1-4419-7055-8
https://doi.org/10.1007/978-1-4419-7055-8
https://doi.org/10.2977/PRIMS/94
http://dx.doi.org/10.2977/PRIMS/94
https://doi.org/10.2977/PRIMS/94


REFERENCES 42

[40] D. D. S. Ferreira, C. Kenig, M. Salo, G. Uhlmann, Limiting Carle-
man weights and anisotropic inverse problems, Inventiones mathematicae
178 (1) (2009) 119–171.
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