
 

 

Arttu Heikkilä 

NATURAL LANGUAGE PROCESSING TECHNIQUES 
IN CHATBOT DEVELOPMENT: HOW DOES A CHAT-

BOT PROCESS LANGUAGE? 

 
JYVÄSKYLÄN YLIOPISTO 

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 
2020 



 

 

ABSTRACT 

Heikkilä, Arttu 
Natural Language Processing In Chatbot Development: How Does a Chatbot 
Process Language? 
Jyväskylä: University of Jyväskylä, 2020, 72 pp. 
Information System, Master’s Thesis 
Supervisor: Kyppö, Jorma 

Chatbots are an extremely prominent way to interact with a software system. 
The need to build maintainable that scalable systems is more present than ever, 
while the understanding of needed technologies is generally lacking. This is 
demonstrated by disconnected literature, the popularity of oversimplified 
building tools, and generally sub-par conversational agents. This provides a 
need to understand, and educate, how chatbots are built. This narrows down 
the gap between theory and practice to an applicable format, where a software 
developer could have a better stance at building maintainable conversational 
systems. 

This thesis studies the underlying techniques and technologies that go into 
chatbot development. A case study is presented with source code to explore, to 
understand the somewhat hidden structures that go into understanding the us-
er input. A literature review precedes a detailed view of the technologies in a 
real-life example. 

Contrary to popular perception, this type of artificial intelligence is not 
complicated. A modern chatbot uses multiple different components to achieve 
bot scalability and performance. However, a lot of these technologies are fairly 
easy to understand and debug to a professional in the technical field. A chatbot 
processes the input text through NLP-techniques and assigns it to a predefined 
intent through a classifier. Another classifier is then used to determine proper 
actions, be it a response or custom software. Understanding this type of pipe-
line can prevent technical overhead when fixing issues built on a black box. 

Keywords: Chatbot, Conversational Agent, Natural Language Processing, 
Natura Language Understanding, Rasa 



 

 

TIIVISTELMÄ 

Heikkilä, Arttu 
Luonnollisen kielen prosessointi chatboteissa: Kuinka chatbot prosessoi kieltä? 
Jyväskylä: Jyväskylän Yliopisto, 2020, 72 s. 
Tietojärjestelmätiede, Pro Gradu-tutkielma 
Ohjaaja: Kyppö, Jorma 

Chatbotit ovat yleistyvä ratkaisu ihmisen ja tietokoneen väliseen vuorovaiku-
tukseen. Tarve rakentaa ylläpidettäviä ja skaalautuvia keskustelevia ratkaisuja 
on kasvava, mutta ymmärrys perustavanlaatuisista teknologioista tarpeeseen 
on vähäistä. Tätä näkökulmaa tukee vähäinen kirjallisuus, yksinkertaistettujen 
alustaratkaisujen yleisyys, sekä ala-arvioisten chatbottien yleisyys. Tämä luo 
tarpeen ymmärtää ja kouluttaa, kuinka botit ovat pohjimmiltaan rakennettu. 
Tämä vie tarvittavan teorian lähemmäksi käytäntöä, joka tukee botin kehittäjää 
rakentamaan ylläpidettävää ja skaalautuvaa arkkitehtuuria. 

Tämä tutkielma tarkastelee niitä perustavanlaatuisia teknologioita ja kon-
septeja, jotka saavat tietokoneen ymmärtämään ihmistä. Tapaustutkimusta 
hyödynnetään ymmärtämään yksityiskohtaisesti, kuinka jokseenkin piilotetut 
tekstiprosessointitekniikat saavat chatbotin ymmärtämään puhetta. Tapaustut-
kimusta pohjustaa kirjallisuuskatsaus tekstiprosessoinnista ja niiden yhtymises-
tä moderneihin chatbotteihin. 

Yleisestä näkemyksestä tekoälyyn poiketen, chatbotit eivät ole monimut-
kaisia järjestelmiä. Moderni chatbot käyttää monia eri tekstiprosessointi ja ko-
neälytekniikoita skaalautuvuuden ja suorituskyvyn saavuttamiseksi. Nämä 
ovat kuitenkin suhteellisen yksinkertaisia, ja tekninen ammattilainen pystyy 
helposti tekemään korjauksia ja muokkauksia näihin. Chatbot prosessoi käyttä-
jäsyötteen luonnollisen kielen prosessoinnin tekniikoilla, ja luokittelija luokitte-
lee tuloksen ennalta määriteltyyn ’tarkoitukseen’. Toinen luokittelija antaa jat-
kotoimenpiteet, oli se sitten vastaus tai jokin muu. Tämänkaltaisin arkkitehtuu-
rin ymmärtäminen tukee bottikehitystyötä, kun ongelmia tai tarpeita uusille 
ominaisuuksille ilmenee. 
Avainsanat: Chatbot, keskusteleva agentti, Luonnollisen kielen prosessointi, 
Luonnollisen kielen ymmärrys, Rasa 



 

 

FIGURES 

FIGURE 1 System architecture of Stanford CoreNLP pipeline ............................ 16 

FIGURE 2 Tokenization of an example sentence, where each block represents a 
single token. .................................................................................................................. 17 

FIGURE 3 Part-of-Speech tagged example sentence .............................................. 18 

FIGURE 4 Dependency parsing example of a sentence  ........................................ 20 

FIGURE 5 Example of a spreadsheet working as the brain of a bot built with 
Cleverscript. .................................................................................................................. 27 

FIGURE 6 Example of a speech dialogue system showing the Dialogue 
management function ................................................................................................. 29 

FIGURE 7 Dialogue elements represented in Rasa................................................. 33 

FIGURE 8 Example of entities within user input .................................................... 34 

FIGURE 9 Dialogue act classification in a casual spoken conversation .............. 35 

FIGURE 10 Generalized architecture of select chatbots ......................................... 38 

FIGURE 11: Rasa architecture .................................................................................... 42 

FIGURE 12 a structured represantation of a greeting in Laubot .......................... 51 

FIGURE 13 Structured representation of an actual input query in Laubot ........ 52 

FIGURE 14 Network architecture for Keras Policy in Laubot .............................. 58 

FIGURE 15 Laubot NLU model intent classifier training ...................................... 59 

FIGURE 16 Example of a training file in Laubot ..................................................... 59 

FIGURE 17 Story connections in Laubot .................................................................. 59 

FIGURE 18 Final result of the example in the Laubot's NLU model ................... 62 

TABLES 

Table 1: Chatbot general architecture ....................................................................... 12 

Table 2: Categories of linguistic phenomena annotated in the pre-defined 
diagnostic dataset of the GLUE benchmark. ........................................................... 23 

Table 3: Parts of the Rasa NLU pipeline ................................................................... 42 

Table 4: Relevant directory structure of Laubot ...................................................... 49 

Table 5 Rasa action Policies of Laubot ...................................................................... 53 

Table 6 Laubot NLU model pipeline ........................................................................ 56 

 



 

 

TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................... 2 

TIIVISTELMÄ ................................................................................................................. 3 

FIGURES .......................................................................................................................... 4 

TABLES ............................................................................................................................ 4 

TABLE OF CONTENTS ................................................................................................. 5 

1 INTRODUCTION ................................................................................................. 8 

2 CHATBOTS AND QA-SYSTEMS ..................................................................... 11 

2.1 Chatbot ........................................................................................................ 11 

2.1.1 Definition ........................................................................................... 11 

2.1.2 Chatbot architecture ......................................................................... 12 

2.2 Question answering systems ................................................................... 13 

2.2.1 Chatbots or QA-systems? ................................................................ 13 

2.2.2 Functions of QA-systems ................................................................ 13 

3 NATURAL LANGUAGE PROCESSING ........................................................ 14 

3.1 Natural language processing research ................................................... 14 

3.1.1 Early research .................................................................................... 14 

3.1.2 Different approaches to NLP in the 21st century ......................... 15 

3.2 Basic structure of natural language processing pipeline ..................... 15 

3.2.1 Tokenization ...................................................................................... 16 

3.2.2 Part-of-Speech tagging .................................................................... 17 

3.2.3 Morphological analysis, lemmatization, and stemming ............ 18 

3.2.4 Named entity recognition ............................................................... 19 

3.2.5 Syntactic parsing, or dependency parsing .................................... 19 

3.2.6 Coreference resolution ..................................................................... 20 

3.2.7 Other annotations ............................................................................. 21 

3.3 Usage of NLP .............................................................................................. 21 

3.4 Natural language understanding ............................................................ 21 

3.4.1 Aspects of meaning in general natural language understanding22 

3.4.2 GLUE benchmark ............................................................................. 22 

4 LANGUAGE PROCESSING IN CHATBOTS ................................................. 25 

4.1 Review on different technologies in multiple conversational systems26 

4.1.1 Pattern matching .............................................................................. 26 

4.1.2 NLU-based systems ......................................................................... 28 



 

 

4.1.3 Language tricks and other features ............................................... 28 

4.2 Dialogue management .............................................................................. 29 

4.2.1 Dialogue State ................................................................................... 30 

4.2.2 Dialogue policy ................................................................................. 30 

4.3 Response generation.................................................................................. 31 

4.3.1 Retrieval models ............................................................................... 31 

4.3.2 Generative models ........................................................................... 32 

4.3.3 Hybrid ................................................................................................ 32 

4.4 Levels of dialogue ...................................................................................... 32 

4.4.1 Intent .................................................................................................. 33 

4.4.2 Entity .................................................................................................. 34 

4.4.3 Dialogue act ....................................................................................... 34 

4.5 Different languages in conversational systems ..................................... 35 

5 CHATBOT DEVELOPMENT TOOLS .............................................................. 37 

5.1 Review on the performance of modern development tools ................ 37 

5.2 Popular modern chatbot frameworks ..................................................... 39 

5.3 Dialogflow by Google ............................................................................... 40 

5.4 Amazon Lex ................................................................................................ 41 

5.5 Rasa .............................................................................................................. 41 

5.5.1 Rasa architecture .............................................................................. 41 

5.5.2 Rasa NLU ........................................................................................... 42 

6 CASE STUDY: METHODOLOGY, ORGANIZATIONS, AND THE 
PROJECT ........................................................................................................................ 44 

6.1 Research methods ...................................................................................... 44 

6.2 Participating organizations ...................................................................... 45 

6.2.1 Gofore Inc. ......................................................................................... 45 

6.2.2 Municipality of Laukaa ................................................................... 45 

6.3 Project summary ........................................................................................ 46 

6.3.1 Planned functionalities in short ..................................................... 46 

6.3.2 Project development in short .......................................................... 46 

7 CASE STUDY: HOW DOES LAUBOT PROCESS LANGUAGE? ................ 48 

7.1 Conversational system with Rasa ........................................................... 49 

7.1.1 Structure of the codebase ................................................................ 49 

7.1.2 Starting the bot .................................................................................. 50 

7.1.3 From input to intent ......................................................................... 50 

7.1.4 From intent to action ........................................................................ 52 

7.1.5 From action to response .................................................................. 54 

7.1.6 Domain and configuration .............................................................. 54 

7.1.7 Training .............................................................................................. 55 

7.2 Actual scenario ........................................................................................... 57 

7.2.1 Training .............................................................................................. 57 

7.2.2 Example, Laubot natural language understanding engine ........ 60 



 

 

8 RESULTS, ANALYSIS, DISCUSSION .............................................................. 63 

8.1 Results and analysis .................................................................................. 63 

8.2 Discussion ................................................................................................... 65 

9 CONCLUSION .................................................................................................... 67 

LITERATURE ................................................................................................................ 68 

ATTACHMENTS .......................................................................................................... 72 



 

 

1 Introduction 

The general perception of artificial intelligence can be complicated and convo-
luted, while the idea of imitating human interaction with a computer software 
can be fairly straight forward. This also applies to the technologies. Various 
methodologies go into developing systems that are, or appear to be, intelligent. 
These can range from computationally intensive algorithms to extremely simple 
programs just used right. 

Conversational agents, or chatbots in this thesis, are a form of computer 
systems designed to communicate with the user in a humanized manner. This is 
achieved by imitating certain facets of normal communication between people. 
Simple communication consists of questions asked and responses given both 
ways, which together form a dialogue between two entities. The most basic idea 
of a conversational agent therefore is a system that can understand a question 
and give a sensible answer to said question. This can be imitated in a multitude 
of different manners, and it proposes various interesting questions in infor-
mation systems science, and even linguistics. 

The aim of this thesis is to explore the question “How does a chatbot pro-
cess language?”. The core interest lies in the area between abstraction layers of 
naturally produced language and the data held in computer memory to pro-
duce dialogue between a user and a software system. What technical actions 
can or need to be taken to make the user input understandable or calculatable 
for an inherently deterministic machine. 

An oversimplifying answer to the question is natural language processing 
and machine learning. Language processing to make the input into a readable 
format, and machine learning to teach the system appropriate responses to se-
lected questions. While this is often, but not always, true in modern chatbots, it 
leaves a lot to the imagination. What are the exact steps that need to be taken to 
understand the inner workings of a conversational systems? 

Chatbots are starting to appear everywhere. And for every chatbot there is 
an engineer who build the chatbot. Most often than not, as with any modern 
software, frameworks and tools are readily available to build them, which part-
ly might explain the surge of simple conversational agents integrated to differ-



9 

 

ent systems. These tools enable chatbot development without much, or any, 
experience in text processing or even software development techniques, and the 
commercial toolkits pride themselves in being easy to implement. This is 
enough to a certain degree, but when scalability, optimizations, and fixes be-
come a frequent topic, a deeper knowledge will be beneficial. Does a regular 
software engineer have the appropriate knowledge on needed topics, especially 
when commercial chatbot building platforms do not necessarily want to pro-
vide information on their technologies? And does a data scientist designing 
language processing and machine learning algorithms have the needed capabil-
ities to build maintainable and scalable software around it? This issue is very 
apparent in the literature. There lies a large knowledge gap between technical 
and theoretical system level research. 

Importance of this topic is amplified further by the fact that the techniques 
and technologies are often not complicated, just hidden. This kind of issue can 
cause major overhead in development by fixing simple issues with complicated 
additions. To build better, more maintainable, and more optimized conversa-
tional agents, the developer will benefit from understanding the underlying 
technologies. 

This thesis attempts to explore this topic through a case study, and an ex-
tensive literature review on the underlying technologies. The case study looks 
into a real-life example of a domain specific chatbot, with access to source code 
and appropriate documents. This allows for a detailed look into the technolo-
gies and techniques of a chatbot built with modern technology stack.  

First this thesis explains the ideas and architecture of chatbots. Certain 
baseline definitions are given, and simplified architectures presented to gain an 
initial understanding of the topic at hand. 

To narrow down the topic into text processing techniques within chatbots, 
second part will explain basic natural language processing concepts in depth. 
Natural language processing is a field of computer science concerned with mak-
ing naturally produced language to a structured, computer readable form 
(Chowdhary, 2020). While these techniques were initially designed for use in 
document processing, the need is very apparent in chatbots as well. Under-
standing these topics is key to understanding the case study. 

Thirdly, the thesis explores the usage of these technologies within chatbots. 
Core idea of this sections is to learn how these techniques might be implement-
ed into chatbot systems. This means some exploring into intents and entities, as 
well as dialogue structures. This part also explains some different approaches to 
chatbots in general. To finalize the literature review and to build a base for a 
case study, a short exploration into different development suits for chatbots are 
explored. This explains how they are built based on some of the previous con-
cepts presented in the thesis. 

The case study is an effort to explore Laubot, a personal assistant chatbot 
for financial management team in a municipality’s government. Development 
happens by an external consulting organization Gofore. First the setting is ex-
plained in more detail, and right after shifts into the actual review of the system. 



10 

 

The system review is a detailed look into the source code of the system to 
specifically understand what Laubot does to “understand” the user input. This 
entails a lot of natural language processing, and additional algorithms do de-
cide the proper actions. An example is presented, and low-level details are ex-
tracted about the different steps. This is done along with appropriate documen-
tation related to them. 

Finally, an analysis and discussion are presented. This reflects the case 
study against the literature review and concludes some ways this case study 
reflects the general architectures and ideas. Short discussion on the topic is pre-
sented before conclusion to explore and explain some problems and limitations 
of this study. 



11 

 

2 Chatbots and QA-systems 

Chatbots per se are not a recent technology, but the improvements in usable 
platforms and advances in natural language processing are making them more 
prevalent each year (Brandtzaeg & Følstad, 2017). More and more customer 
service and other simple support tasks are being digitized with digital conver-
sational agents. Use cases, however, are not limited to support tasks. Oftentimes 
the aim is to increase human-computer interaction by replacing existing sys-
tems through a more intuitive user interface. In these cases that means a con-
versational agent utilizing natural language processing to decipher messages 
between human and a computer.  

2.1 Chatbot 

2.1.1 Definition 

Conversational agents can take many different forms and functions. These can 
vary from the earliest conversational systems which were only supposed to 
achieve communication with natural language between human and computer 
(Weizenbaum, 1966) to more advanced personal assistants like Apple’s Siri 
(Apple Inc., 2020) and Amazon Alexa (Amazon Inc., 2020). Plethora of different 
applications and approaches to conversational systems makes chatbots a very 
general definition. Throughout this thesis the general focus will be on chatbots, 
conversational agents, and question answering systems. The term chatbot is 
used to refer to a digital system where a computer holds a conversation be-
tween a human user using natural language. Question answering systems are 
discussed further in chapter 2.2, but simply put they refer to systems designat-
ed to answer singular questions, without general attempt to maintain human-
like conversation. Conversational agent or conversational system in this thesis 
are terms used to refer to the general application of conversational interaction 
with a computer using natural language. 



12 

 

2.1.2 Chatbot architecture 

Chatbots generally, but not always, follow a similar architecture to one-another. 
Jack Cahn (2017) provides a great general explanation of chatbots and their in-
ner workings in their senior thesis. Continuing from his work this thesis aims to 
present simplified architectural explanation of chatbot functionalities to better 
reflect on the technical aspects. This is visualized in figure 1. Each layer is pre-
sented and briefly explained what their function is. It is important to note that 
this is a semi-universal representation of the general functionalities and might 
not reflect actual use cases. Each layer can be designed to fit the purposes of the 
target system better. This can also be expanded to include more minor parts of a 
system, as well compressed to match less expansive systems, like question an-
swering systems (Pundge, Khillare & Mahender, 2016). 

Table 1: Chatbot general architecture 

User interface The interface the user uses to communicate with the system. This can 
range from anything from chat software to command line interpret-
ers. Speech-to-text interpreters can be utilized to provide more usa-
ble and natural interaction with an artificial intelligence system. 
Moreover, speech interfaces play a big role in accessibility (Abdul-
Kader, & Woods, 2015) 

Natural Language 
Processing and/or 
intent classification 
and entity recogni-
tion 

Natural language processing and understanding is covered more in 
depth in chapter 2.3. This layer functions as the processing of a given 
message. There is a multitude of ways to do this, but the aim is to 
provide machine understandable format of the message, being it an 
intent or a numerical vector representation of the message. (Shum, 
He, & Li, 2018; Seneff et al., 1998) 

Dialogue manage-
ment and response 
generation 

Generating conversational responses is key to maintaining human-
like interaction with the chatbot. Response generation layer aims to 
choose an informative and natural response based on the data 
passed to it. (Xing et al., 2017) This is can be considered the “core” of 
a dialogue system, as it serves the functionality of conversation. This 
can be achieved by a multitude of methods, ranging from simple 
rule-based classifications to extensive machine learning models 
(Cahn, 2017). 

Knowledge man-
agement and train-
ing 

Knowledge base can function as “what the dialogue system knows”. 
Knowledge is stored and can be extended to improve the bot’s func-
tionalities. In a domain specific context this can be a combination of 
database connections and corpora, for example. In a general conver-
sational system this information can be more freely scraped to gather 
more dialogue options (Huang, Zhou & Yang, 2007). 

Dialogue manage-
ment 

This can be done by managing the state of the dialogue, and choos-
ing appropriate actions (end, execute function, response) based on 
the state of the dialogue. This part also manages the iterative process 
of conversation. (Bocklisch, Faulkner, Pawlowski & Nichol, 2017) 

  
 



13 

 

2.2 Question answering systems 

2.2.1 Chatbots or QA-systems? 

Question answering system is simpler version of a conversational system, 
where instead of aiming to hold a conversation, the focus is on answering a 
question asked in natural language instead of a technical query (Pundge et al., 
2016). Chatbots also are often prepared for a multitude of tasks that are not 
questions necessarily. These virtual assistants work to fulfill the administrative 
needs of the user instead of just answering questions. While the technology is 
not deemed mature enough yet, there has also a demand found for emotional 
support and companionship using chatbots (Zamora, 2017).  

While the definite terminology and functionality differs from place to 
place when it comes to defining conversational systems, some fundamentals are 
present regardless. Therefore, for this thesis the aim is to maintain general un-
derstanding of the usage and technologies in both without distancing them 
from each other. Moreover, the case study presented later in this thesis lies in 
the gap between question answering system as well as a functional chatbot, de-
pending how the user decides to interact with it. in short, the definition does 
not matter in this scenario since the dialogue management is the defining factor. 
Language processing in larger scale systems usually happens before dialogue 
management, as it is crucial to “understand” what the user’s intention was be-
fore taking appropriate actions. 

2.2.2 Functions of QA-systems 

If the aim is to fetch information from a database utilizing natural language 
queries or questions, these systems can also be called natural language interface 
databases, or NLIBD (Androutsopoulos, Ritchie & Thanisch, 1995). These often 
function in the closed rather than open domain since the data is proprietary and 
structured. These turn the question asked into a database query and work as an 
interface for databases. Other question answering systems might gather their 
data form different sources, such as parsing existing natural language docu-
ments and finding question answering paragraphs form there. Oftentimes these 
function in the open domain by the help of web scraping and existing search 
engines. (Pundge et al., 2016; Soares, & Parreiras, 2018) 

The surge of research and development of QA-systems generally precede 
the surge of that of chatbots and more sophisticated conversational systems. As 
with most AI-technologies, the effects of increased computing power might ex-
plain some of the shift in focus. Additionally, the interest in commercial appli-
cations of chatbots most likely plays a role as well. The research on QA system 
can be still very useful to gain understanding of certain layers of the presented 
architecture (Table 1), mainly on the utilization of NLP techniques and NLU-
parts of the architecture.  



14 

 

3 Natural language Processing 

Natural language processing, also known as NLP, is a research area focusing on 
processing and structuring natural language to be understandable by computer 
systems (Chowdhary, 2020). People communicate in natural language, which is 
called such to make a distinction between other forms of communication within 
information science. “Language” in itself can refer to multitude of program-
ming and assembler languages in addition to spoken languages. Natural lan-
guage is still language after being structured but is no longer ‘natural’ for peo-
ple to use when talking. Natural language therefore refers to the normal, or 
natural way, for people to talk to other people. 

The aim of conversational systems is to narrow down the interaction gap 
between human and computer. However, it is important to understand that 
natural language processing is a much wider paradigm and does not revolve 
solely around user interaction. For this diversion’s sake we will discuss natural 
language processing completely separately to gain an understanding before 
exploring natural language understanding and the usage of NLU in chatbots. 
Moreover, natural language processing is often deemed as artificial intelligence 
even though majority of applications that merely process natural language to 
more structured form, can do it on a simple rule-based, deterministic basis. 

3.1 Natural language processing research 

3.1.1 Early research 

Processing natural language is a task that can be done in numerous differ-
ent ways. Research on different types of processing is not new either, dating 
back as far as the 1940’s. Early work on processing natural language was fo-
cused on machine translations from one language to the other. This, however 
halted for a time due to the difficulty (or rather impossibility) of perfect ma-
chine translations. (Liddy, 2001) Few decades later the focus shifted to more 



15 

 

theoretical approach, and progress was achieved in representing meaning with-
in natural language and making it computationally traceable. While this was 
not enough yet to be easily computational, it spawned additional research to 
represent the syntax and semantics in natural language. (Liddy, 2001) These 
advances were demonstrated for one with the earliest conversational systems, 
such as an early chatbot built to replicate conversations with a patient and a 
psychologist, ELIZA (Weizenbaum, 1966). This early system would just echo 
the users input with a question formatted from it, like a psychologist would try 
to reflect on what the patient is telling them. This is done by recognizing key-
words and decomposing the input. This would be then recomposed by se reas-
sembly rules. (Weizenbaum, 1966) 

In the 1970’s the research continued to gain traction on semantic issues, 
while also dealing with discourse phenomena and communicative goals (Liddy, 
2001). Later this work helped to start the research on generative NLP applica-
tions. TEXT system presented by McKeown (1982) applied relevancy criteria, 
discourse structures and focus constraints to generate English text (McKeown, 
1982). 

These methods and the research in NLP kept gaining more attention later 
on, due to increase in computational power and the availability of text online. 
During the end of millennium, real world applications also started to gain 
ground. (Liddy, 2001) 

3.1.2 Different approaches to NLP in the 21st century 

While the principles stay the same, the use cases and approaches can vary wide-
ly depending on current interests in research, and especially in modern times, 
in business. Early 2000’s and onwards semantic analysis has been in the spot-
light due to applicable use cases in business. Sentiment analysis as a business 
intelligence tool can be applied to a multitude of tasks. Automatically mining 
text to gain insight on areas like customer satisfaction, competitors, and pricing 
can be advantageous to utilize. Risk detection different fields, and even election 
forecasting can be achieved with text analytics. (Sun, Luo, & Chen, 2017) Differ-
ent social medias in the 21st century has provided previously unimaginable type 
of data for opinion mining. 

3.2 Basic structure of natural language processing pipeline 

Most modern applications use similar structure to handle language processing. 
Be it a chatbot, question answering system or a business intelligence software, 
the fundamentals stay similar, at least at the beginning of the pipeline. This also 
represents the definition, or difference, between natural language understand-
ing and natural language processing. A system capable of understanding natu-
ral language will most likely process the text first similarly to another system, 



16 

 

and after preprocessing the understanding might happen with completely pro-
prietary method. Natural language understanding is a subtopic in NLP which 
aims to specify the need to understand the meaning in a text. 

One of the most used and referenced pipelines nowadays is the Stanford 
CoreNLP toolkit (Manning, Surdeanu, Bauer, Finkel, Bethard & McClosky, 
2014) which serves as good point of reference for explaining the structure of 
language processing. This architecture is presented in Figure 1. As the name 
suggests, this is a toolkit of different techniques of natural language processing. 
Each does something different from another. Or in most cases, they can be used 
together to achieve desired results, or a starting point for other analysis. This 
depends on the use case, and it is crucial to know different technologies and 
possibilities so one can choose the most beneficial for one’s cause. The following 
segments explain the different methods and how they generally work. 

 
  

 
FIGURE 1 System architecture of Stanford CoreNLP pipeline (Manning et al., 2014, p.55) 

3.2.1 Tokenization 

Tokenization is the ’basis’ for most text processing tasks. Tokenizer is a 
tool which splits the given text into tokens. In most language processing tasks, 
token is often a single word or split from a sentence or a longer text, example 
shown in Figure 2. What language is being processed determines the tokeniza-
tion rules. While a language like English can bet tokenized to a degree with just 
using spaces and punctuations, other languages are not as trivial and require 
more sophisticated algorithms for tokenization. (Sun, et al., 2017; Straka, Hajic 
& Straková, 2016) In many cases nowadays, this is done by the help of a tree-



17 

 

bank, which is a parsed text corpus with different annotations to help structure 
text. Universal Dependencies (UD) is a project that aims to make treebanks 
more universal with guidelines and collections on how to represent parsed text. 
(Nivre et al., 2016). Files built can be used to train neural networks to perform 
tokenization. Tokenization can also be done to a certain degree with regular 
expression. 

 

 

FIGURE 2 Tokenization of an example sentence, where each block represents a single token. 

Tokenization does not have an absolute right result. The result can vary a 
lot between methods used. But it is important to note that tokenization does not 
provide lemmas or stems, nor does it conjugate verbs. 

Sentence splitting is a technique needed in some cases and can be consid-
ered type of tokenization. Simply put, it splits individual sentences in a corpus, 
and results in type of tokens that each represent one sentence. Same principles 
apply to it as word tokenization, as some languages can be done in simpler 
ways than others. 

3.2.2 Part-of-Speech tagging 

Part-of-speech (POS) tagging is the process of categorizing each word or token 
in a corpus to a certain part of speech, demonstrated in Figure 3. This is an ex-
tremely language dependent task since different languages have different parts 
of speech. Common parts of speeches found in many languages are for example 
noun, verb, adjective, pronoun, and numeral. Depending on the language these can 
extend more above the most common ones. 

Part-of-Speech tagging is not as trivial as tokenization. This is because part 
of speech is ambiguous. This means the part of speech which a single word be-
longs to can vary depending on the context it is used in. Let us take an example 
word, brake. This can be either a noun or a verb, depending solely on the context. 
In a sentence ’The car brakes’ the word is used as a verb. However, in a sentence 
‘The car has brakes’, while being extremely similar, it is used as a plural noun. 



18 

 

What this means to the methods used is more sophisticated statistical, or 
machine learning models are used to achieve precise POS tagging. Similarly to 
tokenization, the UD treebanks aim also to provide data for POS tags. 

POS-tagging has also been researched extensively in the past, and differ-
ent ways of approaching this task has been tried and discovered. Earlier ver-
sions from the 1970’s approached the issue with rule-based systems with lim-
ited results. Later research achieved highly improved results with statistical 
modelling of the contextual dependencies. More precisely the usage of Markov 
Model has been prominent in POS-tagging. Later in the research statistical 
learning, or machine learning models have achieved even better results in POS-
tagging. (Schmid, 1994) Further improvements have been found with improved 
networks (Toutanova, Klein, Manning, & Singer, 2003). Existence of training 
data has improved and made POS-tagging more available to multiple lan-
guages. 

 
FIGURE 3 Part-of-Speech tagged example sentence 

Opposed to tokenization, part-of-speech tagging most often does have a 
right answer. This means accuracy can be measured more consistently. Current 
solutions have seen significant accuracy gains in the past two decades, and ac-
curacies of the state-of-the-art POS-taggers hover around 97% accuracy (Plank., 
Søgaard, & Goldberg, 2016; Toutanova et al., 2003; Schmid, 1994). This however 
does not mean improvements have not happened, they are just more prominent 
in efficiency. 

3.2.3 Morphological analysis, lemmatization, and stemming 

Morphological analysis, or just morphology in linguistics is the study of words 
and meaning, forming, and relations to other words. In natural language pro-
cessing this area of language is approached by lemmatization and/or stemming. 
This is morphological parsing, where individual words are decomposed into 
morphemes. A morpheme is a unit of a word that holds meaning. Most cases it is 



19 

 

either an affix (suffix or prefix), or a stem or a lemma. Stem is the part of the 
word that suffixes and prefixes are attached to. Lemma is form of the word as 
how it appears in the dictionary, or a ‘base form’ so to speak. Earlier presented 
CoreNLP (Manning et al., 2014) produces lemmas, as shown in Figure 1. Lem-
ma and stem are often identical, but not all cases. For example, the word shave 
in the English language would conjugate to forms like shaves, shaved, and shav-
ing. Therefore, the lemma would be shave, while the stem would be shav since 
the affixes are attached to it. 

Lemmatization and stemming are forms of data structuring. They normal-
ize word forms, which can be indexed to improve searches and queries. In some 
languages, for example in a very inflectional language like Finnish, this can 
make a huge difference in the dimensionalities of structured texts, since a word 
with multiple different forms can be normalized into a single point of data. (Ko-
renius, Laurikkala, Järvelin, & Juhola 2004). Whether stemming or lemmatiza-
tion is better for indexing, can depend on the language and the use case. Lem-
matization is often ruled based system since languages and grammar tend to 
work in a rule-based manner in general linguistics. 

3.2.4 Named entity recognition 

Named entity recognition, or often referred to as NER, is the task of recognizing 
named entities in a text. This means real world objects like people, places, 
products, and such. In some definitions named entity recognition also concerns 
numerical units, like numbers, units, and dates (Nadeau & Sekine, 2007). 

Approaches to this problem have varied throughout the years. NER sys-
tems have showed a switch from rule-based systems to different machine learn-
ing solutions. While rule-based systems get good results, it requires a lot of 
work on the system, in a problem where domain specific named entities play a 
huge role. Supervised machine learning methods on the other hand require an 
annotated corpus as a training data. (Nadeau & Sekine, 2007) In more recent 
years, bidirectional long short-term memory neural networks have been uti-
lized to gain better results with less training data required (Lample, Ballesteros, 
Subramanian, Kawakami, & Dyer, 2016). 

Named entity recognition has many use cases in domain specific applica-
tions, localized searches, and general structuring and annotation. This can fur-
ther improve the normalization of structured data mentioned in chapter 2.2.3. 

3.2.5 Syntactic parsing, or dependency parsing 

While the previously presented techniques aim to gather information on singu-
lar words out of their context, syntactic parsing is the process of obtaining sen-
tence-level structural information and parsing it to reflect the syntactic struc-
tures and dependencies of language. Example of a parsed and annotated sen-
tence is presented in Figure 4. This method aims to gather information of a sen-
tence beyond the content of the words within it. This is a central for applica-



20 

 

tions such as semantic analysis. Sentences containing semantically similar 
words can mean wildly different things when structured differently within a 
sentence. (Gómez-Rodríguez, Alonso-Alonso, & Vilares, 2019) Other NLP-
applications benefitting from syntactical parsing are for example machine trans-
lations and grammar checkers. Syntactic parsing is also more often called de-
pendency parsing, based on the way sentences are parsed. Constituency pars-
ing is another way of parsing syntactic information (Gómez-Rodríguez et al., 
2019). Oftentimes syntactic parsing and dependency parsing are used inter-
changeably. 

 
FIGURE 4 Dependency parsing example of a sentence (Gómez-Rodríguez, Alonso-Alonso, 
& Vilares, 2019, p.4) 

This figure shows the grammatical structure of the sentence done by an 
algorithm. It annotates and gives relations in the form of detonator (det), subject 
(subj), adpositional modifier (adpmod), adpositional object (adpobj), adjectival 
modifier (amod), and direct object (dobj). The format these are presented in fol-
low the CoNLL-U format of universal dependencies, mentioned in chapter 2.2.1 
(Nivre et al., 2016). 

3.2.6 Coreference resolution 

In natural language, people often use ambiguous references to entities within 
the discourse rather than repeating the explicit terminology. When two or more 
expressions refer to the same entity, they form a coreference. Coreference reso-
lution is the task of recognizing finding these expressions (Lee et al., 2013). Lee 
et al., (2013) implemented a deterministic algorithm that is present in the 
CoreNLP toolkit which architecture is presented in Figure 1 (Manning et al., 
2014). 

While deterministic approach gained state of the art results, this step of 
natural language processing can be approached also with machine learning 
models. In recent years, the models utilizing neural networks have gained per-
formance increases over deterministic models (Lee, He, Lewis, & Zettlemoyer, 
2017).  



21 

 

Coreference resolution can be very beneficial for tasks aiming for some 
level of natural language understanding. Lee et al. (2013) mentions tasks as 
summarization, question answering and information extraction.  

3.2.7 Other annotations 

CoreNLP introduces couple more steps in their basic pipeline, for example sen-
timent analysis. Sentiment analysis is the process of extracting subjective infor-
mation in a corpus. This can be emotional, personal view or attitude present 
within a text. This can be very useful technique on its own or utilized in certain 
chatbots for example. 

Gender annotation mentioned in the toolkit adds annotations to names 
which tells if the name is considered a female or a male name (Manning et al., 
2014) 

3.3 Usage of NLP 

What does it mean to “use NLP”? The term natural language processing is often 
used, especially in the business worlds, very broadly. As with any complex top-
ic, simplicity means understandability. Moreover, it is often considered a subset 
of artificial intelligence in a sense. While oftentimes NLP tools are utilized in 
applications that are perceived as AI, it is important to note that many features 
of text processing are (or at least can be) deterministic algorithms created by 
smart people instead of smart machines. 

It is important to understand the difference between natural language 
processing and understanding. Processing is the “treatment” of the natural lan-
guage to produce structured, annotated representation of a given text. It is an 
automation task that can be done by a human, but much, much slower. And in 
many cases, this needs to be a professional linguist to achieve reasonable results 
in a task like dependency parsing.  

3.4 Natural language understanding 

Natural language understanding is a subtopic within natural language pro-
cessing with the purpose of finding and understanding or interpreting meaning 
within a text. While it can be considered a subtask in natural language pro-
cessing, NLU often extends on the structuring work of NLP to gain understand-
ing of text. Defining language understanding in general is not an easy feat, since 
natural language hold multitudes of different types of meaning within it. A sys-
tem can be described as soon as it connects given language commands to a pre-
defined task. Ergo, understands the request and acts accordingly. This creates a 



22 

 

large variance between natural language understanding systems, since in a 
simple closed domain system a single keyword recognition is able to under-
stand what the input means. 

As mentioned, language holds different aspects that can be understood. 
Semantic analysis shown in Figure 1 is often considered an NLU task, since it 
aims to find semantic meaning in a corpus instead of predefined grammatical 
structures. 

3.4.1 Aspects of meaning in general natural language understanding 

To better understand these structures of meaning, some NLU system per-
formance metrics are a good approach to find what they measure.  Wang et al. 
(2018) presented GLUE, or General Language Understanding Evaluation, bench-
mark. NLU systems often being heavily domain constrained, GLUE aims to fa-
cilitate research going towards more general understanding models (Wang et 
al., 2018). We can use this work to take a look at what factors should be ex-
pected from a state-of-the-art general natural language understanding system, 
and utilize that knowledge to find what aspects of meaning are these systems 
trying to and/or capable of deciphering. 

3.4.2 GLUE benchmark 

GLUE provides a pre-defined diagnostic dataset to analyze and evaluate 
NLU systems. This is part of the evaluation benchmark they developed to cap-
ture general linguistic phenomena rather than application specific understand-
ing of internal meaning. Diagnostics dataset contains sentence pairs that have 
been manually annotated to reflect a multitude of categories. (Wang et al., 2018) 
These categories are a good reference point to get a general understanding of 
the different aspects that can be used to measure general capabilities of a natu-
ral language understanding system. Wang et al. (2018) present four coarse cate-
gories divided into smaller phenomena. These are shown in Table 2. 

 



23 

 

Table 2: Categories of linguistic phenomena annotated in the pre-defined diagnostic da-
taset of the GLUE benchmark. (Wang et al., 2018, p.4) 

 
 

Lexical Semantics is the analysis of word-level meaning. Lexical seman-
tics is the phenomena of how words relate to each other in terms on negation, 
synonymity, redundancy and such. Additionally, word entailment show rela-
tions where higher-level meaning is interpreted within a word. For example, “a 
car” is a vehicle, while “a plane” is also a vehicle, but a vehicle can not be both 
at the same time. It also covers things like named entities (opened in chapter 
2.2.4) as well as quantifiers, where difference between “many cars” and “no 
cars” is wildly different. (Wang et al., 2018) 

Phenomena within Predicate-Argument Structure are more involved with 
the sentence-level meaning and how the lexical units together form meaning. 
This entails finding and defining core-arguments, possible alternations of sen-
tences and generally the syntactic semantics. (Wang et al., 2018) Simply put, this 
can be thought as the part where we aim to find semantics from the structure of 
the sentence or language syntax so to speak. Some of this play closely with co-
reference parsing (2.2.6). 

Logic can be interpreted almost as mathematical logic, where logical oper-
ations such as conditionals and negations play a major role in the meaning of a 
sentence. Very minor subexpressions change the logical meaning of the sen-
tence greatly. All subcategories in this section are factors that influence the logi-
cal meaning of the sentence in some way. (Wang et al., 2018) For example let’s 
look at quantifications with a similar example as presented by Wang et al. 
(2018): “Some phones have a camera” does not entail “My phone has a camera”, 
while “All phones have cameras” does. The logical semantics change by apply-
ing quantifiers such as “some” or “all” (Wang et al., 2018). 

One interesting aspect from a computational perspective is the 
knowledge. World knowledge and common sense can be reflected in sentences 
where certain logical conclusions can be made based on common knowledge of 
the world, culture, social structures et cetera. (Wang et al., 2018) This means 
that certain structures can be ambiguous, since people tend to drop some syn-



24 

 

tactically crucial information from natural language based purely on the pre-
tense that the listener understands the context surrounding the sentence and the 
world. Considering the sentence “Things are heating up in the parliament” and 
what it means. Objects in the parliament building are not literally getting hotter, 
but rather “matters currently discussed in the parliament are getting more dis-
puted”. 

These examples give a reasonable understanding of the factors that come 
into play when discussing what understanding natural language actually 
means. Processing is a more deterministic process with right answers, and NLU 
is an extension of that. Developing for example a chatbot, a lot of nuances in 
language need to be considered if the aim is to create a natural conversational 
agent. While a plethora of tasks can be achieved with conversational agents 
with relying mostly on structured natural language, more advanced artificial 
conversational agents need to understand these semantic differences, and much 
more. 



25 

 

4 Language processing in chatbots 

While language processing is a vast and complicated study, chatbots can often-
times be much simpler in how they understand the user inputs. Since a lot of 
the NLP and NLU concepts are aimed towards more general processing of lan-
guage, which is often not needed in simpler question answering tasks. This 
chapter takes a look on how prevalent these language processing techniques are 
in different chatbot building tools. 

Language processing in chatbots is not as simple as adding previously 
mentioned processing tasks into a dialogue system. Text processing architecture 
of a conversational agent can, or even has, to do different kinds of information 
extractions in order to keep the conversation active. Earlier shown in table 1, 
intents and entities are mentioned as a core concept for natural language pro-
cessing tasks in chatbots. This chapter will introduce intents and entities better, 
to understand how they tie up language processing and chatbots together. 

The field of chatbots and conversational systems has also changed a lot 
during its lifetime. Chapter 1 on chatbots dives briefly into the technological 
history of earlier chatbots. While advancements have happened from pattern 
and/or keyword matching chatterbots towards more generative natural lan-
guage understanding ones, even in modern field the distinction is not that clear. 
Natural language processing has always been a separate research from chat-
bots, and merely serves as a foundation for dealing with natural language with-
in computer systems. Conversational systems have taken many forms in the 
processing of the user input. This chapter contains review of the different 
methods, and further down takes a better look towards the newer ones, which 
utilize more advanced natural language processing. 

Firstly, this chapter covers reviews on different technologies, and gives in-
troduction on how they work. After that the focus shifts towards dialogue 
structuring and elements of dialogue. Furthermore, we will investigate the ma-
chine learning approaches, and focus more on the modern versions of conversa-
tional systems. 



26 

 

4.1 Review on different technologies in multiple conversational 
systems 

In some parts the subjects presented differ greatly from the natural language 
processing techniques presented in chapter 2. It is important to note the gener-
ality of natural language processing, as it is not a technique designed solely to 
support conversational agents, but to structure natural language. 

Masche and Le (2017) did a comprehensive review on 59 different conver-
sational systems in the past 50 years, starting as early as the ELIZA (Weizen-
baum, 1966), deemed as the earliest chatbot. This can be used as a comprehen-
sive view to multitude of systems, and as a starting point towards deeper dive 
into specific ones. While Masche and Le categorize conversational systems into 
chatbots and dialog systems, they do also discuss how this is not a clear distinc-
tion, but rather to support their review by classifying distinct systems. The clas-
sification is done based on the typical components, where chatbots tend to be 
based on pattern matching algorithms and dialog systems utilize natural lan-
guage understanding concepts (Masche & Le, 2017). Since the aim is to under-
stand the underlying technologies, these are classified in the following chapters 
as pattern matching and NLP-based systems. However, this is neither a clear 
definition between any of the technologies, but rather a way to structure a 
plethora of knowledge into more concise form. 

4.1.1 Pattern matching 

From the simplest keyword matching, ELIZA paved the way for later iterations. 
It matches keywords in the input to a predefined dictionary and applies associ-
ated rule for response. The responses would imitate certain psychotherapists in 
a simple manner, by asking reconstructed questions based on the user input. 
(Weizenbaum, 1966) This type of matching has been used in multiple chatbots 
throughout the ages (Masche & Le, 2017). 

Similar paradigms were used later on, in of the more popular general use 
chatbots of the 21st century, Cleverbot. This chatterbot was originally released 
as Jabberwacke. After rebranding to Cleverbot a chatbot building library Clever-
script (Cleverscript, 2020) was also published. While being amusing, and ex-
tremely successful in the popular culture as well as being scientifically recog-
nized, Cleverscript is still uses a pattern matching paradigm to generate re-
sponses. (Masche & Le, 2017). Both possible inputs and outputs are stored in 
separate lines in the spreadsheet. It can store words and phrases in a spread-
sheet with types of ‘variables’ that can take a place in a sentence. This is best 
understood with an example since it is deceivingly simple. Picture is presented 
in Figure 5 to illustrate this. 



27 

 

 
FIGURE 5 Example of a spreadsheet working as the brain of a bot built with Cleverscript.  
(Fetched from https://www.cleverscript.com/about/ on 27.8.2020) 

The basis is that Cleverscript matches the input text to any predefined in-
put phrase, whilst allowing modification to the individual variables within that 
phrase. This allows more robust use of language to match to the same outcome 
in a very simple way. Learning happens in solution utilizing Cleverscript by 
adding more and more data to the spreadsheet, often from the user inputs. This 
causes the bot to have more possible input-output variations, and more varia-
tions to say those things. 

Chatscript works in a similar manner to Cleverscript. It has internal files 
for transforming inputted words into substitutions to achieve the same as Clev-
erscript, in a sense that it groups different ways of saying certain things to one 
centralized input, and the generates output. Chatscript files also include general 
abbreviations and misspellings and such to act as a “cleanup” of words or 
phrases. (Arsovski, Cheok, & MuniruIdris, 2017) Chatscripts approach to lan-
guage processing is built around rules that create a script. These rules roughly 
simulate some concepts presented in chapter 3.2. 

In addition to Chatscript and Cleverscript, AIML (Artificial Intelligence 
Markup Language) is one of the more popular languages to build a conversa-
tional agent. It is also a pattern matching algorithm with rule scripts, based on 
XML (Extensible Markup Language). (Masche & Le, 2017) The ease of use and 
the simple format and implementation has made AIML one of the most popular 
languages to build chatbots (Arsovski, Cheok, & MuniruIdris, 2017). 

All of these are examples of pattern matching algorithms to match in-
putted natural language text into a predefined ‘category’. This category then 



28 

 

has rules for the output (e.g. response or action) or it is passed to a dialogue 
engine. 

While these are simpler than natural language processing in chapter 3.2, 
they effectively do the same thing, structure natural language into a structure. 
This is an effective way to build conversational systems, especially for more 
simple general use. Many of these solutions have also won the Loebner prize 
even in the recent years (Masche & Le, 2017). Loebner prize is awarded annual-
ly to a computer program that is considered by the judges to be most human-
like. It is based on the work of Alan Turing and the Turing test. (Mauldin, 1994) 

4.1.2 NLU-based systems 

While it has been mentioned previously, natural language understanding is not 
a clear distinction towards a certain technology. This terminology is used in this 
case to differentiate deterministic pattern matching systems from generally 
non-deterministic systems, where the outcome is governed by mathematical 
machine learning algorithms. 

Preprocessing is the task of processing the text into a structured format, or 
in other words, natural language processing. This is oftentimes done in conver-
sational systems as a mean to formatting the input before feeding it to a statisti-
cal algorithm. Generally chatbots do not utilize every part of the pipeline pre-
sented in chapter 3.2, but are found to utilize mostly tokenization, Part-of-
speech tagging, sentence detection (a form of tokenization), and named entity 
recognition (Masche & Le, 2017). 

Masche & Le (2017) present natural language understanding as the next 
step in their review for these types of systems. Latent Semantic Analysis based 
on a Vector Space Model was used in multiple conversational systems. Term 
Frequency-inverse document frequency techniques (TF-IDF) was utilized in one. 
(Masche & Le, 2017). These models and methods will be presented in more de-
tail later on. 

4.1.3 Language tricks and other features 

According to Masche & Le (2017) many of said chatbots used different language 
tricks to better succeed in said tests. Canned responses are used to hide the fact 
that user asks questions not anticipated in the knowledge base, by giving open 
ended answers. Creators have also given the bots personal history, which 
enriches the social background of a bot, while being completely fictional. Open-
ended statements that do not really mean anything, and occasional misspellings 
and simulated keystrokes aim to further humanize the chatbot. (Masche & Le, 
2017) 

Additionally, some special features can make the bot more human. Some 
systems are built to learn facts about the user from the conversation and use it 
later. Some systems also recognize gibberish or nonsense and can respond ap-



29 

 

propriately. Animations, voice, and facial expressions have also been utilized to 
make the agent appear smarter than it might actually be. (Masche & Le, 2017).  

4.2 Dialogue management 

Understanding the user utterance is one thing, while deciding how to react to it 
is another. Dialogue management refers to the process of deciding how to pro-
ceed with the conversation after the user. This part can be referred to as dia-
logue engine. 

Role of a dialogue manager in a conversational system architecture is to 
guide to conversational to natural and productive path (Goddeau, Meng, 
Polifroni, Seneff, & Busayapongchai, 1996). This can mean various different 
things in different scenarios. More common actions the dialogue manager 
should try and to is to prompt or guide the user to keep within the boundaries 
of the domain and capabilities (Goddeau et al., 1996). This can mean suggesting 
certain actions, keeping the information and goal in the dialogue, or to further 
ask for clarifications or corrections from the user when needed. 

Figure 6 shows a general structure of dialogue management, presented by 
Williams, Raux & Henderson (2016). While it is built around speech dialog sys-
tems, chatbots function in a similar manner. For example Rasa builds around 
similar architecture, where dialogue states determine the dialogue policies 
(Bocklisch, Faulkner, Pawlowski, & Nichol 2017), pictured also in Figure 7. 

 
FIGURE 6 Example of a speech dialogue system showing the Dialogue management func-
tion (Williams, Raux & Henderson, 2016, p. 5) 



30 

 

  

4.2.1 Dialogue State 

Quite often dialogue management is achieved by Dialogue State Track-

ing. Dialogue state tracking is used to estimate the current goal or state of the 
conversation in relation to the discourse that has happened already. Dialogue 
state tracker therefore is a function of the inputs and information passed on by 
the NLU-engine, where the output is the estimate of the dialogue state within 
the conversation. (Williams, Raux & Henderson, 2016) This is the passed on to 
dialogue policy and response generation. Dialogue state tracker combined with 
dialogue policy can be considered a dialogue manager. 

Dialogue state manager achieves done properly achieves more natural 
conversation following an understandable pattern. Two prominent ways to 
achieve dialogue state tracking can be seen in finite state-based systems and 
frame-based systems (Masche & Le, 2017). Finite based systems follow a pre-
defined with certain actions prompting transitions to a different path in the dia-
logue-graph. Frame-based approaches utilize a frame like state, where a frame 
is a form containing slots. These slots are filled by asking more information 
from the user. A state is recognized, and by prompting the user to give out 
more information needed to achieve the goal, the conversation flow is not fixed 
like in the finite-state approach. (Masche & Le, 2017) 

As with the user input interpretation in chapter 4.1, dialogue management 
can be done in a generative (statistical learning) way, or by hand-crafted rules 
(Williams, Raux & Henderson, 2016). Hand-crafted rules gained the best per-
formance early on, while generative models came more prominent with the in-
crease of computing power. Typically dialogue states can be modeled as a 
Bayesian network, where dialogue state is in relation to system action, user ac-
tion, and preprocessed input result. The idea here is to apply a distribution to 
all possible to possible dialogue states, which is then iteratively updated when 
new actions are produced. (Williams, Raux & Henderson, 2016) 

This, and most other systems aim to train a classifier that encodes dialogue 
history into the training to teach the classifier. This is to maintain the conversa-
tion in the same topic and to gain more information on it to achieve the user 
goal. In addition to Bayesian approach, Markov models, Conditional Random 
Fields models, and recurrent neural networks have been applied to dialogue 
state tracking with success (Williams, Raux & Henderson, 2016). 

4.2.2 Dialogue policy 

Dialogue policy is a part of the architecture that determines the next action. 
Dialogue state tracker provides the dialogue policy with a state containing cur-
rent knowledge gathered from the conversation and the situation, and dialogue 
policy decides further action based on the information passed in the state. If the 
state needs more information, the dialogue policy can decide to ask more in-



31 

 

formation from the user. If enough information is passed to reach the goal, the 
dialogue policy can decide to go on and represent information from a 
knowledge base, and ‘finalize’ the conversation. 

The definitions between dialogue state trackers, dialogue policies and dia-
logue managers vary significantly between different systems and different liter-
ature. It is important to note that not all systems follow this kind of structure, 
and they may utilize elements of a certain paradigm and not the others (Masche 
& Le, 2017).   

 

4.3 Response generation 

One part of the presented modular architecture in this thesis is the re-
sponse generation. This part is responsible for choosing the response given to 
the user. This chapter investigates the technologies of response generation. 
Since oftentimes conversational agents are built in a task-oriented way, the 
agent’s function is to respond to the users’ questions and needs. Therefore, just 
responses alone define most of the conversational agents’ interactive “lan-
guage” and present a big role in the believability and the experience of using 
the conversational system.  

As is the case in many of the parts in conversational systems, response 
generation can be a scripted information retrieval system or a smarter genera-
tive model. Both serve a function in conversational systems. More task-oriented 
question answering systems may find the best outcome with a retrieval models, 
whereas generative models are usually used to achieve more natural, human-
like conversation in a general domain. 

4.3.1 Retrieval models 

Information retrieval-based models aim to find the most relevant answer in a 
predefined repository (Yang et al., 2019). Repository could either be a historic 
repository of conversations or a predefined knowledge base. Retrieval model 
does not always mean pattern or keyword matching but can be done by neural 
rankings as well (Yang et al., 2019). The definition is rather a question about 
what response in a pre-defined corpus is given with these sets of inputs. The 
inputs depending on the system can mean an unprocessed input sentence or a 
finely processed vector representing information gathered by parsing with 
NLP, as well as contextual information from the dialogue engine. Main differ-
ence how retrieval models differ from generative models is the pre-defined cor-
pus of response candidates. Thus, retrieval-based models lack flexibility of re-
sponses due to being predefined to an extent, while gaining advantages in di-
versity and information richness (Yang et al., 2019). Even the best matching re-



32 

 

sponse may not be a good response, if the question is out of the domain of the 
repository. (Song et al., 2018) 

4.3.2 Generative models 

Generation-based models aim to find the ability to generate coherent new re-
sponses within the context. Generative response generation systems tend to be 
used in more chatter-focused chatbots, due to their ability to create more di-
verse and coherent responses while lacking in ability to include contextual in-
formation. (Yang et al., 2019; Song et al., 2018) 

According to Song et al. (2018) a typical way to achieve generative re-
sponse generation is to use seq2seq model. This Sequence-to-Sequence model is 
constructed by using to recurrent neural networks as the encoder and the de-
coder. “The encoder is to capture the semantics of the query with one or a few 
distributed and real-valued vectors (also known as embeddings); the decoder 
aims at decoding the query embeddings to a reply.” (Song et al., 2018, p. 1) 

4.3.3 Hybrid 

To achieve the pros of both approaches and to limit the cons, recent years have 
spawned efforts to create systems that utilize elements from both types of mod-
ules. (Yang et al., 2019; Song et al., 2018). Song et al. (2018) present a model 
which first uses retrieval system to choose the candidate responses from a re-
pository. For those candidates, each one is integrated into the generation mod-
ule to enrich the meaning of generated responses. These enriched generated 
responses are re-ranked and evaluated with additional retrieved candidates, 
and then given as the response. In this case, the response could either be en-
riched generated on or a purely retrieved one. (Song et al., 2018) 

Yang et al., (2019) propose a similar model. But instead of enriching gen-
erated data, they apply more care into both models, retrieval and generation. 
Both models produce candidate responses which are then re-evaluated, and the 
best response is the final system output. (Yang et al., 2019). Both hybrid models 
presented tend to outperform non-hybrid approaches (Yang et al., 2019; Song et 
al., 2018). 

4.4 Levels of dialogue 

As stated previously, the aim of natural language processing (and oftentimes 
natural language understanding), is to structure unstructured language into a 
usable format. User input in modern chatbots are generally structured into in-
tents and entities (Braun, Mendez, Matthes, & Langen, 2017). However, these 
are not the only usable and classifiable information within dialogue. Especially 
older systems, and nowadays more complex general use chatbots might classify 



33 

 

parts of the conversation with dialogue acts and goals. Both of these represent a 
higher level of classification. Figure 6 represents examples of some of the possi-
ble classifications. While being an image of a certain program, it highlights 
some parts that are present in most modern chatbots, such as intents. Most of 
the prominent chatbot development platforms use intent and entity classifica-
tion (Braun et al., 2017) 

 

 
FIGURE 7 Dialogue elements represented in Rasa (Fetched from 
https://rasa.com/docs/rasa/dialogue-elements/dialogue-elements/ on 25.8.2020) 

It is important to note while discussing classification, that not all classifica-
tion is necessarily computational. Meaning some of the concepts we look at are 
to better understand the aspects of dialogue withing chatbots, rather than find-
ing ways to optimize the understanding. However, most things within this 
chapter focus on the computational ones. 

4.4.1 Intent 

While talking about chatbots and conversational agents, intent is the keyword 
one will face first when developing their chatbot. Intent is the goal, meaning or 
aim of the input. Intent is the classification given to an input through the chat-
bots engine that often determines the action or response the chatbot is pro-
grammed to give. These are often programmed manually, and they determine 
the bot’s capabilities. As seen in figure 5, the user input is classified as com-
pare_prices. This intent with some additional information is passed on to a dia-
logue engine and appropriate action is taken. In this case, a comparison of pric-
es.  

Intent classification is something to be discussed later, since in many cases 
it can be considered the ’brain’ of the system. Especially when looking at ma-



34 

 

chine learning solutions within chatbots, intent classification is the core problem 
faced in optimizing the bot.  

4.4.2 Entity 

Entities can be considered modifiers to the intent. These give additional infor-
mation to the response generation or dialogue engine. Entities can be almost 
anything within the input that give more information to give the right answer 
or to continue within the right action. Figure 6 gives an example input with 
more than one entity the better understand the function. 

 
FIGURE 8 Example of entities within user input 

In this example the user asks for information about flights. While the in-
tent in this example could be classified as for example find_flight, the entities 
give additional information about the departure destination and the arrive des-
tination. If this interface were connected to a flight search engine, it could fill 
those needed fields and complete a search. It could either then proceed to show 
results or ask for additional information. This is determined by the response 
generation. If the user were to give a timeframe for the flight, it could be classi-
fied also as entity, since it gives additional information to the intent find_flight.  

As with intents, entity classification is a text processing task, and the actu-
al process will be discussed further in this thesis through examples. 

4.4.3 Dialogue act 

One prominent way of giving natural language some form of meaning within 
the context of conversation, is to assign a given input (phrase, sentence) into a 
dialogue act.  

Dialogue act is a sentence-level unit of what the function of the sentence or 
utterance is. This classification can include categories like question, statement, 
hesitation, and greeting. Therefore, instead of context or intents, dialogue act is a 
classification for the discourse structure. (Stolcke et al., 2000) This classification 
can be used to keep to conversation flow concise. Chatbots could utilize dia-



35 

 

logue act classification to narrow down the possible discourse options, or to 
add human-like features into the conversations. Classifying whether an input 
sentence is acknowledging something or asking something and acting accord-
ingly can determine a lot how the chatbot is being perceived. 

In Figure 5, dialogue act is referred to as Dialogue element. While Rasa pic-
tured in the figure does not classify dialogue acts to the dialogue engine to pro-
cess1 the figure shows example of this, more to the context of understanding 
and communicating dialogue in general. To further understand dialogue ele-
ments in the context of common discourse, figure 9 shows an example by 
Stocke et al. (2000). This shows some common ways to classify dialogue acts. 
However, they are not the only way, and dialogue acts can be determined to 
suit the applications needs (Stocke et al., 2000). 

Noteworthy is also the inclusion of acts such as abandoned and appreciation. 
These do not necessarily add any semantic meaning to the conversation but 
may be beneficial to achieving more human-like conversation, especially in 
chatbots that utilize voice recognition instead of text as the main source of user 
input.  

 
FIGURE 9 Dialogue act classification in a casual spoken conversation (Stocke et al., 2000, p. 

340). 

4.5 Different languages in conversational systems 

So far natural language has been discussed in a very general form in this thesis. 
But as anyone can understand, people communicate most naturally with their 

 
1  Rasa passes dialogue act type classifications as intents. 

https://rasa.com/docs/rasa/dialogue-elements/dialogue-elements/  

https://rasa.com/docs/rasa/dialogue-elements/dialogue-elements/


36 

 

native language. How does this affect the language processing in conversational 
systems? Different languages in natural language processing were briefly men-
tioned in chapter 3.2, but it does not really answer this question. Why is this 
factor often not discussed in the literature? 

For natural language processing pipelines, the language absolutely mat-
ters. This is exactly what universal treebanks and dependency parser are creat-
ed for, discussed briefly in chapter 3.2.1. Good thing about the pipeline present-
ed is that proper tokenization and part-of-speech tagging makes the rest of the 
tasks more trivial. The general way how languages differ are already solved in 
the early steps, which makes the consequent tasks rely on already structured 
information. 

As discussed in chapter 4, chatbots and conversational systems often steer 
away from the later steps, and sometimes do not apply natural language pro-
cessing tasks at all. For example, the pattern matching algorithms or generative 
end-to-end models in chapter 4.3 do not really care about the language in any 
way. Additionally, the architectures used in the most popular modern build 
tools, such as Rasa do not rely heavily on the language or are built with pre-
packaged dependencies, or other type of support. This makes sense in commer-
cial products. 

Case study presented in this thesis is a conversational system built on the 
Finnish language. This example provides more insight into this issue. There we 
will look at how this specific instance handles a different, fairly marginal lan-
guage.  

 



37 

 

5 Chatbot development tools 

As for any general application, there is a multitude of development tools to 
achieve the goals. These tools include names such as Rasa, Googles Dialog Flow 
and Wit.ai, Jarvis et cetera. These vary between how they are structured and 
utilized. Some are designed to be simple building tools with graphical user in-
terfaces for people with no development background, while some are more 
technical software libraries to give more control. 

This chapter takes a deeper dive into the technologies and software tools 
based around building a chatbot. Chapter 2 presented a general flow of a natu-
ral language processing pipeline, and chapter reviews different methodologies 
to achieving language processing within chatbots. This chapter aims to combine 
the two and tries to find the connection of NLP and NLU techniques in envi-
ronments currently used in chatbot development. This is to gain an idea on 
what is the situation within commercially used conversational agents, and how 
they apply the previous knowledge in chatbots. 

5.1 Review on the performance of modern development tools 

Braun, Mendez, Matthes, & Langen (2017) present a very usable research on 
evaluating the different technologies within a select group of chatbot building 
toolkits. We can use this as a basis for seeing how they differ in their usages, 
and after that take a deeper dive into a select few. Braun et al. (2017) take a simi-
lar attitude towards selecting the evaluated NLU services; the most popular 
ones to use. In their research they chose LUIS, IBM Watson Conversation, 
API.ai, wit.ai, Amazon Lex and Rasa. Most of them follow the same structure of 
classifying input text to intents and entities. (Braun et al., 2017) Table 1 in chap-
ter 1 shows the general structure and architecture. While Braun et al. (2017) pre-
sent a slightly varying generalized structure (Figure 10), the same principles 
apply. 



38 

 

 
FIGURE 10 Generalized architecture of select chatbots (Braun et al., 2017, p. 176) 

While a multitude of different architectures and techniques have been pre-
sented in this thesis so far, one can start to see similarities in the generalizations. 
While the terminology differs from study to study, similarities and connections 
are very present in architectures. Figure 10 shows dialogue management as dis-
course management, response generation as a combination of response retrieval 
and message generations, and NLU as request interpretation and analysis. Que-
ry generation in Figure 10 can be thought of as generating the intent-entity 
structure based on the analyzed input text. 

Braun et al. (2017) present three hypotheses on the evaluation of the NLU 
services. Their performance varies between services, commercial ones perform 
better, and the quality of the labels are influenced by the domain. These were 
tested with two separate corpora of questions annotated with entities and in-
tents. First hypothesis was supported, and great variance was found in the 
evaluation. However, due to Rasa performing extremely well made the second 
hypothesis (commercial services being better) unsupported. Regarding the third 
hypothesis the answer was not as clear: “although the  domain  influences  the  
results,  it  is  not  clear whether or not it should also influence the decision 
which service should be used” (Braun et al., 2017, p. 180) 

This type of research gives a good baseline for more detailed research. As 
Braun et al. (2017) mention in the paper, the producers tend to be secretive 
about their technologies. Therefore, it is beneficial for the research to look more 
deeply into the ones that do, mainly open source ones. In this case, this means 



39 

 

Rasa. And as can be seen later, Rasa tends to closely follow a very generalized 
architecture found in many studies and can be programmed to utilize multitude 
of different techniques presented in this thesis. While complexity does not al-
ways include better results, in the context of research on technologies, this is the 
best baseline for modern development tools. 

5.2 Popular modern chatbot frameworks 

Actual statistics were not found to determine the most popular frameworks 
used nowadays. A simple web-browsing was conducted to get an idea on what 
are the prominent ones. Additionally, the aim is to present the ones that pro-
vide the users enough information about the technologies behind the frame-
work. Since chatbots have become a commercial success, the technology giants 
have taken it under their wing to provide solutions to the market. Problem with 
this for research is the secrecy of the backends, since a lot of them work as a 
cloud-based solution. These are often inclusive development suits, where 
graphical user interfaces are provided for non-technical people to develop chat-
bots. These kind of general functionality platforms are not in the interest of this 
thesis, since the technologies and techniques matter, not the functionalities. 

All this considered, it is important to understand the business needs in re-
lation to technologies. While certain algorithms mentioned previously might 
achieve better results on their own, that does not make them suitable for devel-
opment in many cases. The general end-to-end model seq2seq has achieved out-
standing results in input-based response generation. This might not necessarily 
suit the end goal of a development process. Chatbots tend to be built for do-
main specific applications with very specific outcomes or answers from an ex-
isting knowledge base. Modularity and modifiability get and advantage over an 
accurate end-to-end model. 

While being apparently popular choices in the business world, not much 
literature is based on actually verifying the performance of different tools. In 
addition to Braun et al., (2017), in 2018, Canonico and De Russis (2018) conduct-
ed a critical review on the most prominent chatbot building tools provided by 
the big technology companies. This review included six of the biggest ones; 
Google’s Dialogflow, Facebook’s Wit.ai, Microsoft’s LUIS, IBM Watson Conversa-
tion, Amazon Lex, and Recast.ai. (Canonico & De Russis, 2018) These are all simi-
lar cloud-based platforms utilizing machine learning algorithms in their NLU 
tasks. They also provide a multitude of integration and development tools to 
choose from. These platforms also rely on intents and entities2 (Canonico & De 
Russis, 2018; Braun et al., 2017). The results are varying, partly dependent on 
the compared tools, but also on the methodologies. Canonico & De Russis 
(2018) base their comparison mostly on the functionalities and intent recogni-

 
2 Amazon Lex does use intents, but entities are presented in a different manner and with 

different terminology slots (Braun et al., 2018; https://aws.amazon.com/lex/) 

https://aws.amazon.com/lex/


40 

 

tion, Braun et al. (2017) composed a more detailed comparison with different 
entities and corpora. 

It is inconclusive on what is the best tool to build chatbots, and multiple 
factors affect this. To better get an idea of the “shared functionalities” within the 
modern tools, some are presented here. Dialogflow gives a good documentation 
on their functionalities, while Amazon Lex uses a differing structure form the 
norm. Later Rasa is explained in greater detail to support the case study, and it 
being the most reflective of different methodologies possible. 

5.3 Dialogflow by Google 

Dialogflow appears to be one of the most prominent search results when look-
ing at adequate and popular chatbot development platforms. Built around 
Google cloud platform, it provides a platform for building different types of 
conversational agents. Additional functionalities include visual builder, cross-
platform support and collaborations in the Google Cloud environment 
(https://cloud.google.com/dialogflow). Dialogflow is divided into Dialogflow 
ES and Dialogflow CX, where CX is the more advanced tool. 

Dialogflow names the NLU core as an “agent”. Not much is told in the 
documentation about the natural language understating of Dialogflow. It uses 
machine learning algorithms to train a classifier to classify the end-user input 
into an intent. Some additional settings are included such as spell correction 
and classification threshold, as well as the ability to train multiple agents to a 
single application. 

Dialogue management is done as “flows” in Dialogflow. Flows are prede-
fined graph-like structures determining the conversation path. In combination 
with Pages which correspond to states in the general literature, Dialogflow han-
dles the discourse structure. State handlers change this state by looking at factors 
within a page and giving responses that might change the state to another. 

Dialogflow uses intents and entities in a similar manner as presented in 
chapter 4.4. Intent is the main way to categorize or structure the end users in-
put. When an input is given, the agent compares the input to the training 
phrases and gives out the best match. It gives intents a confidence score be-
tween 0 and 1, and if the threshold provided in the agent settings is met, a 
match is provided. The developer can train the agent to match intents by 
providing training phrases, which can also be annotated with certain words to 
match entities. Dialogflows machine learning automatically extends the intent 
classification set based on provided training phrases. Dialogflow ES uses both 
pattern matching as well as machine learning algorithm to match inputs to in-
tents. 

Dialogflow provides custom and predetermined entities. Predetermined 
entities represent the most common types, such as dates and times. Regular ex-
pression entities are supported for cases where specific term recognition is not 

https://cloud.google.com/dialogflow


41 

 

suitable. Additionally, fuzzy entities provide better matching for multi-word en-
tities to match same entity with varying words representing it. 

5.4 Amazon Lex 

Using the same engine as the popular personal assistant Alexa, Amazon Lex 
utilizes at least seemingly simpler structure compared to the traditional intent-
entity structure, present for example in Googles Dialogflow. As Braun et al. 
(2017) found, Lex veers away from this structure compared to other solutions 
by large providers, by not utilizing entities. This is supported at the time of 
writing this, according to Amazon (https://aws.amazon.com/lex/).  

While this is true, Amazon still uses intents as their main way of classify-
ing user utterances. And entities are not forgotten, but rather replaced by slots. 
Slots work similarly to entities and states combined, where slots present a place 
in an intent to fill. Additional features include integrations with Amazon AWS 
Lambdas, and intent chaining. Intent chaining with slot fulfillment appears to 
achieve similar outcome as entities and state management. 

 

5.5 Rasa 

Rasa is an open source natural language understanding and chatbot 
stack/toolkit. It includes Rasa Core and Rasa NLU. Rasa Core functions as the 
dialogue engine, while Rasa NLU is the engine behind the natural language 
understanding. This division is done to enable non-academic developers with 
little experience in textual analytics to build chatbots with Rasa without con-
cerning themselves with the NLU engine. (Bocklisch, Faulkner, Pawlowski & 
Nichol, 2017) 

5.5.1 Rasa architecture 

Rasa uses a modular architecture to ease the integration of separate sys-
tems. This means the Rasa Core and the NLU motor can be accessed separately 
through exposed HTTP APIs. (Bocklisch et al., 2017) High level architecture of a 
Rasa system is pictured in Figure 1. In this figure the Interpreter works as the 
NLU engine, and it extracts structured information from natural language mes-
sage. Tracker maintains the conversation state. Policy receives state of the con-
versation form tracker and decides what action to take. Action is executed and 
logged to the tracker to keep state. Action can be a message to the user, or 
something else like ‘listen’. This is iterative process keeps repeating throughout 
the conversation with the bot. 

https://aws.amazon.com/lex/


42 

 

 

 
FIGURE 11: Rasa architecture 

In addition, Rasa includes a paid enterprise version called Rasa Platform 
that provides graphical user interfaces for developing, analyzing, and shipping 
chatbots through Rasa. 

5.5.2 Rasa NLU 

The natural language understanding module in Rasa, the Rasa NLU, is a collec-
tion of machine learning and natural language processing API:s and compo-
nents. These coupled together form pipelines that can hold different steps of the 
NLP process. Part of developing and training the chatbot is to choose an appro-
priate pipeline and components for the need. Rasa documentation helps with 
this and recommends certain ones for general purpose chatbots. 

Rasa NLU building follows roughly the general structure presented in Ta-
ble 3. We can compare these to the concepts presented in section 2 and see how 
natural language processing techniques are used to develop modern chatbots. 

Table 3: Parts of the Rasa NLU pipeline 
Pipeline Section Explanation 

Word Vector Sources These components contain pre-trained models to use 

Tokenizers Similar as explained in section 3.2.1. Gives the tokens of 
the input to the next part of the pipeline. 

Entity Extractors Entity extractors extract entities, such as person names or 
locations, from the user message. Similar to NER present-
ed in section 3.2.4 

Text Featurizers Returns the feature vectors of the input for the classifiers 
in the pipeline. Feature vector is a numerical representa-
tion of the information that can be fed to the classifier.  

Intent Classifiers This part of the pipeline is a machine learning model to 
apply a predefined intent(s) to the given input/feature 
vector 

Policy-pipeline  Rasa Core. Separate pipeline to manage the dialogue to 



43 

 

the appropriate response or action.  

  
 

Rasa is a development suite for chatbots. This means it utilizes multiple 
separate libraries to complete the language processing. For example the pipe-
line can comprise of multiple different providers for each of the NLP steps de-
scribed in chapter 3.2. Rasa holds many different tokenizers for start. These are 
provided partly by existing NLP libraries or models, like SpaCy and ConveRT. 
It also includes different tokenizers out of the box, like white space tokenization 
for general use, or Jieba tokenizer for the Chinese language. (Rasa Technologies, 
2020) 

While we can see some concepts presented in chapter 3 appear also in the 
Rasa NLU pipeline, most of them do not necessarily add any value to a natural 
language understanding task and are therefore not supported by default. One 
can still develop and add custom components to the pipeline. For example, sen-
timent analysis. In most cases, knowing the sentiment does not add any signifi-
cant value to a general use chatbot, but in certain cases it can be programmed to 
lead into a different dialogue path depending on what the user is “feeling”. 



44 

 

6 Case study: Methodology, organizations, and the pro-
ject 

Literature review so far has taken a deep dive into the inner workings of con-
versational systems. Going all the way from text processing to different ap-
proaches to achieve natural language understanding in chatbots, it can be de-
duced that the field of conversational systems is far and wide. Original aim was 
to gain a solid view of an architecture and a best practice for building chatbots. 
However, this turned out as an impractical task due to the sheer amount of dif-
ferent views and approaches. As it often stands out, the research world takes a 
different approach to certain concepts from is present in the business world. 
This can be seen clearly in the basic architectures, where commercial systems 
designed to be built around the customer’s needs are heavily modifiable, easy 
to understand architectures. While research aimed to create the most accurate, 
human like conversational agents are starting to use end-to-end architectures or 
are relying on copious amounts of crowd-sourced data. 

A case study is conducted for better understanding how conversational 
agents can be developed to process the input into a usable form. This chapter 
presents the case study, participating organizations, and the research methods 
in a brief overview. Chapter 6 presents the study and findings in more detail.  

6.1 Research methods 

This study is conducted as a case study. This study is conducted in two inter-
connected parts: A document review and a theme interview based around it, 
and a code analysis. Document review is conducted around all documentation 
present in the project, including source codes and project-related documents 
such as contracts and guidelines. Based on the findings of the document review, 
an interview is conducted to get additional insight on design choices and un-
clear concepts or factors within the development process. This gives a baseline 
to read and understand the code base. With the help of debugging tools in Vis-



45 

 

ual Studio Code and Rasa, more insight can be gained on the text manipulation 
that happens within the system. 

According to Runeson & Höst (2009), a case study is an empirical research 
method that aims to “investigate contemporary phenomena in their context” 
(Runeon & Höst, 2009, p. 134). This definition within its context is the guideline 
used for this thesis. Same research provides more defining aspects and guide-
lines for a case study conducted in software development. This study also raises 
other factors that make a good point for a case study, which include multiple 
sources of evidence as background as well as unclear boundary between phe-
nomenon and context. (Runeson & Höst, 2009) 

Case study often utilizes elements of other research methods. Each ele-
ment has its purpose and fit a different scenario or research question. The pur-
pose of this study is to find out what is happening and gain new insight, as well 
as portraying a phenomenon in a situational context. This makes this case study 
exploratory and descriptive. (Runeon & Höst, 2009) 

As the literature review shows, no simple answer is found and a general 
lack of standards and definitions make it difficult, if not impossible to gain a 
generalizable answer based on the question “How do digital conversational 
agents process language and how do they understand it?”. Therefore, a natural 
context around the development is suited to help the study of this question.  

6.2 Participating organizations 

6.2.1 Gofore Inc. 

Gofore is a Finnish consultancy company, specializing in the digital transfor-
mation process of clients across different industries. It provides experts in dif-
ferent technical fields to conduct development projects. Gofore provides differ-
ent information system solutions, as well as multiple different services around 
them, such as design, project management, service- and systems architecture. 
Both private sector and public sector are represented in the client base. Gofore 
is a publicly listed company with currently over 600 employees, mainly in Fin-
land. 

For this case, the focus is on an outsourced design and development pro-
ject in the public sector. Gofore provides 3 consultants for this project in the 
span of several months. At the time of research, the project is ongoing, and de-
velopment is happening all the time. A snapshot of a current version is used for 
consistency’s sake throughout the code-analysis 

6.2.2 Municipality of Laukaa 

Laukaa is a municipality in central Finland, with a population of close to 19 000 
in 2018. Municipality is run by a governmental organization consisting of the 



46 

 

municipal council, municipal government, and the mayor. Under these gov-
ernmental powers, different service sectors. Service sectors prepare proposals 
on rulings, while the governmental organization implements them. (Laukaa, 
2020) 

These service sectors represent different sectors within the municipality, 
out of which one part consists of the financial management. Financial manage-
ment supports the municipal government by providing different services to 
different parts of the governmental organizations. These services are related to 
things like accounting, transactions, and procurements. 

6.3 Project summary 

6.3.1 Planned functionalities in short 

This project aims to provide the municipality of Laukaa’s financial management 
a digital assistant to support their information management. This conversation-
al bot aims to facilitate the search and utilization of existing financial infor-
mation. Additionally, the project provides a system independent and repro-
duceable model for similar development for other municipalities in Finland.  

The function of the bot being developed is to provide a wide range of do-
main specific information to the personnel of the financial management team. 
This information includes information about cost centers, their financial situa-
tion in the form of reports, assets, predictions, and comparisons. Different fi-
nancial plans of the cost centers are provided to support more detailed usage. 

Invoices and purchases form another big part of the provided information. 
Data is provided about different providers and their collaborations with the 
municipality, as well as invoices that are connected to them. 

Certain alerts are designed to further improve the idea of a “digital assis-
tant” that helps the employees of financial management to lead and make deci-
sions based on information. Alerts are made for example about significant dis-
parities in certain comparisons, or if there are invoices to check. 

The digital assistant is integrated to Microsoft Teams communications 
software. This will be the main platform for utilizing the chatbot. 

6.3.2 Project development in short 

The project is completed throughout the year 2020, in close collaboration with 
the financial team and the development team. The small development team 
consists of 3 experts in different areas, such as project management, infrastruc-
ture, data analytics and software development. Close collaboration with the 
financial management team is crucial to garner the domain knowledge needed 
to build a digital assistant that answer the real needs of the end-user. 



47 

 

Project is managed as an agile software development project, following 
the SCRUM-framework (Schwaber & Beedle, 2002). Assistant is developed in an 
iterative process to periodically provide the customer with testable part of the 
software. 

The chatbot is built with Rasa framework and is written in Python pro-
gramming language. The software is deployed to a proprietary server of the 
customer and is ran in containers utilizing Docker. Source code version control 
is handled with Git, and the remote is hosted in Giltab. Gitlab also functions as 
the project management and documentation platform for the development pro-
cess. The financial data is managed by Pro Economica software provided by an 
external organization. From there it is exported to a separate database to be uti-
lized by the chatbot. For this research, a development name “Laubot” is used 
throughout to refer to the system which is being developed. 



48 

 

7 Case Study: How does Laubot process language? 

 
As mentioned in the previous chapter, this study is conducted in roughly two 
parts, with the aim to answer the question “How does a chatbot process lan-
guage?”. First part will be conducted as a review on the existing documenta-
tion, which mostly consists of the source code of the software being developed. 
This part also includes a non-structured interview to better understand and 
gain insight on the documentation. The second part is the in-depth code review 
including local running and debugging the code to gain access to the memory 
slots used by the software. 

The source code review will then follow a structure through examples. An 
example phrase is presented, and through code references and debugging tools 
we will look what manipulation or processing is done to the text through what 
means, and how it affects the outcome. In addition to the source code, this 
study heavily relies on the documentation of Rasa found on 
www.rasa.com/docs/ (Rasa Technologies, 2020). This chapter also presents a 
detailed view of the code-level architecture to understand what parts of previ-
ously presented NLU-elements connect to this context. 

Access to the code repository allowed this to be completed without exten-
sive interviews. One Non-structured interview was deemed adequate to com-
plete the code review. The interviewee provided tips and tools on debugging 
the system and reading the Rasa documentation. 

Certain parts of the system are not focused extensively within this thesis, 
as the aim is to understand the language processing and not the general system 
architecture. Things like deployment, shipping, hosting, UI, and database are 
not in the core interest, and are presented more broadly if they support the nat-
ural language understanding pipeline.  



49 

 

7.1 Conversational system with Rasa 

Rasa tools and their architecture were presented in chapter 4.3. Rasa is divided 
into Rasa Core and Rasa NLU (Rasa Technologies, 2020). Rasa NLU is the natural 
language understanding engine, which handles the user input. It takes a user 
input string and returns a JSON representation of the input in structured format 
of intents and entities. Rasa Core is the “Dialogue manager”, which handles 
response generations and/or actions based on the conversation history. The 
following chapters consist of explanations on different parts of the Laubot built 
with Rasa, and how they connect to the concepts explained in previous chap-
ters. This aims to follow a logical structure of the input text, similar to the archi-
tecture of Rasa shown in Figure 11.  

7.1.1 Structure of the codebase 

As this is a technical review of the software, understanding the codebase is im-
portant for the following parts. Since the system is built from ground up to 
meet customer needs, the codebase holds a lot of “unnecessary” code. This 
means different shell scripts to launch environments, SQL-code to connect to 
database, integration code to control the user interface software. While all this is 
necessary for an end-to-end solution that works outside of the local machine, 
our interests lie in the functionalities of Rasa. The structure of relevant files or 
directories is presented in Table 4 with brief explanations of their function with-
in the system.  

 
Table 4: Relevant directory structure of Laubot 

File/Directory Function 

custom_actions/ Holds Python-files for custom actions 
the bot can do based on the intents 
and entities it receives 

custom_functions/ Custom functions of internal business 
logic, not directly related to Rasa func-
tionalities 

data/ Data directory holds several files of 
training data for intents, entities, sto-
ries, and actions. The bot is trained on 
this data. 

models/ After training, the Rasa framework 
creates the model files in this location 

sql/ Holds files consisting of sql queries. 
This is the layer for knowledge base 
connection 



50 

 

templates/ Different templates for formatting 
information for different purposes 

actions.py Routes all files in the custom_actions 
directory to a single end-point 

config.yml Holds Rasa-configurations. This file 
determines the pipelines and dialogue 
policies 

domain.yml Master data for possible intents, enti-
ties, actions, and default responses 

 
These files and directories hold interesting information for this research. 

These files are referenced in the relevant chapters, so this is just for an overview 
to understand the semi-complex structure of the software. File structure has 
been modified from the Rasa “baseline” structure to accommodate more custom 
functions and actions. 

7.1.2 Starting the bot 

Laubot is installed into a proprietary server of the client. Software is deployed 
in docker containers, running the Rasa software, database as well as integra-
tions. 

To run Laubot, or another conversational agent built on Rasa, certain con-
ditions must be met. Training data, actions and configuration files need to be 
present. rasa init command takes care of these when starting development, 
which has already been done in Laubot. The developed bot can be launched 
with rasa shell command if the user wants to chat with it in the command line, 
or rasa run to start it in server mode.   

7.1.3 From input to intent 

One of the first problems this study is interested in, is how an input string is 
formed into structured data. As discussed more deeply in chapter 3, a multi-
tude of commercial use chatbot tools utilize a structure of intents and entities to 
present the input to the following parts of the pipeline. This is also true for Rasa 
(Bocklisch et al., 2017; Rasa Technologies, 2020). 

After running the program, we can communicate with it through a shell 
prompt. For security purposes, we cannot use the program with a database 
connection. This can be circumvented by utilizing command rasa shell -nlu. 
This runs the system in a shell-mode to communicate with it. But instead of 
continuing to the dialogue management parts, it only utilized the NLU part. 
Instead of a response it gives us a formatted answer of the structured input in 
json (JavaScript Object Notation). 

Through a simple example of greeting the bot with a phrase “Moikka! 
/(Hello!)”, we get a json representation of the found intents and their confidence 
scores. This is shown partly in Figure 12. 



51 

 

 
FIGURE 12 a structured represantation of a greeting in Laubot 

So in this case, the bot recognized the given input as the intent “greet”, 
which in our perspective is correct. It gave it a confidence score of ~0.96 which 
can be interpreted as the bot telling “I am 96% sure this input was meant to 
connect to this intent”. It had the highest score, and it surpassed the NLU 
threshold set in the file config.yml file (shown in Table 4), so therefore this 
would be the intent passed to the core. In addition to the selected intent, we can 
see the subsequent intents listed based on the confidence score they got. This 
shortened version shows that a custom intent “ask_yearly_comparison” got only a 
confidence score of ~0.0008. 

Entities are also listed for the recognized intent. But our greeting didn’t 
hold any recognizable entities, it is listed as none. Both intents and entities are 
listed in the domain.yml file, and training data is provided for them in the nlu/ 
directory. If we give a more representative example phrase, we get a different 
result (Figure 13). Assume the phrase “Mikä on kustannuspaikan työterveys koodi? 
/ (What is the code of the cost center occupational health care?)”. This shows a popu-
lated list of entities. It recognized the entity cost_centre with a confidence score 
of ~0.996. Moreover, it lists the start and end points of the entity text within the 
phrase, as well as the value (“työterveyshuolto/occupational health care”) and the 
extractor used to extract the entity. Different extractors are supported within 
Rasa. 

CRFEntityExtractor (Conditional Random Field) is a Markov chain of dif-
ferent conditions to achieve named entity recognition (Chapter 2.2.4). It looks at 



52 

 

multiple factors such as digits, lower- and upper-case characters to recognize 
the entity. The factors are configurable in Rasa. (Rasa Technologies, 2020) 

 

 
FIGURE 13 Structured representation of an actual input query in Laubot 

These show an example of “What Rasa sees” when receiving an intent. Be-
fore the bot can do this, it needs to be trained and configured, and this is an ex-
ample of a pre-trained already built software. To keep in the research question 
on “how does a chatbot understand language?” a lot of the steps needed to 
achieve this are disregarded. But the most important parts for this are presented 
when discussing training and configuring in the later chapters.  

7.1.4 From intent to action 

After having the intent and entities separated through the NLU capabilities, 
next step is to form an “action” based on the received information. In Rasa, an 
action can be a response, form, default action or custom action (Rasa technolo-
gies, 2020). Custom actions are custom code that can do quite literally anything. 
Most commonly these are used to make API calls or database queries. 

Laubot utilizes custom actions for completing query tasks, and some re-
sponses in simpler cases. In this case response is a predefined textual response, 
which is defined in the domain.yml file under the responses key. If an intent is 
matched to these, no custom code is executed, and the response is read straight 
from the domain.yml file. This would have been the case in Figure 12. In Figure 
13, since the system needs to complete a database query to find information for 
the user, a custom action defined in the fold custom_actions/ would have been 
completed. 

What action to take is governed by policies. Policies are internally defined 
algorithms to predict what action is selected based on the given information. 
For each Rasa project, a set of different policies can be defined in the config.yml 



53 

 

file. Each policy defined makes the same prediction, and assigns a number of 
actions a confidence score, similarly to the NLU-engine. The action with the 
highest confidence score is completed. For Laubot, the configuration file lists 
the policies shown in Table 5. 

 
Table 5 Rasa action Policies of Laubot 

Policy Explanation 

MemoizationPolicy If stories are defined in the training 
data, memorization policy remembers 
the conversation that has happened 
beforehand. Threshold can be set to 
determine how many inputs of con-
versation are remembered. If the con-
versation matches a story, a confi-
dence of 1 is given, which makes the 
bot to follow the story. 

KerasPolicy Keras is a software framework built 
on Tensorflow to build neural net-
works. KerasPolicy is a LSTM (Long- 
Short-Term Memory) neural network 
built internally with Keras to predict 
the suitable action(s). 

MappingPolicy This policy is used to determine pre-
defined triggers within intents to map 
straight to predefined action. If intent 
defined in the domain.yml file is given 
a trigger such as greet: {triggers: ut-
ter_goodbye}, the intent will automati-
cally match to the given action, in this 
case utter_goodbye, which is a response 
action. 

FallbackPolicy This policy defines an action to take, if 
the intent recognition does not give 
any intent with a confidence above a 
selected threshold, or if none of the 
other policies predict a suitable action 
above the predetermined core thresh-
old. 

 
So for Laubot, each of these policies are considered and compared before 

action is taken, with the exception of FallbackPolicy which is only considered if 
none of the other ones do not produce a high enough confidence score. Most of 
the time MemoizationPolicy is the determining policy since actions are often con-
nected to stories. 



54 

 

7.1.5 From action to response 

For most cases, Laubot follows a story. Story if a markup language representa-
tion of intents, entities, and actions to form a skeleton for a conversation for the 
bot to follow. When a bot recognizes an intent, (in addition to other methods) it 
can connect to an action to execute through stories. (Rasa Technologies, 2020) 

 When Laubot figures out an action, either response is given, or custom 
code is executed. Custom action is written in Laubot by extending an Action 
class from the Rasa software development kit. In addition to importin the Ac-
tion-class, a tracker (See Figure 11) is also imported. Tracker is a storing mecha-
nism for a single user and the conversation. Trackers can be used to access the 
bot’s memory in custom actions (Rasa Technologies, 2020).  

Laubot uses tracker to access slots, which are key-value pairs to pass in-
formation to the custom actions. In addition to many things mentioned before, 
slots are defined in the domain.yml file. Slots are used as a storing place for vari-
able data, such as search_terms, timespan, receipttype. While not being the sole 
purpose of slots, they can be considered as a way to make data gathered from 
entities into variables to use. This data can be then used in a search query to a 
knowledge base. Laubot uses slots for specific query data, such as the ones 
mentioned before, to create specific database queries. 

SQL-folder contains database queries, which are then programmatically 
executed based on the search terms. This is the main function of custom actions 
in Laubot. Since this is an information retrieval bot, the main function is to que-
ry data. On the contrary, the most prominent use of commercial chatbots or 
conversational agents tend to be of assisting nature. They usually give direc-
tions to the place to find information, whereas Laubot aims to provide the in-
formation if possible. 

Response given is determined by the information found. Most cases a re-
sponse holds data from the database, either to represent or to perform a calcula-
tion on. This response is then given as a json-format as the bot’s user interface is 
the chat software Microsoft Teams. Templates directory in the codebase contains 
templates for this. When “leaving the Rasa architecture”, most of the times data 
is not in a representable form, as visualization or representation is handled by 
another software. This gives additional capabilities of a fully featured chat pro-
gram to make augmentations.  

7.1.6 Domain and configuration 

Domain.yml and config.yml are a common occurrence when explaining the struc-
ture of the system. These files define the settings and the brains for the system 
being built. This is the starting point if the aim is to understand a bot built with 
Rasa. 

Domain is a concept touched several times throughout this thesis. It 
serves as the universe where the bot functions. As established, conversational 
agents are often built around a closed domain. They have ‘knowledge’ on cer-



55 

 

tain topics instead of the general world around them. This is a way to limit the 
functionalities needed for the bot to appear intelligent, which subsequently 
makes the development easier. Laubot does not need to know about birds, it 
needs to know about the financial information of the municipality. 

The domain file holds a list of intents, entities, actions, responses, and 
slots, as well as configuration part for sessions. (Rasa Technologies, 2020) Lau-
bot lists intents such as list_cost_centers, ask_invoice_pdf, and ask_accounts. These 
custom intents must have training data to learn how user might convey the 
same information. for list_cost_centers intent, a training file 
nlu_list_cost_centers.md is provided. It holds over a hundred different training 
phrases with varying entities. When the bot is trained, it trains the NLU engine 
with these phrases, and learns to match similar phrases. Rasa core looks at the 
list of the actions listed here when deciding which action or response to take. 

Configuration holds information that defines the inner mechanics of the 
bot’s intelligent features. Mainly it consists of two parts: the NLU engine con-
figuration, and the Core configuration. Core configuration was presented in 
chapter 6.1.4. The NLU configuration is very short for Laubot, as it only defines 
the language and the pipeline.  

7.1.7 Training  

Laubot uses supervised_embeddings pipeline to train the NLU engine. The pipe-
line is configurable, as well as customizable. Custom components can be added 
to pipelines. This means the Rasa NLU system could be built on partly-, or en-
tirely custom natural language processing engine. Rasa provides certain pipe-
lines out-of-the-box and has different capabilities for different languages. Since 
Laubot is developed to work entirely in Finnish, the options are unfortunately 
limited compared to more major languages. Chapter 4.3 discussed briefly about 
built-in components of Rasa. 

Laubot’s supervised embeddings mean that it does not use any pre-
existing model to train the NLU-engine. It learns everything it can from the 
training data provided to it. This has two advantages why it is used in this case: 

 

• It is language independent, as it learns ‘meaning’ from the context of 
training data.  

• It suits a domain-specific need, and Laubot is extremely domain specific 
 
Supervised_embeddings is a template pipeline. This means it includes 

components which load automatically without being specified in the config.yml 
file. This can be seen in action in Figure 13, which shows an entity extractor, 
while none is present in the configuration file. This pipeline template automati-
cally loads it, and several others presented in Table 6. This is the core structure 
of what Laubot does to a text input when classifying it into an intent before 
passing the task onto the dialogue management. 

 



56 

 

Table 6 Laubot NLU model pipeline 

Component Explanation 

WhitespaceTokenizer Splits input input sentence/phrase 
into tokens by using whitespace as a 
delimiter. Tokenization explained in 
chapter 2.2.1. 

CRFEntityExtractor Acts as named entity recognition 
based on the entities present in the 
training data. NER explained in chap-
ter 2.2.4. 

EntitySynonymMapper Maps entity synonyms which can be 
described in nlu.md file. This helps to 
deduce similar representations of the 
same entity into the same one 

CountVectorsFeaturizer Creates a bag-of-words representation 
based on the previous components. 
Produces a numerical representation 
matrix of tokens, intent, and responses 
to be used in a classifier. This matrix 
also includes a representation of the 
count of distinct words of training 
data appears in the given input. 

EmbeddingIntentClassifier Neural network classifier that is 
trained against vector representation 
of the intent labels, which calculates 
distance between the vectors from 
previous component against them. 

 
When Laubot is trained, it trains this pipeline. More specifically, when the 

NLU engine is trained it trains the intent classifier. This trained network is then 
used to predict intent for each user input by feeding and input vector and net-
work calculating a confidence score for each possible intent.  

Since the pipelines are customizable and extendable, they can get increas-
ingly complicated. More commonly spoken languages contain several pre-built 
pipelines and components to extend on. Rasa uses many functions of the SpaCy 
library. SpaCy is a natural language processing library, built to be a production 
ready open-source NLP library. (Explosion/Spacy, 2020) Most notably the abil-
ity to utilize pre-trained word embeddings would give word vectorized words 
predefined feature vectors, that could include data about grammatical and se-
mantical features of a word. But for many cases, simpler pipelines can achieve 
adequate results without them. 



57 

 

7.2 Actual scenario 

This chapter investigates an example scenario with Laubot. This is some-
what generalized to give an overlook on how this, or a similarly built conversa-
tional agent would work in an actual scenario. We can get additional infor-
mation not directly present in the documentation or source code by utilizing 
certain debugging parameters that Rasa provides in the command line inter-
face. This chapter takes more chronological order compared to chapter 6.1. 

7.2.1 Training 

Continuing on chapter 7.1.7, training is the process of calculating weights to 
neural networks present in the architecture. To visualize parts of this, rasa 
train –debug can be used. This prints additional statements about the training 
pipeline. We can use snippets of the logs to investigate the training process 
further. 

First the core-model (dialogue management, response generation) is 
trained. The interesting part of this process is the training of the pipeline used 
to connect intents to actions, presented in Table 5. The “intelligent” part of this 
pipeline is the Keras Policy, which trains a sequential (meaning a network 
where each layer gets one input tensor and produces one output tensor) LSTM 
model, shown in Figure 14. This shows that the training phase teaches a neural 
network with four layers; masking layer, LSTM-layer, dense layer, and activa-
tion layer. Shape presented in the figure reflects the amount of ‘neurons’ in each 
layer. The most important part about this structure is to note the number of 
neurons in the activation layer. When counting all possible actions (including 
responses) defined in the domain.yml file, it comes out as 27. This layer takes an 
input tensor, and through activation functions give out a confidence score rep-
resentation for each possible action. 

Why the architecture of the network is how it is, is not defined. Building 
optimal neural networks is a highly time-consuming task that requires deep 
understanding in statistical mathematics. Rasa provides no information on the 
architecture of built-in networks. 



58 

 

 
FIGURE 14 Network architecture for Keras Policy in Laubot 

Following the core model training, the NLU model is trained. As shown in 
table 6, Laubot trains an embeddingIntentClassifier. We learned that this network 
receives and input from the previous part of the pipeline, which is CountVec-
torsFeaturizer in this case. This produces a vectorized bag-of-words representa-
tion of the input and feeds it to the network. This network is trained at this 
phase, and produces information presented in Figure 15. Log is different from 
Figure 14, since this part of the pipeline is built on Tensorflow, while the core 
policy was built on Keras. These frameworks give out information differently. 

So this part trained the final policy, intent classifier, in the NLU models 
pipeline in Laubot. It achieved a 100% accuracy on the given training data from 
the nlu/ directory. This is not that surprising, since the training data is not that 
vast and very domain specific. Since the pipeline is supervised, it is trained with 
the examples given in the directory against the intents presented in each file. 
Example of how this is structured is presented in Figure 16. Training data is 
categorized under each intent as their ’label’. The amount of training data is the 
number of examples given.  

The architecture of this network is not readily available, due to it being 
deprecated from the Rasa stack. Legacy documentation does not list any default 
values. 



59 

 

 
FIGURE 15 Laubot NLU model intent classifier training 

 
FIGURE 16 Example of a training file in Laubot 

With additional features of the Rasa command line interface, we can print 
visualized information of the structure the training creates. As learned in chap-
ter 7.1, stories play a major role in how Rasa decides the following action. Fig-
ure 17 presents part of the story connections in Laubot. This is not particularly 
interesting, since Laubot does not rely heavily on stories, since it aims to 
achieve quick answers to users right away, instead of keeping conversations. 
Only some intents are designed to continue a conversation by default. 

 

 
FIGURE 17 Story connections in Laubot 



60 

 

7.2.2 Example, Laubot natural language understanding engine 

After having a trained bot, the user can chat with it after starting it. In normal 
conditions the software would be running already in a server and connected 
through HTTP. For this purpose using command line interface is enough. And 
as mentioned earlier, access to database is not possible, so the results will be 
limited to raw data of the NLU system. This is just to show a conclusive repre-
sentation to what happens to an input sentence in Laubot. 

 Assume the question “Mikä on kustannuspaikan työterveyshuolto budjet-
ti välillä 01/2019-12/2019? / What is the budget of cost center occupational health 
care during 01/2019-12/2019?)”. What happens to this input text when it is 
passed to Laubot? 

First it enters the NLU pipeline. Referring to Table 6, the first part is the 
tokenization using white space tokenization. We can take a closer look into how 
this looks by debugging the Rasa source code locally. As expected, whitespace 
tokenization contains runs a function that returns a list of the words in an array 
they were in the input text. Additionally, the list includes the lengths of the 
words as well as their positioning index in the input string.  

Next is the CRFEntityExtractor entity extraction. This consumes the data 
from the tokenization and compares it to the pre-defined entities. It returns a 
list of detected entities, including the entity, value, length, position, and confi-
dence. Json representation of the Python dictionary returned is the following: 

 
{ 
    [ 
        { 
            “entity”: “search_terms”, 
  “start”: 24, 
  “end”: 40, 
  “confidence_entity”: 0.9997077283626788 
  “value”: “työterveyshuolto” 
        }, 
        { 
            “entity”: “timespan”, 
  “start”: 58, 
  “end”: 73, 
  “confidence_entity”: 0.9969335960643355 
  “value”: “01/2019-12/2019” 
 
        } 
    ] 
} 
 

This is then passed to EntitySynonymMapper. For Laubot, there are no enti-
ty synonyms defined, so this part does not produce any difference. Entity syno-
nym mapper is a fairly simple algorithm, that checks the values of the give enti-
ties from the previous step and compares the “stripped down” values of the 
“value” attribute to the predefined synonyms for an entity. If they are a match it 
replaces the value with the value defined as the synonym. Updated representa-
tion of the entities is returned, which means no change for Laubot. 



61 

 

Next step is the CountVectorsFeaturizer. This produces a sparse feature ma-
trix for the classifier. Sparse matrix is a multi-dimensional numerical matrix 
representing the different tokens of the input. Rasa uses Scikit learn open soft-
ware to produce these feature vectors. (Rasa Technologies, 2020) Sklearn’s (oth-
er name for scikit learn) CountVectorizer is used to produce feature matrices of 
an input corpus, or the input tokens and entities most importantly in this case. 
Feature vector is a numerical representation of an object to be used (most com-
monly) in a neural network or another statistical algorithm. In the case of Lau-
bot, it functions as a numerical representation of tokens and their cumulative 
occurrences in the input. The featurizer does the same for intents and responses 
to be used in the following step, as well as response selection in the later phases 
of the conversation (Rasa Technologies, 2020). Counts of tokens become the 
“defining features” for the next step, which is intent classification. 

Technically speaking, the featurizer does not produce an output, but 
works in close conjunction with the following step, EmbeddingIntentClassifica-
tion. At this point, the input text ”Mikä on kustannuspaikan työterveyshuolto 
budjetti välillä 01/2019-12/2019?” has been tokenized, it has it’s entities recog-
nized and it is transformed into a numerical representation of the features (to-
kens in this case3). The neural network then assigns the final “score” of intent 
classification confidence. This data and additional information, represented in 
figure 18, is passed to the Rasa core for dialogue management. It recognized the 
intent correctly to the desired ask_diffs intent. It recognized two entities 
search_terms and timespan. All these are custom-made features of Laubot to re-
flect the needs of the user. 

 

 
3 If additional steps for lemmatization (chapter 2.2.3) or other featurization (2.2.7) were 

provided in previous stages of the pipeline, features could be different. 



62 

 

 
FIGURE 18 Final result of the example in the Laubot's NLU model 

 



63 

 

8 Results, analysis, discussion 

This chapter discusses the different aspects found in the case study, and the 
connections to literature and previous work. Furthermore, some discussion is in 
place for the usability and accuracy of this case, and the general usage of bots. 

The question “How does a chatbot process language?” turned out to be a 
multi-faceted question with no clear answers. The general answer is a vast 
landscape of methods and ideas, all very estranged from the development work 
that goes into conversational agents. Case study provided with a reasonable 
answer to analyze upon. 
 

8.1 Results and analysis 

To answer the very difficult question this research builds upon, a literature re-
view was conducted to learn about chatbots and text processing. While conver-
sational agents are the main focus, understanding of NLP methods and tech-
nologies is absolutely crucial to understanding the inner workings of modern 
chatbots. A lot of the modern chatbot building tools rely heavily on different 
methods that were originally developed for document processing purposes. A 
conscious effort was made to not include human interaction research in the re-
views, since the aim is to gain a technical view, regardless of the use cases or 
perceptions of quality. 

The literature review resulted in a general understanding of different 
technical structures and architectures of conversational agents. Nevertheless, 
the answer to the question was not quite what was expected, as the sheer num-
ber of different methods to achieve conversational artificial intelligence was 
overwhelming, and provided very little clear distinctions towards a general 
answer on how do chatbots process language. Some distinctions were found, 
especially depending on the use case. To achieve general AI-imitating chatter-
bots, most beneficial methods seemed to be pattern matching algorithms utiliz-



64 

 

ing vast amounts of data. Simultaneously more scalable architectures utilizing a 
set of different text processing and machine learning algorithms seem to better 
support domain-specific work, especially in commercial usages. 

A case study was conducted on one commercial usage, domain specific 
chatbot. The setting of the chatbot development landscape made this the best 
option to gain deeper understanding of bot technologies. Case study was con-
ducted as a combination of document analysis and a supporting interview. Ac-
cess to the source code of both the technology stack and the underlying systems 
was crucial to the results of the case study. 

What was found in the case study was a moderate connection to underly-
ing language processing techniques and a heavy connection to the domain spe-
cific language utilized in the chatbot. Laubot processes text by relying on man-
ually defined conversation paths (stories), intents, entities, and responses. 
Training data is also hand-crafted (however, this process could be automated to 
a degree). This works as a foundation for getting more knowledgeable on the 
relevant topics, as well as achieving scalability. Specific hand-crafted training 
examples also benefits the bot at answering exact and specific questions correct-
ly. Bugs and missing features can be easily fixed, as the underlying data the bot 
uses to teach itself is disconnected from the more complicated language pro-
cessing task. This creates opportunities to maintain more deterministic results 
in specific cases, as the more generative end-to-end models and data-reliant pat-
tern matching chatbots are difficult to fine-tune to achieve a specific outcome. 

Laubot utilizes a set of language processing tasks to convert natural lan-
guage input text into a structured (and numerical) format. This includes tokeni-
zation, named entity recognition, and feature extraction. This data is used in a 
generative feed-forward neural network stack to match inputs to predefined 
intents and entities. Dialogue management after the intent is found works in a 
similar fashion. It uses a neural network to map the input to an output, coupled 
with deterministic triggers to “circumvent” nondeterministic behavior of neural 
networks. 

This corresponds with the outcome of the literature review. Modern de-
velopment tools designed for commercial use benefit from a more scalable ar-
chitecture, and it is clearly visible in the system architecture of Rasa and Laubot. 
This achieves better accuracy and maintainability for knowledge-based domain 
specific conversational agents, due to the sheer control of the pipelines and the 
customizable components. 

While only one bot was studied, this is somewhat extendable to under-
standing bot structures in general. Especially the commercial use bot develop-
ment tools were found to be very similar in structure. Commercial development 
frameworks do not necessarily want to provide their technology stack to the 
public, since it might be of competitive advantage compared to other providers. 
This was found to affect the documentation as well, where most subjects were 
not explained deeply enough to gain understanding of the technical functionali-
ties and limitations. 



65 

 

8.2 Discussion 

Only one chatbot was studied for the case-research. This is not optimal, but 
nearly impossible circumvent. To achieve a level of precision in the technical 
analysis requires access to the source code of the system, as well as the frame-
work. This kind of access is not usually available, and due to the landscape of 
development tools used in commercial systems, finding more cases to achieve 
the same level of technical access turned out to be impossible. Another method 
would be to build a separate system, which would provide even more detailed 
access to the technical components, as well as the ability to produce additional 
test cases for accuracy and maintainability. This is better left to further research. 

This thesis does not discuss the technical limitations to an extent that 
might interfere with development. While it would be helpful to understand the 
current technical limitations of conversational systems, a simple guideline does 
not exist. Where limitations apply is solely dependent on the general architec-
ture of a system. The technical theme-interview raised issues on Laubots cur-
rent state, where performance was enough to meet the expectations when enti-
ty-count was low, the performance took a significant hit when more and more 
entities were introduced in a single input. Whether the system can be optimized 
further to meet the increasing expectations is a question unanswered. If hard 
limits exist, a different system altogether would be more suitable for this use 
case. Additionally, a systematic review on different commercial systems could 
also answer the research question form a different perspective. This would ob-
viously mean a general view instead of a detailed technical view but would cer-
tainly be of great support for future research on the subject.  

The case study also provided its own limitations. While access to the 
source code was granted, access to the actual data or database were not. These 
challenged were circumvented by the debugging tools and running the code 
locally, instead of the very confined environment. But how Rasa is built, this 
did not hinder the research as much as it could have. Accessing any databases 
or endpoints is the final step in the pipelines, and everything related to text 
processing is done beforehand. 

The project studied is an ongoing project as the time of writing, and a ver-
sion used in this thesis might not reflect the future changes or a “final product”. 
This deemed not to be an issue, since the project and the system is already well 
established, and the study does not rely on a finalized product. Moreover, agile 
projects such as this, especially of this scale, tend to continue further than a sin-
gle “delivery date”.  

Since the project was already established in an earlier date, certain parts of 
the technologies provided by the Rasa framework have been updated since. 
Certain parts of the pipeline are already deprecated. This does not provide is-
sues to already built applications and they can be used as is, but documentation 
of these components is not as readily available as the new ones. Some infor-



66 

 

mation was fetched from the legacy documentation, as well as a version of the 
open source code that might not be in the current version of the system. 

8.3 Further research 

This thesis opened more questions than it answered. The landscape of conver-
sational agents is a vast and disconnected collection of literature and commer-
cial use cases. Both literature review and the case study showed a major dis-
connect between underlying technologies and development of chatbots. 

Due to the plethora of different approaches to chatbots, optimization is-
sues are not easily researchable. While research exists, it can be nearly impossi-
ble to find the appropriate sources to apply to a certain project. This creates the 
problem that also works as the motivation for this study. Continuing this type 
of research of connecting the underlying technologies and techniques to the ac-
tual development work, the obvious next step would be to optimize the systems 
being built. This type of research should focus on the singular components of 
the framework being used and finding how much they contribute to the final 
outcome. Understanding this can help finding optimization strategies for chat-
bots. 

The concept of ‘hard limit’ mentioned in chapter 8.2 is another issue that is 
related to optimization. Understanding the technologies helps understanding 
the capabilities. Based on this type of research, more detailed research can be 
done on the question “is a chatbot right for this problem?” or “Can a chatbot 
solve this problem?". While new knowledge and techniques are found on a fre-
quent basis, they may not solve the underlying fundaments in a problem being 
solved. This creates a balancing act between usability and the capabilities of a 
chatbot. If the chatbot is not ‘smart’ enough, the usability suffers. It needs to ask 
for clarifications or produce more incorrect outcomes. If the usability suffers 
enough, a more conventional user interface would most likely solve the issue 
better. 

Lastly, a proper study on the effects of increased focus on the target lan-
guage could benefit the optimization issue. Even for semi-marginal languages 
like Finnish, a good body of NLP-literature exists. However, this knowledge is 
not appropriately applied to chatbots. More meta-level information could be 
extracted from the input by using advanced NLP-components designed for a 
specific input-language. This could benefit the outcome, since more ‘popular’ 
languages already have improved pipelines in place.  



67 

 

9 Conclusion 

This thesis looked into the world of conversational agents, also known as 
chatbots, from a detailed technical perspective. While the vast landscape of lit-
erature is readily available for the topics revolving around chatbots and “artifi-
cial intelligence”, it often falls into a systematic division where technically ori-
ented literature does not reach the final use cases. By researching the source 
code and documentation of Laubot in a systematic manner, a more detailed 
view connecting the theory and practice was achieved. 

Conversational agents process text in multitude of different manners. 
Domain specific chatbots rely on scalability over perceived artificial intelli-
gence. Case study of this thesis falls into this category. Laubot processes text 
through a processing pipeline, that functions as a formatter for machine learn-
ing algorithms. Dialogue management, or response generation, is done through 
a system of intents and entities reflecting the original inputs and the additional 
data relating to said intent. This data is again utilized in selecting the appropri-
ate response or an action for the input. Laubot is connected to a relational data-
base that provides data if the user is requesting any. This is done to customized 
actions, that take place if the core finds that action to be to most appropriate 
one. User can then continue conversating with the bot, which might start this 
cycle again, or fit into a pre-defined conversation paths, or stories. 

The literature review partly gives basis to the case study, and partly sup-
port the findings of the analysis. It was found how commercial usage bots differ 
from certain generative or pattern matching bots, which sole purpose is to func-
tion as an intelligent assistant or a chatter bot. The literature review provided 
an important foundation on understanding the techniques found in the case 
study. For many chatbot applications and the development tools, the natural 
language processing is not the interesting or driving factor for success, but ra-
ther a building block to build more sophisticated systems on. However, it can 
be assumed that understanding the fundamental structures of text processing 
while developing a chatbot can be an excellent resource for optimizing the per-
formance and recognizing faults in the system in the first place.  



68 

 

LITERATURE 

Abdul-Kader, S. A., & Woods, J. C. (2015). Survey on chatbot design techniques 
in speech conversation systems. International Journal of Advanced Computer 
Science and Applications, 6(7). 

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language 
interfaces to databases-an introduction. arXiv preprint cmp-lg/9503016. 

Arsovski, S., Cheok, A. D., & MuniruIdris, M. R. A. R. (2017). ANALYSIS OF 
THE CHATBOT OPEN SOURCE LANGUAGES AIML AND 
CHATSCRIPT: A Review. In 9th DQM International Conference on life 
cycle engineering and management. 

Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open 
source language understanding and dialogue management. arXiv preprint 
arXiv:1712.05181. 

Brandtzaeg, P. B., & Følstad, A. (2017, November). Why people use chatbots. In 
International Conference on Internet Science (pp. 377-392). Springer, Cham. 

Braun, D., Mendez, A. H., Matthes, F., & Langen, M. (2017, August). Evaluating 
natural language understanding services for conversational question 
answering systems. In Proceedings of the 18th Annual SIGdial Meeting on 
Discourse and Dialogue (pp. 174-185). 

Cahn, J. (2017). CHATBOT: Architecture, design, & development. University of 
Pennsylvania School of Engineering and Applied Science Department of 
Computer and Information Science. 

Canonico, M., & De Russis, L. (2018). A comparison and critique of natural 
language understanding tools. Cloud Computing, 2018, 120. 

Chowdhary, K. R. (2020). Natural language processing. In Fundamentals of 
Artificial Intelligence (pp. 603-649). Springer, New Delhi. 

Goddeau, D., Meng, H., Polifroni, J., Seneff, S., & Busayapongchai, S. (1996, 
October). A form-based dialogue manager for spoken language 
applications. In Proceeding of Fourth International Conference on Spoken 
Language Processing. ICSLP'96 (Vol. 2, pp. 701-704). IEEE. 

Gómez-Rodríguez, C., Alonso-Alonso, I., & Vilares, D. (2019). How important is 
syntactic parsing accuracy? An empirical evaluation on rule-based 
sentiment analysis. Artificial Intelligence Review, 52(3), 2081-2097. 



69 

 

Huang, J., Zhou, M., & Yang, D. (2007, January). Extracting Chatbot Knowledge 
from Online Discussion Forums. In IJCAI (Vol. 7, pp. 423-428). 

Korenius, T., Laurikkala, J., Järvelin, K., & Juhola, M. (2004, November). 
Stemming and lemmatization in the clustering of finnish text documents. 
In Proceedings of the thirteenth ACM international conference on Information 
and knowledge management (pp. 625-633). 

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). 
Neural architectures for named entity recognition. arXiv preprint 
arXiv:1603.01360. 

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., & Jurafsky, D. 
(2013). Deterministic coreference resolution based on entity-centric, 
precision-ranked rules. Computational linguistics, 39(4), 885-916. 

Lee, K., He, L., Lewis, M., & Zettlemoyer, L. (2017). End-to-end neural 
coreference resolution. arXiv preprint arXiv:1707.07045. 

Liddy, E. D. (2001). Natural language processing. 

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, 
D. (2014, June). The Stanford CoreNLP natural language processing 
toolkit. In Proceedings of 52nd annual meeting of the association for 
computational linguistics: system demonstrations (pp. 55-60). 

Masche, J., & Le, N. T. (2017, June). A review of technologies for conversational 
systems. In International Conference on Computer Science, Applied 
Mathematics and Applications (pp. 212-225). Springer, Cham. 

Mauldin, M. L. (1994, August). Chatterbots, tinymuds, and the turing test: 
Entering the loebner prize competition. In AAAI (Vol. 94, pp. 16-21). 

McKeown, K. (1982). The TEXT system for natural language generation: An 
overview. 

Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and 
classification. Lingvisticae Investigationes, 30(1), 3-26. 

Nivre, J., De Marneffe, M. C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., 
... & Tsarfaty, R. (2016, May). Universal dependencies v1: A multilingual 
treebank collection. In Proceedings of the Tenth International Conference on 
Language Resources and Evaluation (LREC'16) (pp. 1659-1666). 

Plank, B., Søgaard, A., & Goldberg, Y. (2016). Multilingual part-of-speech 
tagging with bidirectional long short-term memory models and auxiliary 
loss. arXiv preprint arXiv:1604.05529. 



70 

 

Pundge, A. M., Khillare, S. A., & Mahender, C. N. (2016). Question answering 
system, approaches and techniques: a review. International Journal of 
Computer Applications, 141(3), 0975-8887. 

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case 
study research in software engineering. Empirical software engineering, 
14(2), 131. 

Schmid, H. (1994). Part-of-speech tagging with neural networks. arXiv preprint 
cmp-lg/9410018. 

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum 
(Vol. 1). Upper Saddle River: Prentice Hall. 

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., & Zue, V. (1998). Galaxy-II: A 
reference architecture for conversational system development. In Fifth 
International Conference on Spoken Language Processing. 

Shum, H. Y., He, X. D., & Li, D. (2018). From Eliza to XiaoIce: challenges and 
opportunities with social chatbots. Frontiers of Information Technology & 
Electronic Engineering, 19(1), 10-26. 

Soares, M. A. C., & Parreiras, F. S. (2018). A literature review on question 
answering techniques, paradigms and systems. Journal of King Saud 
University-Computer and Information Sciences. 

Song, Y., Yan, R., Li, C. T., Nie, J. Y., Zhang, M., & Zhao, D. (2018). An Ensemble 
of Retrieval-Based and Generation-Based Human-Computer Conversation 
Systems. 

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., ... & 
Meteer, M. (2000). Dialogue act modeling for automatic tagging and 
recognition of conversational speech. Computational linguistics, 26(3), 339-
373. 

Straka, M., Hajic, J., & Straková, J. (2016, May). UDPipe: trainable pipeline for 
processing CoNLL-U files performing tokenization, morphological 
analysis, pos tagging and parsing. In Proceedings of the Tenth International 
Conference on Language Resources and Evaluation (LREC'16) (pp. 4290-4297). 

Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing 
techniques for opinion mining systems. Information fusion, 36, 10-25. 

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003, May). Feature-rich 
part-of-speech tagging with a cyclic dependency network. In Proceedings of 
the 2003 conference of the North American chapter of the association for 
computational linguistics on human language technology-volume 1 (pp. 173-
180). Association for Computational Linguistics. 



71 

 

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). Glue: 
A multi-task benchmark and analysis platform for natural language 
understanding. arXiv preprint arXiv:1804.07461. 

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural 
language communication between man and machine. Communications of 
the ACM, 9(1), 36-45. 

Williams, J., Raux, A., & Henderson, M. (2016). The dialog state tracking 
challenge series: A review. Dialogue & Discourse, 7(3), 4-33. 

Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., & Ma, W. Y. (2017, 
February). Topic aware neural response generation. In Thirty-First AAAI 
Conference on Artificial Intelligence. 

Yang, L., Hu, J., Qiu, M., Qu, C., Gao, J., Croft, W. B., ... & Liu, J. (2019, 
November). A hybrid retrieval-generation neural conversation model. In 
Proceedings of the 28th ACM International Conference on Information and 
Knowledge Management (pp. 1341-1350). 

Zamora, J. (2017, October). I'm sorry, dave, i'm afraid i can't do that: Chatbot 
perception and expectations. In Proceedings of the 5th International 
Conference on Human Agent Interaction (pp. 253-260). 

 

https://www.apple.com/siri/ 

https://www.cleverscript.com/ 

https://cloud.google.com/dialogflow 

https://www.laukaa.fi/tietoa-laukaasta/hankinnat 

https://rasa.com/docs/ 

 

 

https://www.apple.com/siri/
https://www.cleverscript.com/
https://cloud.google.com/dialogflow
https://www.laukaa.fi/tietoa-laukaasta/hankinnat


72 

 

ATTACHMENT 1 : FULL OUTPUT OF LAUBOT RASA SHELL 
NLU WITH A GREETING 

{ 
  "intent": { 
    "name": "greet", 
    "confidence": 0.9620822072029114 
  }, 
  "entities": [], 
  "intent_ranking": [ 
    { 
      "name": "greet", 
      "confidence": 0.9620822072029114 
    }, 
    { 
      "name": "apua", 
      "confidence": 0.015260818414390087 
    }, 
    { 
      "name": "ask_invoice_pdf", 
      "confidence": 0.004917561542242765 
    }, 
    { 
      "name": "bot_challenge", 
      "confidence": 0.0049173650331795216 
    }, 
    { 
      "name": "thank", 
      "confidence": 0.004144945181906223 
    }, 
    { 
      "name": "deny", 
      "confidence": 0.003176956670358777 
    }, 
    { 
      "name": "goodbye", 
      "confidence": 0.002531921025365591 
    }, 
    { 
      "name": "ask_to_empty_slots", 
      "confidence": 0.0012326458236202598 
    }, 
    { 
      "name": "mood_unhappy", 
      "confidence": 0.0009485589107498527 
    }, 
    { 
      "name": "ask_yearly_comparison", 
      "confidence": 0.0007870752015151083 
    } 
  ], 
  "text": "Moikka!" 
} 


