UNIVERSITY OF JYVASKYLA

COMPILATION OF LANGUAGE CORPORA:
COMPUTER RELATED ISSUES AND ANNOTATION

A Pro Gradu Thesis

by

Eeva Marin

Department of English
1999

1

2

CONTENTS

ABSTRACT
INTRODUCTION 5
1.1 Background on corpora 10
1.1.1 Different types of COTPOIa........cceveereercemerrieceeceenenerneereeneeerereeneenne 12
1.1.1.1 Monolingual COIPOLaccceveeeerueerienieereenteniereeeseeeeeneeesresaneens 12
1.1.1.2 Bilingual and multilingual corpora..........cccceceecervvreencecnrcnnucnne 13
1.2 Terms and concepts .15
1.2.1 Terminology — compiling @ COTPUS....c..ccccvvertremerrercccrscerernenneenn 15
1.2.2 Terminology — USING & COIPUSccvevvreruirerirriiriirierinitereienenienas 19
1.2.2.1 CONCOTANCEcovererreerrereernmienreiseeseesreserestenessesssnsssisasssensenss 19
1.2.2.2 CollOCAtION.corerireretrireereretrneeeenesseesteneseesnenesssosessesaneens 21
1.2.2.3 LemMmMA....couiiieeiiereeeneeneecntecreeteeiteateseensseaesnesanesasesnesennee 22
1.3 Examples of corpus programs 24
1.3.1 MIiCroConcord.........cceevureieeerecreseerereieseecnesneniensesnensossessessesssssasins 25
1.3.2 WordSmith TOOIScccoceeverueremreccriniiiiiiiiiiiiecce 25
1.3.3 TCE (Translation Corpus EXplorer)ccoceevivivininicnncnrcnnnnne. 27
1.4 Uses of a corpus 29
1.4.1 General advantages of COTPOIacccceviruererenieissiciensieisssiennanens 29
1.4.2 More specific uses for COrporacoevueueeveruercncsnesenernsreeennns 31
1.5 Copyrights 34
1.6 Summary 36
COMPUTER ISSUES 38
2.1 Hardware and Operating systems 41
2.1.1 Criteria for choosing hardware...........c.ccccecevuerinenuenencnncinninncnn. 42
2.1.2 Questions to consider when choosing the operating system 44
T 2.1.3 WINAOWS....oeieerceeiieenreeieeteetestesesesesesssssees st ssssssessossesns 47
2,14 UDIX coovioteeeieenienenentnenteessesesssseseseesessessenseseesssestosessesessessessssssnes 51
2,15 OHRET ettt 56
2.2 Character Sets and related issues 60
2.3 How to store information & Backup copies 69
2.3.1 Hard disk vs. floppy disksccceeececevininininsenniinnininncnicninnnnas 69
2.3.2 Other disk driVeS.......cceueverererrcetnecericeeieiniesnenteeienecssteesasenees 70
2.3.3 CD-ROMLccicereieenienirictereeseeeneeseeeesessestsnessestesessessesesasssensonsonsas 71
2.3.4 BacKUpP COPIES.....covieeereerrrrerireeneeirceeeenteeerereesissssaessresssssesesas 73
2.4 Programs 75
2.4.1 A program that another project made for their corpus 77
2.4.2 Commercial PrOZIAMSccevveereeneeeeseereecivnsreoserssensacsnessssossessees 77
2.4.3 Homemade Programs........coceerreeeecveruessessussessussarsrmsssssessessesnsnsans 78
2.4.4 Program made for the project by people outside the project........ 80
2.4.5 Freeware and ShareWarec.cccceueveereernvnvenncrininiininnineesenneeens 81
2.5 Summary 84

3 ANNOTATION eetseressssressesssssesaesasesttsatesasesteasesasesssstsntesassatsssatsass 86
3.1 Introduction to aNNOtAtiON...cccrerssressseresasceces S .86
3.1.1 How to add annotation..............cceeeeeenerienienreenerieneeneeeie e 89
3.1.2 What annotation 100Ks lK€cccoeeeveriieeniiinnierieeicieeeeeie 89
3.1.3 General guidelines for annotation.........c..ceceeeeevereenernuieieenecnnne. 91
3.2 HOW t0 et tEXLS .civereerererceririssercarssncsstssessarsssesssssasssassssessessaesansonssssassns 95
3.2.1 SCANMING c..veevririreiterreriteere et eieeereesieeesiaeereesareereesaeesneessneeens 95
322 KEYING. oottt ettt st 98 .
3.2.3 Text archives.......cocuvecveeiiiiieiiieeieeeecceeet et 100
3.2.4 CD-ROMS ..coiiiiiiiiiiieieeieee ettt 101
3.2.5 Proofreadingcccoevereiimiieniinieec e 103
. 3.3 StandAards.....crisieniisiininnioniiniisssississsisssassssssssassssasssarasasessssassase 106
3.4 SGML and TEI sesenssnneane 109
3.5 Part-of-speech annotation............cueevenvennrernrsennsecssncnseecssencsanecsanss 116
3.5.1 How to add part-of speech tags to a corpus..........cocevvrevrenennen. 118
3.5.1.1 How a tag@er WOrKScceeveercereeneenieceeeee et 119
3.5.1.2 Rule-based, probabilistic and hybrid taggers.......................... 120
3.5.1.3 TagSES ettt 121
3.5.2 Problems with part-of-speech taggingccccoeeeviiiiiniiiinnns 123
3.5.2.1 MUIWOIAS. ...veiiveeiieiieciieeecteeeeieeee et 123
3.5. 2.2 METEETS c.uvveenirieeniieerreenieeeieeenetseereeaneseiee s siae s sate e saraeesanaeeaas 124
3.5.2.3 Compounds.......ccccuerreeieriereenienrentenenicnresr e 126
3.5.2.4 AMbiguous WOTIdS........coceereerierieermenieneeiieniiisne s 127
3.5.2. 5 EITOr TAteS .oouevirveeiieireeiieriieeee ettt 127
3.5.3 Part-of-speech annotation for other languages........................... 128
3.6 Parsing (syntactic annotation) sessresssstsssaseesastessassessannne 131
3.6.1 How to add syntactic annotation..........cceceeeeveeevcereiniiinieinnennann. 134
3.6.2 How an automatic parser WOrksccccoceevicroinnininiinininnen, 137
3.6.2.1 Rule-based, probabilistic, hybrid parsers..............cccoceeiinnne 137
3.6.2.2 Phrase structure and dependency grammarccccocueeunne 138
3.6.3 Problems with parsingcccccoececeeviiniiciniiniiniiiiis 139
3.7 Semantic annotation .142
3.7.1 How to add semantic annotation............cccceeevvvevviniiiiiniinrennnnn. 144
3.7.2 Problems with semantic annotation...........c..ceceeevverericiiinnninnnns 147
3.8 Anaphoric annotatioN........eieercicseecsecsnesecesnsesssiessscssscssasscassoseasss 149
3.9 Prosody and spoken language annotation .152
3.9.1 Prosodic annotationeeeveeeveerreeieenieieniereenineie e 152
3.9.2 Spoken language and speech COrpora..........ccccoeevvviviininiennnn, 154
3.10 Other types of annotation ceseresessissensesnnnense 156
3,11 ALIZNIMENL ..cccueiieeiiinirinrasenesnsssnssansssscssesssasessaessasssnsessasasasssssssssssssases 159
3.11.1 Uses for translation corpora and aligned texts.............ccccoeenenn. 160
3.11.2 How alignment WOTKS........cccceoueverieniniiiiiiiiniiniiiiineee e 161
3.11.3 ENPC ..ottt snc st 163
3.11.4 Gale & Church’s method.........ccocerinviiiiiniinii 169
3.11.5 Kay & Roscheisen’s methodcocooovvviiiniiininniiiini, 171

3.11.6 Problems with AlIGNMENL ...cceecvriirririirectrtiinsisnctesireeeaeeae 172

3.12 Summary 176
CONCLUSION 181
REFERENCES 186

APPENDIX 1: CONCORDANCE OF BLUE
- APPENDIX 2: TCE PRINTOUT

HUMANISTINEN TIEDEKUNTA
ENGLANNIN KIELEN LAITOS

Eeva Marin ,
COMPILATION OF LANGUAGE CORPORA:
_ COMPUTER RELATED ISSUES AND ANNOTATION

Pro Gradu —tutkielma
Englantilainen filologia
Kesikuu 1999 195 sivua + 2 liitettd

Tamén tutkimuksen tarkoituksena on toimia oppaana kielikorpusten
koostamisessa. Ty¢ liittyy osittain FECCS (Finnish-English Contrastive
Corpus Studies) —korpukseen, joka on koottu Jyviskyldn yliopiston Englannin
kielen laitoksella. Lukijaksi on ajateltu ldhinnd korpuksista kiinnostunutta
kielitieteilijai, jolla on tietokoneiden peruskéyttGtaito mutta joka ei ole niiden
asiantuntija.

Tutkimus keskittyy korpusten koostamiseen. Painopiste on nimenomaan
koostamisen teknisessd puolessa: tietokoneisiin liittyvissd kysymyksissd ja
annotaatiossa. ' '

Tutkimuksessa on alkuintron liséksi kaksi pdfiosaa. Introa seuraava tyon toinen
osa liittyy tietokoneita koskeviin kysymyksiin. Siihen sisdltyy mm. yleisid
ohjeita tietokoneiden ja kayttdjéarjestelmien kdytdstd sekd tietoa merkistOists,
tiedon tallentamisesta ja korpusohjelmien hankkimisesta. Kolmannessa osassa
kuvataan eri tyyppisid annotaatioita. Siind k#yddin ldpi mitd erilaisia
annotaatioita on olemassa, mihin niiti kiiytetdsn ja miten niitd yleisesti ottaen
lisdtdan korpukseen. Kumpikin n#isti suuremmista osista myds kuvaa
minkilaisia ongelmia korpuksen koostamisessa voi tulla. Tutkimuksessa
kuvataan myo6s kokemuksia FECCS-korpuksen koostamisessa.

Asioita kisitelldsin kohtalaisen yleiselld tasolla. Tarkoituksena ei ole keskittyd
mihink#sin tietyntyyppisiin tai —kokoisiin korpuksiin, joskin ehkd monin
kohdin oletuksena on kohtalaisen pieni tai keskikokoinen korpus. Yleiselld
tasolla pysytdin myds siksi, ettei moniin tietokoneita koskeviin ongelmiin voi
antaa ehdottomia vastauksia laitteiston ja ohjelmistojen nopean kehityksen
takia. Siten tissé tutkimuksessa pyritd4n ldhinné antamaan yleisid ohjeita, jotka
sitten toisaalta sdilyttivit pitevyytensd pitemman ajan.

Asiasanat: corpus, corpus compilation, annotation, electronic texts, bilingual
corpora, TEI

Eeva Marin 5

1 INTRODUCTION

The present paper is about the compilation of computer corpora. A corpus is a

large collection of text in computerized form that can be searched and

otherwise manipulated by the computer. Corpora often include millions, even

hudreds of millions of words that have been collected from various sources,

such as books, newspapers and magazines. They can be used for many
different kinds of linguistic research and more practical applications for them

can be found in the fields of translating and teaching, among other thihgs.

| The idea for such a paper as this stems from my working within a
corpus project. A corpus called FECCS (Finnish-English Contrastive Corpus
Studies) has been compiled at the Department of English at the University of
Jyviskyld. The finished FECCS corpus will include extracts of texts in both
English and Finnish, and their Finnish and English translations. The final size
of the corpus will be about 2 million words.

The FECCS corpus has been compiled together with the Universities
of Oslo and Bergen in Norway, and the University of Lund in Sweden. They
have, respectively, English-Norwegian and English-Swedish corpora. The
original English texts are, to a great extent, the same extracts in all three:
projects. There is also a smaller corpus at the Department of English in
Jyviskyld that consists of newspaper articles from tabloid newspapers such as
Daily Mirror, The Sun, Iltalehti and Ilta-Sanomat. .

It was noted during the compilation of the corpus that there does not
seem to be much written on the subject of compiling a corpus. The existing
studies either concentrate on the selection of texts rather than the technical side
of the compilation process, or, conversely, tend to be highly technical and

‘closely connected to a specific proj.ec't. There did not seem to be collected
general guidelines that would apply to all types of corpora and at the same time
be suitable for someone who does not know much about the field beforehand.
There were bits of information available here and there, but never were those
bits collected under one heading. From this basis came the idea of writing the
present paper, Which tries to collect relevant points on corpora compilation into

a single collection of information, advice and experiences.

Eeva Marin 6

Basically, the present paper aims to give a general idea of the process
of compiling a corpus. The purpose is to provide a general introduction to
corpus compilation to someone who does not yet know much about the field. It
is expected that the readers are familiar with the basics of linguistics; also, it is
expected that the readers are not total strangers with computers. The present
paper does not, however, expect expert knowledge about computers or
programming. In fact, for computer experts, some of the chapters may seem
rather simplified and tedious. Rather, it is expected that the reader is familiar
with some of the basic applications of computers, such as file management and
word processing. It is also expected that the reader understands the basics of
how computer software work, so that terms such as “cutting and pasting” text
are familiar. Mainly, the present paper is aimed at linguists who are interested
in taking advantage of computers in linguistics, especially in the form of
corpora. It is also mostly expected that it is the linguists themselves who need
to take care of practical computer issues, and that they use personal computers
rather than large mainframe systems.

The present paper aims to describe what can be done to corpora rather
that how it can be done, exactly. For example, chapter 3.5 introduces what part-
of-speech annotation is, explains in general terms how it is done, and what
kinds of problems can be expected with it. It does not, however, give much
practical advice about how to do it. There are mainly two reasons for this.

First of all, there rarely is only one “absolutely correct” way to do
something. Part-of-speech annotation, for example, can be applied in several
different ways: it would not serve the purposes of the present paper to
introduce one of them here as being above all the others. The annotation
schemes, in their entirety, are also quite extensive: it might take hundreds of
pages to explain even one of them, in some cases. If there is a need to get to
know a specific annotation scheme, there are published manuals for many -
schemes that tell everything about them.

Secondly, the development of computers is rather rapid nowadays.
Should the present paper represent a particular procedure in a very detailed

manner, its usefulness would not last for very long. It is much more useful to

Eeva Marin 7

explain some of the basic principles; even though the details change, many of
the basic guidelines for doing something are likely to last much longer.

It must be noted here, though, that some examples of the present paper
are nevertheless tied to the time of writing. For instance, the chapter about
operating systems may seem rather dated quite soon, since the changes in the
field are fast. It, too, should be read so that attention is paid to some of the.
main ideas rather than the details. The details (such as the descriptions of
specific operating systems) may become outdated soon; some of the more
general ideas (such as what kinds of qualities a researcher in the humanities
should expect from an operating system) are bound to last much longer.

It must also be pointed out that much of the information in the present
paper is on a rather theoretical level. Especially Part Three of the present paper
is mostly based on what [have read about annotating corpora; I have not
personally had the chance to use the annotations that are discussed, with the
exception of alignment that was done to the FECCS corpus. Those who have
actually worked with annotated corpora could undoubtedly offer a somewhat
different view to the matters that are discussed here. As it is, the information on
the present paper is based on such sources as were available.

The first part of the present paper serves as an introduction to corpus
linguistics. It explains what corpora are, what they can be used for, and
presents some key vocabulary in the compilation and use of corpora. It is
intended as a general background to someone who is not yet familiar with
corpus linguistics at all.

The second part of the present paper is about relevant computer-
related issues. Since corpora are nowadays kept in computers, there are many
computer-related questions that need to be addressed when compiling a corpus.
These include, for example, suitable hardware and software, and questions
relating to storing the information. The second part also addresses the question
of character sets, which sometimes cause problems with text files. Part Two of
the present paper, especially, is meant for readers who have a limited
knowledge of computers in advance.

Part Three of the present paper examines the field of annotation.

Annotation means the addition of extratextual information to the corpus. For

Eeva Marin 8

example, each word in the corpus could be provided with a code that tells
which word-class it belongs to, or each sentence in a corpus could be
syntactically analyzed. The beginning of Part Three, first of all, explains how
to get the texts into the computer: the subsequent chapters, then, tell what kind
of information can be added to the texts once they are in computerized form.
There are also many things that the present paper does not deal with.
The most notable of these is the criteria for the selection of the contents of the
corpus. As will be pointed out, a corpus is a principled collection of texts, so
that there is some kind of an idea behind their selection. For example, the texts
could be selected from 19™ century literature, or from certain type of
newspapers that were published, say, in 1990. In addition to the fact that a
corpus should be principled, there is the question whether the corpus is
representative of the field it is supposed to present. For instance, it may be
desired that the selected texts from 19" century literature are representative so
that the research results from the corpus can be generalized to apply to any
kind of 19% century literature. There is also the question of what kind of
samples are selected for the corpus: are a few complete novels included, or
extracts from several novels. These are the kinds of questions that the present
- paper will not address any further. In the present paper, it is expected that the
selection of texts has been made. There seems to be plenty of research done
already in the field of corpus design. Those who wish to know about the
- selection of texts for the corpus are referred to relevant research reports. Short
descriptions of such matters can be found in Biber et al. (1998:246-253) and in
Barnbrook (1996:24-25). Also Sinclair (1991:15-21) discusses corpus design.
The first part of Leitner (ed.) (1992) deals with corpus design and text
encoding, and includes articles on, for example, corpus sampling. An example
of the text selections of an individual project can be found, for example, in
Biber et al. (1993) (concerning a representative corpus of historical English
registers).
Another field that is not much addressed here is the actual usefulness
of specific types of operations that can be done to or with corpora. For
example, the usefulness of different types of annotations should not be taken

for granted; what kinds of annotations are useful depends on the type of

Eeva Marin 9

research that is going to be done with the corpus. There are, indeed, many
questions and problems in the use of corpora that could be addressed. It could
be considered, for example@s;ai{ s}aemﬁc corpuséppropriate for a specific type
of research, dﬁLeé the corpus dlctate ‘what kinds of research can be done with it,
how much‘ do the programs that are used limit the kind of research that can be
done, and \;;dthe research results poor because there was no search option for
the thing that was really wanted. Maybe the results are not at all what was‘
wanted, or maybe the computer retrieved too much, or too little. It may be that
a corpus is actually not necessary at all for a given research question; rather,
fhe matter could be examined much more efficiently by other methods. These
kinds of questions are very much related to specific research projects. Even on
a general level, however, they will not be addressed in the present paper. The
chapters on annotation do give some examples of the uses of the types of
annotations introduced, but they do not go very far in criticizing the usefulness
or theoretical basis of the annotation schemes. Such issues, though interesting,

are out of the bounds of the present paper.

The following chapters of the first part of the present paper introduce corpus
linguistics in general. Chapter 1.1 gives general background information about
computer corpora and their different typés. Chapter 1.2 is about terminology: it
explains some central terms in corpus linguistics and gives examples of them.
Chapter 1.3 introduces a few programs that can be used in corpus research, to
give a further idea of how corpus software works. Chapter 1.4, in turn, explains
some of the uses of corpora in general. Note that the uses for annotated corpora
are considered in connection of the relevant types of annotations in Part Three

of the present paper. Chapter 1.5 briefly deals with the issue of copyrights.

Eeva Marin 10

1.1 Background on corpora

A corpus is a collection of texts or any language material that has been

systematically collected for a specific purpose in mind, most often for research.

A corpus usually includes millions of words of text in machine-readable form

that can be accessed through suitable computer programs. The computer can

search the texts for a particular Word or phrase, and the ﬁhdings can be printed”
out or saved on disk. A search is usuélly made for one word, and the computer

prints every sentence in which the word was found.

Glossary of Corpus Linguistics (at the Cobuild WWW site) defines a
corpus as “a collection of naturally-occuring language text, chosen to
characterize a state or variety of a language [...]”. This definition actually
includes the same important point that Leech and Fligelstone (1992:1 16) also
mention: corpora are rarely collections of miscellaneous texts; rather, the types
of texts in them have usually been cérefﬁlly selected and classified so that the
corpus is representative of some languagé or text type.b Biber et al. (1998:12)
put all this in an efficiently succinct form: a corpus is a principled collection of
natural texts. For example, a corpus may include newspapér articles from
certain newspapers from a certain éeriod of time.

There are some well-known corpora in the world. The Brown corpus
and The LOB (Lanbaster-Oslo/Bergen) corpus are both from the early sixties,
and both comprise about one million words. Although they are quite old, they
are still widely used; because their contents is well-known by now, they can be
used, for example, to test new programs and other innovations. They are both
fairly small when compared to hewer corpora. The British National Corpus
contains abdut 100 million words in all; The Bank of English contains several
hundreds of millions. There is also a well-known corpus in Finland, the
Helsinki corpus. It includes, for example, Old and Middle English texts.

A corpus may include both written and spoken language. In case of
spoken language, speech must be first transcribed into written form in order to
make it possible to examine it on a computer. Sinclair (1991:15-16) ndtés that
although many researchers believe that spoken language would tell more about
the fundamentals of language that written texts, most corpora do not include

spoken language because of the various problems in compiling such material.

Eeva Marin 11

There are still no methods for automatic transcription of speech and therefore
the compilation of such a corpus is very time-consuming. There are, however,
some well-known corpora that include spoken language. These include the
London-Lund corpus (500,000 words of spoken language) and the British
National Corpus (4,000,000 words of spoken language) (Biber et al. 1998:13).

Most of the well-known corpora in the world contain English texts,
but there are also corpora in other languages. There are also attempts to make
corpora more standardized in terms of how annotation is applied and what
kinds of programs can be used. With more standard practices, it will be
possible to combine corpora from several different countries and in many
languages to form larger corpora that could be used for multilingual research.
Chapter 3.3 of the present paper will consider the matter of standards in more
detail.

Although the term “corpus” nowadays usually refers to something that
is in a computerized form, the concept of corpus linguistics has been around for
several decades. It is only the recent fast development of computers that has
made it possible to compile such huge corpora that are around now. Earlier, a
corpus used to mean a collection of texts in printed form. Several such books,
composed of hundreds and hundreds of pages of collected texts, can still be
found in libraries. Doing research on such a corpus meant that the researcher
had to manually search for every single instance of whatever he was looking
for.

The development of both computer hardware and software has had a
huge effect on both the amount of material available and what can be done with
corpora. Within the last fifteen or twenty years there has been such an
incredible increase in computing power that it is hard to describe. Sinclair

(1991:1) gives an irnpressinVE account of the development of corpus linguistics:

»Thirty years ago when this research started it was considered impossible to process
texts of several million words in length. Twenty years ago it was considered marginally
possible but lunatic. Ten years ago it was considered quite possible but still lunatic.
Today it is very popular.” :

Although the uses of corpora will be explained in more detail later in
this paper, it might be noted here that corpora can be used in several kinds of

linguistic research, as well as to support language learning and translation. For

Eeva Marin 12

. example, many students who study English at a university are familiar with
The Collins Cobuild English Language Dictionary. This dictionary is the result
of the Cobuild project by the University of Birmingham and HarperCollins
Publishers (Sinclair 1991:1-3, Glossary of Corpus Linguistics). The numerous
examples in the dictionary come from their huge corpus of both written and
spoken language. Nowadays, the Cobuild database, called Bank of English,
contains over 320 million words (The Bank of English — Questions and 7
Answers).

' The following sections describe the different types of corpora there
are. It is useful to keep the classification in mind. Although there are many
characteristics that all corpora have in common, in many respects different
types of corpora are suitable for rather different purposes, and the bases for

their compilation are different.

1.1.1 Different types of corpora

There are more than one kind of corpora in existence. The different types of
corpora can be classified in several ways. The classifications tend to depend on
the point of view of the writer and the kind of research being done. The
classification presented here is one that seems most relevant for the purposes of

the present study. The main division is into monolingual and bilingual corpora.

1.1.1.1 Monolingual corpora

" Monolingual corpora are, as the name implies, corpora that consist of samples
‘from one language only. Most corpora in the world are monolingual. The
Cobuild corpus is a'typical example of this kind of corpus. Although it spans
several text types and both written and spoken language, it consist of English
language texts only. The Cobuild corpus is what can be called a general
cbrpus (e.g. Sinclair 1991:17, Mauranen 1997). It does not specilize in any
certain type of text but tries to give a very broad view to the language,
including material from newspapers, magazines, fiction and non-fiction books,

brochures, leaflets, reports, letters, and spoken language such as transcriptions

Eeva Marin 13

of conversation, radio broadcasts, meetings, interviews and discussions (The
Bank of English — Questions and Answers).

The other type of monolingual corpus is that of a specialized corpus.
Such a corpus has texts from a specified field or era. For example, the Helsinki
Corpus includes a collection of Old and Middle English texts and transcripts of
spoken British rural dialects from the 1970°s (Manual to the Diachronic part of
the Helsinki Corpus of English Texts). There are also corpora that concentrate
on the language of a certain technical or other field, for example corpora of
legal language.

Yet another type of monolingual corpus is that of a monitor corpus.
A monitor corpus is a corpus that constantly goes through new stretches of text
and searches for new words and expressions. Sinclair (1991:25) suggests that a
monitor corpus should always have available an up-to-date selection of current
English; when the corpus gets too large, part of the information can be

discarded. A monitor corpus is constantly changing.

1.1.1.2 Blhngual and multllmgual corpora

A bilingual corpus is a corpus that has texts in two different languages. A
multilingual corpus, respectlvely, has more than two languages in it. The same
classifications apply to both bilingual and multilingual corpora, and
henceworth the present paper will, for the sake of brevity, mostly refer to them
as bilingual corpora. There are two main kinds of bilingual corpora: translation
corpora and comparable corpora.

A translation corpus mclude_s original texts and their translations.
They are sometimes also called parallel corpora, although the term can refer
to other types of corpora, too. As Peters and Picchi (undated) define it, the texts
in a translation corpus are transla_tienally equivalent. As was mentioned earlier,
there is a corpus of English and Finnish texts, the FECCS (Finnish-English
Contrastive Cerpus Studies) corpus, at the Department of English at the
University of Jyviskyld. More than half of the texts are English originals with
their Finnish translations, and the fest are Finnish original texts and their
English translations. Similar corpora have been collected at the University of
Oslo in Norway (ENPC, English-Norwegian Parallel Corpus) and at the

Eeva Marin 14

University of Lund in Sweden, with English-Norwegian and English-Swedish
texts, respectively. These corpora consist mainly of prose literature and popular
fiction.

By using the computer programs made for this purpose, a researcher
can find any sentence from a text and its translation in the other language.
Translation corpora have often been - processed beforehand so that
corresponding sentences can be found easily and fast. A researcher can search
for any word or phrase in either language, and the computer gives a list of the
sentences where the word occurs and their corresponding translations.

The other type of a bilingual corpus is that of a comparable corpus.
Peters and Picchi (undated) define a comparable corpus as consisting of sets
of texts [...] that concern a given domain and can be contrasted because of
their common features”. The texts in a comparable corpus share common
features such as period of time, topic and register. They are not, however,
translationally equivalent and cannot be examined in the same way as a
translation corpus. There is also a small comparable Finnish-English corpus at
the Department of English in Jyviskyld. It consists of articles from such
Finnish tabloid newspapers as Iltalehti and Ilta-Sanomat, and British papers
such as Daily Mirror and The Sun. The articles were all selected from papers
that were published within a period of few months, and similar types of news
were chosen (e.g. editorial, sports news).

Like monolingual corpora, bilingual and multilingual corpora can be,
in fact, specialized in a certain field. In Aarhus School of Business in Denmark,
there is a Danish-English-French corpus within the domain of contract law and

a Danish-German-Spanish corpus of genetic engineering (Lauridsen 1996:67).

- This chapter has given general background on computer corpora and
introduced different types of corpora that are available. Before the present
paper moves on to explain more about the uses .of corpora, there are some
important terms that must be explained. They will be introduced in the
following chapter, which will deal with the terminology of both the

compilation and use of corpora.

Eeva Marin 15

1.2 Terms and concepts

This chapter introduces some key terms of corpus linguistics. Although the
present paper deals with the compilation of corpora, there are also some basic
terms relating to the use of corpora that need to be introduced. The following
section will explain, first, some relevant concepts of compiling corpora, and

secondly, terms in using corpora.

1.2.1 Terminology — compiling a corpus

Terms that often come up with corpora are annotation, annotating, and
annotated corpora. Almost all of Part Three is dedicated to the matter of
annotation, but a few words about it are in place here to make some of the
related vocabulary familiar. Annotation means, basically, that some
extratextual information is added to a corpus. Annotation is often also referred
to as tagging, or markup. Sometimes a slight difference is made between
these terms. The difference between them seems to be that annotation is a more
general term, and it is often also used to refer to the process rather than the
outcome. Tagging and markup tend to mean either the encoding itself (the
codes themselves), or more specific type of encoding, namely the kinds of tags
that are attached to each word, sentence, or other smaller units (vs. annotation
that describes features of a complete text). In the present paper, these terms
will be used interchangably.

In practice, annotation means that special encoding of some kind is
added to the text. It may also mean that certain general features of the text,
such as bibliographical information,ﬁi;séadded to the beginning. The codes that
are used are often referred to as tags. A tag is a code that usually looks much
like something that might be used in programming, which makes the principles
of their use easy to comprehend for pedple who are familiar with computer
languages. Tags can be attached to certain words, phrases, sentences, or other
strecthes of text. For example, a tag can tell that a word is a proper noun, or a
pair of tags can tell where a paragraph starts and ends. Tags can also tell of
material that has been omitted from the text, such as pictures.

Eeva Marin 16

Annotation can be added either manually or automatically. Manual
annotation means that human annotators, with the help of a word processor or
another type of editor, put each tag in place. Automatic annotation means that
the computer can carry out the whole task more or less by itself. In practice, the
annotation process is often a mix of the two. Very often, the computer first
assigns tags, and then human annotators check the result and correct all the
errors.

Theoretically, almost any characteristics and details of a text could be
annotated. In practice, however, some features are easier to annotate than
others. For example, information about the grammatical categories of words
can be added relatively easily; information about the meanings of phrases or
sentences are much harder to annotate. The problem is not only that such
markup is very hard to do automatically, since computers do not generally
understand the text they process, but also that even for human annotators, it is
sometimes impossible to give unambiguous meanings to units of text.

There are many reasons why annotation is added to a corpus, and they
are dealt with in more detail in Part Three in the present paper. In general,
annotation has consequences on how the texts can be manipulated in corpus
programs, what kind of research can be done with them, and how, if needed,
the texts can be further processed in order to make a working corpus.
Therefore, making a decision about what kinds of annotations are added to a
- corpus can prove to be rather important for the researchers. The following is an

extract from a tagged text from the FECCS corpus:

Example 1: Tagged text

<divl type=part id=PM1l.1>

<head>JANUARY</head>

<pb n=1><p><s>The year began with lunch.</s></p>

<p><s>We have always found that New Year's Eve, with its
eleventh-hour excesses and doomed resolutions, is a dismal
occasion for all the forced jollity and midnight toasts and
kisses.</s> <s>And so, when we heard that over in the
village of Lacoste, a few miles away, the proprietor of Le
Simiane was offering a six-course lunch with pink champagne
to his amiable clientele, it seemed like a much more
cheerful way to start the next twelve months.</s></p>

(Peter Mayle: A Year in Provence (FECCS))

Eeva Marin 17

In this particular case, for the FECCS corpus, sentence and paragraph
boundaries have been recognized. The <p>-tags single out paragraphs and the
<s>-tags surround sentences. There is also the <head>-tag marking the chapter
heading, and a <pb>-tag for a page break. The <div>-tag in the beginning
defines that this division of the text is a part and its identity number is PM1.1.
These tags have been inserted in order to tell the computer where one sentence |
starts and ends, where one paragraph starts and ends, and where the chapters
change. Although for a human reader it might seem obvious where a new
sentence starts, for the computer it is not. For example, a full stop and a capital
letter do not always start a new sentence, e.g. with names like C.G.E.
Mannerheim and abbreviations like esim. Helsinki. The tags unambiguously
tell where sentences and paragraphs start and stop and make the processing of a
text easier.

The tags, in this case, are based on SGML (Standard Generalized
Markup Language), which is used in structured documents. SGML will be
further dealt with in chapter 3.4. The tégs also resemble HTML (Hypertext
Markup Language) tags, which are used to define documents in the World
Wide Web. Most of the tagging in FECCS could be done automatically,
although some tags must be inserted manually. All automatically inserted tags
must be proofread afterwards, because the computer makes errors with them.

In addition to the tags in the previous example, there are many other
tags in the FECCS corpus. They include, for instance, special tags for italic and
bold face, tags for pictures and tables (the actual pictures and tables have to be
omitted and the tags are inserted instead) and tags for foreign language
expressions. The point of SGML tagging here is to preserve the formatting of a
text, no matter what kind of program it is processed in.

Another important term that also concerns the FECCS corpus is
alignment. Alignment is relevant in case of translation corpora. It means that
the corresponding sentences in two texts (e.g. an English text and its Finnish
translation) are matched so that they can be easily found together. The
following examples are from the same text as the previous example of a tagged
text (Example 1). Here the texts, an English original and, below it, its Finnish

translation, have been aligned.

Eeva Marin 18

Example 2: Aligned texts

<divl type=part id=PM1l.1>

<head id=PM1l.1.hl corresp=PMI1T.1l.h1>JANUARY</head>

<pb n=1>

<p id=PMl.1l.pl>

<s id=PMl.1l.sl corresp=PM1T.1l.sl>The year began with
lunch.</s></p>

<p id=PMl.1l.p2>

<s id=PM1l.1.s2 corresp=PM1T.1l.s2>We have always found that
New Year's Eve, with its eleventh-hour excesses and doomed
resolutions, is a dismal occasion for all the forced jollity
and midnight toasts and kisses.</s>

<s id=PM1l.1.s3 corresp=PMIT.1l.s3>And so, when we heard that
over in the village of Lacoste, a few miles away, the
proprietor of Le Simiane was offering a six-course lunch
with pink champagne to his amiable clientele, it seemed like
a much more cheerful way to start the next twelve
months.</s></p>

<divl type=part id=PMIT.1>

<head id=PM1T.1.hl corresp=PM1l.1.hl1>TAMMIKUU</head>

<p id=PM1T.l.pl>

<s id=PM1T.1l.sl corresp=PMl.1l.sl>Vuosi alkoi lounaan
merkeiss&.</s></p>

<p id=PM1T.1l.p2>

<s id=PM1T.1l.s2 corresp=PMl.1l.s2> Meistd uudenvuodenaatto
yhdennentoista hetken hurjasteluineen ja kohtalokkaine
pditdksineen on aina ollut masentava tilaisuus; pédkistettya
riehakkuutta, keskiyén maljoja ja suudelmia.</s>

<s id=PM1T.1.s3 corresp=PMl.1.s3>Ja kun sitten kuulimme,
ettd Le Simianen isdntd Lacosten kyldssd muutaman mailin
pdidssa tarjosi rakastettavalle asiakaskunnalleen kuuden
ruokalajin lounaan vaaleanpunaisen samppanjan kera, meisté
tuntui ettd se olisi paljon hilpedmpi tapa aloittaa seuraava
kahdentoista kuukauden jakso.</s></p>

(Peter Mayle: A Year in Provence (FECCS))

Each sentence now has its own unique identity number and information about
the identity number of the matching sentence. Now the program that is used to
browse the corpus can find a sentence in either language and its translation in
the other language easily.

There are programs that automatically do the alignment. They may do
it by the aid of a wordlist, which is like a concise dictionary where the program
can find the words it sees and compare them to their translations. Alignment
| programs may also work on many other basis, often utilising the sentence
lengths and probabilistic information about the likelihood of certain matches.
Alignment will be explained in more detail in chapter 3.11.

Eeva Marin 19

The following section, in turn, introduces some terms relevant in the use of

corpora. Although the present paper does not specifically address the

complications that may occur in the use of corpora, occasional references to

them are possible. In any case, the terms in the following 'section are rather

central to the field of corpus linguistics, and are therefore introduced here.

1.2.2 Terminology — using a corpus

There are some important terms that one should be familiar with in order to be

able to understand the use of corpora. These include concordance, collocation,

and lemma. Each of them will be explained here in turn.

1.2.2.1 Concordance

Sinclair (1991:32) defines concordance as “a collection of the occurences of a

word-form, each in its own textual environment”. The following example is

part of the concordance of the word blue from the English original texts of the
FECCS corpus:

Example 3: Concordance, search word blue (no sorting)

hair dyed straw-blonde or baby-blue, or, even more startling aga
Toronto the Good, Toronto the Blue, where you could n't get win
old biddy. I pull on my powder-blue sweatsuit, my disguise as a
up the caterpillars, which are blue-striped, and velvety and coo
. She blew it up for me. It was blue, translucent, round, like a
hristmas tree lights, yellow or blue or green. These are called "
wearing grey slacks and a dark-blue plaid shirt, packing our foo
on. A soft June morning with a blue sky and a gentle breeze. Six
xited with Gillian. I was a bit blue, and being blue always makes
an. I was a bit blue, and being blue always makes me satirical, s
else, and I said it out of the blue, but in my mind it was as if
ly have helped that I was a bit blue. The fact that they reserved
sessed. Tonight he wore a faded blue polka-dot cravat at his thro
straight nose and bright, pale blue eyes. She had never known an
indows smouldering. It was that blue and red, that blue especiall
It was that blue and red, that blue especially, I felt in need o
better. Then, quite out of the blue, it is discovered by one of
avelling through the air like a blue flame, killing her .victims s
d clothes. Spitting that Maid's blue flame right in the face and
had to unfreeze the pipes with blue-flames. In the beginning we

(FECCS)

Eeva Marin 20

This kind of a concordance is called a KWIC concordance (Glossary of corpus
linguistics). KWIC stands for Key Word In Context, which means that the
search word is in the center of the line, with more or less context around it. A
concordance can usually be sorted in several ways. According to Sinclair
(1991:33) the sorting that is often most useful is alphabetical ordering to the
right of the central word. The following example is the same concordance as in
example 3, but now sorted by the word to the right of the central word. The
example sentences are not the same, because this is not the full concordance
but only part of it, and the sorting has changed the order of the sentences. The

example starts from sentence number 16; i.e. it is not taken quite from the

beginning of the concordance.

Example 4: Concordance, search word blue (sorted 1* word to right)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 .

32
33
34
35
36
37
38
39
40

f-naked body. Now she takes the blue
ly away and reaches for another blue
mirror and one of the minuscule blue
ped pine of the dresser and the blue

bottle and moistens a corner
bottle. That has a goose qui

bottles,

bowl

stoppered with a co
of orange marigolds and

else, and I said it out of the blue, but in my mind it was as if

d wear the distinctive electric-blue cap bands,

shoulder boards a

woman, . was resplendent in pale-blue chiffon and cloth of silver,
e nephew fills his glass from a blue-and-white china decanter of
dress from the early days of
dress with the wide white co

mdash; she was wearing a bright blue
atalie. She had put on her best blue

It was that blue and red, that blue
ky and flaxen-haired, with cold blue
ely pale oval madonna face with blue

continue straining your lovely blue
trudged through icy snow. Blank blue
And this old woman's freakish blue
t-chested and had pale skin and blue
e? The gentle pity in the faded blue
ell, but at least the prominent blue
s to them, even when his vacant blue
owever, he stared down with his blue
oyish looks, fluffy blond hair, blue
he colour of her somewhat blank blue
in the metropolis. But his baby. blue
me through them, which made her blue

especially,

eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes
eyes

I felt in need ©
and a sharp chin. I had
and her hair was light-
and end up bumping into
stared at the old man w
had turned it into some
and long fingers. Her h
robbed Mattie of the an
had not been veiled. Th
were on Farthing and he
at the old table just b
and shy smile, Billy wa
‐ I tell you, litt
missed very little. Bef
look huge. "You could n

(FECCS)

It can now be seen that this kind of sorting brings out words that the ‘central
word most often occurs with. In this short concordance it seems clear that blue
is quite often used in the context of blue eyes. Although this concordance was

not sorted by the word to the left from the central word, it can be easily noticed

FEeva Marin 21

that blue eyes are often further characterized here by some other adjective, in
these examples lovely, faded, blank, prominent, freakish and baby blue. The
full concordance of blue sorted by the first word to the right is given in
Appendix 1.

Concordances can also be used to count word frequencies. Frequency
lists can usually be arranged in the order in which the words occur in the text,
alphabetically or by their frequency, with the most frequent words first
(Sinclair 1991:29-32). Such lists tell something about both languages in
general and about the text under scrutiny. If a frequency list is made from a
comparatively short text, e.g. one chapter of a book, it can be quite easily seen

what the text is about by examining the words that occur most often.

1.2.2.2 Collocation

Collocation means the co-occurrence of words in a text. Glossary of corpus
linguistics defines a collocate ”a word which occurs in close proximity to a
word under investigation”. In the case of collocation, the central word is called

the node. Below, we have again a short extract from the previous concordance:

Example 5: Collocation

92 He wore dark corduroys, a navy blue

93
94
95
96
97
98
99
100
101
102

wearing grey slacks and a dark-blue
sessed. Tonight he wore a faded blue
an sprint to a large silver and blue
dress of dark blue satin, and a blue
herself between a lady in royal-blue
if she could come get the navy blue
rug from the dining room. "Navy blue
wn her chin, it was matting her blue
ess and wearing a dress of dark blue
at was the Countess of Powis in blue

pea jacket, and a fisherman'
plaid shirt, packing our foo
polka-dot cravat at his thro
Road King, which he enters t
rose at the apex of her deco
ruffles with a fan and casta
rug from the dining room. "N
rug, " Macon repeated. (He wa
sailor dress, blood, oh dear
satin, and a blue rose at th
satin, diamond-embroidered; -

(FECCS)

Blue is the node word; all the words surrounding it are its collocates. Usually,
four or five words before and after the node are considered relevant. Words
further away from the node are usually too far away to be closely connected
with it in meaning.

Collocates tell what kinds of contexts the node word most often

occurs in. In both examples 4 and 5 it can be seen that blue, aside from eyes,

Eeva Marin 22

often seems to be used in connection with clothes and fabrics (jacket, shirt,
dress, rug, satin). The full concordance in Appendix 1 also points out sky as a

frequent collocate of blue.

1.2.2.3 Lemma

A lemma is the composite set of grammatical word forms. For example, the '
word fo give has the distinct forms give, gives, given, gave, giving and fo give.
These words together are the lemma of the word fo give. Arranging words into
a lemma is called lemmatization (Glossary of Corpus Linguistics). Lemmas
can be useful when, for example, a researcher wants to see the concordance for
the word fo give in all its word forms. In a language like Finnish, where words
are highly inflected, lemmas can prove to be very useful in corpus research.
However, one can also argue against the lemmatization of a corpus.
Both Glossary of Corpus Linguistics and Sinclair (1991:41-42) note that there
are reasons why it should not be done. Since the computer cannot lemmatize
words automatically, it is sometimes the researcher’s personal judgment that
decides which words are related and which ones are not. There can be also
differences between the word-forms, for example their collocates can be very
different. That is, the different word-forms of the same word occur in
completely different environments, although they can be considered to be the
inflections of the same word. For example, the word blue (’a colour’) and the
word which looks like its plural form blues (’a style of music’) should not

really be grouped together for most purposes.

This chapter has introduced some of the key concepts in corpus linguistics.
Annotation and alignment are impbrtant in connection with the compilation of
a corpus, whereas concordances, c,olloéations and lemmas must be understood
when one wants to start to use a corpus. Before proceeding to the uses of
corpora, there is one more thing to discuss. In order to do anything with a
cofpus, a researcher must have a program that is able to browse and search the
texts. The following chapter will shortly introduce three programs that can be
used to deal with corpora. There are, of course, plenty of corpus software

available in the world; the programs in the following chapter have been

Eeva Marin 23

selected here because they have been used at the Department of English,
University of Jyviskyld, and because they serve as good examples of the basic

principles of how corpus software works.

Eeva Marin 24

1.3 Examples of corpus programs

There are plenty of programs for browsing different kinds of corpora. Some
programs can handle almost any kind of text, whereas others have been made
for a specific purpose and require their own data format.

Effective processing of different types of corpora requires programs
that are meant specifically for the relevant kind of corpora. For example,
although the texts in a translation corpus can be separately processed in a
program that is meant for only one language, translations can be properly
studied only in a program that can handle both languages at the same time.
Correspondingly, even though many annotated corpora can be processed in any
concordancer that knows how to hide the tags, the full advantage of annotated
corpora can only be gained with programs that can use the annotation properly.
For instance, the program should be able to make searches where the tags are
used as search parametres (e.g. to retrieve only those instances of will when it
is used as a modal auxiliary).

Three programs are introduced in this chapter. The first two of them,
MicroConcord and WordSmith Tools, are for monolingual corpora and for
very general purposes, that is, they can be used to read almost any text. The
third program, TCE, has been specifically made for the kind of translation
corpora that have been compiled in Norway, Sweden and Finland. These
programs were selected to be introduced here for a few sirhple reasons: they
can be used to process the corpora that have been compiled at the English
department at the University of Jyviskyls, and they were used to produce most
of the material and examples of the present paper. In addition, especially the
first two are typical examples of corpus software.

It might be noted here that although the following sections only
mention that the programs search for “words”, the searches can be defined
more specifically than by a single word. For example, each program can make
a search for book*, where the use of the asterisk results in all words beginning
with book (e.g. books, booking) to be found. In addition, all programs have
their own more exact ways of defining search strings. They will not be
examined here in detail. Suffice it to say that most corpus browsers allow for

quite complex search strings to be entered.

Eeva Marin 25

1.3.1 MicroConcord

MicroConcord was published by Oxford University Press in 1993. It is a fairly
simple, DOS-based program that searches for words and makes concordances.
Concordances can be sorted by the node word, and by 3 words to the left or to
the right of the node. It can also count the frequencies of the most common
collocates of a word. MicroConcord is suitable for examining texts in one
language only. It comes with its own small database, which spans several text
types.

MicroConcord can, however, read any text that is in ASCII format. No
special tagging is needed, and it is not language specific either. Therefore,
although simple, it is rather useful. Basically, a researcher can take any stretch
of text and examine it in MicroConcord. There is the limitation, though, that as
a DOS program MicroConcord does not support other than the standard
character set, plus some accented characters. Character set problems will be

addressed in chapter 2.2.

1.3.2 WordSmith Tools

WordSmith Tools is a Windows program that is a more advanced version of
MicroConcord. It has basically three parts: the Wordlist tool, the Concord tool,
and the KeyWords tool. A typical scene from WordSmith Tools can be seen in
picture 1.

The Wordlist tool makes lists of all the words in a text, both
alphabetically and in the order of frequency. Concord works in the same way
as concordancers usually do, that is, it shows words with some amount of
context around them. It also allows sorting and has rather good options for
handling collocates. KeyWords searches for what are called key words. These
are words that have an unusually high frequency in a text. WordSmith Tools
also has an alignment tool, even though the program is mostly used for one
language at a time, and a few other functions.

Like MicroConcord, WordSmith Tools also reads any ASCII text that
is given to it. In addition, it also recognizes SGML tags and is able to ignore
them, which is a useful feature, strange as it may seem. It enables WordSmith

Tools to read files that have been tagged for some other program, and still

Eeva Marin 26

make sense out of them. Examples 3-5 in the previous chapter, in connection
with concordance and collocation, were printed from WordSmith Tools.

More information about WordSmith Tools can be found at
http://www]1.oup.co.uk/elt/catalogu/multimed/4589846/4589846.html. The

program can also be downloaded through the Web.

true fans. “They dent sit on their hands, they aetually use them to cla

i agers seem content to sit on their hands until after the election. Lex S

s the film industry will not sit on its hands while the extra-terrestial cha

ou they would prefer to sit and hold hands with their boyfriend. What th
p while the Government sits on its hands and does nothing." =Jim Th
E: 19 Viewpoint: World sits on its hands as Rwanda bleeds to death

with two children, who sits with her hands folded on her lap throughout
f the British government sits on its hands™ he couldn't see the ceasefir
Yier since March, sits immobile, his hands in prayer, his fleshy underchi
{ h|Ie the rest of the world sits on its hands over Rwanda at least the Fr
, ents and yat aniiz hands" The WML said higher orice
: ernlty. If Mr Major simply sits on his hands through Maastricht 2, there
mayor, Jeffrey Higgins, sits on his hands. ~"We made a conscious de
e, with official Labour sitting on its hands and delivering the Governme
3% Iy, in your coverage, sitting on your hands and reporting what the Gover
thmg Among those SIttlm_; on thew% ands are the Canadian Imperial Ba

Picture 1: WordSmith Tools.
(http://www1.oup.co.uk/elt/catalogu/multimed/4589846/screenl/text].html)

Eeva Marin 27

1.3.3 TCE (Translation Corpus Explorer)

Translation Corpus Explorer, or TCE, has been developed by Jarle Ebeling at
the University of Oslo. It was originally made for the ENPC (English-
Norwegian Parallel Corpus) project, but has been later used in Sweden and
Finland for other translation corpora, for example FECCS.

As the name implies, TCE is made especially for examining texts andv
their translations. The program can search for a word, and the results are
displayed in two windows. The upper window contains a sentence in which the
éearch word was found, and the lower window displays the corresponding

sentence in the other language. Below is a typical screen in TCE:

{%Tlanslatiun -orpus Explorer : Fiction [99-2-24)

‘I<s id=MA1.2.3.532 corresp=MA1T.2.3.532>It was[{iff}, translucent,
iround, like a private moon.</s>

Pyl :‘5" g Pty %@&%ﬁww&w& LN %)%\% @’ ;&&s&% %A& ?»”gﬁxfw m%&«% %ﬁagﬁ”swz»%u gﬁ»s& 2, &“M}%\ 15%'&%1}%%6»’”‘”%%%%“% # »y‘ .
{<s id=MA1T.2.3.s32 corresp=MA1.2. 3 s32>Se oli sininen, laplkuultava
ja pyored, kuin ikioma kuu.</s> :

T T e B, 5,
g&zﬁeﬁ*& LA %%%& %

Picture 2: TCE

Eeva Marin 28

The following is an example of the printout of TCE. When printed on paper,

the examples are printed simply following each other, as shown below:

Example 6: TCE printout

<s id=WB1l.2.s141 corresp=WB1T.2.s5142>Tonight he wore a faded
blue polka-dot cravat at his throat which set off his
tan admirably.</s>

<s 1id=WB1T.2.s142 corresp=WB1l.2.s5141>Sind iltana héanelld oli
kaulassaan haalistunut sinipilkullinen solmio, joka toi
rusketuksen esiin suorastaan ihailtavasti.</s>

<s id=WB1.2.3.s527 corresp=WB1T.2.3.s28> He had a long,
straight nose and bright, pale blue eyes.</s>

<s id=WB1T.2.3.s528 corresp=WB1l.2.3.s27> John Clearwaterilla
0li pitk& suora nend ja kirkkaat vaaleansiniset silmdt.</s>

(FECCS)

TCE requires that the texts are not only tagged and aligned, but also
made into a database from which words can be searched easily. This means
that the final database can be processed by TCE only, and not by any other
program. There is also a version of TCE that can handle more than two
languages at the same time. The full TCE printout of search word blue is in

Appendix 2.

This short chapter has briefly introduced three programs that can be used to
browse corpora. Two of them, MicroConcord and WordSmith Tools, are made
to deal mainly with monolingual corpora, whereas TCE is made specifically for
certain kind of translation corpora. The following chapter goes on to explain

what kind of things corpora are actually used for.

Eeva Marin 29

1.4 Uses of a corpus

This chapter introduces some of the uses of corpora. The point here, especially
in the first section, is to consider them without much reference to any specific
types of corpora. Rather, the aim of this chapter is to give a general idea of the
advantages that can be gained by using any corpora. Part Three of the present
paper will give more detailed examples of the use of different types of
annotated corpora.. |

Generally, computer corpora are used for different kinds of linguistic
research. They can also be utilized in teaching and in many automatic
procedures which involve language, such as machine translation and many
applications that concern artificial intelligence. Different types of corpora tend
to have different uses. There are, however, some advantages in using a corpus
that are common to all kinds of research and all kinds of corpora. They will be
dealt with here first. After that, some of the more specific uses will be

discussed.

1.4.1 General advantages of corpora

The most obvious advantage that any corpus offers is the vast amount of
material available. Computer corpora enable the kind of research that could not
be done manually, research that involves text material consisting of millions of
words. It would take a lifetime for a single researcher to go through such
quantities of material manually searching for a word or pattern, whereas a
computer can do it in a few seconds.

Aside from that, the most often emphasized advantage offered by
corpora is that a corpus provides a researcher with hundreds, even thousands of
examples of words in their actual use. A corpus can bring up phenomena in
texts that might not be noticed otherwise. It brings out patterns from a text and
displays words in their real context, covering all instances.

Thus a corpus search reveals examples and uses that might not have
been noticed otherwise, or that would have been ignored as irrelevant, and
forces researchers to question beliefs that they may have taken for granted. A

corpus can drastically alter the ideas that people have about language. By

Eeva Marin 30

providing evidence of how language is actually used, corpora can effectively
challenge people’s intuitions and force them to see things that they might have
neglected otherwise. Among many others, Sinclair (1991:4) notes that there is
a huge difference between what people think about language and what corpus
evidence proves. Some examples are given here to clarify this point.

For example, the word back is usually taken to mean basically the
human body part. When asked, that is what most people would say. Most
dictionaries rank it as the most important meaning for the word, and it is the
meaning that is given first in the dictionary. However, corpus evidence proves
that back is most commonly used in the meaning “in, to, or towards the original
starting point,‘ place or condition”, which dictionaries usually do not consider
very important usage (Sinclair 1991:112). This information is important, for
example when teaching English as a foreign language. Although dictionaries
and maybe school textbooks, too, are likely to explain back as a part of the
human body, outside the classroom the students are much more likely to see it
in its adverbial sense.

Same kinds of cases can be found in Finnish as well. For 'example,
many people might say that the Finnish word tosi essentially refers to the
truthfulness of something. However, a simple search from the FECCS corpus
does not support this at all; mostly, fosi is used to intensify the meaning of
other words, like tosi kova, tosi kauan, tosi tehokas, tosi mukavaa.

~ As Stubbs (1994:218) puts it, “computers make it more difficult to
overlook inconvenient instances”. A corpus forces the researcher to see how
language really is used, not only how researchers think it is used. Of course, a
corpus may not only challenge people5s thoughts, it can also confirm them.
Leech and Fligelstone (1992:122) mention that corpora are nowadays widely
used to test hypotheses and pfovide evidence of language use. Since there is a
vast amount of material in any corpus, the results of corpus searches must be
taken seriously.

What a researcher has to keep in mind, however, is that although a
corpus can provide lots of evidence, certain reserve is needed. As Sinclair
(1991:5) says, there are ”plenty of bizarre and unrepresentative instances in any

corpus”. There may be, for example, a strange sentence that represents only the

Eeva Marin 31

usage of one author in a certain unusual context, not the language as a whole.
This is where the quantity of corpus evidence really comes in. If a strange
collocation for a word occurs only once in a corpus of a hundred million
words, it is not likely to deserve much notice. If it comes out of a corpus of a
million words, however, its importance cannot be decided offthandedly. It may
be said that good judgment and, after all, intuition, must be used to decide

which cases really are representative of the language and which are not.

1.4.2 More specific uses for corpora

Different corpora can be used for several different kinds of linguistic research.
The type of research depends on what kind of corpus one has available, e.g.
how large it is and what kind of material is in it. It is not within the scope of the
present paper to examine the uses of different kinds of corpora exhaustively;
rather, a general picture and individual examples will be given here.

One common use for corpora is the making of dictionaries (Leech and
Fligelstone 1992:120, 123, Sinclair 1991:1-3). The Collins Cobuild dictionary
was mentioned earlier in the present paper; in addition, at least two other
publishers, Longman and Oxford University Press, have worked on corpus-
based dictionaries (Leech and Fligelstone 1992:120). The advantages of this
kind of dictionary building are obvious. The compilers need not have to try to
come up with proper examples of language usage themselves, since real-life
examples can be retrieved from the corpus. It is just as easy to find new words
as to judge their importance by their frequencies (Bank of English — Questions
and Answers). For instance, if a word is a highly technical term which a person
who is not an expert of the field is never likely to come across, it may be left
out of a general-purpose dictionary. However, a corpus may reveal that a
technical-sounding word actually occurs quite often in newspapers and
magazines, and thus warrant its inclusion in the dictionary.

Leech and Fligelstone (1992:123) also mention that a dictionary need
not be in a printed form. The idea of a dictionary that could be searched and
updated by the computer is something that is becoming more and more

popular. This is close to what Sinclair (1991:24-26) calls a monitor corpus, a

Eeva Marin 32

corpus which is used to filter out new words and meanings from constantly
changing and renewing material.

A translation corpus provides information not only of one language
but of at least two languages at the same time. In addition to that, the texts in
the two languages are translation equivalents. Such a corpus is naturally ideal
for studying translations and helping the translation process. However, a.
translation corpus can as well provide important information about one of the
languages only. One can compare, for example, Finnish original texts and texts
that have been translated into Finnish from English. Such research within a
language points out how translations are different from original texts. For
example, sentence structures in translations are not always the same that occur
in original texts in that language. Further, translated language often includes
words that would not be used in original writings.

Corpora can also be used to support language learning. A corpus can
provide evidence about which structures in reality are the most common and
the learning of which should thus be emphasized. For example, Biber et al.
(1994:171-174) compared several pedagogic grammar books to corpus
evidence. Their research showed that the structures which the grammar books
emphasized were actually quite rarely used in the corpus. Some very common
linguistic constructions, however, were overlooked in the grammars. Grammar
books often opt to teach structures that are the easiest to acquire and easy to
teach in the classroom. However, some of the harder structures are likelier to
occur in actual situations of language use. (Biber et al 1994:171-174).

Sentences exemplifying correct usage can also be taken from a corpus.
Often examples in textbooks, although grammatically correct, do not sound
quite natural. Although invented example sentences can always be guaranteed
to be structurally correct, it may be hard to come up with situations in which
someone would really use them, while all examples taken from a corpus have
been used in real text or speech. Therefore they give a more realistic idea of the
uses of a word or a structure.

Corpora can also be used to study learner language and to identify
where learners’ errors Qrigihate. One can compare learners’ language with the

language of native speakers as well as compare the errors of learners from

Eeva Marin 33

several different countries (Granger 1996:43-49). Thus one may identify errors
which are due to transfer and caused by the learners’ mother tongue, and those
which are common to all language learners.

A few more uses for corpora may be mentioned here. Leech and
Fligelstone (1992:121-124) give several examples of different kinds of
research areas where corpora can be utilized. Spoken language corpora can be
used, for example, to develop speech synthesis and speech recognition.
Machine translation can be developed through the use of corpora. Text
checkers, that is, programs which evaluate writing and correct spelling and

grammar, can also get valuable information from corpora.

This chapter has given a general picture of the tasks that corpora can be used
for. First, I discussed the advéntages that are to be gained from the use of any
kind of a corpus. Secondly, examples of more specific uses for corpora were
given. Note that the list here is only a list of examples: it is by no means all-
inclusive. There are many more applications for corpora, both in the academic
and the commercial world. The purpose of this chapter is only to give a general
introduction of the possibilities that corpora offer.

The following' chapter is about a topic that is strictly speaking out of
bounds of the scope of the present paper, but so important that it must be
mentioned nevertheless. After one has decided to cbmpile a corpus and has,
perhaps, already considered4speciﬁc texts that could be in it, one must check
whether one needs a permission to include the texts into a corpus. The
following chapter briefly deals with questions relating to the matter of

cdpyrights.

Eeva Marin 34

1.5 Copyrights

One issue that needs to be dealt with briefly is copyrights. It is, indeed, a
problem of its own, and the scope of the present paper does not make it
possible to deal with it in detail. However, a few words about copyrights are
necessary. v

In order to include any texts in a corpus, one must have the
permissions for it from the copyright holders. Since the whole idea of having
electronic texts is quite new, there may be problems with getting the
permissions. The copyright laws have not changed fast enough to take
electronic text into account, and much of the traditional terminology used in
connection of copyrights is not clearly defined with computerized material. For
example, as Hockey (1998:105) points‘ out, it is not clear what is a “new
edition” in case of electronic texts, since they can be changed easily all the
time. There is also the issue of “making copies” of the material: the word
“copyright” literally means the right to make copies of something. In case of
the printed word the meaning is clear, but how should one define making a
copy when dealing with computers? Every time a file is saved on a disk,
moved to a different computer, or even saved as a temporary file by the
~ computer, a nEW copy is made. | |

Hockey (1998:105) also notes that there have been problems because
researchers do not know where to ask for the permissions, or because the
copyright holders do not know how to answer the requests. As the whole issue
is rather new, many publishers may not yet have any previous experiences or
standard practices for dealing with such requests. It may be also that neither the
researchers nor the copyright holders have a clear idea of what kinds of rights
they can request or retain, and what kinds of rights one actually needs in order
to process and use the corpus. As Hockey (1998:105) also points out, copyright
laws are different in different countries. This can prove a problem in
international projects.

Since the laws are not quite clear here, it may be that some publishers
take a strict principle and never give any permissions to convert the texts into
electronic form, or let their material be used in corpora. A new trend also

seems to be that some publishers give permissions for a limited time, for

Eeva Marin 35

example for two or three years. Some may also demand payment for the right
to use the texts, even for linguistic research.

In any case, anyone who decides to compile a corpus should find out
about the relevant copyright issues and get the necessary permissions for the
material. The whole matter is likely to become clearer soon, since the need for
such permissions has become greater during the last few years. Hopefully,
there will also be some international guidelines that will make the compilation
of multilingual corpora easier and give rise to further international projects.
There have already been many plans towards international laws and practices.
For example the European Union has published a report called the Green Paper
on Copyright and Related Rights in the Information Society (available, for
example, at http://www.ispo.cec.be/infosoc/legreg/com95382.doc in Word
format).

Note that copyright laws also apply to non-commercial texts. For
instance, essays written by elementary school students cannot be included in
any corpus without proper permissions. The copyright laws about this may be
somewhat different in different countries, but at least in Finland it is worth
noting that a school cannot give a permission for the use of the essays
automatically; the essays are the intellectual property of the authors, i.e. the
students, and the permissions must be obtained from the students themselves
(their age is not an issue here). The copyright is always held by the author,
unless it has been explicitly moved to someone else.

' The only types of texts that can be included without permission are
older texts which are not protected by copyright laws anymore, and texts that
were not copYrighted in the first place, such as folklore, some legal texts and
many religious writings. They may not, however, provide the basis for many
different kinds of research projects. This point will be briefly taken up again in
chapter 3.2.3, which discusses text archives.

Eeva Marin 36

1.6 Summary

The first part of the present paper has been an introduction to computer
corpora. In it, I have tried to create a basis from which the reader can go on to
read about the more specific issue of compiling computer corpora. The
introduction can also be seen as a general introduction to computer corpora for
someone who is not familiar with the field beforehand.

Chapter 1.1 explained what computer corpora are and what different
types of corpora exist. It gave a framework to classify different types of
;:orpora and explained about some of the characteristics of certain types of
corpora. The classification I presented here is not the only possible way to look
at them;bindeed, corpora can be classified according to many other features,
too, if need be.

Chapter 1.2 introduced terminology that is relevant to corpus
linguistics. In it I briefly explained terminology that concerns the compilation
of corpora, and the use of corpora in general. After reading the chapter, the
reader should have a general idea of central concept in corpus linguistics.

Chapter 1.3 presented three programs that can be used to search
computer corpora. The programs were the ones that have been used at the
English department at the University of Jyviskyld, and they also serve as good
examples of how corpus software usually works.

In chapter 1.4 I explained what computer corpora can be used for.
Advantages of all corpora and more specific uses of corpora were given as
examples. It may be noted here again that the purpose of the chapter is only to
give a general idea of the uses of corpora; in addition to the examples given
here, there are many other uses, too.

Chapter 1.5 dealt with the issue of copyrights, which is fairly
important for corpus compilers. Before any texts are included in a corpus,
suitable permissions must be acquired from the copyright holders. Although
the issue was not discussed here extensively, its importance should not be

underestimated. |
| Part Two of the present paper will consider computer-related issues.
Since language corpora are nowadays kept in computers, there are decisions to

be made about the equipment to be used. There are also many questions and

Eeva Marin 37

problems that may come up in the compilation and use of corpora. These
concern, for example, character sets, file formats, and the different ways to
store information and take backup copies. The following part of the present
paper will deal with these.

Eeva Marin ’ 38

2 COMPUTER ISSUES

In order to compile and use a corpus, one must have a computer with which to
process the data, and suitable programs for the purpose. This part of the present
paper deals with issues that have to do with computers and related matters. The
. purpose is to give the reader some idea of what kinds of options there are
concerning the hardware and software and what kinds of problems one can "
encounter with them, and in general, give information about hardware and
software that is relevant with computer corpora. The purpose is to help the
reader choose hardware and software that would be the best possible for the
corpus and for its users.

Since the development of computing is very fast, it is, in many cases,
impossible to give very detailed recommendations. Rather, some general
guidelines in computer matters can be given. Although both the hardware and
software change rather quickly, some basic principles tend to apply for longer
periods of time. There is also the fact that the selection of hardware and
software depends on the type of the corpus, and the research needs of the users.
A small corpus for a small research project which only needs concordances,
has somewhat different needs than a multi-million-word corpus with many
users, who need different types of statistical processing of the data. This
chapter cannot give any specific advice for a specific type of a corpus; rather, it
has to give advice that usually applies to some aspect of corpus use or
compilation.

One should also be aware of the fact that although the state-of-the-art
of computers changes all the time, corpora are not usually very demanding.
Much of older hardware and software is still quite suitable for work with
corpora. This has to do, to a large extent, with the nature of corpus data.
Textual data rarely takes much disk space and searching for a word does not
usually take huge amounts of time, depending, of course, on what else can be
done with the program. The most advanced machines available often offer
better performance with demanding mathematical calculations, and with tasks
that involve graphics or sound, such as 3D modelling or music editing. The

manipulation of corpora, however, is mostly about dealing with strings of text.

Eeva Marin 39

Although newer machines can undoubtedly do it faster, older machines are
quite adept at it, too.

On the other hand, this part of the present paper is also tied to the
hardware and software available at the time of writing. For example, the
operating systems and storage options introduced here are the options worth
considering at the time of writing; in a few years, however, some of them may
be obsolete, or some of them may have become the new industry leaders. The
purpose for introducing such systems here is because ,even if the most
advanced users will discard them in a matter of years, there will be, on the
other hand, plenty of other users who will stick to their old machines for years
to come. As was stated in the previous paragraph, corpora do not necessarily
require the best that is available, and it may be, indeed, that all the users of the
- corpus have rather old equipment, too. Therefore, even some of the more
detailed information here may be of use to the compiler and user of a corpus
for more than a couple of years. Even when both the hardware and software
have completely changed from the present, the reader can hopefully see the
general principles that apply to the selection of the computing environment.

This part of the present paper is not meant for computer experts. They
are already likely to know everything that is said here, and will probably find
the contents of these chapters rather tedious. The information here is meant for |
a reader who has already used computers, who understands basic things about
them (such as what is a file or a directory), and who has some expetience of
using computer programs and knows their basic functions (such as cutting and
pasting text in word processing programs). It is also expected that the reader is
at least somewhat familiar with e-mail and the World Wide Web. No extensive
knowledge of computers is needed, however; the readers are expected to be
linguists rather than computer wizards. The purpose of these chapters is to help
them gain such information about computers that is relevant when working
with corpora. '

It may be noted here that there are bound to be many computer terms
that are mentioned in the text but not explained. These might include
references to bits and bytes, or a remark about client/server —networks. In many

cases, these have to do with details that can be quite safely skipped, if the

Eeva Marin 40

reader feels that he or she does not understand them. The important point here
is to understand the main principles; the details, shallow though they are, are
for those who find them interesting. If it is necessary to understand a term, it is
also explained here. Most of the vocabulary used can be found in any
dictionary of computer terminology, so it would not serve the purpose of this
paper to explain them here.

Chapter 2.1 describes hardware and 6perating systems. It introduces
some criteria for choosing hardware and the operating system, and also
discusses some operating systems in more detail. Chapter 2.2 is about character
sets and related issues. It includes descriptions of character sets, plain text
formats, and problems that relate to these, especially when moving files from a
computer to another. Chapter 2.3 introduces options for storing the corpus data
and gives general advice on backup copies and storing the data. Chapter 2.4 is
about software: what is required of corpus software, and how to get suitable
programs. Hopefully, all this will give the readers a good basis for acquisition
of hardware and software for corpus compilation and use, and prepare them for

the problems that may come up with computer related issues.

Eeva Marin 41

2.1 Hardware and Operating systems

This chapter deals with different operating systems, their qualities, their
advantages and their disadvantages when compiling and using a corpus. It also
briefly considers criteria for choosing hardware. As mentioned abové, this
chapter is written for a person who does not have an extensive knowledge of
computers, but rather, some rudimentary knowledge of how computers work -
and how to use them. People with more experience with computers may not
find this chapter very relevant to them; the whole question of choosing an
operating system or hardware may not seem relévant to one who is used to
using different systems, moving files around between them and configuring
programs for one’s personal use. |

However, people who compile and use a corpus are often no computer
experts but researchers whose interests lie elsewhere than in the technology.
For them the computer is just a tool to achieve certain results: the tool itself is
not interesting. From their perspective, the question of different operating
systems and hardware is relevant only because this information makes the
compilation and use of the corpus as smooth, easy and efficient as possible.

That, indeed, is the key reason for the existence of this chapter: to help
make useful decisions regarding the operating system. It must be said,
however, that in many cases the compiler of a corpus may not have much |
choice regarding the operating system. Often, indeed, it may be the case that
there are only a few computers at hand, with the operating system that happens
to be in them. In such a case, of course, the question of different operating
systems and hardware is a bit irrelevant; one just has to get along with
‘whatever is available. On the other hand, it may be that it is decided from the
onset of the project which programs are to be used with the corpus; in such-a
case, there is probably no choice whatsoever, because one must use the
operating system that the programs happen to work in, and get the hardware
that both the operating system and the corpus programs require. i}

However, if it has not been decided which corpus browser to ﬁse, the
choice of the operating system and hardware is relevant. For example, simple
concordancers are available for a variety of operating systems. Also, if you

plan to make the program yourself or have someone make it specifically for

Eeva Marin 42

your corpus, the operating system needs to be decided. Of course, even in that
case the existing hardware may limit the choice.

Yet another reason for considering the choice of the operating system
and hardware is the fast development of computers. To avoid the need to
completely recompile the corpus after present systems are outdated, and to
make the corpus last for more than a few years, the choice of hardware and
software needs to be considered. These questions are also related to other
things in addition to operating systems, such as programs, file formats and
character sets, but these, in turn, are very much related to the operating system
and hardware.

In any case, there are situations where the researcher is free to choose
both hardware and software, and in that case, it is worthwhile to consider their
pros and cons. The following section presents some criteria for choosing the
hardware. Because computers change and develop quite fast, it would not be
wise to give any concrete suggestions about the type of computer; however,
there are-general guidelines that apply now, and will apply in the future, too,

for choosing useful hardware.

2.1.1 Criteria for choosing hardware

There are many details to consider when 'choosi'ng suitable hardware. Antworth
& Valentine (1998) give some usefulAs.uggestions for getting the right kind of
machine. |

| Their first point is that the hardware should meet the needs of the
software (Antworth & Valentine 1998:171). There is no reason to buy a very
expensive or popular model if the software does not require it. One should
avoid the kind of "my-computer-is-better-than-yours” —arguments that
computer aficionados tend to get into: no fype of computer is automatically
better than another one just because someone claims so. The best computer for
your needs is the one that runs your programs and that you can use
comfortably. Antworth & Valentine (1998:171) also note that you shoﬁld buy
the kind of computef that you need now, not something that you think you will
need later on. They give the following example: you should not buy a $4000

computer now, if you do not need it, no matter how new and powerful it is;

Eeva Marin 43

instead, buy a $2000 machine that you need. You can buy the $4000 computer
two years later for $2000. The end result is that you have spent the same
amount of money, but you have two machines instead of one.

You should also consider what kind of computers other people in your
local computing community use (Antworth & Valentine 1998:171). If everyone
has different kinds of computers, it is hard to share data and expertise with
others. There should also be maintenance, such as repair and technical support,
available for the kind of computer you have (Antworth & Valentine 1998:171-
172).

Antworth & Valentine (1998:171) also point out that the computer
should support a character set appropriate to the language you are studying.
Languages that use a completely different type of script, such as Russian and
Greek or, even more so, Chinese and Japanese, need a character set of their
own. This, however, is not a huge problem nowadays, because the graphical
user interfaces of modern personal computers allow for plenty of different
types of fonts to be installed and used at the same time.

Very different types of languages, however, may even require
consideration for a new keyboard that is made for them. Note that even in the
western countries that use the Roman script there are local differences to
keyboards. For example, the Finnish keyboard has the characters 4, 6, 4, 4, O,
and A that are missing from English and American keyboards. A few letters
difference of course does not make using the keyboard impossible, and even
bigger differences can be dealt with. For example, those who write in Russian
have little stickers with the alphabets on them which can be glued on a normal
western keyboard, thus making the writing in the Russian font easier. For far
different languages, however, a separate keyboard in addition to the font may
be needed. '

Antworth & Valentine (1998:172) also say a few words about portable
computers. They suggest that one should only buy a portable computer if one
genuinely needs it. They are more expensive, and have rather poor screens and

- keyboards compared to desktop computers. If you travel a lot or otherwise
need to use a computer in many different places, a portable computer is a fine

choice; if not, rather get a cheaper, but more effective desktop model.

FEeva Marin 44

Depending on what kind of a computer you have got, you may have a
choice of the operating system. Some computers, like Macintosh, come with
their own operating system which is not usually changed (except updated);
some others, like IBM-PCs, offer more choices. The following section lists
some of the things about corpora that one should remember when making the -

choice.

2.1.2 Questions to consider when choosing the operating system

There are certain situations when the choice of the operating system is
particularly relevant. They are briefly listed in the following paragraphs. Note
that no answers to the problems are offered here, because there are no
foolproof answers to any of them. Rather, the differenf advantages and
disadvantéges of different operating systems are dealt with in sections 2.1.3-
2.1.5, and the readers may draw their own conclusions on which is the best
alternative for them. This section of this chapter only tries to i:_oint out
questions that need to be considered and situations where the choice of the

operating system is particularly important.

1) If the corpus is going to be used for a long time, it is notiirrelevant which
operating system it is in. Operaﬁng systems do not only receive regular
updates, but with time, some of thc;m are forgotten and others come along.
The programs used for the corpus may exist only for that particular system,
and because of that it may be more or less impossible to move the corpus to
another system and still be able to use it. Even if the corpus files are in such
a format that they can be used in other computers and programs, it takes
extra time for the users to familiarize themselves with new software.

2) Corpora may also be very large. In such a case, moving them anywhere is
more or less problematic and time-consuming, and different operating
systems only make it worse. If there is even one simple file _’f_c_>rrnvat
conversion to be made, it is no\ laughing mattef if you have 10 gigabytes of
text to convert. Of course it can be dealt with, but it takes time, and no-one

wants to be doing it too often.

Eeva Marin 45

3)

4)

5)

A problematic situation also comes along when there are plenty of users for
the corpus. There may be plenty of users to begin with, or with time, more
people may emerge who want to use the corpus. These people may have a
plethora of different kinds of computers and operating systems, some of
which did not even exist when the corpus was compiled. A compromise
must be found that best pleases everyone.

If you plan on programming the corpus browser or any related programs
yourself, you must decide fairly soon which operating system it is going to
work in. Parts of program code, especially the parts concerning the user
interface, are system-dependent and may have to be reprogrammed to a
large extent if the same program is converted for another operating system. -
Depending on what kind of a programming language is used, it may not be
possible to convert the program for other systems at all.

It must be recognized that there are different types and levels of users. Even
though a certain operating system might theoretically be the best for a
certain kind of corpus, it may be that none of the users can use it or are
willing to learn it. Beginners, ordinary users and experts often prefer
different operating systems. It may be said that none of the widely used
operating systems are completely good or bad: any of them is good for a

certain group of users, for certain types of tasks. The following chapters

-will, indeed, try to deal with the pros and cons of different operating

systems, not.only considering their suitability to corpus processing, but also

considering their suitability for different kinds of users.

It must be noted here that the question of operating systems is tied to

the question of programs, and file formats. On one hand, there are programs

that are available for several operating systems and use the same file format, no

matter which system it is in. In such a case, it may not make any difference

which operating system is chosen for compiling and using the corpus, and the

- users’ preferences dictate the choice. On the other hand, some programs are

available for only one system, and some file formats may be somewhat system-

specific. For example, plain text formats tend to be a bit different in different

Eeva Marin 46

systems. Chapter 2.2 will look more closely at the problems with different
character sets and plain text formats.

Of course, in any case it saves time and trouble if the material can be
kept in the same operating system and in the same computer most of the time.
If it has to be moved, the easiest case to handle is when the file format can
always be the same, so that both during the compilation of the corpus and over
longer periods of time the corpus never has to be converted to a different
format. How often this is possible, is of course an issue of its own; new
programs often come along, which will require changes or additions to the old
data.

In many cases the choice of operating system depends totally on the
program that will be used to browse the corpus. If it has been decided in the
beginning that a certain program will be used, in many ways it is easiest to
compile, e.g. scan and proofread, the material in that operating system, too. In
that case the files do not have to be moved around, or at least there will be no
unprecedented problems when moving them and trying to get them to work in
another machine. Such a procedure also helps to guarantee that the character
set and file formats used are compatible at all stages of the compilation and use
of the corpus.

However, this may create some problems from the users’ and
compilers’ point of view. For example, if the corpus is going to be used in
Unix, but none of the people who proofread the texts have any experience of
using it, it has to be considered whether it is useful to teach people the use of a
new operating system and word processor, or to process the texts in another

operating system first, then move them over to Unix.

The following chapters briefly introduce some of the most common operating
-systems. It may be noted here that all information in this chapter is relevant at
the time of writing. However, as is well known, computers tend to develop
rather quickly, and some of the information here is likely to get outdated within
a short time. The end of this chapter, however, will try to give some general

guidelines which should apply for somewhat longer.

Eeva Marin 47

2.1.3 VWindows

Windows is probably the best-known operating system of personal computers
nowadays. There are different versions of Windows: the old Windows 3.1,
Windows 95 and its updates, and Windows NT. Each one of them will be
shortly introduced here in turn.

All versions of Windows offer a graphical user interface (GUI) which -
most people find easier to use than a character-based one, such as ordinary
Unix or DOS. Windows was designed to be easy to learn and use, so that the
user does not have to know anything about the internal workings of the
compliter to learn how to use the hardware and software (Kiianmies 1995:15-
16). All Windows programs work basically in the same way, applying the same
kind of graphical elements in all programs, such as windows, menus and
buttons. Once the user has learned the basics of one program, it is fairly easy to
get the hang of another (Kiianmies 1995:16). -

Many procedures of Windows programs have been standardized.
Regardless of the program, some shortcut keys, for instance, always stay the
same (e.g. ctri-c for copy, ctrl-v for paste), and the same options can be found
in the same places in the menus (e.g. exif is always the last option in the file-
menu). DOS programs do not have this kind of standardization; the user has to
learn different ways to do the same thjngs, depending on the program
(Kiianmies 1995:17-18). |

The first version of Windows, Windows 1.0, was published by
MicroSoft back in 1985. It was soon followed by Windows 2.0 in 1987.
Neither of them became very popular, and they were used only if needed for
specific programs (Kivim#ki & Rousku 1996:13-14). Compared to later
versions of Windows, they were fairly simple and did not offer much to the
user that other operating systems could not provide. |

Windows 3.0 was published in 1990, and it became instantly
extremely popular. It was updated to version 3.1 in 1992, and later on to
version 3.11. These offered several error fixes and some new features to the
original version (Kivim#ki & Rousku 1996:14-15, Kiianmies 1995:15). Later
MicroSoft published Windows for Workgroups. It is basically the same as

Eeva Marin 48

ordinary Windows 3.1, but it has network support, for example programs for e-
mail and fax and means for file sharing (Kiviméki & Rousku 1996:15-16).

Nowadays, if any of the older versions of Windows are in use, it is
likely to be either Windows 3.1 or 3.11, or Windows for Workgroups 3.1 or
3.11. To the ordinary user it usually makes no difference which particular
version of these is used. Therefore, the name Windows 3.1x is often used to
generally refer to all of them, meaning that the version number can be either
3.10 or 3.11.

Windows 3.1x is still widely used in older computers. It is actually not
an operating system in its own right, but a graphical user interface for DOS
(Kiianmies 1995:15). The operating system underneath is still DOS, and faces
the same limitations, such as problems with memory.

New Windows programs are nowadays made almost invariably for
Windows 95/98, and will not work in Windows 3.1x. It is possible, however, to
make programs that work in both, and older programs generally do. If you
want to use Windows and have only Windows 3.1x, it is likely that you can
find several corpus programs for it. Any computer with Windows 3.1x in it
also has DOS, which means that DOS applications can be run in it without
some of the problems that come up with DOS in newer versions of Windows.
None of these corpus programs are bound to be the newest ones available;
however, they may include the kind of tools that you need and be perfectly
suitable to the processing of the corpus that you are going to compile.

Windows 3.1x is, however, a dying operating system. In a few years it
is likely that no-one will use it anymore. A corpus compiled in it should for
that reason be saved in a format that can be easily moved from a system to
another. It is not recommended to start compiling huge corpora in Windows
3.1x nowadays. If there is anything system-dependent in the compilation of the
corpus, it will only result into problems fairly soon.

Windows 95 is probably the most common version of Windows
nowadays. It was published in July 1995 and offers several new features when
compared to ‘Windows 3.1x. These include, among other things, better
management of resources (e.g. memory), greater stability (programs do not

freeze completely as often as before), better networking possibilities and 32-bit

Eeva Marin 49

applications (Kivimiki & Rousku 1996:18). The most visible change from the
user’s point of view is that the user interface has been remade completely
(Kivimaki & Rousku 1996:18). It offers the user different possible ways to use
the system: Windows 95 can be used much like old 3.1x, but Macintosh users
will also find familiar procedures.

Windows 95 also makes it possible that the users need to understand
as little as, or as much as they want to about the operating system. The ordinary
user does not have to know much about the internal workings of the computer,
whereas the experienced user can get familiar with the system on a deeper
level. For instance, files can be dealt with simply by viewing them as icons in
folders, with only the main part of their name visible (e.g. my_text instead of
my _text.doc); on the other hand, if needed, the user can change file attributes
and view full file extensions, create shortcuts to files and arrange them
according to different properties.

There are several upgrades for Windows 95, named Windows 96, 97
and 98, denoting the year when they were issued. Although they do offer
updates to the operating system, they are not considerably different and seem
more or less the same to the ordinary user. Windows 98 is the one that is most
, ndticably different, but even there the differences are not so big to the original
Windows 95 as to confuse the users.

Windows NT is the fully 32-bit version of Windows. NT means “new
technology” and it was originally designed to get rid of the limitations of DOS
(Kivimiki & Rousku 1996:17). There are actually two versions of Windows
NT: Windows NT server and Windows NT client (Kiviméki & Rousku
1996:24). The server version is much more expensive, but with much better
network support. The client version is cheaper, but it can also work as a server
in small networks.

Although Windows NT looks just like ordinary Windows, the
workings underneath are very different. It was not limited in its development
by any remnants of DOS, but instead was completely reprogrammed from the
beginning. It is more powerful and reliable than other versions of Windows,
and it offers much better network support in general. It also works in a variety

of different kinds of computers and takes better advantage of memory and disk

Eeva Marin 50

space (Kivimiki & Rousku 1996:17,19-20, 22-24). It is also more expensive
and needs more powerful hardware to work properly. If compared with
Windows 95, Windows NT offers better performance, reliability and network
-management, including security issues. It can also be run on computers that
have more than one processor, which Windows 95 is not suitable for (Kiviméki
& Rousku 1996:19, 22-23).

Whether any of these features is needed from a corpus compiler’s
point of view is another thing altogether. The compilation of a corpus is mostly
about processing of text, which generally does not demand huge processing
power. Another downside to- Windows NT is that not all ordinary Windows
programs work in it; many corpus browsers may fall in this category.

- When using a corpus, however, a Windows NT server could be used if
there are plenty of users. The corpus could be physically situated on the server
which also controls the access to it, keeping track of the users. Only the
computer acting as the server needs Windows NT in it: the rest, the users’
computers, can have Windows 95 in them (Kiviméki & Rousku 1996:20,24).
In small networks, however, Windows NT client or simply Windows 95 could
be used as a server.

Different versions of Windows have different requirements of the
hardware. Windows 3.1x needs at least a 386SX processor or higher and 4 MB
of memory. Windows 95 needs, theoretically, a 486 processor and 8 MB of
memory; in practice it works very slowly on such a computer, and at least a
Pentium processor and 16 MB of memory are recommended (Kivimdki &
Rousku 1996:89-93). Windows NT needs at least 20 MB of memory to work at
all, and 32 MB is recommended.

The biggest advantage ‘of Windows in corpus work is that many
~ computer users know how to use it and it is fairly easy to learn. Windows is
also probably more readily available in most places than e.g. Unix. Many -
people would not want to get a new operating system just because of a corpus,
and therefore, Windows is the natural choice for many users. It is also likely
that people are familiar with other Windows programs that are needed to
compile a corpus or process the data that the corpus provides, such as word

processing programs. If you have Windows, and the means to scan and

Eeva Marin 51

proofread texts in it, you are likely to want to compile and process the corpus:
in it, too. -

Windows is a good choice if the use of the corpus is considered. The
researcher accessing the corpus is likely to want to save and study further the
results of a corpus search. If one uses Windows most of the time, as many
people do, it is definitely easiest to-use the corpus in it, too.

Among the disadvantages of using Windows is that it is hard to say
how long the corpus will be compatible with new versions of the operating
system. Windows is getting updated all the time, the direction of the
developments nowadays being toward Windows NT. There are also many
people who predict that Windows will soon disappear altogether and give way
to other operating systems, such as Linux. It is impossible to say what kind of
an operating system people will be using in ten years and whether it will be at
all compatible with Windows or not. Therefore, one cannot expect that a
corpus browser for Windows 95 can be used after a number of ‘years; indeed,
the pace of development of computers is likely to make many programs old in

less than a year.

2.1.4 Unix

Unix began at AT&T’s Bell Laboratories in 1969 (Lawler 1998:139). It is a
multi-user, multi-tasking system, which is available for many different kinds of
computers (e.g. Sun, Hewlett-Packard, MIPS, NeXT, DEC, IBM) (Lawler
1998:138, Dougherty & O’Reilly 1988:1). It is mostly used in large mainframe
coinputers, rather than in personal computers. Multi-user meané that many
people can use the same. computer at the same time; multi-tasking means that
each user may have several different programs running at once (Laner
1998:152). This practically means that the system gives milliseconds at a time
to lone user,. sﬁtcﬁng between .applications and users, constantly going
through all the users and tasks at hand (Eloranta et. al. 1994:3, Byers 1985:2).
A Unix system run ina huge ceﬁtral computer is far more powerful tﬁan any
personal computer. On the other hand, there are versions of Unix that can be

run on fairly small computers, too.

Eeva Marin 52

There are some distinct advémtages of Unix from a corpus user’s point
of view. One of them is that the corpus can be situated physically in one place,
in one computer, and several users can access it at once. The central computer
takes care of the file-sharing and enables several people to read the same files
at the same time, with no need to be aware of one another. Other client-server
solutions can do the same, but Unix also provides exceptionally efficient means |
to control who, exactly, gets to use any programs or files.

All users need a login name and a password that gains them access to
the computer. These, at least theoretically, prevent unauthorized people from
getting to the files and protect the data from outsiders (Byers 1985:13). All the
users also belong to a group, or several of groups. Files can be protected so that
only the users who belong to a certain group can read or write to them. It might
be, also, that several groups of users can read certain files, but only a certain
group, or a certain user, can write to them (Eloranta et al. 1994:3, 84-85). All
this makes the system more secure than many others. Even though other
systems use password authorization, too, Unix is often considered to be the
most reliable.

An ordinary, character-based Unix program is not dependent on the
operating system of the user’s personal computer, either. Simple terminal
emulation programs are available for many kinds of computers and operating
systems. A terminal emulation program provides the user with an interface that
can be used to access the central computer. The actual program, such as a
corpus concordancer, is run in the central computer. The terminal emulation
program is only representing it on the screen of the user, in ASCII characters,
which are not system-dependent. An example of such an arrangement is the
CobuildDirect corpus, which can be accessed by a telnet connection (or by a

Web browser, nowadays) by anybody who has a user name and password for it

(go to http://www.cobuild.collins.co.uk/direct_info.html for more information).
Below is a picture of a terminal emulation program. No specific program is
being run with it; there is simply some of the login messages and a directory

listing visible on the screen.

Eeva Marin - 53

- atk us an aukl ma-pe §-19, la 9-14

- Huon! ’ Jja omien ulkopuolisille palueluja tarjoavien
palueluchjelnistojen ajaminen, esim. minta,
el ole sallittua atk-keskuksen uyhteiskautossa olevilla kaneilla!

mconcord

atari

blankko . dot
COMMUMEL . ref

[COURSE PORTFOLIO. doc

hellagen.txt
dead.article hellagen.zip
dead.articles HTMLIZE.C
dead, letter Laitos.ZIP
| i laurefs, vt tfc.zip
Mail tfcl. tut
; s mail tfcl.zip
FULLBIB.DOC mhox WU
kanto: homes ;

Picture 3: Terminal emulation

Another important point is that Unix is not so prone to major changes
as other systems. Though it began 30 years ago, it is still widely used. Unix is
especially known as the favorite of computer nerds and other people who use
computers very much. There are, in fact, jokes about Unix being a religion
rather than an operating system. It is not likely to disappear for quite some
time, because there are quite a lot of people who would not even consider using
anything else.

The other side of the coin is that there are several slightly different
versions of Unix. In fact, the whole system more or less consists of “building
blocks” that can be combined in different ways. Unix is based on the idea that
the user is provided with simple tools that each perform one single task, little
individual programs, that can be “snapped together” for larger tasks (Lawler
1998:139-140). After the initial versions, Unix was given to users with the
original source code so that anyone could modify it, resulting in many slightly
different versions. Nowadays, there are mainly two versions of Unix: BSD
(Berkeley Standard Distribution of Unix) which is free, and System V, which is

AT&T’s commercial version. There are significant differences between these

Eeva Marin 54

two (Lawler 1998:144). In addition, there are yet other versions and local
differences.

The differences in Unix versions and configurations may not be
relevant to the user, however, but do concern the programmers and the
programs that can be run in a specific Unix system (Eloranta et. al 1994:3). In
the long run, one can be fairly sure that Unix will be around; however, at any
given point in time, one will come across a variety of them.

In all, its portability, its ability to run on many different kinds of
hardware and its longevity make Unix particularly useful in case of a corpus
that is going to be used for a number of years. As more and more powerful
hardware becomes available, Unix can be installed to it and any programs and
data can be easily moved to the new hardware (Dougherty & O’Reilly 1988:8).
This in addition to the fact that Unix is a good choice if there are plenty of
users who need to access the corpus from many different places.

There are also plenty of corpus software available for Unix. Many
large, well-known corpus projects were made in Unix and many still are. In
addition, the other programs that are needed in the compilation and use of a
corpus, such as word processing tools, are readily available in Unix in any
case.

Lawler (1998:164) also makes an interesting point mentioning that
since the system has not changed very much since the 1970s, there are plenty
of older books that are still useful. This can really be an advantage to someone
who is trying to learn to use Unix: any library probably has plenty of books
about it, and the information is still relevant. In many other operating systems
this is not so; rather, a new manual is needed with each new version of the
software. It may also be mentioned here that there are incredible amounts of
information about Unix, and software for it, available through the World Wide
Web and other networks. That, of course, can be a bit of a disadvantage, too; it
may be hard to find relevant information among all the rest.

A downside of Unix is that if you do not have it, you are not likely to
get it either. You are not likely to get a large Unix system just because of a
corpus. It is far too expensive and demanding to get and maintain if there is no

other demand but a corpus for it. There are also cheaper versions of Unix, such

Eeva Marin 56

questioned how much of an advantage that really is. Do people want to learn a
new language, or do they want to learn to click with a mouse? Especially for
newcomers to computers, Unix might still not be the ideal choice, no matter
how interesting it might be from a linguistic point of view.

To sum up, Unix is a good choice for large corpora with many users,
and corpora that need to be available for many years. There is also plenty of
software available for it. However, it is not readily available everywhere, and it
is likely that there will have to be a person whose sole task is to take care of it.
Most larger universities and other institutions have Unix machines available,
and a local computer center that takes care of them. In that case, it may be
possible to arrange the storage of the corpus with them. Depending on the local
arrangements, it may incur expense. If you plan to keep a corpus in Unix, you
must find out about what is locally available and what the terms of usage are

for the Unix system.

2.1.5 Other

There are also several other operating systems available, such as DOS,
Mécintosh OS for _ Macintosh, OS/2, ahd Linux. This section will briefly
discuss them.

Several older computers stilll have DOS in them. There are also’
several corpus programs, such as MicroConcord, available for DOS. Although
such progranis may be old, they may be just as useful as any new ones.

If you have only older computers to use, and you are not willing or
able to update to anything more recent just because of a small corpus, ii is
definitely worth considering to use DOS. Even though it is probably easier to
scan and proofread texts in Windows, there is no reason why you could not use
them in a DOS-based program in the end.

However, in case of larger corpora that one wants to use for years to
come, it is worth considering how to store the data if it is compiled in an
operating system that has already mostly disappeared from use. ASCII vtnext can
be moved fairly easily and processed further in any operating system, but if the
COrpus program uses its own file format (such as the database of TCE, which

can be read only by TCE), it is not a good idea nowadays to choose a DOS-

Eeva Marin 57

based program. It would have to be updated to another file format anyways in a
very short time. However, the same problem may come up with any other
operating system as well.

Macintosh is a fairly popular computer among researchers in the
humanities. The user interface is very user-friendly, and mostly it does not
demand any knowledge about what actually is going on inside the computer. It
is a rather good option for people who value the ease of use above all else.
There are also corpus programs available for Macintosh, for example a
concordancer called Conc (Antworth & Valentine 1998:194).

OS/2 is a rather rare operating system. It has a graphical user interface
and it is known to be quite reliable. It works on personal computers and it is, in
fact, considered by many people to be better that Windows (cf. Kivimaki &
Rousku 1996:14). The problem that is most likely to come up with OS/2 is the
lack of other users, and therefore reduced possibilities for sharing files and
using the same software.

Linux, originally a version of Unix, is fast becoming a worthwhile
opponent for Windows. It is frequently named as the operating system of the
future, and is expected to keep on getting more and more popular. Nowadays,
however, it is still mostly favored by computer experts rather than so-called
ordinary users. It may become very popular in the future, though, and should
not be discounted as an option.

The problem with all less common operating systems is simply that
they limit the number of potential users of the corpus. It may also be very hard
to find suitable corpus browsers for them. If the corpus is simply for the
researcher’s own use, it does not matter how rare the system is; however, with
a big corpus that many people want to use in their own computers, the less

common operating systems are more or less ruled out to begin with.

This chapter has dealt with the issue of selecting suitable hardware and
operating system for compiling and using a corpus. The beginning -of this
chapter gave some general guidelines about choosing hardware and operating

systems: the rest of the chapter introduced two of the most popular systems,

Eeva Marin 58

Windows and Unix, in more detail. The last section briefly dealt with other,
less common operating systems.

The aim of this chapter was to introduce the systems and list their
advantages and disadvantages rather than give any definite rules for choosing
the hardware and software. What actually is the best option depends on many
factors. What is already available, what the users can use, what can be bought,
how much it costs, and what the users are willing to learn, to mention only
some of the questions that need to be addressed. Often the corpus software that
is going to be used dictates the environment; sometimes, a project starts from
scratch, so that the programs can be tailored to suit any kinds of machines. In
addition, the corpus may need to be moved to another environment later on, or
new users wish to join, so that some alterations need to be made.

Note that very large and very small corpora have different needs. In
case of a very small corpus it does not really matter at all where and how one
chooses to store it; if it is for the researcher’s personal use only, it can be stored
in the way that seems the most convenient to the user. If it needs to be moved,
it will not take much time. If it needs to be converted to a completely different
format, the time and effort required is probably within reasonable limits.
However, a large corpus will cause problems in such situations, and its storage
has to be planned much more carefully. Of course, careful planning always cuts
down the number of difficulties later on.

It may be that sooner or later, it all comes down to money. The wisest
course may be to try to use what you have got already: do not buy anything
new unless there is a pressing reason to do so. There are plenty of corpus
programs available, and it is very likely that you will find something that suits
your purposes as well as your hardware. .

The day may be ahead, though, when the hardware and operating
system are too old and the corpus needs to be moved to newer surroundings. It
may also be that another researcher, on the other side of the world, wants to
have a look at the corpus material. In that case, it is an advantage if the data is
stored in a format that is operating system independent, and can be read by
many different programs. Many corpus programs, indeed, save their data in

plain text format (or can convert it to plain text) so that it should, theoretically,

Eeva Marin 59

be easy to move from an environment to another. There may be, however,
problems even with plain text files. The following chapter examines character
sets, problems that may come up with plain text, and character set problems in

general.

Eeva Marin ' 60

2.2 Character Sets and related issues

This chapter is about character sets, plain text formats, fonts, and the problems
that they may cause in the compilation and use of a corpus. The corhpiler and
user of a corpus may, at one time or another, run into problems with different
_character sets. The researcher who studies a language that uses a non-Roman
script will surely have to consider how to make the characters correctly visible
on screen: in many'cases, anyone who deals with language other than English
may encounter problems since some special characters are missing. The
compiler of a corpus who has to move the texts from an 6perating system to
another, or the user who receives the texts by e-mail from a friend with a |
totally different kind of a computer, are likely to get familiar with character set
problems.

There are several different things to be considered here. First of all, all
computers have a basic character set, and they can save data in a so-called
plain text format, which has only the text and no other formatting, such as
italics. In addition, many computers and programs offer the choice of several
fonts, which can be used to affect the looks of the characters that are printed on
screen or paper. These are two different things, and should be kept apart.

A plain text file is a file that includes only the text itself: it does not
contain any other information, such as word processors’ formatting parametres.
A plain text file is not specific to any particular program, either. Many other
formats, such as those that word processors use, are meant for a certain
program: for example, a file saved in Word 97 format can be read only by
Words 97, and possibly by WordPerfect. However, a corpus concordancer
could not read a Word 97 file. Some other type of computer except an IBM-PC
with Windows 95/98 could not read it either, unless Word 97 were available to
it. In order to use a Word 97 file, you need Word 97 and a computer that runs
it. A Word 97 file is a binary file that does not even look like text, if accessed
with a program that cannot read it properly.)

A plain text file, however, is not dependent on specific progfams. It
can be read by any program that reads text files. Any word processor can read |
plain text. In addition to this, practically all kinds of computers can read plain

text. This is the reason why many corpus programs use a plain text format: it is

Eeva Marin 61

available to everyone, it is easy to save files to plain text format, and almost
any program can read them. Plain text is indeed the file format that seems to be
most common in storing corpus data, and therefore it is important to any corpus
compiler and user to know about it.

A character set used by many computers nowadays is the ASCII

(American Standard Code for Information Interchange) set (Deitel &

Deitel 1994: 338). Plain text files are, in fact, often referred to as ASCII text
files. The ASCII code set gives a numeric code for each character. For
example, the code for a capital 4 is 65. This is t):}é how the computer sees a
stretch of plain text: it is a sequence of numbers, each number denoting one

character. The full ASCII character set is in the following table:

Table 1: ASCII character set

0 1 2 3 4 5 6 7 8 9
0 nul soh stx etx eot enq |ack |bel |bs ht
1 nl vt ff cr SO st dle del dc2 |[dc3
2 dc4 |nak |syn etb can |em sub esc fs gs
3 IS us sp ! « # $ % & ¢
4 () * + , - / 0 1
5 2 |3 4 5 16 |7 8 9 ;
16 < = > ? @ |A B C D E
7 F G H I J K L M N O
8 P Q R S T U \Y% W X Y
9 Z [\] " - ’ a b c
10 d e f g h I] k 1 m
11 n 0 p q r s t u v w
12 X y z { | } ~ del

The digits at the left of the table are the left digits of the decimal equivalent (0-127) of
the character code, and the digits at the top of the table are the right digits of the

character code. For e_xample, the character code for ‘F’ is 70, and the character code for

‘&’ is 38.

(Deitel & Deitel 1994:891)

Eeva Marin 62

It may be noted that the code set also includes codes for “characters” that are
not important to the ordinary user (codes 0-32). They are meaningful to the
computer (e.g. code 13 carriage return and 27 escape) but most of them do not
concern the user who deals with normal alphanumeric data.

As can be seen in the above table, the ASCII code set includes codes
from 0 to 127. From a more technical point of view, this means that it uses only
the first 7 bits of a byte (a byte consists of 8 bits). In order to include more
characters, such as d and ¢, there are 8-bit character sets which can utilize the
codes 128-255 and thus include twice as much characters as the normal ASCII
set. -

However, the problem here is that these additional characters do not
have the same code in different operating systems (Lawler 1998:147, Hirvonen
1994:118-119). Lawler (1998:147-148) uses the word Low ASCII for codes 0-
127 and High ASCII for the codes 128-255. He notes that Low ASCII is
completely standard, but High ASCII is different in different types of
machines. He points out, for example, that although DOS/Windows and
Macintosh text files have many of the same additional characters, these
characters have different codes. In practice this means that even plain text files
are not completely compatible between different types of computers, because
some characters may be represented.incorrectly.

Another problem between different types of machines and operating
systems is that they represent the end of a line in different ways. ASCII text is
often read from file one line at a time. The end of the line is signalled by an
end-of-line-character, which is stored in different ways in different operating
systems. For example, Unix uses ASCII character 10 (/inefeed), whereas
Macintosh uses ASCII character 13 (carriage return) for end-of-line. DOS,
however, expects to find both of these characters to signal a new line of text
(Hirvonen 1995:83). Note that these kinds of “characters” relate to the fact that
the ASCII system is quite old: /inefeed and carriage return refer to an old type.
of a printer, which first moves the paper up one line (/inefeed) and then returns
the writing head to the beginning of the line (carriage return), like a

typewriter. In practice this means that when texts are transferred from one

Eeva Marin 63

operating system to another without any file format conversion, it may be that
all the line breaks have dissappeared and the whole text is just one huge line.

Connected to this, yet another problem that a compiler or a user of a
corpus may run into is that different programs have different ideas about how -
long a line should be. How likely this is to cause problems depends entirely on
the kinds of programs that are used. With commercial programs such problems
are unlikely; however, homemade programs may make assumptions that cause
problems.

One problem that came up when compiling the FECCS corpus at the
University of Jyviskyld was that one of the programs that added certain tags to
the texts expected that lines should be only up to 80 characters long. The
ASCII format that the texts were stored in, however, allowed longer lines. The
tagger program simply did not read all of the lines; it read only the first 80
characters of each, and then jumped to the next one, thus cutting off the ends of
many lines.

Therefore, if a compiler or user of a corpus of ASCII text encounters
weird problems, such as seemingly endless lines when there should be only
short ones, or sentences that end abruptly, it is worth checking what kind of
ASCII text one has got, after all. The only solution here is to try to save the text
again in a slightly different format (most word processors offer more than one
kind of ASCII text) and see what happens.

It should be mentioned here that it is easier to revert back to the
original from some plain text formats than from others. For example, if you
have used a format that for one reason or another inserts an end-of-line-
character at the end of every line on the screen (some of them do), any
programs that are used later interpret each line as a separate sentence and
paragraph. However, getting rid of the end-of-line-characters may not be easy,
because the computer is not likely to know which ones are not the extra ones. It
is a good idea always to save the text in more that one format until you are
certain which one works best.

It is also possible to keep the texts in a specific word processor’s
format as long as they are still being proofread and preprocessed, and only

convert them to ASCII when they are ready to go to the corpus browser. This

Eeva Marin 64

procedure has the advantage that it is usually easy to convert a word
processor’s file to any type of plain text. The disadvantage is that the user
might inadvertently use characters or other codes that are not available in
ASCIL, so that the file gets more or less messed up when it is converted to plain
text.

In addition, not only the differences between different ASCII systems
may cause problems, but also the limitations of any type of ASCII. As Lawler
(1998:147) notes, it is more or less impossible to represent other but western,
Roman script languages with it. Even many European languages encounter
problems with ASCII, if they require many extra characters, such as g, ¢, e, #,
or others that are missing in Low ASCII.

One problem that may also come up regards alphabetizing. For the
user of the corpus this is a rather important point, since concordances are
usually retrieved and sorted in alphabetical order. The most simple type of
alphabetizing that the computer can do is based on the fact that the characters
happen to be in alphabetical order in the ASCII chart. The computer knows
that, for example, a word starting with a character that has the code 65 (4)
comes before the character that has the code 66 (B), simply because 65 is
smaller than 66. Lawler (1998:148) also points out that the difference of codes
between an upper-case character and the corresponding lower-case character is
always exactly 32, so it is easy for the computer to see their relationship.
However, any extra characters, like ¢ and 0, have codes that are not in any
logical relationship to the rest of the alphabet, or to each other. The computer
does not know where they belong, unless the program can specifically deal
with them. To make matters even more complicated, in some languages
alphabetizing is not done as in English. For example, in Spanish, cuatro should
be before chapotean, because there are some character combinations in
Spanish (ch, II, rr) which are alphabetized as if they were single letters
(Hockey 1998:119).

Of course, many programs can deal with the alphabetization correctly.
For example, if a concordancer is meant to be used with Finnish, it certainly

knows where to put &, ¢ and 4. However, if you tried to alphabetize Spanish

Eeva Marin 65

with it, it probably would not succeed at all. The corpus browser that is used
should be able to deal with the language that is processed in it.

There are a couple of possible solutions to this type of character set
problems that involve characters that are missing from standard ASCII. First of
all, in Windows and Macintosh it is possible to use different fonts (Simons
1998:12). For instance, you might have a normal Roman script computer, but
install a Russian Cyrillic font to it, so that you could also view Russian texts. .
The problem with this, however, is that you also need corpus software that
supports different fonts. Most Windows and Macintosh programs probably do,
so that this is not a real problem there. In DOS and Unix this may prove
practically impossible, however, since they have a fixed set of characters.

There is also. a character set called Unicode, which includes 38,885
characters from all the major writing systems of the world (Simons 1998:14). It
is, however, meant for the exchange of data and is not equally well suited for
linguistic research. For example, it is not aware of what language it is used to
encode, and therefore cannot consider language-dependent factors- (Simons
1998:14). Unicode is also a rather new system yet. However, with time it may
become widely used for interchange of data. Exchange of resources is indeed
one more of the reasons why character sets are important for the compiler and
user of a corpus.

A corpus user might, sooner or later, want to give the data to another
researcher who lives in another country and uses a different type of computer.
If one compiles and uses a corpus in just one computer, in only one operating
system, there are, in fact, no real problems with the character sets: one should
simply use the one that looks and works fine (Sperberg-McQueen & Burnard
1994:81-82). However, if one needs to give the database of texts to other
people, there may be such problems as were referred to earlier: some characters
may be represented incorrectly in another environment. The same problem may
come up locally, too, when the files are moved to another type of computer and
operating system.

There is a problem familiar to all those who write e-mail; sometimes,
d and ¢ have been changed into other characters such as { and | , sometimes

they are replaced by weird sequences of codes, sometimes with other letters.

Eeva Marin 66

This can be either because the the two operating systems or programs (the one
the e-mail was sent from and the one that received it) use different codes for ¢
and ¢, or the receiving system is a 7-bit system which simply ignores the 8th
bit and misinterpretes the code. As McEnery & Wilson (1996:33) note,
mainframe computers in English-speaking countries tend to use 7-bit character
sets. This means that such computers are capable of dealing with only the first
128 codes in the ASCII set, and cannot represent languages other than English
correctly.

Therefore, sending corpus texts as an ordinary e-mail is not a
particularly good idea. However, most modern e-mail programs have the
option of sending an attachment with the e-mail message. An attachment
should arrive to the recipient in exactly the same form as it left, providing, of
course, that the recipient can receive e-mail attachments. However, it does not
remove the problem that the sender and recipient might have quite different
types of computers and character sets nevertheless, so that even though the e-
mailing of the material does not mess it up, some other stage in the process
might.

Another way to deal with this is to send the file in Unicode, or turn it
into text that has only ASCII characters (Dry & Aristar 1998:34). Unicode is
not very common yet, but the latter option, although a bit arduous, might prove
useful. The TEI Guidelines, which will be dealt with in chapter 3.4, give a few
suggestions for encoding texts so that no characters are lost.

Sperberg-McQueen & Burnard (1994:86) observe that the characters
least susceptible to get mixed up are those that belong to the ISO 646 subset. It

includes the following characters:

abcdefghijklmnopgrstuvwzxyz
ABCDEFGHIJKLMNOPQRSTUVWXY 2
01234567839

“sE M) *FH+, -/ i <=>7

(Sperberg-McQueen & Burnard 1994:86)

In order to make additional characters survive different operating
systems and interchange through computer networks, only one procedure is

guaranteed to work: replacing all special characters by what are called SGML

Eeva Marin 67

entity references (Sperberg-McQueen & Burnard, 1994:82, 86). (Chapter 3.4
will deal with SGML in more detail.)

Entity references can be used to replace otherwise problematic
characters. They are strings of characters that are preceded by an ampersand
and followed by a semicolon (Sperberg-McQueen & Burnard, 1994:82). For
example, the entity reference for 4 is ä. Thus, a Finnish word like
dnkyttdvd could be changed into änkyttävä. Since the entity
reference codes themselves consist only of characters that are safe to transfer,
using them ensures that the text survives intact.

The problem here, from the point of view of corpora, is of course that
the words with entity references in them are more or less impossible to read as
such. The corpus browser should be able to decode them back to intelligible
characters. However, how many programs can do that, is another matter
altogether. The browser should have been designed to read such texts in the
first place. This matter can be generally referred to as annotation awareness
and it will be shortly addressed in chapter 2.4.

One possible solution is to replace problematic characters when
needed, for example when the texts are sent to other researchers. The others
could then, with suitable instructions, convert them back to what they were
supposed to look like. How time-consuming a task this is to the user depends
on how many texts there are, and whether or not there is a program that is able
to do it automatically to all the texts.

It is relatively easy to find and replace characters in any word
processing program, and it is possible to program a macro that changes all
entity references back to normal characters with a single click. Theoretically, it
is not very hard to write a separate program that does the whole thing
automatically. However, the researchers may not be able to do this. In case ofa
large corpus with many potential users it should be considered as an option,

though, to make separate programs for such tasks.

In this chapter I have dealt with the problems that may come up with character
sets and plain text formats. Many corpus browsers, rather than using a format

of their own, use texts in plain text format. This has the advantage that plain

Eeva Marin 68

text is available on all kinds of computers, and it is not tied to any specific
programs. The disadvantage, however, is that the character sets that plain text
uses tend to be a bit different in different kinds of computers, and they are not
fully standardized. This causes problems when the text files are moved to a
different type of computer, operating system, or another country, where the
character set is slightly different. Nevertheless, these problems can be dealt
with, for example by replacing all the problem-causing characters with SGML
entity references during transfer.

Whereas this chapter shortly explored the problems that may come up
with moving the files, the following chapter will consider the other side of the

matter: where and how to store the information locally.

Eeva Marin 69

2.3 How to store information & Backup copies

This chapter briefly deals with the matter of storing the information. The
corpus has to be physically stored somewhere, and backup copies need to be
taken at regular intervals. This chapter lists some of the options for storing the
data.

The options for storing the information are not, in fact, very different
for different kinds of computers. This chapter will not, however, explore issues
related to Unix or other network solutions. If a corpus is to be kept in a Unix
system, it is best to leave the practical hardware issues to the local computer
center or whoever is fesponsible for the system. This chapter will, instead, look
at the different storage options for personal computers.

 What is the best medium for storing the information depends on the
size and uses of the corpué. For some purposes, it is enough to have a few
computers where the corpus permanently resides; for some other purposes, like
teaching, it may be necessary to use the corpus in many computers and a
number of different places. A small corpus can be moved easily from a piace to
another, even on floppy disks; a large corpus, however, may prove to need so
much disk space that it cannot be moved effortlessly. The following sections
will give é few examples of means of storing information, their pros and cons,

and for what purposes they are good.

2.3.1 Hard disk vs. floppy disks

The hard disk of a personal computer is the most natural place where to keep
information while compiling a corpus. Each personal computer nowadays has a
hard disk; the size of it may vafy, depending on the age of the computer,
somewhere between SO0MB and 10GB. The hard disk is deﬁhi_tely a better
option for storing data than floppy disks. Many people (students, especially)
seem to prefer floppy disks for storing their files, but one should avoid floppies
if possible. It is true that if one cannot work on the same computer all the time,
it is necessary to carry floppies around; however, if there is a computer that can

be used for a given task continuously, the files should definitely be kept there.

Eeva Marin 70

The main reason for this is simply that floppies are rather unreliable.
A hard disk may fail, too, but that is not nearly as likely as a floppy disk
refusing to work. The hard disk is much better protected from outside
interference such as dust or magnetism, and it is meant to be used more or less
continuously. Of course, a hard disk is also much larger and faster that®
floppies, which are more or less relics from a previous age, nowadays.

In case of a small corpus, however, floppies can be used for taking
backup copies and moving the files from one computer to another. If the corpus
data amounts to only a few megabytes, or less, it is not too much trouble to
keep copying it onto floppies. The advantage with floppies is that almost all
personal computers nowadays still have a floppy. disk drive; therefore, small
amounts of data are easily moved on them.

There is the problem that in recent years floppies have become
increasingly insufficient for storing data because of their small capacity. An
ordinary high density floppy disk takes only 1.44MB of data, and that is not
very much. The problem is that there has been no new hardware that would
have replaced the floppy drive as the “standard” disk drive on all personal
‘computers. Several kinds of higher capacity disk drives are available, but none
of them has gained a position over the others. The following section will say a

few words about them.

2.3.2 Other disk drives

Since floppy disks are not large enough any more for many users’ purposes,
other types of disk drives have emerged. Because the development in this area
is fast, as in the field of computers in general, it would not be useful to present
all the different kinds of drives here. Any recommendations are bound to
change rather quickly. However, to give a general idea of the new drives that
are available, it is good to introduce one of them as an example. One of the
most popular of the higher-capacity disk drives is the Iomega Zip drive.

The Iomega Zip drive is a disk drive that reads and writes 100MB
disks specifically made for it. In early 1999, Iomega also presented its new Zip
250 drive, which reads 250MB disks in addition to the 100MB disks

(www.iomega.com). Note that despite its name, it should not be confused with

Eeva Marin 71

zip-compressed files. The Zip drives are usually external, although some
computer manufacturers have made computer sets that have a build-in Zip
drive in them. The disks look very much like ordinary floppy disks, except that
they are thicker, heavier and much more expensive. Although the Zip drive
itself is not very expensive (around 1200 FIM at the time of writing) the disks
cost about 100 FIM each.

One advantage of the Zip drive is that both the drive itself and the
disks are easily portable. At the same time, they provide quite a large storage
capacity if compared to floppy disks. Therefore, they provide a good option for
both backup copies and for moving the data from a place to another.

The Zip drive has some disadvantages, too. The most notable of these
is that although it is very popular, it is no standard: they do not exist
everywhere. Therefore, in addition to taking the disks with you to a different
town, you may end up dragging the drive with you, too. It is rather easy to
install to another computer, but it still takes time. The drive may also seem
rather slow, if compared to a hard disk. There have also been suggestions that it
may not be as reliable as desired.

The Zip drive is a good option for backup-copies-of a moderate-sized
corpus that is changed sometimes or still incomplete, but does not need to be
moved very often, nor installed to a large number of other computers. If the
corpus is very large, however, and needs to be constantly used in different

machines, a CD-Rom copy may be a better option yet.

2.3.3 CD-Rom

Most personal computers nowadays have a CD-Rom drive; new computers all
do. A CD-Rom can take up to 650MB of data. There are lots of differences
regarding the speed of CD-Rom drives, but even the slowest models are rather
fast, if compared to other storage media.

A normal CD-Rom drive only reads CDs. However, there are also so-
called CD-R drives (short for Compact Disk Recordable). These dri\}es also
write CD-Roms. They use CD-R disks that are specifically designed to be
written on. Such disks, however, can be read by any CD-Rom drive, with the

exception of some older models that may not accept them.

Eeva Marin 72

The limitations of CD-R include that the data on the disk cannot be
removed. Although the disk does not have to be written all at once (information
can be added to it later), the data on it can never be removed. In other words,
CD-R disks cannot be reused time after time, as the information on it stays
there permanently.

CD-R drives cost about 1500-4000 FIM at the time of writing. The

disks, however, are rather cheap: depending of what the disk is made of, the
price is somewhere between 10-20 FIM each.
' The advantages of CD-Roms include that they take in a huge amount
of data, and that they can be easily used pretty much anywhere. The downside,
however, is that the information on them usually cannot be changed. Therefore,
they are suitable for storing a finished corpus that is not under any construction
anymore. CD-Roms cannot be very strongly recommended for continuous
backup copying or any other recurrent saving of incomplete data. However,
since the CD-Rs are rather cheap, they can be ﬁsed for occasional backup
copies and other storage; if the price of constantly buying new CDs is not too
high. CD-Roms are excellent for the storage of a finished corpus, though.
Researchers and students can take the CDs home and use them on their own
machines, and any kind of teaching is easier to arrange, since the data does not
have to be installed on a new computer but can be used directly from the CD-
Rom. | |

However, there are also so-called CD-RW (Compact Disk
ReWritable) drives. These drives use specifically designed CD-Roms (CD-
RWs) that can be written multiple times, that is, the information on them can
be removed and the disk can be used for storing other data. These disks can be
read only by a CD-RW drive. Many recording CD-drives nowadays can use
both CD-R and CD-RW disks. The CD-RW disks, however, are still rather
expensive: they cost about 75 FIM each. CD-RW drives are still rather new.

The word “backup copy” keeps propping up in the preceding sections
every now and then. The following section gives some general advice on the

matter of taking backup copies.

Eeva Marin 73

2.3.4 Backup copies

You can never have too many backup copies. There are all kinds of problems
that can result into the loss of data, like hard-disk failures. Backup copies
should be taken regularly and kept in a safe place.

It is hard to say how often backup copies should be taken. It depends
on the project, how much data there are and how often new data comes in. Any -
new data, however, should be copied to a safe place as soon as a certain stage
with it has been achieved — for example, when a text has been fully scanned, or
proofread, or tagged.

For an ongoing project, it is useful to take backup copies of new data
as often as possible, every day or a few times a week. Such backup copies can
be taken on floppy disks, since new pieces of data are usually not very large. A
more thorough backup copying (with a Zip drive, for example) can take place
every week or once in two weeks. When a certain stage has been reached (e.g.
all texts have been scanned, or a whole category or subcorpus is finished), the
data can be written on a CD-Rom. This is only a suggestion; it is in each
project’s own interests to define how often backup copies need to be taken and

how much damage a possible loss of data will cause.

Although the beginning of this chapter specified that Unix and other network
solutions are not considered here, a few words are still necessary. It may be a
tempting idea to put the data to a central computer or a file server, so that
people could access it each from their own computer. However, there are a few
things that need to be taken into account here.

The permissions to use the texts do not automatically include the right
to put them into some kind of a network. Putting the texts to a public network,
such as the Internet, is definitely illegal without proper permissions for it, even
if the material is protected by passwords. Before making any such plans, one
should find out how far the permissions of use actually extend.

Secondly, it may be that the software that is used with the corpus does
not work if the data is not on the local computer itself. One should check
whether the program can be used over the type of network that is planned

before taking any other steps towards it. One also needs to find out about the

Eeva Marin 74

licencing agreement of the corpus software: the permissions for its use may
limit any networking plans rather severely.

Of course, whenever information is put into any kind of computer
network, the question of security arises. It is an issue that is probably
practically handled by the local computer center, or whoever is responsible for
taking care of the network. One should, however, be aware that hackers and
other unexpected visitors may take an interest. The corpus should be protected
well enough so that only people who have a permission to use it are able to
access it.

Note that wherever you keep the files, it is worthwhile keeping track
of what is kept and where, especially during the compilation of the corpus
when there may be several versions of the same texts around. On a single
computer, making a directory structure that is clear helps to keep certain types
of files in a certain place. In addition, the files should be given names that tell
instantly what version of the text it is, e.g. name_s.txt for a scanned text and
name_p.txt for the proofread version.

If the files are kept on more than one computer, the situation is more
complicated because you will have to know what is on which computer. Extra
copies of the same file tend to accidentally femain on different computers, and
it may also be the case that one computer has a newer version of the same file
than another. If these types of file management issues are not taken care of
properly, it may be that soon it is very hard to know which files are the newest
ones and which ones should be deleted.

This chapter has briefly introduced different types of hardware for the
storing of the data, and given some general advice on the subject of backup
copies and file management. The following chapter, in turn, will explore the

matter of software.

Eeva Marin 75

2.4 Programs

One decision to be made is about the acquisition of the programs that will be
used to compile and use the corpus. Basically, there are a few alternativés: get
a program that was developed for another corpus project, use a commercial
program, make the program, have someone else make it, or find a free program
thét can be uéed. There are both pros and cons to each of these alternatives.
The choice depends on many factors: what kindé of programs are already
available, what kind of a programvyou need, how much money you are willing
to use, what kind of a corpus you have, and so on.

Befére selecting a specific program, you need to know what exactly
you want to do with it. This highly depends on the kind of research that you are
going to do, so it is not possible to give any exact advice about it here. There
are, however, a few genefal requirements that can be mentioned.

First of all, the program should have certain basic functiohs, such as
concofdémcing and searching for collocations, production of frequency lists and
a flexible query syntax _(McEnei'y & Rayson' 1997:203). The last point means
that the user should be able to ﬁse boolean operators, such as AND and NOT,
and wildcard characfers such as the asterisk (*) to define searches. The
program should also allow for user-defined subcorpora and be able to give
details of the text where a retrie\?él insfaince came from (McEnery & Wilson
1997:203).

Part 3 of the present paper will deal with the matter of annotation.
Many corpora in the world are, in one way or the other, annotated. A very
common type of annotation would be, for example, part-of-speech annotation,
which means that each word in the corpus is given a code that tells which word
class it belongs to. When searching such a corpus, the annotation is of limited
use if the program does not recognize the annotations as what they are but sees
them as parts of corpus text. McEnery & Rayson (1997:203) notev that
annotation awareness, i.c. the program’s ability to recognize the annotétions,
is a function to be expected in any software. Such a program should bevable to
hide the annotations and show only the corpﬁs text to the user, and it should

also enable the researcher to search on annotations. For instance, the user could

Eeva Marin 76

search for all the cases when will is used as an auxiliary verb, and get only
those instances, not all the other wills in the corpus.

As was pointed out in chapter 2.1, choosing the program is tied to the
matter of choosing the hardware. Very few corpus programs are available for
many different kinds of computers and operating systems (McEnery & Rayson
1997:203). For example, if the potential users of the corpus use both Windows -
and Macintosh, the ideal would be to find a corpus program that is available for
both systems. On the other hand, as McEnery & Rayson (1997:203) point out,
in the future many corpora may be accessible through the World Wide Web,
which is independent of the type of machine that is used to access it. In other
words, it is possible to put the corpus on a WWW server so that it can be
accessed from any type of a computer with only a suitable Web browser.

There are a few general problems that may come up with any kind of
software that is going to be used for linguistic research, not only corpus
software. As Antworth & Valentine (1998:172) mention, there is not much
linguistic software available for different kinds of tasks, and in some cases, the
researcher may have to use general-purpose software, such as word processing
or database programs. This kind of software, however, often does not suit the
linguist’s purposes very well: for example, there may be no support for dealing
with more than one language simultaneously, or traditional database data fields
cannot deal with linguistic units well enough (Antworth & Valentine
1998:172). Related to this, Simons (1998:10) points out that there is often a
semantic gap between the linguist and computer programs. Programs tend to
use computationally convenient objects, such as “files”, “lines”, “characters”,
“records” or “fields”, and it may be hard for the linguist to try to fit linguistic
objects, such as grammatical categories, into these.

Simons (1998:10) also mentions a friendliness gap between the
software and the user. It means that some programs have one-of-a-kind user
interface which is hard to learn: it takes time to learn it, and it can be forgotten
easily. Another program might work in a completely different way, so that the
user would have to learn it all from the beginning. This is especially typical of

Unix software, while Windows and Macintosh programs are at least to some

Eeva Marin 77

extent standardized so that the same functions can be found in roughly the
same places in any program.

The following sections will briefly describe the pros and cons of
different ways of acquiring a program. Rogers (1998:85-87) lists common
problems that may come up when acquiring software: that programs are
available but they do not do what is required; that a program is under
development, but never seems to get published; that the program is filled with
programming errors; or that there is no money or other resources available for
developing or buying suitable hardware and software. These are all interesting
poin{/fo keep in mind, and the following sections will explain how they, in

addition to other problems, relate to different types of programs.

2.4.1 A program that another project made for their corpus

There may be other corpus projects that have developed tools for their corpus
and would be willing to give their programs freely or for a low cost. Although
~ this option might otherwise seem very tempting, there is one problem with it.
'Programs developed for a specific project are usually made very speciﬁcélly
for their research néeds and for their type of 4 corpus: they do nof neéessarily
suite any other types of research. As Kahrel et al (1997:232) note, programs
made for one group of researchers can rarely be re-used by other groups. This
situation may be eased in the future, if annotation and other practices of corpus
compilation can be standa.rdized to a larger extent than they have been so far.

The matter of standards will be explored in more detail in chapter 3.3.

2.4.2 Commercial programs

The biggest advantage with commercial programs, such as MicroConcord or
WordSmith Tools, is their réliability. They have been tested not only by the
manufacturer, butb also by all the people who have used them already. Most
bugs in them are likely to be known and fixed. The programs have also been
made by professional programmers who, at least theoretically, should be able
to make the program work logically from the users’ point of view. In other

words, a Windows-based corpus browser by professional programmers should

Eeva Marin 78

work as Windows programs always do, with no strange or illogical functions
that homemade programs often suffer from. This is especially important to the
inexperienced user of computers, for whom it is much easier to do things the
customary way rather than work out never-before-seen procedures.

A commercial program should also come with a manual that not only
explains how to use the program, but also assists with problems that may come
up with either installation or use. There is often also a phone number or e-mail
address that you can use to contact the manufacturer and ask for more advice.
In addition, there are likely to be plenty of other, experienced users who can
help with problems.

In other words, with a commercial program there is likely to be a lot
of help available, and not many problems concerning programming errors and
such. Once a program has been bought, it is also likely that the manufacturer
offers updates to it regularly, such as new versions and patches that fix
programming errors.

The downside to commercial programs is that they do what they were
made for, and it is not necessarily what a researcher wants from them. If a
researcher or a compiler of a corpus needs something very. specific, such as a
program that can align, say, English, Finnish, and Russian texts, it may be hard
- to find a finished product that can do.it properly. Commercial, widespread
programs are rarely made to do anything very specific; rather they offer
procedures that can be applied to several different kinds of languages, such as

simple concordancing.

2.43 Homemade programs

Another alternative is to make the program from the beginning within the
project that compiles and uses the corpus. The immediate problem here, of
course, is finding someone who knows how to program. Providing, however,
that some such person is available within the. project, this is an alternative
worth considering. |

| The advantage with a program that is made for a specific corpus is
that it will, at least theoretically, do exactly what is needed. Extra features can
be added along the way, for as long as the programmer stays in the project. The

Eeva Marin 79

program can be developed according to the users’ needs. This can be a huge
advantage over commercial programs and makes different types of research
possible. Biber et al. (1998:255-256) make a list of advantages that can be
gained by writing your own programs: in addition to mentioning many of the
previous points, they also note that self-made programs can be quicker and
more accurate than commercial programs, and put no limits to the size of the
corpus if the programmer so wishes. They also point out that in addition to
allowing the type of searches that no commercial tools provide, the output of
the program can be tailored specifically to the researchers’ needs.

Also, if there are any problems with the program, help is near; the
programmier, if anybody, should be able to help people with its use. It is much
easier to ask someone next door than to try to get a commercial manufacturer’s
phone support line to answer at rush hours, and try to make them understand
what exactly is the problem.

The problem with homemade programs is that there are no guarantees

_to their quality. The end result may be filled with programming errors and the
workings of the program may be somewhat peculiar from the users’ point of
view. In the worst case, the program may be actually working incorrectly for a
long time without anybody .noticing, thus producing incorrect results.
Sometimes, it may be that after a long time of unsuccessful programming the
programmer finally has to give up, admitting that the program logic is wrong
and it does not work as it was supposed to.

The person who did the programming may also leave the project at a
rather problematic time. Not only will there be no-one any more to answer
instantly the many questions that the users still have, but there may not be any
more updates available to the program. If the programming was poorly
documented in the first place, the development of the program may be at a
dead end. If the documentation was done badly or not at all, it may be more or
less impossible for someone else to try to find out how the program actually
works. In that case it will be very hard for someone else to come and try to
develop the program any further, so that the project may be forced to start

using anew program altogether, if some new functions are needed.

Eeva Marin 80

This is not one of the cheapest options, either. The programmer has to
be paid just like anyone else, and if he or she is hired only to program the
corpus, it may become a bit expensive in the long run. Of course, theoretically,
there is the option that one of the linguists already in the project learns to
program, and Biber et al. (1998:256), in fact, heartily recommend it. Their
attitude, however, seems a bit too optimistic. As was pointed out before in
chapter 2.1, not many people in the humanities are very interested in computers
as such, but rather use them only as tools to perform certain tasks that could not
be done otherwise. Biber et al. (1998:256) are correct in the sense that corpus
searches are mostly about manipulation of strings of characters, the
programming of which is not a very difficult task if compared to some other
programming tasks; however, if you feel like the kind of person who cannot
tell one end of the computer from the other, it is best to let someone else take
care of the programming.

If you feel like you are up to it, though, it is an idea worth considering
to learn to program. Biber et al. (1998:256), in fact, recommend that one
should take “a course in programming for linguistic analysis”. If you happen to
live in a place where such a course is available, it can indeed be recommended.
Many corpus compilers, however, probably work in universities with rather
more limited resources with respect to what kinds of programming courses are
available, and have to do with somewhat less specified instruction. It must be
noticed, though, that in any case learning necessary programming skills is
gqing to take quite a lot of time, and may not be within the resources of the

corpus project.

2.4.4 Program made for the project by people outside the project

The third alternative is to hire programmers from the outside. In practice, this
means having a software company make the program;

If the design and programming of the new piece of software proves
successful, this alternative may produce a program that combinés the
advantages of both the previous alternatives. The end result will be a
professionally made, fully working program that does exactly what is needed.

However, the downsides to this alternative are also many.

Eeva Marin 81

The most immediate downside is the price. However simple the
resulting program is to be, it is bound to be expensive. A cheaper way to get a
program would be to have it made by university students studying computer or
information sciences, who might do it as a part of their studies or to earn a bit
of extra money. A student project, of course, is a student project; there are no
guarantees that it will succeed.

The same problem may come up with software companies, as well.
There is nothing to guarantee that anything will come out of it, after all. And
even if it does, will the program be exactly what was needed? The needs of
linguists are not necessarily clear to the software manufacturers, and from the
linguists’ point of view, the program at hand in the end may not be quite what
was wanted.

Continuity is yet another problem here. After the first version of the
program has been paid and received, what about updates? What about error
fixes, or new features, let alone new versions? How much money is that going
to take? This option for the acquisition of corpus software should not really be
considered by any other than fairly large projects with plenty of money at their

disposal.

2.4.5 Freeware and shareware

Yet another alternative is to get a so-called freeware program. Freeware is
software that can be freely distributed and used with no payments. Freeware
- programs are usually quite simple; when they get more complex, the makers
often start to charge for them. Shareware programs are also freely available
for testing, but if you start using them regularly, you are expected to pay for
them. No-one controls whether you actually pay or not; however, there is a
moral obligation to do so. Often, when you pay for a shareware program, you
get some additions to it and the programmers will notify you of any new
updates.)
~ Shareware programs are usually much cheaper than corﬁmercial
programs. Barnbrook (1996:27) notes that there are lots of differences in the
conditions of use of freely available software. Some of them are completely

free, or cost close to nothing, whereas others may cost almost as much as some

Eeva Marin 82

commercial programs. Both freeware and shareware programs are available
through the Internet, and come with some kind of documentation and
conditions of use.

Barnbrook (1996:27-28) notes that there are enourmous differences to
the quality of both the software and its documentation in the case of shareware.
He also notes that there may be problems with the installation. However, if you
only need a very simply tagger, or concordancer, there might be proper
freeware or shareware available. No-one can say how reliable such programs
are, and certainly their use is on one’s own responsibility. They might not do

exactly what you need, but maybe just enough.

To end this chapter, it might be useful here to have a few words about
reusability. The lack of compatibility of plenty of different types of corpus
software has lead to an increasing need to have programs that would be
suitable for many different types of corpora, and that could be used over and
over again by different projects. In the future, it might be that instead of
individual, incompatible programs there will be small pieces of software that
can be put together and used as & one big program for a given task. McEnery &
Rayson (1997:208) use the metaphor “software Lego” to describe such pieces
of programming. This kind of thinking, of course, is nothing new: as was
mentioned in section 2.1.4, the “snapping together” of tools was one of the
basic ideas of Unix from the beginning. However, in the case of corpora,
standardization of compilation and annotation practices is still required to make
such programs possible.

This chapter has briefly explained the advantages and disadvantages
of different ways of getting suitable software. Sometimes it may be the case
that a project is willing to give out the program that they have used. It may not,
however, suit other projects very well. The same problem may occur with
commercial programs: although they are reliable and relatively bug-free, they
are not tailored to any project’s specific needs. A home-made program will
indeed do what is wanted, but it may not be very reliable, and may be of
limited usefulness to others. A program made for a project by outsiders might

produce excellent results, but the price may become a problem. None of these

Eeva Marin 83

options is bound to be the perfect solution, but all of them have their
advantages. It is also worthwhile to search the Internet for suitable freeware
and shareware: although not as refined as commercial programs, nor tailored
for your specific needs, they might indeed do exactly what is required. In fact,
a useful list of links to corpus software (both free and commercial) can be

found at the W3 Corpora site at http://clwww.essex.ac.uk/w3c/corpus_ling

[content/software.html. Whatever the needs of the corpus project are, some

kind of a compromise can be found to get software that is not too expensive,

but does what is required.

Eeva Marin 84

2.5 Summary

In this part of the present paper I have explored computer matters that are
relevant for the compilation and use of corpora. Since corpora are nowadays
invariably kept in computérs, there are decisions to be made about both the
hardware and the software. There are also many sources of problems that one
has to be aware of, such as different character sets. One also has to consider
how to store the data and how td move it from one computer to another as
easin as possible. These are the kinds of questions that this part of the present
paper has addressed.

In chapter 2.1, I discussed hardwére and operating systems. The
chapter gave general advice on what kinds of factors should be considered in
the selection of computers and operating systems. Although a few operating
systems were introduced in more detail, it should be remembered that both
computer hardware and software develop very fast and it is the general
principles that should be remembered rather than the details. Tt should also be
remembered that the decisions should be made bearing in mind what kind of a
corpus is going to used, and what kind of a system is the best for it and its
users. ’ |

Chapter 2.2 told about character sets and problems that may come up
with them. All computers are able to save texts in some kind of a plain text
format; in addition, many programs can use different fonts, which enable the
use of special characters that are not part of the basic character set of the
computer. Many character set problems also have to do with moving the data.
Whenever a plain text file is moved from a computer to another, on disk, by e-
mail or any other means, it is possible that the file gets scrambled for one
reason or another. The aim of chapter 2.2 was not only to explain such
problems, but also to offer possible solutions to them.

In chapter 2.3 I briefly introduced different options for storing the
information and taking backup copies. What is the best way for storing a
corpus depends on the nature of the corpus itself: small corpora and large
corpora have different needs, as well as corpora that are changed often and
those that stay the same after they have been completed. The chapter explained

the pros and cons of several different types of storage options.

Eeva Marin 85

The last chapter, 2.4, dealt with the acquisition of suitable software.
There are many ways to get corpus software: a program can be specifically
made for the project, or a ready-made program may be bought. With these, too,
there are pros and cons depending on the needs and the resources of the
project.

A general tendency in this part of the present paper has been to offer
suggestions and general advice rather than specific guidelines. There are many
reasons for this, and they have already been mentioned several times within the
preceding chapters. On one hand, the development of computers is too fast to
make any lasting decisions about what is the best option; on the other hand, the
characteristics of the specific corpus and the needs of the researchers also
dictate what kind of computing solutions are needed. Hopefully, however, the
principles presented here will be of use to corpus compilers.

Part Three of the present paper will move on to yet another large topic
that needs to be discussed in case of computer corpora: annotation. Part Three
will explain what annotation is, and introduce several different types of
annotation. In the beginning, it also considers the matter of getting the texts
into a computerized form, as well as general annotation practices and
standards.

Eeva Marin 86

3 ANNOTATION

So far, the present paper has not discussed to a great extent the contents of the
corpus files. It has been noted that they are usually in a plain text format, or
maybe in a format that has been specifically designed for the corpus. The files
contain, of course, the texts themselves, which can then be browsed by suitable
software. »
In some cases, the plain texts are enough; however, in other cases,
more information is needed. In addition to the original texts, a corpus may also
ihclude other types of information. Whatever contents the additional
information actually has, it is usually inserted to the corpus in the form of

corpus annotation.

3.1 Introduction to annotation

Many corpora nowadays are what may be called annotated corpora. This
means that the corpus consists of not only the corpus text itself: instead,
additional markup, or annotation, has been added to it.

Annotation can serve many different purposes. Thus, there are many
different kinds of annotation that may be added to a corpus. This part of the
present paper deals with the kind of annotations that are mostly seen in
monolingual corpora. However, many (or all) of these annotations could also
be applied to bilingual corpora, at least to each of the lahguages separately.

The term corpus annotation can be used to refer to two slightly
~ different things. First of all, it can mean the process of adding markup to a
~ corpus; secondly, it can mean the resulting tags in the corpus (Leech 1997a:2).
In the present paper, “corpus annotation” is used in both senses, and the
context, hopefully, tells the reader which one is referred to.

Adding annotation to a corpus has several purposes. Annotation brings
interpretative, lingilistic information to the corpus, and thus makes features of
the text, such as word classes, explicit (Leech 1997a:2, McEnery & Wilson
1996:24, Hockey 1998:107). It can also be used to identify areas of the text (for
example, one could search from newspaper headlines only) and for finding out

where the retrieved words came from. For example, if a corpus is divided into

Eeva Marin 87

several subcategories (eg. newspaper articles, novels, etc.), annotation can help
to determine how many instances of the search word were found in each
category (Hockey 1998:107-108).

In general, annotation helps to retrieve and analyse information from
the corpus and makes searches faster and easier (McEnery & Wilson 1996:24).
As all corpora, annotated corpora, too, challenges our intuitions about
language. Syntactically annotated corpora, for instance, may reveal that very
common grammatical structures in real texts are not often presented by
grammar textbooks, or that textbooks tend to concentrate on a few structures
that form only a small portion of the whole range of possible constructions
(Sampson 1991:183). Annotation is also very important in natural language
- processing, for example for developing machine translation, intelligent data-
retrieval systems and voice-driven typewriters (Sampson 1991:182-183).

- Annotation can include both textual and extra-textual features. In
other words, in addition to codes that apply to separate words or sentences,
there may be markup that applies to the whole text. These would include notes
about the author of the text, title, variety of language, broad subject domain,
and are likely to be included in a separate header for the text (McEnery &
Wilson 1996:30).

Of course, one can also question the need for annotation. For example
Sinclair (1991:21-22) has criticized corpus annotation for forcing a certain
view of grammar on corpora. Especially, a point to consider is that the models
of analysis that are applied to corpora are often based on more or less intuitive
models of grammar that the corpus could prove to be wrong; therefore, adding
such annotation to a corpus is a bit of a contradiction in terms, since it may
deprive the corpus of the advantages that it inherently has. Indeed, a plain text
corpus has the advantage that it includes no-one else’s opinions about how the
text should be seen: researchers can view it as they will.

- However, for solving many research problems annotation is more or
less essential. The uses for unannotated corpora are in many ways limited
(Hockey 1998:108). For example, if you want to look at the auxiliary verb will,
a simple search (with search word will) from a plain text corpus will certainly

yield many auxiliary verbs. In addition, however, you will probably get many

Eeva Marin 88

instances of Will as a proper noun (short for William), and also as a common
noun (“a testament™). In a similar way, if you want to, say, examine the way
clothing is referred to, you might search for trousers — but at the same time,
you might get overwhelmed by trying to think of all the possible synonyms that
might be used instead (eg. pants, slacks, shorts, leggings) (cf. Wilson &
Thomas 1997:53). Barnbrook (1996:82-83) also mentions the same problem:
concordancers tend to include either too little or too much in the search results.
For these kinds of problems, corpus annotation can prove to be the answer.

It should be remembered that the presence of annotation should not be
seen as hindering one’s own opinions and interpretations of the text. It is often
possible to search an annotated corpus like a plain text corpus, if needed. One
does not have to use the annotations. For example, in a grammatically tagged
corpus one can specify a search for the instances of book as a singular noun,
but there is no reason why one could not retrieve all the other forms of book as
well, just as from an annotation-free corpus. The possibilities for different
types of searches are limited by the format of the corpus, though. For example,
if the corpus is not stored in plain text but in a relational database, the
searching process is somewhat different.

The most common corpus annotation is the addition of part-of-speech
tags. This means that each word gets a tag that indicates which word class it
belongs to. The second most common is syntactic annotation, which is often
“referred to as parsing. Other types of annotation include, for example,
semantic, anaphoric, stylistic and prosodic annotation. Each of these will be
considered below. It may be noted already at this point, however, that
annotations are to a great extent cumulative: the most common annotations,
such as part-of-speech-tagging and syntactic analysis, are often the basis for
other annotations (Leech, McEnery & Wynne 1997:100-101). It may also be
questioned whether the application of these different levels of annotation
should be separate processes at all, since some of them could be combined (e.g.
Fligelstone, Pacey & Rayson 1997, Leech 1997b:19). These questions -will be

addressed in more detail in the following chapters.

Eeva Marin 89

3.1.1 How to add annotation

‘The process of annotation may be either automated or manual. In automatic
annotation, a computer program is used to insert most or all of the tags. Purely
manual annotation means that all tags are inserted by human annotators, in a
word processor or other editor, or in a program that is made especially for
inserting tags to a corpus. Often the full process of annotation is a combination -
of the two: a program first inserts tags, and then human annotators go through
the tags and correct possible errors. It is also possible to use a program that
helps the human annotator to insert the tags. For example, the program
suggests what tags are possible, and the annotator selects the correct one.

To what extent annotation is automated or manual depends to a large
extent on the kind of annotation that is being added. For some annotations there
are fairly well-tested software that make very few errors (e.g. part-of-speech
annotation), whereas some other types of annotation are still quite new and
without established practices, and therefore have to be done fully manually
(e.g. stylistic tagging). The issue of manual/automated tagging will be

considered in more detail in connection of each type of annotation.

3.1.2 What annotation looks like

Over the years, there have been many different kinds of annotation schemes,
and as Hockey (1998:108) notes, most of them are not compatible with each
other. It seems that for a long time, there were no standards in corpus
annotation, and each research group developed annotations that worked for
their corpus and their research purposes only. This section will shortly look at
the kinds of tags that one is likely to encounter in annotated corpora.

Note that nowadays most new cofpus projects go for TEI tags in the
first place (see chapter 3.4 below). The reason why other schemes are
introduced here is that they have been much used in older corpora, and
therefore one may encounter theni quite frequently.

A typical way to add annotation is to attach tags to the end of the word
that they describe. Thus, for example, a word like wuniversity could be

grammatically tagged in the following way:

Eeva Marin 90

Example 7: Tagged word

university NN1

“NN1” indicates that the word is a singular common noun (McEnery & Wilson
1 1996:36-37). This type of annotation has been used in many corpora. For
example, it was used for a long time at the University of Lancaster, in their »
popular and highly successful CLAWS part-of-speech tagging system, a
computer program which automatically assigns part-of-speech tags to text
(Garside & Smith 1997:102, McEnery & Wilson 1996:36-42). The following is
an example of text tagged by CLAWS:

Example 8: CLAWS tags

hospitality NN is BEZ an AT excellent JJ virtue NN , , but CC not XNOT
when_WRB the_AT]1 guests NNS have HV to_TO sleep_VB in_IN rows_NNS in_IN
the_ATI cellar NN !_!

(http://www.comp.lancs.ac.uk/ucrel/annotation.html)

In this example, it can be seen that each word has been given the
relevant tag: for example, hospitality is tagged “NN” meaning that it is a noun,
sleep is tagged “VB” (verb) and excellent is tagged “JJ” (adjective). It may be
noted that the punctuation marks, too, have been tagged (comma and
exclamation mark).

One of the first corpora to use such tags was the Brown Corpus in the
early 1970s, tagged by an automatic tagger called TAGGIT. Later on such tags
have been used, for example, in the LOB (Lancaster-Oslo/Bergen) Corpus,
which was tagged by CLAWS during the 1980s (Garside & Smith
1997:103,108). '

Another type of older tags that has been widely used is COCOA
references (McEnery & Wilson 1996:26-27, Hockey 1998:108-111). A
COCOA entry consists of two angle brackets which contain a code for a

variable and its value. For example,

Example 9: COCOA reference

<A Charles Dickens>

Eeva Marin 91

means that the author of the text is Charles Dickens, the capital 4 in the entry
standing for author (McEnery & Wilson 1996:26-27). COCOA tags can be,
however, only used for coding certain types of information, such as authors and
titles (McEnery & Wilson 1996:27). Another problem is that COCOA
annotation tends to be somewhat inconsistent. For example, many kinds of
markup may be used for the same things, while documentation explaining the
logic behind their use may not be available (Hockey 1998:110-111).

The need to be able to tag more than some predefined features of a
text and the demand for consistency may be helped by the emergence of the
TEI guidelines (McEnery & Wilson 1996:27). Many older corpus tagging
schemes (such as CLAWS) have been updated to conform to TEI and SGML
(Garside & Smith 1997:109), and new corpus projects definitely should
consider going for it in the first place. Although TEI is still under development,
it is based on an existing standard and has several advantages over earlier
annotation schemes (Leech 1997b:30-31). SGML and TEI will be further

discussed in chapter 3.4.

3.1.3 General guidelines for annotation

Although the annotation of different levels of text may be somewhat different
processes, as will be seen in the following chapters, there are general
guidelines that can be e;itended to any kind of annotation. Geoffrey Leech
(1993:275) (also quoted in McEnery & Wilson 1996:25-26, and avaﬂable at
http://www.ling lancs.ac.uk/monkey/ihe/linguistics/corpus?/2maxims.htm) has
defined seven'maxims of annotation that any corpus compiler should keep in
mind. These are quite general suggestions that can be appligd to the

compilation of any type of corpora.

1. It should be possiblé to remove the annotation from an annotated
corpus and revert to the raw corpus.

This maxim has to do with recoverability: one should be able to revert the

annotated corpus back to a plain text corpus, that is, remove all annotations.

For a corpus that has simple TEI annotation this is not particularly hard to do.

Even word processors nowadays are able to remove all tags that start with “<”

Eeva Marin 92

and end with “>”, as TEI tags usually do. Also entity references such as
ä are easy to convert into the characters they denote — in this case, d.
(cf. McEnery & Wilson 1996:25.) -

2. It should be possible to extract the annotations by themselves from the
text.

This is the “flip side” of maxim number one. One might want to, for example,

store the annotations in a separate file for other use, or present them in an

interlinear format so that the tags are on a separate line below running text

(Leech 1993:275, McEnery & Wilson 1996:25).

3. The annotation scheme should be based on guidelines that are
available to the end user.

There should be a manual for the users of the corpus which explains what each

of the tags means an& why certain tagging decisions have been made. It is-a

great help to the users when they do not have to try to guess what each of the

tags is for, or why a particular tag has been chosen in controversial cases

(McEnery & Wilson 1996:25).

4. It should be made clear how and by whom the annotation was carried
out.

- Annotation can be either automatic or manual, and there may be many people

and programs involved in it. The documentation to the users should also

explain this side of the tagging process (McEnery & Wilson 1996:25). It may,

for example, help users to understand why some kinds of errors exist in the

corpus, since human annotators and computers tend to make rather different

types of mistakes.

5. The end user should be made aware that the corpus annotation is not
infallible, but simply a potentially useful tool.

In Leech’s own words, “There can be no claim that the annotation scheme

represents ‘God’s truth’”. The annotation is offered only because it is expected

that many users will want to use a previously annotated corpus rather than

Eeva Marin 93

devise their own annotation scheme (Leech 1993:275). Corpus annotation
always imposes an interpretation on the corpus: different interpretations might
be just as well possible. For example, in syntactic annotation, there may be
several different ways to draw a phrase structure tree for an ambiguous
sentence. The corpus might represent only one of them, but this does not mean

that the others are wrong.

6. Annotation schemes should be based as far as possible on widely
agreed and theory-neutral principles.

One should not choose a little-known, uncommon linguistic theory as the basis
of the annotation, unless that is relevant to the research problem. A corpus will
have much more uses if it is based on some generally agreed principles. For
example, for syntactic analysis, it is useful to try to divide sentences into
widely-agreed categories (such as noun phrase, verb phrase), rather than try to
use a rare and relatively unknown model (cf. McEnery & Wilson 1996:25-26).

7. No annotation scheme has the a priori right to be considered as a
standard.

Only experience and general agreement among corpus. researchers will yield

anything that could be considered a standard. No annotation scheme is

automatically better than all others, unless it has proved to be applicable to

different kinds of corpora and research. (See also McEnery & Wilson 1996:26,

Leech 1993:275.)

The above maxims are particularly useful because they can, in fact, be applied
to a corpus project of any size. In a huge project involving maybe dozens of
compilers and wusers, it is clear that for instance manuals and other
documentation are necessary. It may not be so clear at first glance why such is
needed if someone is compiling a small corpus for their own use. However,
even if a corpus is in the beginning only a personal project, with time other
researchers may like to use it, too. Even when there never will be other users,
documenting the procedures of the compilation may prove useful for others

who later want to make their own small corpus. Of course, it may prove

Eeva Marin 94

important to the original compiler, too, if there is any need to expand the
corpus afterwards. The size of documentation for such a corpus does not need
to be huge; jotting down some main principles, experiences and problems is
always worth it.

Using an annotation scheme that conforms to the previous maxims
also has the advantage that later on it may be easier to make the texts part of a
larger corpus, if desired. It also enhances interchangability of resources, such

as corpus programs and the corpora themselves.

Before the present paper moves on to introduce the actual annotations, there
are three chapters that deal with more general matters. Chapter 3.2 tells about
how to get the texts in a computerized form in the first place, for example by
scanning or keying. Chapters 3.3 and 3.4 both deal with the matter of

. standardization: they talk about standards in general and about an already
existing text encoding standard, respectively.

In chapters 3.5 - 3.10, I will introduce several types of annotation,
starting from the most common ones, and proceeding to the rarer types. The
first one to be dealt with is part-of-speech annotation, which is also the type
of annotation that is most often encountered. The second to be discussed is
syntactic annotation, also known as parsing, which is also quite popular. Yet
another types are semantic and anaphoric annotation, both of which will-also
be introduced. After that, there will be a brief explanation of prosedic and
other spoken language annotations, and some of the rarer types of annotation
will be mentioned. In the end, chapter 3.11 will introduce the concept of
alignment, which concerns bilingual and multilingual corpora.

The following chapter, however, considers a question that is rather
important: how to get texts and how to convert them to a computerized form.
The following chapter will tell about scanning, keying, text archives, CD-Rom

collections and proofreading.

Eeva Marin 95

3.2 How to get texts

This chapter describes the problem of acquiring texts and getting them in the
computer. In mahy caseé, the material for the corpus is taken from books,
newspapers or other printed publications. In that case, the texts usually need to
be either scanned or keyed to get them into computerized form. Sections 3.2.1
and 3.2.2 tell about scanning and keying. On the other hand, there are also text
archives in the Internet and commercial CD-Roms where one can find plenty of
material for corpus research. Sections 3.2.3 and 3.2.4 tell about these. The last
section of this chapter (3.2.5) is about proofreading, which in many cases needs

to be done before the computerized texts can be processed any further.

3.2.1 Scanning

Nowadays, scanning is usually the fastest and easiest way to get a text into the
computer. Scanning requires special hardware and software: an optical scanner -
and character recognition software (Burnard 1992:3, Barnbrook 1996:30). The
scanner is the machine that is connected to the computer and reads the pages,
and the character recognition software is the program that makes sense out of
what the scanner reads.

There are different kinds of scanners, everything from small hand-held
devices and desktop scanners to large free-standing units. The smallest ones are
fairly cheap, but very slow to use and fairly inaccurate (Barnbrook 1996:30).
The largest ones, on the other hand, can produce very good results.

Historically, one of the most popular scanning systems was the KDEM
(Kurzweil Data Entry Machine), which was introduced in 1978 (Kurzweil
1998). The KDEM was, indeed, one of the first applicable scanning systems
and it has been used successfully in many corpus projects. For example
Barnbrook (1996:30) mentions that the KDEM is both fast and accurate.
References to the KDEM can still be found in many articles that concern
corpora. One of its advantages was that it could be trained to read particular

typefaces, so that it was not limited to reading only certain kinds of fonts, like

Eeva Marin 96

most of the machines at the time (Kurzweil 1998, CETH newsletter 1995").
Burnard (1992:3), however, notes that nowadays at least the first models of
KDEM seem slow and expensive. Far less expensive systems are available now
that produce much better results.

A4-sized desktop scanners are both fast and accurate enough for the
compilation of a small corpus.. As the CETH newsletter (1995) mentions, .
although desktop scanners are much newer, the character recognition process
that they use is usually not better that that of the KDEM. Many of them cannot
be trained to read specific typefaces, either. Desktop skanners are, however,
much cheaper than larger free-standing machines (CETH newsletter 1995).

Character recognition software is needed for the computer to make any
sense out of the image it gets from the scanner. When scanning, the computer
first inputs the text as a visual image. Then it tries to recognize the individual
characters using pattern-recognition algorithms, thus converting the picture
into text. The recognition of the characters is often referred to as OCR, optical
character recognition. (Barnbrook 1996:30, Burnard 1992:3)

Johansson et al. (1996) claim that a scanner is able to distinguish
highlighted text, such and bold and italic typeface, and therefore the possible
tagging of such features could be done more or less automatically at this stage
already. However, although it is true that modern scanning software is able to
recognize highlighted text, the accuracy may not be very good; Sometimes
programs fail to recognize some highlighted text, and curiously tend to see
italics and bold text where there are none.

All scanners tend to make errors (Barnbrook 1996:31-32). The errors
often have to do with characters or character combinations that closely
resemble each other. For example, rn may get mixed with m, or ¢l with d.
Depending on the typeface, the errors may be either occasional or fairly
consistent. Hockey (1998:106) notes that sometimes there is a pattern to the
errors, so that many of them can be corrected quite easily. For example, the

find and replace function of word processors can be used, or suitable macros.

! The full reference for this is http://www.ceth.rutgers.edu/Ceth/newsletter/news3 1/ocr.html.
The CETH homepage can be found at http://www.ceth.rutgers.edu. CETH is short for Center

for Electronic Texts in the Humanities.

Eeva Marin 97

Burnard (1992:4) also notes that texts that have plenty of different
typefaces in them tend to produce more errors than one with consistent
typeface. Hockey (1998:106) agrees with this, and gives the example of
dictionaries. One dictionary entry usually has many different font faces and
thus makes it hard for the scanner to read. Burnard (1992:4) also notes that an
OCR system only recognizes what is on the page; it does not know what
different parts of a page actually are, and so it cannot tell running headings on
the top of the page, or footnotes, apart from the rest of the text. Modern OCR
software, however, offers the user the choice of the area which will be
recognized; although the scanner scans the whole page, the user can select
which parts will be recognized, in which order, and which can be ignored. The
CETH newsletter (1995), however, notes that with longer texts this can be both
“time-consuming and monotonous”. They also note that OCR systems often
save the text in a common word processing format, so that when opened in a
word processor, the text may be reformatted to a certain line length
automatically. This can be a problem especially in case of poems and other
material, where correct line breaks should be preserved.

It is worth noting that the American and/or British versions of scanner
software may not be able to recognize characters outside the English alphabet.
For example, the program may not know the characters d and 4, but recognizes
them as a and o, respectively. When acquiring software for scanning text, one
should always make sure that the program can deal with the characters of the
language that is going to be scanned. Hockey (1998:106) notes that many OCR
systems include a dictionary, so that the scanner can check whether some word
exists or not. However, this does not help with foreign languages, and may not
work quite properly anyways.

It is also worth noting that nowadays the best desktop scanners can
scan images with huge resolutions. That is, they can reproduce very detailed
images of the scanned page or picture. Therefore, if a good scanner is used, the
errors in the scanned text are not likely to be caused by the hardware. The
problem may be in the scanning software; it simply does not recognize some
characters properly, maybe due to an unusual typeface in the text. However, it

is also likely that errors are caused by the poor quality of the page that is

Eeva Marin 98

scanned. The scanner cannot tell apart text from ink plots or other smudges on
the page, and tries to recognize them all as characters. Library copies of older
books may also have underlinings, notes and doodles by previous readers,
which invariably result in poorly scanned text. Hockey (1998:106) and CETH
newsletter (1995) note that in old printed books, the baseline may be uneven.
This means that the characters in one line are not quite on the same level, as .
some may be a bit higher or lower on the page than others. Such texts are not
usually suitable for scanning. Hockey (1998:106) also notes that in the case of
newpapers, poor paper quality and uneven inking make them hard to scan.

Scanning software should offer the possibility to adjust the brightness
and contrast of the scanned picture, and such adjustments may indeed enhance
the quality of the text the program produces. However, this does not always
help. As unusually soft paper may be hard for the scanner to read, and it may
be a good idea to take photocopies of the page first and try to scan it then. This
is particularly true with older books, which are printed on yellowish soft paper.
The CETH newsletter (1995) points out that inferior quality of the paper causes
the ink to “bleed”, so that the characters are not as sharp as on smooth paper. A
high-contrast photocopy that has black text on bright white paper may be much
easier for the scanner to read. In the case of very thick or otherwise big books it
also may be easier to copy it first and then scan from the copies. Of course, one
must bear in mind that a copy is always a copy; in most cases, the original page
is the one that scans better.

Hockey (1998:106) also notes that scanning is rarely as successful as
is expected. In fact, as she points out, ”an advertised accuracy rate of 99.9 per
cent means approximately one character error every ten lines”. In fact, many
large companies that need to get texts computerized do not use scanners at all,
but have the data keyboarded professionally (Hockey 1998:106-107, CETH
newsletter 1995). Keying in the data tends to produce more accurate results

than scanning. Keying will be discussed further in the following section.

3.2.2 Keying

Sometimes, it is not possible to scan the needed material. Such cases include,

for example, hand-written texts, unusual or very old typefaces, bad condition of

Eeva Marin 99

the original printed text, and obviously, spoken language (Burnard 1992:4,
Barnbrook 1996:32). In such cases, the material needs to be typed into the
computer by hand.

Keying takes much more time than scanning the material. However, if
the person doing the typing is well skilled with the keyboard, the result has far
fewer errors in it than a scanned text would (Barnbrook 1996:32). Burnard
(1992:4) also notes that in some cases, such as spoken language material, some
kind of transcription is probably needed anyway, whether there are plans to
analyze it by the computer or not. If the transcription is something that needs to
be done no matter what it is used for, it may just as well be done by computers
in such a way that the material can be used in a corpus, too.

Barnbrook (1996:32) also mentions that there are companies,
commercial data entry firms, that can do the typing. Using them, however, can
prove to be very expensive. To achieve a high accuracy, they may use a
method where the whole data is typed in twice; the two versions are then
checked against each other and all differences are corrected for the final
version. This procedure increases the cost of the service. Burnard (1992:4),
however, says that when the whole process of compiling a corpus is
considered, the cost of keying is not much compared to some other stages.
Editorial costs, such as proofreading and checking the markup may prove far
more expensive.

Of course, both Barnbrook and Burnard are talking about a situation
where the compilers of the corpus have quite good resources, such as money, at
their disposal. Researchers making small corpora for their own use may end up
doing the keying themselves. It is always worth it to try to scan a text if it looks
at all like something that the computer could read. The researcher will have to
make the decision between keying and scanning, depending on the quality of
the result. Sometimes re-typing the whole text is much faster than correcting all
the errors that the scanner makes.

As to spoken language, in the future it may be possible to directly feed
spoken language into the computer, so that the compufer would automatically
turn it into text. However, nowadays, speech recognition systems are not

anywhere near good enough to do it properly (Barnbrook 1996:33). The

Eeva Marin 100

computer has many problems with spoken input, such as identifying the
linguistic units in speech, and ambiguity of sound units. For example, it is very
hard for the computer to tell apart different words in an utterance, and some
utterances, such as “the old display” and “the oldest play” may indeed sound
the same (Barnbrook 1996:145-146).

Keying or scanning a number of texts yourself is not, however, the
only way to get usable corpus material. Hockey (1998:101) notes that most
existing electronic texts are in the hands of research institutes or individual
researchers, and many of such texts are neither available nor suitable for other
use. Nevertheless, there are many other sources for electronic texts: plenty of

them are available through the Internet, or sold on CD-Roms.

3.2.3 Text archives

Text érchives, collections of tekts, offer lots of material in electronic Aform.
Many text archives are accessible through the Internet so that the material can
be directly dovvrlloadgd from the archive to any computer. Barnbrook
(1996:26) mentions that the number of ‘such archives has increased greatly in
the ‘recent years, and increases all the time. It should be easy to find such
archives through Internet search engines, for exémple using “text archive” or
“electronic texts” as a search word. Burnard (1992:5) also mentions that the
European Commission have taken an interest toward corpora, and has founded
a survey of texts and other sources that are available in Europe.

The material in text archives is usually free to use. Sometimes there
may be some limitations mentioned, but those often have to do with
commercial uses (Barnbrook 1996:26). All text archives should include a
notice which explains the terms of use of the material and possible restrictions.
Before downloading any material, one should look for such a notice and read it
through to be sure that the texts can be used for the desired purpose.

Sometimes, the text’cannot be downloaded, but they may be accessed
directly for research purposes (Barnbrook 1996:27). Such access fnay be
achieved through the Internet, or sometimes by telnet connection. There may
be a limited access for occasional users, e.g. the number of searches is limited,

or the program prints only a limited number of the resulting sentences. To get

Eeva Marin 101

full access, one must register as a user, and be prepared to pay something for it.
Examples of such services on the Internet include Collins Cobuild’s
CobuildDirect (http://titania.cobuild.collins.co.uk) and the W3 Corpora site
(http://clwww.essex.ac.uk/w3c/) (http addresses were valid September 1998).

Even for registered users, there are likely to be limitations as to what
kind of research can be done, because usually only the software at the host site
can be used (Barnbrook 1996:27). If one wishes to examine the material with
some other program, it is not likely to be possible.

Although text archives may offer an overwhelming amount of texts,
their suitability for a particular research question may not be very good.
Barnbrook (1996:26) notes that if a corpus is compiled from text archives only,
it will be seriously limited by the range of texts in the archives. He mentions
that the archives mostly include literary texts from particular historical periods,
and a quick look at the Internet seems to confirm this. This probably has to do
with copyright issues; since the copyrights of older texts have expired, and
texts such as folklore and religious writings do not usually have copyright
holders at all, anyone can distribute them.

It is worth noticing that most book publishers nowadays have their
published material in electronic form, too. Since they use word processing and
desk-top publishing tools, a computer-readable version exists. One may be able
to get them, but it is possible that the publisher charges for them and places
restrictions on their use (Barnbrook 1996:29). Barnbrook also notes that many
academic institutions have academic writings in electronic form. For example,
at the University of Jyviskyld, there are plans to make all new theses available
through the Internet (http://docuweb.jyu.fi). Such academic writings should be
freely available.

3.24 CD-Roms

In addition to texts that can be downloaded through computer networks, plenty
of texts are available on CD-Rofns, too. There are many text collectidﬁé, texts
from the archives, and newspapers and magazines that can be }bought on CD-
Rom (Barnbrook 1996:28, Burnard 1992:5). Publishers are becoming more

aware that there is a demand for electronic texts, and among others, the

Eeva Marin 102

newspapers Guardian and Independent have published their material on CD-
Roms (Burnard 1992:5). Many ‘large corpus projects, too, distribute their
corpora on CDs (Burnard 1992:5), sometimes the full corpus, sometimes parts
of it (Barnbrook 1996:28). One of the distributors is ICAME

(http://mora.hd.uib.no/icame.html), whose CD-Roms include many well-known

corpora, such as the Brown, LOB and London-Lund Corpora. As the capacity
of ordinary CD-Roms nowadays is around 650 MB, one disk can include huge
amounts of text (Barnbrook 1996:28). By buying even one of such collections,
one may get more or less exhaustive quantity of material for corpus-based
research.

The material on a CD-Rom, however, may be stored in a format that
cannot be used by any other program but the one that comes on the disk itself.
As Hockey (1998:104) notes, most electronic texts were originally created for
specific research purposes, so that it is hard to use them for anything else as
such. Even if it is possible to easily convert the files to another format, the
licencing agreement, i.e. the terms of use of the disk, may prohibit it
(Barnbrook 1996:28-29). Before buying any CD-Rom collectlons one should
find out how the data is actually stored on the disk;/ fcan 1t be used i in other
programs as such, (Houfdzlt be converted ﬁrst to another file format,« can 1t be
converted by the tools that are available, and 1s it permitted to do any of that.

For example, if the disk is designed to be used through an Internet
browser (for instance a collection of newspaper articles that is not actually
meant for linguistic research) it will be in ASCII format that is HTML tagged.
There are, however, plenty of tools to remove the HTML tagging — indeed, a
word processor such as Word 97 has it as a build-in feature. Therefore, if the
licensing agreement allows it, it will be fairly easy, although time-consuming,
to convert the material back to plain text. In other cases, however, it may be
much harder. For example, if the data has been processed into a special kind of
-database, it is practically impossible for a new user to convert it back to ASCII.

If texts are acquired from the Internet or from CD-Rom, there should
be no need to proofread them anymore, unless the removal of undesired tags is
considered proofreading. However, with keying and scanning, proofreading is

the logical next step.

Eeva Marin 103

3.2.5 Proofreading

After the text has been computerized, it should be proofread. Both keying and |

scanning are likely to leave the text with errors in it. To get the best possible
results, the text should be vproofread manually, in other words, by human
annotators (Barnbrook 1996:38). It is a fairly time-consuming task and even
after that, the text is not necessarily error-free. It is quite easy for the person-
doing the proofreading to become blind to the errors, that is, not notice them
after staring at the text for a while. Just as the scanner software confuses
characters that look like each other, a human reader confuses characters and
words that resemble each other. As Barnbrook (1996:38) says, ”its
[=proofreading] usefulness will be entirely dependent on the skill and
reliability of the proof-reader”. The person doing the proofreading needs to be
proficient in the language that is being proofread, and able to do the job so that
the time spent on it and the accuracy of the resulting text are acceptable.

One way to make proofreading easier and more accurate is to change
the font to courier, or rather courier new. They are both very clear and
the characters stand well apart from each other. The fonts that are used
normally, such as Times New Roman or Paladino, tend to draw the characters
fairly close to each other. Compare, for example, i and » with Courier New ri
and n, which are far easier to tell apart, even more so on the screen than when
prihted. |

Nowadays, all méjor word processors include a spell checker. One
should definitely take advantage of it. The computer is much better than human
beings at spotting scanning errors and mistypings; rcturn and return may look
the same to a human proofreader, but the computer can definitely tell them
apart. What the computer cannot do, however, is distinguish words that are
mispelled, but still look like correct words. Barnbrook (1996:37) gives an
example of the word tool; If it is spelled as folo, the computer will notice it, but
if it is spelled toll, the computer' will not take note of it because it still looks
like a correct English word. | -

The computer’s proofreading facility works on basis of a word list,
and considers all words outside the word list as possible errors. Therefore, an

automatic spell checker usually gives quite a number of false alarms. For

Eeva Marin 104

example, many proper names will be seen as errors, as will be all unusual
variation in spelling. Spell checkers also tend to use, in case of the English
language, only one variathign of English at a time (e.g. American English or
British English). Such spell checkers report as errors all the deviations from
their own version of how a word should be spelled (e.g. theatre — theater).
Many spell checkers are, however, able to learn new words. It means that
words can be added to the word list, or the users can define word lists of their
own.

' It is usually not necessary to try to weed out every possible error in the
texts. As Barnbrook (1996:37) says, one should determine an acceptable level
of error before deciding how carefully the text needs to be proofread.
Depending on the kind of research that the data is for, certain amount of errors
may be acceptable. In other words, a few errors in a huge corpus are not going

to distort the research results significantly.

This chapter has examined the matter of getting material in computerized form.
In many cases, the material has to be scanned into the computer; in some cases,
scanning may be impossible, so that the texts have to be keyed in. There are
also text archives and CD-Roms available that have plenty of texts in them.
The advantage with them is that they are in computerized form already, and
they do not have to be proofread anymore. However, the material in such
collections may not be suitable to specific types of research. The end of this
chapter, then, gave some advice about proofreading.

After the texts have been fed into the computer one way or another,
and proofread, they may be ready to be used in a corpus. However, there are
many cases when plain texts are not enough. In might be useful to have some
kind of annotation in them that eases the corpus searches one way or the other.

The rest of this part of the present paper deals with the matter of
annotation. Before going on to introduce specific types of annotation, however,
the following two chapters examine annotation practices on a more general
level. In order to make the interchange of material and programs possible, there

Lﬁ'ﬁ to be some standards for annotation. The following chapter is about the

need for standards in general, and chapter 3.4 introduces the basic principles of

Eeva Marin 105

SGML and TEI. SGML (Standard Generalized Markup Language) is used in
the creation of structured documents; the Text Encoding Initiative (TEI), on the
other hand, has developed guidelines for corpus annotation that in the long run

might become a standard in corpus work.

Eeva Marin 106

3.3 Standards

Before going on to describe the various kinds of annotations that can be
applied to corpora, it is necessary to have a look at the question of
standardization. In the past, many corpus projects have each used their own
forms of annotation, suitable for their own purposes. However, during the last
decade or so there has been movement towards common guidelines and
standards fdr annotation. |

There are several reasons why annotation practices should be |
standardized at least to some extent. One of the most important of them is re-
usability (Leech 19975:7): the same corpus can be used again by different
researchers, in different programs, and may be combined with other corpora.
When the annotation used is the same, the material in different corpora can be
interchanged and used for many different purposes. As Kahrel et al. (1997:232)
note, corpora have been created in seyeral different countries, both in the same »
- language and several different languages. If these corporai conform to some
common guidelines, it is easier to compare the results and continue with the
work. If work in different languages conforms to the same standards, it is
possible to combine them into a multilingual corpus.

Annotation standards also make it easier fo start new projects. When a
well-documented annotation practice already exists, new corpus projects do not
have to start from the beginning; instead, they can use what already exists and
what they may already be familiar with from other projects (Kahrel et al.
1997:232, Leech 1997a:7). They may also take advantage of the experiences of
those who have used the same annotation scheme before, and are able to avoid |
the mistakes that may have been made earlier. |

Standards also enable researchers to use the same tools for different
corporé (Kahrel et al. 1997:232). This includes both annotation tools and
corpus browsers and concordancers. As McEnery & Wilson (1996:174-175)
note, the recent interest in SGML-tagging (which will be explained in more
detail in the following chapter) has already put pressures on sbftware
developers to provide suitable programs for the many users who would like tb

have them.

Eeva Marin 107

Introducing standards creates some problems, however. As Leech
(1997a:6-8) explains, different corpora and different projects may need rather
different type of annotation. For example, some researchers need a smail
corpus with very specific annotation that is useful for their specific research,
whereas others want to have a large corpus with only some general-purpose
annotation in it. Kahrel et al. (1997:234) note that there are both corpora that
serve a very theoretical purpose, such as linguistic research, and those that are
meant for very practical uses, such as natural language processing (e.g.
machine translation). In addition, despite the fact that most annotated corpora
so far have been in English, there is more and more interest towards the
annotation of other languages, some of them maybe very different from
English. As Leech (1997a:8) puts it, any standard that is put forward should
avoid “[imposing] a straightjacket of uniformity” and leave enough room for
flexibility.

Already existing corpora also form a problem. There may be corpora
of millions of words that have been tagged according to their own specific
annotation scheme, and it would require much extra work to fit them into some
complete new type of annotation scheme. Kahrel et al. (1997:233) suggest that
any new standard should also take into account older corpora, and be flexible
enough so that the older corpora can be made to fit into it without too much
effort.

The guidelines would also have to be such that they have been already
tested and accepted, and proven useful to researchers. It is not possible to put
forward a number of rules and expect that researchers will start to use them just
like that. No annotation scheme is automatically better than another one; many
have good qualities, and only practical experience will bring out the best. (cf.
Leech 1997a:6-7.)

There are, in fact, two levels of standardization that can be considered.
One of them is standard encoding of corpora and annotations; the second is
standard annotation of corpora (Kahrel qt al. 1997:231). The difference
between these two is that the first one refers to the actual codes and markup
that are used, whereas the second refers to what type of features should be

tagged.

Eeva Marin 108

The first of these has been addressed by the Text Encoding Initiative
(TEI). TEI suggests SGML-based tags that can be used in corpus annotation.
SGML and TEI will be considered in the following chapter. The second of
these, however, has been addressed by the EAGLES initiative and will be
discussed below.

EAGLES (Expert Advisory Group for Language Engineering
Standards) is a European effort to give some common guidelines for text
encoding (Kahrel et al. 1997:231, 235). EAGLES has examined existing
annotation practices in Europe, and formed specifications for annotation that
are to be used in future EU funded work (McEnery & Wilson 1996:29). They
have suggested some rules for morphosyntactic and syntactic annotation of
corpora. They explain, for example, what kinds of tags are obligatory,
recommended or optional for morphosyntactic annotation: for instance, any
part-of-speech tagset should have tags for nouns and verbs, that is, those tags
are obligatory for any part-of-speech tagset (Kahrel et al 1997:235). They also
give standards for the documentation of annotation (Kahrel et al. 1997:240-
241): what kinds of things the documentation should include and to what extent
and accuracy they should be reported. The EAGLES guidelines, on the other
hand, provide rules to be applied to any European language, but at the same
time they are flexible enough to accommodate differences between languages
(McEnery & Wilson 1996:29).

The following chapter, however, concerns SGML and TEI, which
provide a corpus compiler with tags that can be used in corpus annotation. The
chapter also explains why such tags are technically necessary; why, for
example, word-processor-made markings will not do for annotating the corpus.
The chapters after that, then, will go on to explain corpus annotation further,
and deal with the reasons why a researcher would want to have any annotation
in a corpus in the first place. It may be noted here already that not all of -the
annotation systems presented later on conform to any standards. That is mainly
because they are used on older corpora, or conversely, deal with-new
- innovations for which no standard exists yet. However, any new corpus project
should look for some existing guidelines, and the TEI guidelines are a good

start.

Eeva Marin 109

3.4 SGML and TEI

Any normal text contains far more textual information than simply alphabetic
characters following each other, forming words and lines on paper. There are
sentence and paragraph divisions, page numbers, chapter headings, footnotes,
highlighted text, and several other more or less distinct components that the
text can be divided into. A chapter may be devided into sections, which further ‘
may have their subsections; a poem may be divided into stanzas and lines, and
in the end, into separate words.

' Most of these divisions are clear to a human reader. A person reading
a text is able to tell which is the chapter heading and which is the chapter text
itself, and whether a capital letter signals the start of a new sentence or a proper
noun. A human reader is able to conclude that an empty line in the text is likely
to mean a paragraph change, or that a new page marks a new chapter.

Some of these divisions may be clear to the computer, too, especially
if the text is in a word processing format. Word processors are able to use
different typeface for headers and take care of the numbering of chapters.
Italics or bold face may be added for emphasis, the word processor using its
own hidden coding system to keep track of them. The program can position
footnotes to the bottom of the correct page and check the page numbering
when new text is added. Such coding, however, is specific to the particular
word processor that is used; its format can be read only by the program itself,
and maybe a few other select programs. If the text is saved in ASCII format, as
is often done in case of a corpus, all such special information is discarded,
leaving only the plain text.

In addition, some divisions, such as sentence boundaries, are not very
relevant to a word processor and it is usually not very well aware of them. A
word processor is generally intelligent enough to keep an end-of-sentence
period on the same line with the sentence itself, but that is about all the interest
it has toward sentence divisions. The computer handles the text simply as
characters following each other. Plain ASCII format is the most stupid of all
formats that text can be stored into: a line break is the only division in the
endless line of characters that it can recognize, and line breaks may be in weird

places from a human point of view.

Eeva Marin 110

However, ASCII format is often the only possible choice for a corpus.
Since it is (at least theoretically) system- and program-independent, it makes it
possible to study the texts in several kinds of corpus browsers and move them
around between different kinds of computer systems and setups.

Depending on the uses and later processing of the corpus, one may
want to keep more information of the text than the plain ASCII format
provides. For example, one might like to be able to tell apart normal prose text
and poems which are embedded in it, or be able to search streches of text under
certain kinds of chapter headings. Also, if the text is to be aligned later with its
translation into another language, so that a sentence and its translation can be
easily found, it makes the whole task much easier if the sentence boundaries
are clearly marked.

In addition, there are many types of information that are not available
in a word processing format, either. For linguistic research it might be useful to
have, for example, word classes made explicit in the text. One might also want
to have information about sentence. structures or the meanings of the words
alongside with the text itself. It would be an advantage to be able to search not
only for specific words from a corpus, but for some other attributes of them,
too. For example, one might want to distinguish all the instances of bank as
“riverbank” from bank as “financial institution”.

In addition to there being the chance to somehow mark such things, in

-the long run it is essential that the markings are not unique, but understandable
to several programs and users, as was pointed out in the previous chapter.
Although the corpus may be originally designed for a very limited use, it may
come obvious after a few years that the same material could be used for some
other type of research, too. Further, new useful programs may come around
that might be ideal for the old corpus. If any features of the corpus need to be-
annotated, it is profitable in the long run to do it in a way that -has more than
one use to it. And, luckily, such an encoding scheme does exist, as part of the
SGML standard. _

SGML (Standard Generalized Markup Language, ISO standard
8879) is an international standard for representing texts in an electronic form. It

is both device-independent and system-independent (Sperberg-McQueen and

Eeva Marin 111

Burnard 1994:13). System-independence means that a text with SGML markup
is not restricted to any one operating system or hardware. Device-independence
means not only that such a text can be used in any kind of computer, but also
that in addition to being printed on paper or displayed on screen, it can be
output to any kind of device, such as a voice synthesizer. As Sperberg-
McQueen and Burnard (1994:15) point out, the basic design goal of SGML is
its data independence: SGML encoded texts should be transportable from
different kinds of computer environments to others without a loss of
information. Note that although SGML encoded texts are sometimes referred to
as being in an “SGML format”, the file format of SGML documents is actually
plain ASCII text. In addition to the textual data itself, an SGML document has
SGML tags in it, but it is all stored in plain text format.

SGML provides a means to add special markup, or encoding, to any
text. Sperberg-McQueen and Burnard (1994:13) define markup as “any means
of making explicit an interpretation of text”. As they point out, in a way all
written texts are encoded thus; punctuation marks and capital letters tell the
reader where sentences start and stop, and white space signals the boundaries
of words. SGML could be described, in a way, as a set of punctuation marks
and other special markings that are explicit to the computer just like a capital
letter, or bold face text, is to the human eye. SGML “punctuation”, however,
has a lot more to offer than simple commas and periods éé”.’"”‘

The basic idea of SGML is that any text can be broken down into
smaller components, elements, which form a hierarchical structure (Simons
1998:17, Hockey 1998:111-112). An element is a textual unit, such as
highlighted text or a paragraph, that can be distinguished from a stretch of text.
An element is marked by inserting a start tag in the beginning of it and an end
tag after it (Sperberg-McQueen and Burnard 1994:16). The tags always consist
of arrow brackets <>, and there is a start tag and an end tag for all elements.
The end tag looks basically the same as the start tag, except that it has a slash
in it after the first bracket. For example, the sentence start tag is <s> and the
sentence end tag is </s>. The end tag does not have any variables in it either,
which the start tag may have. For example, to denote text in a foreign

language, there might be a start tag <foreign lang=fr> which just means that

Eeva Marin 112

the text that follows is in French (variable lang, “language”, is given the value
Jr for “French”). The end tag, however, is simply </foreign>. In many cases,
the end tag can be omitted, if it is otherwise clear from the structure of the text
where an element ends. For instance, paragraph end tags can often be left out,
since the beginning of a new paragraph (and a new start tag) signals that the
previous paragraph must have ended.

Elements may also have relationships to other types of elements. This
is what is meant by the hierarchical structure of SGML. For example, a
<poem> may include several <stanza> elements, and each stanza in turn may
consist of several occurences of <line> (Sperberg-McQueen and Burnard
1994:16-17). With this kind of hierarchical tags, it is possible to define very
complex document structures.

Hockey (1998:112) also points out that the purpose of SGML tags is
not to tell the computer what it should do with the element; rather, the tags tell
what an element is. In chapter 1.2.1 there was an example of a tagged text,
which had tags for paragraph and sentence boundaries. The following example

includes them, too:

Example 10: SGML tagged text

<p><s rend=italic>"...I need... I need... I need..."</s></p>
<p><s>Frowning, Marty clicked off the recorder.</s></p>
<p><s> His train of thought had clattered down a siding
and chugged to a stop.</s> <s>He could not recall what he
had been about to say.</s></p> ’

<p><s>Needed what?</s></p>

(Dean Koontz: Mr. Murder (FECCS))

The tag <s rend=italic> signals the beginning of an italicized sentence. <s> -
tags surround sentences, and <p> -tags mark paragraph boundaries.

In addition to elements, there are SGML entities. Whereas tags
niarkihg elements are comments about the structure or layout of the text,
entities become part of the text itself (Sperberg-McQueen and Burnard
1994:29-30). An SGML entity starts with an ampersand (&) and ends with the
semicolon (;). As was mentioned in chapter 2.2, entity references can be used,
for example, to replace otherwise problematic characters such as d and 6. The

entity references ä and ö can be used to replace all 4 and o

Eeva Marin 113

characters in a text, thus avoiding problems with different character sets. When
a program that can read SGML encoded text encounters entity references, it
knows how to replace them all with the correct characters on screen or paper
(Sperberg-McQueen and Burnard 1994:30). Entity references can be used to
encode special characters when there are not too many of them. However, if a
language uses a completely different kind of script, this would not be practical
anymore (cf. Hockey 1998:112). Entity references are also sometimes used to
tag the characteristics of single words, as will be seen in the following chapters
(e.g. grammatical tags may take the form of SGML entity references).

What needs to be pointed out here is that SGML has much more to
offer than a simple way to annotate texts for linguistic research. SGML is an
extremely powerful tool for controlling structured documents and making
hypertext applications. The hierarchical and structured nature of SGML is
usually seen as its essence, and corpus tagging is applying only a tiny part of its
possibilities. SGML is, in fact, a- metalanguage that can be used to define
markup (Sperberg-McQueen and Burnard 1994:13): it is possible for the user
to define an unlimited amount of different types of elements and entities, and
their relationships to each other.

Finally, all such definitions combined form a document type
definition (DTD) (Sperberg-McQueen and Burnard 1994:14-15, 33-35). The
DTD defines what kinds of elements and entities there can be in an SGML
document. Simons (1998:18), interestingly enough, points out that “a DTD is
really nothing more than a context-free grammar”, so that it should look
familiar to linguists, despite a different way of writing the rules. However, it
may not look very inviting to linguists who are not particularly interested in
phrase structure rules, and indeed there is no pressing need for corpus
compilers to actually understand the DTD. Many SGML guidebooks that
explain DTDs are directed at people who need to construct structured
documents and need to define the structure themselves, which goes far beyond
the scope of what a corpus compiler needs to know about SGML. The ordinary
corpus compiler usually does not have to bother with creating or modifying
DTDs for their corpus: it has been done already by the Text Encoding

Initiative, or TEL

Eeva Marin 114

The Text Encoding Initiative was started in 1987 under sponsorship of
the Association for Computers and the Humanities (ACH), the Association for
Computational Linguistics (ACL) and the Association for Literary and
Linguistic Computing (ALLC). The purpose of the project was to unify
existing encoding practises, simplify the processing of texts by computer and
make exchange of texts easier for the humanities computing community
(Sperberg-McQueen and Burnard 1994:Preface). In 1994, the project published
the Guidelines for Electronic Text Encoding and Interchange (Sperberg-
McQueen and Burnard, 1994). The Guidelines define a DTD which is designed
for the encoding of any type of text, in any language, independent of any
specific use for the texts (Sperberg-McQueen and Burnard 1994:Preface). The
point is to create a uniform way to represent texts electronically and make it
possible to move them easily between different computers and applications.

In practice, what this means to a corpus compiler is that the TEI
Guidelines define a set of tags that are especially suitable for the tagging of a
corpus. As Hockey (1998:114) explains, TEI is based on the principle that all
texts have some features in common. There are about 60 elements which form

.the common core of TEI, which include tags for titles, lists, quotations, names
and dates, among other things (Hockey 1998:114). In addition, there are many
other features in TEI that can be used when needed, depending on the text type
and the uses of the material. As Hockey (1998:112) points out, TEI is
incremental so that another person may add tags to a text later on, and anyone
can decide to tag and use only those features which are important for a given
research. There are also specialized base tag sets for different types of texts,
such as verse, drama, dictionaries and transcriptions of speech (Hockey
1998:114). In addition, the TEI tagset may be added to or modified as needed,
although it may reduce the reusability of the material.

In the TEI, each text is seen as consisting of a header and a body. The
header contains information such as author, title, date and other bibliographical
information; the body consists of the text itself (cf. McEnery & Wilson
1996:27, Hockey 1998:114).

It would seem advisable for new corpus projects to use TEI-

conformant tagging schemes from the beginning. Since TEI is still a rather new

Eeva Marin 115

development, it has not been used extensively and there are not many tools that
could take advantage of it yet. This should not, however, prevent people from
using it. According to Hockey (1998:114-115), it is likely that more
SGML/TEI-based software will soon be available for linguistic reasearch. She
also points out that TEI helps with many problems that were apparent in earlier
encoding schemes; thersfore, its use should be encouraged. There are, in fact, .
already several projects that have used SGML tags, for example Healey (1997),
Bailey & Curzan (1997) and Wilson & Rayson (1993). Also the well-known
CLAWS tagging system at the University of Lancaster has been updated to use
SGML tags (Garside & Smith 1997:109). So far, the experiences with SGML

seem to be positive.

This chapter has introduced SGML, which is used to describe the hierarchical
nature of structured documents. In addition, this chapter introduced TEI, which
is an SGML based “grammar” that can be used to annotate texts for linguistic
research and corpora. The TEI Guidelines can be used to tag any features of a
text, from large-scale structures such as chapter divisions, to small-scale
features, such as characteristics of individual words.

The following chapters move on to describe the actual annotations that
markup is used for. Note that many of the annotations introduced do not use a
markup scheme that is TEI conformant, because they were designed before
TEIL Rather than explaining the actual form of the markup used, the following
chapters try to explain the contents, principles and goals of different types of
annotations. The actual markup, then, may take many forms, which hopefully
conform to an existing or developing standard.

All the following chapters have basically the same structure. First, the
relevant type of annotation is introduced and some of its uses described. After
that, the practical side of annotation is considered: how to add this type of
annotation. In the end, the restrictions and problems of the annotation will be

discussed.

Eeva Marin 116

3.5 Part-of-speech annotation

This chapter is about part-of-speech annotation. First, general aspects of part-
of-speech annotation are explained. After that, there is a section on how part-
of-speech tagging is added to a corpus, and how automatic taggers work. In the
end of the chapter, the problems of part-of-speech tagging will be considered.

Part-of-speech annotation means that each word in the text is given
a code which indicates which word class it belongs to. Part-of-speech
annotation can also be referred to as grammatical tagging, or
fnorphosyntactic annotation (McEnery & Wilson 1996:36). For example, in a
phrase like The red book the words would be tagged as article, adjective and
singular common noun, respectively. In a fully grammatically tagged corpus
each word would have such a tag. From here on, in the present paper, part-of-
speech tagging will be usually referred to as grammatical tagging, or simply as
POS-tagging.

The following is an example of grammatically tagged corpus text from
the Spoken English Corpus at the University of Lancaster. It has been
automatically tagged by CLAWS.

Example 11: Grammatically tagged corpus text

Perdita&NN1-NP0O; ,&PUN; covering&VVG; the&ATO; bottom&NN1; of&PRF;
the&ATO; lorries&NN2; with&PRP; straw&NN1; to&TOO0; protect& VVI; the&ATO;
ponies&NN2; ‘'&POS; feet&NN2; ,&PUN; suddenly&AVO0; heard&VVD-VVN;
Alejandro&NN1-NPO; shouting& VVG; that&CJT; she&PNP; better&AV0; dig& VVB;
out&AVP; a&ATO; pair&NNO; of&PRF; clean&AJ0; breeches&NN2; and&CJIC;
polish& VVB; her&DPS; boots&NN2; ,&PUN; as*CJS; she&PNP; 'd&VMO; be& VBI;
playing&VVG; in&PRP; the& AT0; match&NN1; that&DTO; afternoon&NN1; .&PUN;

The codes used are:

AJO: general adjective PNP: pronoun

ATO: article, neutral for number PRF: of

AVO: general adverb v PRP: prepostition

AVP: prepositional adverb PUN: punctuation

CJC: co-ordinating conjunction TOO: infintive to

CJS: subordinating conjunction VBI: be

CJT: that conjunction VMO: modal auxiliary

DPS: possessive determiner VVB: base form of lexical verb
DTO: singular determiner VVD: past tense form of lexical verb
NNO: common noun, neutral for number VVG: -ing form of lexical verb
NN1: singular common noun VVI infinitive form of lexical verb
NN2: plural common noun VVN: past participle form of lexical verb

NPO: proper noun
POS: genitive marker
(http://www ling.lancs.ac.uk/monkey/ihe/linguistics/corpus2/2posex.htm)

Eeva Marin 117

Note that in this example, the tags that are used are TEI tags. The
example is tagged by the most advanced version of CLAWS so far. In a couple
of cases, there are two tags for one word: for example the first word, Perdita,
has tags for both singular common noun (NN1) and proper noun (NP0). This is
because the computer has not been able to decide which one is the correct tag.

POS-tagging was one of the first types of annotation that was applied
to corpora. Still today, it is definitely the most common type of annotation
(McEnery & Wilson 1996:39). One reason for its popularity is that even when
it is not used for any specific purpose as such (although most often uses for it
can be found), it is more or less necessary in order to perform some of the
higher-level annotations, such as parsing (Leech 1997a:5, McEnery & Wilson
1996:36). Indeed, at first, during the 1960s, POS tags were seen at least by
some researchers as a “side-effect” of parsing rather than useful in their own
right.

There are, however, many good reasons to use POS tags. The most
important is that POS tags make searching a corpus much easier. It enables the
researchers to specify in greater detail what they want to retrieve (McEnery &
Wilson 1996:36). For example, the word left can belong to several word
classes: depending on the context, it can be an adjective (my left hand), an
adverb (turn left), a noun (on your left) or a verb (I left early) (Leech 1997a:4).
If the corpus is grammatically tagged, the researcher can take advantage of the
tags and specify which instances of left are to be retrieved. Such
disambiguation of words can also prove useful to speech synthesis, that is,

»

computer programs that try to speak or “read” aloud. The information of
whether lead is a noun or a verb tells the program whether it should be
pronounced /led/ or /li:d/ (Leech 1997a:4-5).

Other reasons for applying POS tags to a corpus are re-usability and
multi-functionality (Leech 1997a:5-6). Once the tags have been added to the
corpus, it can be used many times without the need to analyse it all over again.
The corpus can also be used for more varied purposes. The addition of tags
does not limit the uses of the corpus; on the contrary, it brings many more
possibilities. It opens up new ways to process the corpus as such, and, as noted

before, creates the basis for higher level annotations.

Eeva Marin 118

POS tagging can also be done very accurately automatically, that is, a
computer can insert the tags correctly without human help. Even in the early
seventies, the TAGGIT tagger was 77% accurate, which means that 77% of the
words were assigned the correct word classes. In the early eighties CLAWS
achieved over 95% accuracy and today, most taggers get around 95-98%
(McEnery & Wilson 1996:39, Garside & Smith 1997:102). Having the
computer do the task instead of human beings saves both time and money
(McEnery & Wilson 1996:126). Thus it also makes the compilation of large

corpora possible within reasonable expenses.

3.5.1 How to add part-of speech tags to a corpus

POS tags éan be added either automatically or manually. As was mentioned in
the previous section, automatic taggers can achieve very high accuracies and
they can process long streches of text in a short time. In fact, Marcus et al.
(1993:278-279) compared the speed and accuracy of humans vs. computers.
The result was that manual tagging took twice as long as computerized tagging
with humans only post-checking the tagged data. In manual tagging the error
rate was also much higher, and there were more disagreements between
annotators about the correct tags.

It may also be noted that since POS tagging has been used a lot, there
are conventions for doing it, and the problems associated with it are well
known. It might be said, therefore, that there is a strong argument for letting
the computer do most of the tagging. The tags can be later checked by human
annotators, who can correct errors and deal with problematic cases that the
computer has not been able to tag.

It may be noted that computerized annotation is never 100% accurate,
which is due to problems that will be addressed in section 3.5.2. Any corpus
tagged by a computer always has errors in it, and will have them even after
human post-editing, since human beings do not achieve perfect results, either
(McEnery & Wilson 1996:126, Baker 1997:243-244). As Baker (1997:243-
244) notes with regard to human post-editing, humans tend to make errors, too,

and lack the consistency that a computer is bound to have. Since automatic

Eeva Marin 119

taggers are usually used for adding grammatical tags to a corpus, the following

section describes how a tagger works.

3.5.1.1 How a tagger works

To add grammatical annotations to words, an automatic tagger goes through
several stages with each word. Although different taggers undoubtedly have
their own slightly different methods, the description given by McEnery &
Wilson (1996:120-124) exemplifies the process in general terms, and can be
thought of as a basic explanation for the workings of a tagger.

The tagger has a lexicon, which includes all the possible tags for each
word. Therefore, when the tagger starts to assign a grammatical tag to a word,
the first thing it does is to check whether the word can be found in the lexicon.
If it is, the tagger simply assigns all the possible tags to it at this point (eg. book
gets tags for both noun and verb).

If the word is not found in the lexicon, it goes to morphological
analysis. Morphological analysis tries to find out if the word has an ending or a
prefix it could recognize. For example, the word books could be subjected to
morphological analysis because the plural form was not found in the lexicon.
The analyser finds a familiar ending, -s, removes it, and sends the resulting
word (book) back to be checked against the lexicon. A word can be sent around
between the lexicon and morphological analysis several times; if it is still not
recognized in the end, the system may simply assign all possible tags
(considering the context) to it and leave the decision to a later stage.

For cases where two or more words form one syntactic unit (eg.
idioms and phrasal verbs), the tagger may have a special lexicon to recognize
them and tag them properly. Such word combinations tend to create problems
for the tagger, though: this will be dealt with in section 3.5.2.1, in connection
with other problems in POS tagging.

After all of the text has been processed through, and each word has
been assigned one or more POS tags, the program starts what is called the
disambiguation process. It means that one way or another, the computer
decides which one of all the possible tags is the correct one for each word. The

following section briefly explains the most common ways to do this.

Eeva Marin 120

3.5.1.2 Rule-based, probabilistic and hybrid taggers

There are mainly two types of taggers, rule-based and probabilistic taggers.
The difference is in the way they decide which tag is the correct one. A rule-
based tagger, basically, first finds out which tags are possible for a word, and
then uses the context (a few words around the word that is being tagged) to
decide which is the correct one. To achieve the latter, it has a set of rules which -
test whether the tag might be the correct one, or impossible in the context
(Garside & Smith 1997:103). The rules tend to be the result of linguists’
intuitive knowledge or observations of data (McEnery & Wilson 1996:123,
Garside & Smith 1997:103) and may not, therefore, always correspond to
reality very well. '

Probabilistic taggers, on the other hand, calculate probabilities for
tags. Each word, on its own, has statistical probabilities of belonging to a
certain word class or number of classes; on the other hand, there is the
possibility of certain word classes following each other. The tagger tries to
come up with a sequence of tags that has the highest probability of occuring
together: for example, it is likely that an article is followed by an adjective or
noun rather than something else. (Garside & Smith 1997:102-104.)

For instance, in a phrase like the red book, the is definitely an article
and red is very likely to be an adjective (it could be also a proper noun, as in
the Reds won the match, but the probability for this is likely to be much lower).
Book could be either noun or verb, but since it is preceded by a very likely
adjective, which in turn is preceded by an article, the tagger can deduce that in
this case, book must be a noun. There may be a probability that either red or
book could be yet something else in some special circumstances, but the
chances for that are rather low.

The probabilities are, in the'ﬁrst place, derived from existing POS-
tagged corpora (McEnery & Wilson 1996:124). A program that is meant for
the task can go through an ahnotated corpus and get statistical information on
what the probabilities are. This information, in turn, can be used by taggers in
order to tag new éorpora. It may also be noted that probabilistic taggers are
quite good at tagging words that their lexicon does not know: the probabilities

for certain word-classes occuring together can be used to decide the word-class

Eeva Marin 121

of an unknown word (McEnery & Wilson 1996:124). However, as can be
expected, tagging accuracy is higher for words that are in the lexicon (Smith
1997:141).

It may be noted here that many taggers are able to learn more as they
are used. The statistical data becomes more accurate as more texts are
processed, and new words get added to the lexicon (e.g. Greenbaum 1993:12).
Thus, many taggers can be trained to perform better over time. There are
several opinions, though, about whether for instance a large lexicon is only for
the good (cf. Sanchez Ledn & Nieto Serrano 1997:157). It does not necessarily
increase the accuracy of the tagger. Many corpus taggers seem to produce quite
good results with rather a small lexicon and few rules or limited probabilistic
data.

In reality, many taggers are more or less hybrid taggers, which means
- that they combine the good qualities of both rule-based and probabilistic
taggers. They are often seen as the best kind of taggers and they have achieved
very high accuracies. Probabilistic taggers are, however, the most common
type of taggers nowadays, even though rule-based taggers have been making
something of a comeback, too. (Garside & Smith 1997:102-106.)

3.5.1.3 Tagsets

One more thing to note about inserting the tags is that there must be a tagset
defined. It is a list of all the tags that may be used. There are huge differences
between different tagging schemes in how many tags are included in the tagset,
ranging somewhere_betwéen 30 and even over 400. Tagsets for English tend to
include 30-200 different codes (Leech 1997b:29).

In practice, there may be a problem between what one wants to have
in a tagset and what is possible w1thm reasonable resources. Leech (1997b:24-
25) gives an example of this. An “armchair linguist” might very well come up
with nice-looking word categories that are linguistically useful. However, it
may be that it is impossible to assign such tags to a corpus automatically. For
éxample, you can have sentences like come what may (come as subjunctive),
come here! (come as imperative) and they come every spring (come as present

tense plural indicative). Such distinctions of the word come make sense

Eeva Marin 122

linguistically, but are very hard for the computer to make, since in each case,
come looks just the same and the context does not help much. It would simply
take too much time to manually check and correct all the errors that the
computer would make with them.

McEnery & Leech (1996:41-42), too, talk about this same problem.
They mention that there is a “conflict in annotation between retaining fine
distinctions for maximal utility to the end user and removing difficult
distinctions to make automatic annotation more accurate”. Greenbaum
(1993:12-14) also notes that in designing a tagset, both the annotators’ and the
researchers’ needs should be taken into account. For human annotators, too, a
very fine-grained tagset may prove problematic, since there is too much to
remember and it is hard to learn to use it.

In general, large tagsets seem to be considered harder to manage that™
smaller ones, and they seem to reduce the accuracy of the annotation.
Interestingly enough, however, Sanchez Leén & Nieto Serrano (1997:155-
156,164) found that with a certain kind of probabilistic model, a very large
tagset (475 linguistic POS tags) resulted in better accuracy than a small tagset.
They did not tag English, however, but Spanish, but the result is still worth
noting. They also mention that it has been shown by Elworthy (1995) that
larger tagsets can obtain even better accuracy than smaller ones.

A slightly different problem, related to this, is that it is difficult to
decide which category some words belong to in the first place. That is, in
addition to the problems of deciding which category of several possibilities a
word belongs to, sometimes it is hard to say what the possible categories are. It
is easy to imagine that this becomes a problem especially with large tagsets,
where very fine distinctions should be made. This is also a problem that should
be kept in mind when a tagset is designed. (cf. Greenbaum 1993:14-15.)

In order to determine how many and what kinds of tags there should
be in a tagset, one must decide how much time and money one is willing to put
into the process of tagging. Some types of tags are easy for the computer to
add, but even human annotators have problems coping with some of the others.

The point here really is that it is never possible to tag every possible detail, and

Eeva Marin 123

it must be decided what kind of word-categories are actually needed. The rest

have to be left out.

3.5.2 Problems with part-of-speech tagging

There are certain problems that come up with grammatical tagging. Most of
them have to do with the fact that there are idiomatic sequences of words and
other word combinations, which make it hard to assign tags to individual
words. There are also problems with ambiguous words, which could be
assigned to more than one word class. In addition, no matter how carefully the
tégs are assigned, there always is some degree of error with the tags. This
section will consider the problems of tag assignment and possible solutions to
them.

Leech (1997b:21-24) recognizes three different kinds of problematic
cases in assigning tags to words. These are multiwords, mergers and
compounds. These ‘are all cases where one orthographic unit (a Word
surrounded by spaces) does not correspbnd to one morphosyntactic unit (the
unit that has to be identified for tagging). The following sections will explain
each of these in detail. After that, sections 3.5.2.4 and 3.5.2.5 deal with

ambiguous words and error rates.

3.5.2.1 Multiwords

Multiwords include expressions like in spite of and in lieu of- McEnery &
Wilson (1996:40) refer to these as “idiomatic sequences of words” and give as
an example so that. In all of these examples, although there is more than one
word, the words together function as a single unit. In some cases, there may be
problems in defining which expressions are multiwords and which are not: for
example, Leech (1997b:21-22) notes that provided that can be treated as a
multiword or not. '

One solution for dealing with multiwords is to give them so-called
ditto tags. Ditto tags include the normal grammatical tag, and in addition to

that, two numbers: first, a number denoting how many words belong to the

Eeva Marin 124

unit, and second, a number denoting which part of the unit the word is. For

example, in spite of could be tagged as follows:

Example 12: Multiword tagged with ditto tags
In_PREP31 spite PREP32 of PREP33

(Leech 1997b:21)

~ In this example, the tag PREP tells that the expression is a preposition. Number
3 in each tag tells that the unit consists of three words, and the number after
that tells which part of the unit is in question (in is the first, spite the second
and of the third part).

In this case, the problem could also be dealt with TEI tags. As Leech
(1997b:31) presents it, a similar expression, in lieu bﬁ could be tagged also in

the following way:

Example 13: Multiword tagged with TEI tags
<w PRP>in lieu of <w NN1> payment

(Leech 1997b:31)

The first tag <w PRP> (preposition) refers to all the words that follow it before
the next tag occurs (in this case <w NN1>, noun, which refers to payment).

However, some multiwords may be discontinuous (e.g. Leech
1997b:21). For example, in phrasal verbs there may be something between the
different parts of a unit (e.g. give it up). It should be possible to deal with these
with ditto tags, but applying such tags may prove problematic. For instance, in
case of give it up, there could be a longer noun phrase between give and up. In
that case, the computer should be able to recognize the syntactic unit NP in
order to make the connection between give and up (cf. Garside & Rayson
1997:189).

3.5.2.2 Mergers

The second type of problematic words are mergers. They consist of one

orthographic unit which corresponds to more than one morphosyntactic unit

Eeva Marin 125

(Leech 1997b:22). Examples of this include words like don ¢, can’t, shan’t and
dunno. A “word” like can’t really consists of an auxiliary verb and a negative,
which it would be useful to tag separately to make searching the corpus easier.

The problem with these is that for tagging purposes, it may not be
possible to divide the word into parts that still make sense (Leech 1997b:22).
The division of a word like don’t will produce understandable units like do and
n’t, where n’t can be recognized as not, but the breaking down of shan 't will
result into the weird unit sha which does not look very natural. A word like
dunno is even harder, since the original words (do + not + know) are not
distinguishable anymore (cf. Leech 1997b).

There are no generally agreed-upon methods to annotate these, but
Leech (1997b) presents a way to handle them. The relevant tags can be simply

inserted in the middle of the words, for example

Example 14: Mergers (1)
Sha_VAUXn’t NEG

(Leech 1997b:22)

or with TEI tags,

Example 15: Mergers (2)
<w PRP>they<w VBB>’re

(Leech 1997b:31).

McEnery & Wilson (1996:41), in turn, suggest that there could be more than
one tag assigned to one word, so that don’t might be tagged

Example 16: Mergers (3)
Don’t_VD0+XX

(McEnery & Wilson 1996:41)

where the “+” connects the two tags. “XX” here is the tag that CLAWS uses
for not, and “VDO0” is a special tag for do (Garside, Leech & McEnery (eds.)
1997:257).

Eeva Marin 126

However, neither of these methods of tag insertion is without its
faults, and one should consider carefully whether to use them or try to find
another way to deal with mergers. One way is to expand the contraction into
the full words that it consists of, but this has its drawbacks, too, in that the form
of the word in the original text is lost (Leech 1997b). It is very hard to try to
come up with an annotation scheme that could deal with all the possible cases.

McEnery & Wilson (1996:40-41) consider the matter of mergers the
other way around, and talk about recoverability: if an expression like don’t has
been expanded for annotation purposes into do not, the user should still be able
to get the original form dont. It is useful here to remember the seven maxims
of annotation that were explained in section 3.1.3. The first of them was that it
should always be possible to remove the tags and restore the text to its original
form. Keeping this in mind, mergers should be somehow tagged in a way that
would make the annotation sensible, but also retain the original forms. In
CLAWS, this problem was solved by expanding the words for tagging, but
inserting additional markup to show that there originally was a contracted form
(McEnery & Wilson 1996:41).

3.5.2.3 Compounds
The third type of problematic cases are compounds (Leech 1997b:22-24).

These are units in which one or more orthographic units correspond to one or
more morphosyntactic units (Leech 1997b:22). Some words, like eyestrain,
may be spelled in three different ways: eye strain, eyestrain or eye-strain.
Which one of these is used depends on the writer’s view of whether the word is
a compound word or two separate words. All of these could be tagged either
differently or in the same way: often, corpus compilers tend to take the easy
way and tag them according to their orthographic form. However, as Leech
(1997b:23) points out, this is not the best possible solution to the user. If all the
forms (eye strain, eyestrain, eye-strain) are tagged differently, three different
searches have to be made to retrieve them all.

| Automatic tagging can also result into strange words sometimes.
Leech (1997b:23-24) gives two interesting examples: a “compound word”

York-San from the phrase New York-San Francisco flights, and post-Cold from

Eeva Marin 127

post-Cold War attitudes. An automatic tagger really cannot tell these apart
from normal compounds with a hyphen. In order to tag these correctly, the
tagger should be able to deal with e.g. New York and San Francisco as
multiwords, and see the phrase New York-San Francisco as a larger compound
(Leech 1997b:24).

These kinds of compounds can, however, be dealt with by TEI tags. .
For example, post-Cold War could be tagged as follows:

Example 17: Compounds with TEI tags

<w AJO>

<w PRP>post-</w PRP>
<w AJ0>Cold</w AJO>
<w NN1>War</w NN1>
</fw AJO>

(Leech 1997b:31)

The point to be made here is that the first and last tag (AJO0, adjective) surround
the whole unit and do not leave any doubt as to which words belong to the

compound and which do not.

3.5.2.4 Ambiguous words

Yet another point to consider are words that cannot, even in their context, be
unambiguously assigned a word class at all. These would include examples like
gold watch and plaétic bottle (Leech 1997b:32) — are gold and plastic in these
phrases nouns or adjectives? Other examples, also given by Leech, would
include cases like The Pope, Auntie, Times Square, Fifth Avenue and others, in
which there may be dispute over whether the phrase or a part of it is actually a
proper noun or a common noun (e.g. Times in Times Square). One solution
would be to apply a single tag to the whole phrase (Times Square) and thus
treat i;c as a multiword (Leech 1997b:32).

3.5.2.5 Error rates

One more thing to mention here is that all automatic taggers leave a certain

amount of errors. McEnery & Wilson (1996:126) say that error rates are

Eeva Marin 128

nowadays usually around 4-5%. Smith (1997:147) notes that even after running
several programs that tried to correct errors in the British National Corpus,
there was about 2% error rate left.

The point here is that human language is so complex that no matter
how many programs one tries to develop to deal with it, there always will be
some degree of errors left. Because of the natural ambiguity of language not .

even human annotators can deal with all the problems that may be encountered.

In the preceding sections I have discussed problems associated with POS
tagging. Problems are caused especially by expressions where one orthographic
word does not make up exactly one unit that should be tagged. In some cases, -
several words form one unit (such as in spite of) and sometimes, conversely,
there is only one orthographic word that consists of several units that should be
tagged separately (such as dunno). There are also occasionally different ways
to spell a word, so that it sometimes looks like one word and sometimes like
two or more words, which makes tagging harder. In addition, there are
ambiguous words that require difficult tagging decisions even from human
annotators. No doubt that one may encounter even more problems, in addition
to the ones mentioned here. In practice, there are likely to be problems relevant
to a specific corpus that cannot be predicted beforehand.

Before moving on to another type of annotation, there is one more
point that has to be considered: the grammatical tagging of languages other
than English.

3.5.3 Part-of-speech annotation for other languages

Most taggers have been developed for the English language. However, there
have been attempts to adapt some taggers for other languages, and indeed, one
of the features of a modern tagger could be that it can process more than one
language (Smith 1997:138). Leech (1997a:9) notes that language-indepg:ndent
taggers have been developed, and McEnery & Wilson (1996:125-126), too,
mention a tagger that ié able to do several languages. They call it the Cutting
tagger, which presumably is the same as the Xerox tagger mentioned in other

studies.

Eeva Marin 129

In fact, some taggers are at least theoretically suitable for any
language, since they can be trained with any previously constructed corpus:
they can pick up the lexicon and probabilistic model from any POS-tagged
corpora that is given to them and use the information thus gained to tag further
corpora. In other words, such taggers can by themselves, without human
intervention, find out the rules for any language, as long as a tagged corpus for
that language is already available.

However, Sanches Le6n & Nieto Serrano (1997) tested a supposedly
language independent tagger, the Xerox tagger, for Spanish, and found out that
there were definite deficiencies in it. For example, it tags the words according
to the word-form, but does not do any morphological analysis. For a language
like Finnish, which is highly inflected and has over a dozen cases for words,
such would be necessary.

The Xerox tagger only selects the most probable tag for each word.
However, as Sanches Ledn & Nieto Serrano (1997:153) note, in case of highly
inflected languages there often is a clear correspondence between
“(linguistically motivated) suffixes and morphosyntactic properties of the
word(s) they are attached to”. In other words, the tagger should not try to rely
on probabilities in cases where it is known that a word with a particular suffix
necessarily belongs to a certain word class. A tagger should be able to take
advantage of this kind of knowledge, or in other words, “make use of a
morphological component” (Sanches Leén & Nieto Serrano 1997:153, 162).

Another problem with the Xerox tagger was with what Sanches Le6n
& Nieto Serrano (1997:161-162) call tokenization. The tagger could not
recognize fixed phrases or other expressions that consist of more than one word
as one unit. This seems to have been a rather big problem inb(\;;lse of Spanish,
and the researchers suspect that it could be even worse with some other
languages.

It should be remembered that despite its claimed language-
independence the Xerox tagger was originally developed and tested for the
English language. There are taggers that were originally meant for some other
language (e.g. Finnish), and no doubt work rather well for that specific

language. However, as was noted in the beginning of this section, the aim

Eeva Marin 130

nowadays is to develop tools that are language-independent, or at least easily
adaptable to other languages. Such tools would ease the tasks of many
researchers, make both corpora and corpus software such that they could be
more easily reused or combined, and also help the standardization of both

annotation and work methods.

In this chapter I have examined part-of-speech annotation, how to add it to a
corpus and what kinds of problems can be expected with it. The beginning of
the chapter described part-of-speech annotation and its possible uses. Section
3.5.1 explained how POS tags can be added to a corpus, and how different
types of automatic taggers work. It also gave some advice about tagsets.
Section 3.5.2 listed different types of problems that are common in POS
tagging, and the final section (3.5.3) examined annotating languages other than
English. The following chapter will move on to the next most common type of

annotation: syntactic annotation, more commonly known as parsing.

Eeva Marin 131

3.6 Parsing (syntactic annotation)

This chapter is about the parsing of corpora. Parsing means that the sentences
in a corpus are analysed syntécﬁcally. Sentences éan be divided, for example,
into constituents like noun phrase, verb phrase, and so forth. In other words,
parsing is about producing phrase structure trees for each sentence. Parsing is
aiso knbwn as syntactic annotation, and corpora containing such annotation
are often referred to as treebanks, since they consist of structures that could be
represented as syntactic trees. |
o The following is an example of a parsed sentence from the British

National Corpus.

Example 18: Parsed sentence

[S[NP Claudia_NP1 NP][VP sat_VVD [PP on_II [NP a_AT]1 stool_NN1 NP] PP] VP] §]

(McEnery & Wilson 1996:43-44)

Familiar elements of syntactic analysis are easy to find in the example. The
brackets single out each constituent, which are also named (eg. NP=noun
phrase, VP=verb phrase). Note that the sentence also has part-of-speech tags.

The same example sentence could also be represented as a syntactic tree:

Example 19: Syntactic tree

S
/ \
NP » VP
\
PP
NG
NP
v /N
N v P AT N
Claudia sat on a stool

(adapted from McEnery & Wilson 1996:43)

Eeva Marin 132

Parsing can be seen as a natural continuation of part-of-speech (POS)
annotation. After POS tagging has been performed for each word, it is possible
to annotate higher-level syntactic relationships in the text (McEnery & Wilson
1996:42). Leech (1997b:19) points out that there are strong arguments for
claiming that these two levels of annotation, POS and parsing, are not distinct
levels at all, but that POS tagging only specifies the “leaves” of a phrase
structure tree. Greenbaum (1993:12-13), too, notes that the ‘decisions the
TOSCA corpus project made about their POS tagset were influenced by the
fact that they were going to parse it later on. Parsing is, indeed, the second
most common type of annotation, after POS tagging (McEnery & Wilson
1996:43).

Leech and Eyes (1997:41-48) and Bateman et al. (1997:168-169)
mention a few well-known treebanks. These include, for example, the Penn
treebank (3,300,000 words), Nijmegen treebanks: Nijmegen Corpus (130,000)
and TOSCA corpus (1,000,000), The Suzanne Corpus (128,000) and the
Helsinki Constraint Grammar Corpus. All of these corpora are parsed slightly
differently, and that is indeed one characteristic of parsed corpora: there is no
established standard practice for how syntactic annotation should be done,
although certain general guidelines can be given (Leech & Eyes 1997:36,
Kahrel et al 1997:237). Especially when compared to POS tagging, the field of
syntactic annotation is still developing: there are more ways for doing it, but
the accuracy is lower (McEnery & Wilson 1996:49).

The reasons for adding syntacting annotation to corpora are much the
same as for POS annotation. It makes the use of the corpus easier and enables
more powerful searches. However, there are some additional reasons why
parsing a corpus is useful.

A parsed corpus can bring out idiosyncracies in language that have not
been noted before (Bateman et al. 1997:167). Assigning a correct syntactic
structure for any given sentence is not an easy task, the problem starting with
how we define “correct”. Parsing may help to bring out the kind of problems

there are in syntactic analysis once real-life sentences are taken to be analysed.

Eeva Marin 133

As all corpora, parsed corpora, too, can challenge people’s intuitions
about language. Sampson (1991:184) gives an interesting example of this.
Textbooks of linguistic theory tend to present two sentence types as being the -
most typical sentence structures in English. These are the subject-transitive
verb-object type (John hit Mary) and the subject-intransitive verb type (Mary
wept). A corpus search, however, showed quite different results. The first type
mentioned was the most common one, but the second, as in Mary wept, was
extremely rare. The second most common type of sentence consisted of a
single noun phrase with no verb, which can be frequently found in headings
and captions. This is a good example of the uses of parsed corpora, since it
proves something about language that could not be noticed without syntactic
annotation. ‘

Parsed corpora are also very important in natural language processing.
Patten (1992:29) notes that first parsers were developed already in the 1950s,
in order to produce machine translation systems. They did not produce the
required results since, of course, translation is about much more than just
translating individual words and structures. Many systems that help human
translators, however, were developed. Patten (1992:29) also mentions that
parsing is important in developing systems that allow people to interact with
computers in a natural language such as English, instead of using computer
languages.

Parsed corpora can also be used to compile computer lexicons. In
addition to containing just the words themselves, such lexicons can have
information of the words’ frequencies in the corpus, as well as frequencies of
their collocations, lemmas, etc. (Leech & Eyes 1997:35-36). Such lexicons,
apart from any traditional linguistic use they may have, can be of great
importance in computational linguistics. Leech & Eyes (1997:34) also point
out that for speech recognition and machine translation ever to be successful, in
addition to there being a good lexicon available, one must be able to analyse
sentences into their constituents and their relations, and this is exactly- what
parsing provides. ' |

In addition, there are more and more electronic texts available all the

time, and their uses are many. Patten (1992:30) notes that simple keyword

Eeva Marin 134

searches yield only about 20% of the relevant information, and that parsing
could help to index all the information automatically. A rather interesting
application of parsing involves “skimming a data source for information on a
particular topic” (Patten 1992:30). Such systems find many uses in political
and industrial intelligence gathering. Parsing systems can also be useful in
computer-aided instruction and in the automatic proofreading that word-
processors do (Patten 1992:30).

One use for parsed corpora that frequently comes up is the
development of more advanced parsers, that is, programs that automatically
add syntactic annotation to corpora (eg. Leech & Eyes 1997:34-35). Automatic
parsing and parsers can be developed and tested by taking advantage of
information from already existing corpora. For example, probabilities for the
likelihood of certain phrase structures occuring can be deduced from
previously parsed corpora. This is more or less the same that can be done with
POS taggers; old corpora are used to train new software.

Parsing, as well as POS tagging, is also more or less a requirement for
some higher level annotations. For example, in order to include anaphoric
annotation to a corpus, parsing is necessary (Garside & Rayson 1997:180).

Syntactic annotation can be added either manually or automatically.
The following section describes how parsing can be done and what is required

for it.

3.6.1 How to add syntactic annotation

Practically all automatic parsing systems nowadays require at least some
amount of human intervention. The arhount of human editing may range from
almost completely manual analysis and input, where the computer is only
helping the editing, to a system where bthe computer does fhe job and humans
check it afterwards (Bateman et al. 1997:167).

‘ McEnei'y & Wilson (1996:129-130) give a list of the operations that
an automated parsing system should be able to do. First of all, it should be able
to indentify the words of a sentence and assign syntactic description to them.
After that, it should group the words into units such as phrases, which form the

main syntactic constituents of the sentence. In addition, it should be able to

Eeva Marin 135

name the constituents correctly. McEnery & Wilson (1996:129-130) also note
that the parser should do this with a high degree of accuracy for any given
sentence, and Bateman et al. (1997:166) note the same: a parser should be able
to analyse “any sentence of naturally occuring unrestricted English”. How
many parsers actually get anywhere close to this requirement is a problem that
is dealt with in more detail in section 3.6.3 of this chapter. Suffice it to say here
that most parsers perform well with invented example sentences, but run into
serious problems with instances of real language.

The method presented by McEnery & Wilson seems to be what Patten
(1992:31) calls bottom-up parsing. It means that the parser starts with the
smallest units and tries to build up to a whole sentence. The other possibility is
top-down parsing, which means that the parser starts with a whole sentence
and tries to chop it down to smaller pieces (Patten 1992:31.35). This will not be
discussed in more detail here; there are far too many different types of parsing
to try to explain them all at once, and it would not serve the purposes of the
present paper. However, Patten (1992:31) makes a rather interesting comment
about parsing which is worth quoting here: “The parser can easily determine
the topmost and the bottommost levels of the tree in advance: the trick is to fill
the gap between”. This, indeed, applies to any type of parsing.

Just as a POS tagger needs a tagset and a tagging scheme, a parser
needs a parsing scheme. It should include a list of all the symbols that may be
used in the annotation, a basic description of the symbols and instructions for
how the symbols are to be used (Leech & Eyes 1997:37). Such a scheme is
likely to improve and develop all through the annotation process, and the end
result should provide the users with a manual explaining what kinds of tags
they can expect to find in the corpus. It may also be a good idea to give the
users ekample phrases from the corpus so that they can see in practice how it
has been annotated (Leech & Eyes 1997:37).

McEnery & Wilson (1996:44) point out that the tagging schemes used
by different annotation projects may vary greatly: both the number of
constituent types and the way thcy are applied may be different. For example,
the sentence Claudia sat on a stool could be parsed as in example 19, but an

alternative way would be to divide it in the following way:

Eeva Marin 136

Example 20: Alternative syntactic tree

S
NP VP PP
/ NP
N Vv P AT N
Claudia sat on a stool

(adapted from McEnery & Wilson 1996:45)

There seem to be many different views of grammar that can be used in parsing.
A couple of them will be presented in section 3.6.2.2. It should be remembered,
however, that the choice of the parsing scheme should be governed by the uses
of the corpus rather than by any ideological preferences of what is the “correct”
way to present a sentence structure.

The main reason for needing a parsing scheme is to keep the
annotations accurate and consistent (Leech & Eyes 1997:39-40). It has to be
defined what is a correct parse and what is not: even human annotators may
have different opinions of them. In order to maintain consistency in the corpus,
so that each similar sentence is tagged in the same way, rather strict guidelines
have to be established. How strict, exactly, is another question then: Leech &
Eyes (1997:37-38) note that for human annotators there does not have to be a
comprehensive grammar from the beginning, but rather a set of guidelines that
can be developed as need arises. Too exact a parsing scheme also has the
disadvantage that it will be too hard for human annotators to remember and
use. Marcus et al. (1993:283) point out. that it takes much longer for human
annotators to learn syntactic annotation than POS tagging in any case; this even
though, in their study, they used a rather simple parsing scheme. Therefore, it

would not be practical to have a very complex set of rules from the beginning.

Eeva Marin 137

Parsing is not nearly as successful as POS tagging. Depending on the
source of information, many different success rates have been quoted. These
range from 30-40% (McEnery & Wilson 1996:130) through 70-80% (Leech &
Eyes 1997:35) to even as high numbers as 94-96% (McEnery & Wilson
1996:134). The differences are mainly due to the differences in the way the

parsers work. These will be dealt with in the following section.

3.6.2 How an automatic parser works

There are many ways to classify parsers. On one hand, they can be classified
by how the parser actually assigns the appropriate tags to the constituents; on
the other, there are many theories about how sentences are divided into smaller
constituents. The following sections will give a couple of examples of these
and try to explain them. Note that there are numerous ways to parse sentences,
and the ones presented here do not cover the whole field of syntactic
annotation. These represent, however, some of the general principles that seem

to crop up quite often.

3.6.2.1 Rule-based, probabilistic, hybrid parsers

As with POS taggers, there are rule-based, probabilistic and hybrid parsers.
Rule-based taggers have a set of rules about sentence structure that they apply
(McEnery & Wilson 1996:131), whereas probabilistic taggers use probabilities
derived from earlier corpora to decide which is likely to be the correct parse for
a sentence (Leech & Eyes 1997:35). Hybrid systems can use a combination of
human-invented rules and corpus statistics to come to decisions about the
correct parses (McEnery & Wilson 1996:133). The best results are usually
achieved by probabilistic and hybrid systems (Bateman et al. 1997:166,

McEnery & Wilson 1996:134). It has also been noted that the best results are
achieved by parsers that use previous corpora in the first place — that is, parsers
that have been trained with existing corpora - rather than by traditional parsers
that are more or less based on human-invented rules (McEnery & Wilson

1996:135). There are also opposite results, however: for example Bateman et

Eeva Marin 138

al. (197:166) note that systems that do not use statistics can also work very

well.

3.6.2.2 Phrase structure and dependency grammar

There are two underlying theories that are mostly used for modelling syntactic
structures on computers. They are phrase structure grammar and dependency -
grammar (Kahrel et al. 1997:239, McEnery & Wilson 44-46). Phrase structure
grammar uses constituents such as noun phrase, verb phrase, adjective phrase
etc, and marks the hierarchies in a sentence. Dependency structure, on the other |
hand, tries to identify units such as adverbial, determiner, premodifier, subject
and object, that is, the interdependencies between the words of a sentence
(McEnery & Wilson 1996:46-49).

There are also other types of theories, some of which have nothing to
do with linguistic views of sentence structure (McEnery & Wilson 1996:132-
133). Such systems go through large parsed corpora and form their own ideas
of what are likely to be typical structures in language. In other words, they
collect the probabilities for different kinds of structures that they can find in the
text, and apply them when they have to select the correct parse from several

possibilities.

Yet one more difference that can be made between different parsers is that of
full parsing and skeleton parsing. Full parsing means a parsing scheme that is
as detailed as possible, whereas skeleton parsing uses fewer tags (McEnery &
‘Wilson 1996:44). Skeleton parsing was originally developed for human
annotators, for whom a larger tagset would have been problematic. Not only
does skeleton parsing make manual parsing faster, but it also reduces
inconsistencies and inaccuracies (Leech & Eyes 1997:36-37). For example
Marcus et al. (1993) used a skeletal parsing scheme for the parsing of the Penn
Treebank. Their tagset, in fact, had only 14 actual syntactic tags and a few
other special elements (Marcus et al. 1993 :281).

| In addition to the parsing techniques presented here, there are also
many others. For example Patten (1992:35-43) introduces several different

types of parsing methods, some of them seemingly rather old. It must be

FEeva Marin 139

remembered that automatic parsing has been done for a long time (since the
1950s) and there have been many methods over time to do it. All of them have
their advantages and disadvantages. Since new methods are still being
developed all the time, it seems that no single satisfactory method has yet been
found.

- One more parsing system that is worth mentioning here is the ENGCG
system that has been developed in Finland, at the University of Helsinki. The
parser uses a constraint grammar model and consists of two parts, a
morphological analyser and a reductionistic parser (Voutilainen & Heikkild
1994:189). The authors also say that the system can be adapted to languages
other than English (Voutilainen & Heikkild 1994:191). More information about

ENGCG, as well as an on-line demo, can be found at http://www.conexor.fi .

3.6.3 Problems with parsing

The problems with parsing seem to center around one theme: how to define the
rules for parsihg, and how to apply the rules. |
First of all, it is hard to come up with sufficient rules in the first place.

As McEnery & Wilson (1996:131) point out, it is not a good idea to try to sit
down and write rules that would make possible the parsing of any given
sentence. It is possible to make a working set of rules for a strictly defined
subdomain of language, but for larger amounts of more varied data, the same
rules will simply not work anymoré. This is the problem of “scaling up™: if
only 100 gramxhar rules and 1000 words were allowed in a language, parsers
would work fine, but when we move on to the real world where basically an |
infinite amount of both is allowed, the results are less encouraging (McEnery
& Wilson 1996:136).

| Leech & Eyes (1997:37) also make the point that in practice, the need
for new rules does not seem to disappear at any point when new data is
processed. One might expect that at some point, after enough data, one would
have all the required rules; however, this does not seem to be the céSe. It is
clear that 100,000 words need more grammar rules than 1000 words, but it
seems that even when 1,000,000 words, or several million, have been parsed,

new rules just keep coming up.

Eeva Marin 140

Both Leech & Eyes (1997:37) and Bateman et al. (1997:170-171) note
that at some point, if human annotators are used, the amount of rules becomes
too large. It is difficult for the annotators to keep track of all the changes, and
previously parsed sentences should be updated to conform to the new rules.
Not only does this make the annotation process much slower, but it also adds to
inconsistencies. Bateman et al. (1997:176) note that a huge set of rules also has
a drawback for automatic parsers: since there are more possible rules available,
the number of incorrect parses will increase. There is, indeed, the problem of
maintaining both quantity and quality: how to keep a parser (human or
automatic) productive and able to parse many different constructs, and at the
same time, maintain accuracy. A parser should be able to account for all
structures of ordinary language but also define its grammar so that incorrect
parses would not be generated (Bateman et al. 1997:167-168).

Another aspect of language that creates problems is that natural
language is quite often ambiguous, and several interpretations of the structure
of a sentence are possible. Such cases, in case of manual parsing, create
inconsistencies, especially when more than one human annotator is involved
and no strict rules exist (McEnery & Wilson 1996:49). In the case of automatic
parsing, the computer is likely to have many possible parses for the given
sentence and cannot decide which one is correct.

As an example here, Leech & Eyes (1997:41) note that 12-15% of
prepositional phrase constructs, which are very hard for automatic parsers,
cannot be annotated consistently even by human annotators. This is true even
though humans know about the real world, and can look at the meaning and
context of the phrase. McEnery and Wilson (1996:133-134), too, note that
sentences can often have many potential parses, and give an example of a
sentence with a prepositional phrase, the dog heard the man in the shed. This
sentence could be interpreted in several different ways: who was in the shed?
What does the prepositional phrase in the shed modify?

Some of these ambiguities cannot be resolved even by -human

.annotators. In such cases, one just needs to establish a rule of what is to be
done and force a certain interpretation on the sentence, even though it is not the

only correct one. In automatic parsing, using probabilities may help to solve

Eeva Marin 141

ambiguities. By taking advantage of the frequencies of how similar sentences
were parsed earlier, a parser can decide which one of the possible parses is the
likeliest to be the correct one (McEnery & Wilson 1996:134).

A whole new area of problems comes up if one wants to parse spoken
language. In addition to having at least as many ambiguities and context-
dependent sentences as written language, there are many new problems. Leech
& Eyes (1997:49) point out some of these, and note that very little has been
done in this field so far. The annotation scheme for spoken language should
take into account characteristics of speech such as incomplete utterances,
unplanned repetitions and false starts, and it is necessary to devise new

symbols to represent these.

In this chapter I have discussed parsing, which is also known as syntactic
annotation. In the beginning of this chapter I defined what syntactic annotation
is and what its uses are. Section 3.6.1 described how to add syntactic
annotation, and section 3.6.2 explained how an automatic parser works. The
last section (3.6.3) looked at the problems that may come up with syntactic
annotation. The following chapter will move on to the next higher level of

annotation, which is that of semantic annotation.

Eeva Marin 142

3.7 Semantic annotation

This chapter will deal with a type of annotation that is not nearly as common as
the two previous oneé.: semantic annotation. Theoretically, there might be
many types of annotation that could be called semantic annotation. For
example, one could try to identify the agents, instruments and other such items
in a text and mark the semantic rélationships between them (McEnery &
Wilson 1996:49). In practice, however, this kind of analysis has not been done
to any greaf extent. There is only one type of semantic annotation that has been
used more than tentatively: annotating the word senses, or semantic features, of
the words in a text (McEnery & Wilson 1996:‘50). Other types of semantic
annotation have been attempted, too, but there are not many experiences with

them yet. The following is an example of semantic annotation.

Example 21: Semantic annotation

And 00000000
the 00000000
soldiers 23241000
- platted 21072000

a 00000000
crown 21110400
of 00000000
thorns 13010000
and 00000000
put 21072000
it 00000000
on 00000000
his 00000000
head 21030000
and 00000000
they 00000000
put 21072000
on 00000000
him 00000000
a 00000000
purple 31241100
robe 21110321 .

The numeric codes stand for:

00000000 Low content word (and, the, a, of, on, his, they etc)
13010000 Plant life in general
21030000 Body and body parts
21072000 Object-oriented physical activity (e.g. put)
21110321 Men's clothing: outer clothing
21110400 Headgear
23231000 War and conflict: general
31241100 Colour
(McEnery & Wilson 1996:51)

Eeva Marin 143

This example uses categories like, for example, “plant life in general” and
“colour”. Note that the codes for the categories here form hierarchies:
everything starting with 2, for example, belongs to the top-level category
“Man” (McEnery & Wilson 1996:50).

There is, however, no agreement on what kinds of features should be
annotated. The earliest semantic annotations (in the late 1960s) were not done
with linguistic methods at all, but with social science definitions to examine
matters like social interaction or political behaviour (McEnery & Wilson
1996:50). There are some requirements for how the categories should be
defined, and they will be dealt with in the following section. Before that,
however, there will be a few words about the uses of semantically annotated
corpora.

Wilson & Thomas (1997:64-65) give some examples of the areas in
which semantic annotation can be useful. One of them is, understandably,
semantics, but discourse analysis and content analysis can also take advantage
of it. Such annotation can also prove necessary in computational linguistics, in
both message understanding and language generation, and in other tasks where
the computer has to understand word senses.

In addition, for any corpus user, semantic annotation can prove very
useful because it can help information retrieval. Wilson & Thomas (1997:53-
54) give an example of this, too. When Seérching from a corpus, one should be
able to identify related words. For example, if you want to find something that
has to do with clothing, it is not enough to search for trousers. This is because
the texts might just as well refer to them as slacks, shorts, leggings, pants, or
whatever. In a case like this, semantic annotation can prove to be very useful.
With it, there is no need for the user to try to think of all the possible synonyms
for trousers. Since the words in the cofpus ha\}e been divided into semantic
categories, the search can be made for the relevant category instead of
individual words.

The same works the other way around: one may need to identify the
senses of words that look the same, so 'that only the relevant instances are
retrieved. For example, the word boot could be used to mean footwear, but it

has many other senses, too, for example to boot a computer, the boot of a car,

FEeva Marin 144

to boot something (=kick) and licking a person’s boots. Semantic annotation
helps to retrieve only those instances of boot that are wanted, not all of them.

A more practical use for semantic annotation is presented by Wilson
& Rayson (1993). They used semantic annotation to tag transcribed spoken
interviews between market researchers and members of the public. Normally,
such market surveys are based either on questionnaires, which offer a limited
number of choices, or on in-depth interviews which tend to produce small
samples and no reliable statistical data (Wilson & Rayson 1993:215-216). With
semantic tagging, however, it is possible to perform automatic content analysis

on large amounts of data.

3.7.1 How to add semantic annotation

Semantic annotation can be added mahually, with computer assistance or
(theoretically) fully automatically (Wilson & Thomas 1997:62). Computer-
assisted annotation makes use of a lexicon, and assigns possible tags to all
words. Foreign, otherwise unknbwn words and words for which the cbmputer
cannot select the correct tag from all the alternatives are left to human
annofators. Garside and Rayson (1997:188) note that so far there are no fully
automatic, accuraté semantic taggers available. Eveh those that are under
development aré such as deséribed in the beginhing of this chapter, and tag
only individual words. In the long run, it would be useful to have semantic
taggers that would understand the meaning of sentences or other larger units.
This does not yet seem possible today, however.

In any dase, there are semantic taggers that perform their task
automatically to a certain pdint. For example Wilson & Rayson (1993:218-
225) present an automatic tagger for semantic annotation. The program uses a
lexicon and part-of-speech tags to give each word in a text a relevant semantic
tag. The program can also apply morphological rules to remove word endings
Aand it can revise the word-class information to reflect the word-class of the
stem of the word. The program also recognizes some idioms and phrasél verbs
(Wilson & Rayson 1993:221-222). At least at the point of development that
was reported, though, the annotated texts still needed human beings to select

Eeva Marin 145

the correct tag in many cases. The program left about 20% of the words with
more than one semantic tag (Wilson & Rayson 1993:222-223).

Garside & Rayson (1997:189) also note that both POS tagging and
parsing are useful as a basis for successful semantic annotation. POS tagging
can be seen as a requirement, and parsing, too, can help to discriminate word
senses. It may be noted that POS tagging already makes some distinctions in .
meaning explicit by naming the word classes for the words. For example, the
difference between book as a noun and a verb has been made clear at that point.

Patten (1992:47-49), in fact, turns the matter upside down and
suggests that semantic criteria could be used to guide a parser. For example,
the system could recognize that the word give is found in a sentence, and that it
is the main verb. After that, semantic knowledge would tell the parser that such
roles as ACTOR (the giver), OBJECT (the thing being given) and TO (the
receiver) must also be filled (Patten 1992:47). The system would also know
what kinds of words can be ACTORs, for example. Thus, semantic information
would guide the parser to recognize the rest of the units in the sentence.

Garside and Rayson (1997:190-192) also list a few other points that a
semantic tagger could take into account. These will be mentioned here only
briefly. A semantic tagger could take advantage of probabilities of words
belonging to certain categories, just like POS taggers and parsers. In addition to
that, however, it could use what it knows about the domain of discourse and
other parts of the same text. For example, in a financial domain, bank is more
likely to mean a financial institution than anything else. Wilson and Rayson
(1993:222), though, found that such information did not help very much in
practice — the disambiguation ratio was only 3% better, since there were still a
large number of ambiguous words that did not belong to a specific domain of
discourse. '

Garside & Rayson (1997:191) also say that it is claimed that the
meaning of words tends to stay the same throughout a text: if earlier in the
same text bank meant “side of a river”, it is likely to mean that again when in
‘occurs repeatedly in the same text. The immediate context (preceding and
following words) can also be of use: if bank is surrounded by other words that

have to do with finances (eg. account, money), bank is likely to belong to the

Eeva Marin 146

same category. For example Guthrie (1993:232-234) presents a method that
uses “neighbourhoods” of words to disambiguate word senses. Janssen
(1992:143), too, notes that “because certain words typically co-occur [...], they
reinforce (or aid) each other’s interpretation”. She gives the following
example: This tennis tournament is played on a clay court, where the word
tennis makes the ‘sport’ interpretation of court more likely. In addition to these
requirements, the tagger should also be able to deal with idiomatic expressions.

The technical side of semantic annotation aside, there is the matter of
defining an annotation scheme and the semantic categories that may be used.
There are words that are “connected in some way with the same sphere of
activity” (Wilson & Thomas 1997:54), although they are not synonyms,
hyponyms, or in any other such relation to each other. Wilson & Thomas
(1997:54) give the example that the field of equestrianism could include words
like rider, horse, eventing, spurs, saddle, dressage, and jump-off. These words
could clearly belong to the same category, because they obviously have
something in common. Note that these words do not refer to the same thing,
nor are they opposed to each other; rather, they have something to do with the
same field of activity.

Wilson & Thomas (1997:55-57) list criteria for defining semantic
categories. First of all, the categories should make sense in linguistic or
psycholinguistic terms. Secondly, the semantic fields should cover all of the
vocabulary in the corpus. The fields should be flexible so that they can be
extented to handle texts from different periods, languages and registers, and
they should work at an appropriate level of granularity. The last point means
that the fields should be arranged hierarchically, and that they should not be
either too specific or too general. For example, there could be a hierarchy like
“animal” -> “mammal” > “monkey”, in which “animal” is the highest, most
general term, and “monkey” the most specific. If the categories are either too
géneral or too specific, they do not help the user very much. Lastly, the

~ annotation scheme should conform to a standard, if one exists. As yet, there is
rione, but such a standard could, at least, define some basic high-levei
categories and thus help to make semanﬁcally tagged corpora more compatible

with each other.

Eeva Marin 147

In practice, as Wilson & Thomas (1997:54-55) point out, semantic
annotation schemes have to compromise between how words are classified in
the human mind, and how they can be classified by computers. There is the
problem that is common in corpus annotation: what is wanted and what can be
done are not the same thing. The following section will examine problems of

semantic annotation.

3.7.2 Problems with semantic annotation

This section briefly examines some of the problems in semantic annotation.
First of all, there are a couple of problems that have to do with the purely
technical side of semantic annotation. Wilson & Thomas (1997:62) point out
two reasons why semantic annotation is so much harder to automate than, for
example, POS tagging.

The first reason is that semantic annotation is inherently knowledge-
based. Human annotators know the meanings of words becauée of what they
know about the real world, but a computer would require a lexicon that
contains all the different words in the corpus. The second reason is that it is not
known yet whether the same kind of statistical calculations that are used for
determining proBabilities in POS tagging can be used in éemantic annotation.
POS taggers can “guess” the word-class of an unknown word from the
surrounding words; however, it may not be possible to do the same with
semantic categories. (Wilson & Thomas 1997:62)

Guthrie (1993:227) also notes that even humans do not always agree
about what a word means in a particular sentence. As she points out, not even
lexicographers always agree about the number of senses of a given word, or
how a word should be divided into senses. Therefore, it seems a bit too much
to demapd that the computer should be able to do it with a very high accuracy.

More problems come up with the definition of the semantic fields
themselves, and assigning words to them. As was pointed out before, there is
no consensus about what kinds of categories should be used. In addiﬁon, as
Wilson & Thomas (1997:58-59) mention, many words seem to belong to more
than one category. For example, sportswear belongs justifiably to the

categories sports and clothing. As they also point out, it seems that semantic

Eeva Marin 148

categories in people’s heads are “fuzzy sets” rather than clear-cut categories. In

other words, it is natural for concepts to be associated with more than one

sphere of activity. It has been suggested that semantic relationships could be

represented in the form of a network, or by cross-referencing them, or in many

other ways than one-to-one match between word and category, but there are

technical and other problems which make many of such representations hard to
carry out in practice.

Yet one more problem is caused by idioms. Garside & Rayson
(1997:189) give an example of this. A semantic tagger’s lexicon or idiom list
could include an idiom like HAVE in view, meaning “intend”. It would be able
to distinguish the different forms of have appropriately. However, in real-life
data, the expression may not occur on its own: in may become has it in view or

having several different aims in view. For cases like this, parsing can prove to

be the answer: it helps the computer to determine which words belong together

and should possibly be viewed as a single unit.

This chapter has dealt with semantic annotation. The beginning of the chapter
gave examples of uses for semantic annotation. The next section described how
to add semantic annotation: what are the chances of doing it automatically,
what kind of things a program could take into account and how to define
semantic categories. The last section was about problems that concern semantic
annotation.

Compared to part-of-speech-tagging and parsing, semantic annotation
is not very common. Neither is the kind of annotation that will be discussed in

the following chapter: anaphoric annotation.

Eeva Marin 149

3.8 Anaphoric annotation

Anaphoric annotation has to do with pronoun references in text (McEnery &
Wilson 1996:52). The aim of anaphoric annotation is to make explicit what
pronouns and other referring expressions are referring to. For example, in a
sentence like He took it there there are three words (he, it, there) that refer to
something that is not specified in this sentence. Instead, they refer to something
that is named in other parts of the text or exists in the real world. Such
relationships pass meaning “sideways” in a text (Garside, Fligelstone & Botley
1997:67), and anaphoric annotation tries to describe them.

The following extract is an example of anaphoric annotation.

Example 22: Anaphoric annotation

S.1 (0) The state Supreme Court has refused to release

{1 [2 Rahway State Prison 2] inmate 1}} (1 James Scott 1) on
bail .

S.2 (1 The fighter 1) is serving 30-40 years for a 1975 armed
robbery conviction .

S.3 (1 Scott 1) had asked for freedom while <1 he waits for an
appeal decision .

S.4 Meanwhile , {3 <1 his promoter 3], {{3 Murad Muhammed 3} ,
said Wednesday <3 he netted only $15,250 for (4 [1 Scott 1] 's
nationally televised light heavyweight fight against {5 ranking
contender 5}} (5 Yaqui Lopez 5) last Saturday 4) .

S.5 (4 The fight , in which [1 Scott 1] won a unanimous
decision over (5 Lopez 5) 4) , grossed $135,000 for [6

[3 Muhammed 3] 's firm 6], {{6 Triangle Productions of
Newark 6} , <3 he said .

i HOR

[i...] enclose a constituent (normally a noun phrase) entering into
an equivalence "chain'

<i indicates a pronoun with a preceding antecedent

>i indicates a pronoun with a following antecedent

{{i i} enclose a noun phrase entering into a copular relationship
with a preceding noun phrase

{i i}} enclose a noun phrase entering into a copular relationship
with a following noun phrase represents an anaphoric barrier,
in effect, the beginning of a new text.

(http://www.comp.lancs.ac.uk/ucrel/annotation.html)

In this example, different referents are all given different numbérs. For
example, everything marked with number one (James Scott, the fighter, he, his)
refers to the same person. The list above explains what the different kinds of

brackets mean, although they are not of importance here: suffice it to say that

Eeva Marin 150

there are ways to indicate where an expression starts_an.d.ends, and ways to
show whether an expression is referring further ahead in the text, or to
something mentioned already.

Anaphoric annotation is very important in computational linguistics,
for example in machine translation and in any attempts to make the computer
understand natural language (Garside, Fligelstone & Botley 1997:67, McEnery
- & Wilson 1996:52). Pronouns carry so much meaning with them that it is
impossible to understand natural text without understanding them. Fligelstone
(1992:165) notes, interestingly enough, that anaphoric annotation may also
have its uses in the field of speech synthesis. He writes that “The question
arises whether prosody can be shown to have a predictable relationship with
cohesive ties, and whether such a relationship can be used to improve
algorithms for speech synthesis” (Fligelstone 1992:165). In other words,
anaphoric annotation could improve the performance of speech synthesis
systems.

Anaphoric annotation is, on the other hand, part of a larger field called
discourse annotation. In addition to anaphoric relations, discourse annotation
marks such features as information structure (center, theme, rheme), discourse
roles of words and expressions, and discourse functions for sentences or groups
of sentences (Garside, Fligelstone & Botley 1997:66). However, anaphoric
relations are the easiest and best to start with. First of all, cohesive
relationships in text are closely related to grammatical, syntactic and semantic
annotation. Secondly, anaphoric annotation forms yet another step toward
higher level annotations (Garside, Fligelstone & Botley 1997:66-67).

So far, very little discourse annotation has been done (Garside,
Fligelstone & Botley 1997:66). It also has to be done mostly manually
(McEnery & Wilson 1996:53). Garside, Fligelstone & Botley (1997:67-68)
used a special program, XANADU, to help human annotators insert anaphoric
tags. Their experience with anaphoric tagging was surprisingly positive: the
task proved to be much easier than they had expected, the result-more
consistent and accurate. They also had a detailed annotator’s manual, which
was based on earlier decisions and helped to maintain consistency between the

different annotators.

Eeva Marin 151

Oy'ﬁwan earlier publication, Fligelstone (1992) reports problems in
developing the annotation scheme. Some types of word relationships had to be
left out because not even a single annotator could tag them consistently. Such
features included, for example, generic use of noun phrases (Fligelstone
1992:161). On the other hand, the annotation scheme was developed
incrementally: the tagging conventions were introduced over a period of .
several months (Fligelstone 1992:155), so that different methods could be
tested and there was no need to learn everything at once.

Since anaphoric references sometimes involve long stretches of text,
the annotators had problems remembering everything that they should have
kept in mind. This was taken into account when the program was designed, so
that the computer could take care of remembering numbers and other details
(Fligelstone 1992:156). Another point worth mentioning here is that they could
not adapt their existing parsing and word-tag correction programs for this task:
these did not allow the user to move around the text as freely as necessary for
anaphoric annotation (Fligelstone 1992:155-156).

McEnery & Wilson (1996:53) point out that at this point, one of the
aixﬁs of anaphoric annotation still is to produce data that could be used to train
automatic taggers. It seems that the field of anaphoric annotation has not been
tried extensively so far and there are yet no standard practices for it. In other
words, it is still very much under development.

The following chapter will briefly describe another less common type
of annotation: prosodic annotation. In addition, the annotation of spoken

language corpora will be briefly discussed.

Eeva Marin 152

3.9 Prosody and spoken language annotation

This chapter will shortly deal with two types of annotation that both concern
spoken language. The first one of them is prosedic annotation, which in fact
has a much longer history than phonetic transcription (McEnery & Wilson
1996:54). The second is spoken language annotation, which often may be
equal to phonetic transcription.

Note that these two do not fit into the “continuum” that has been
presented here so far: whereas many of the other annotations tend to be
cumulative, for example, semantic and anaphoric annotation may need POS
tagging and parsing, prosodic and spoken language annotation have nothing to
do with them. Spoken language transcription is, in fact, in the beginning of the
continuum (spoken language needs to be transcribed before any further
annotation can be applied to it), and prosody, too, is independent of other

annotations.

3.9.1 Prosodic annotation

The first type of annotation to be considered in this chapter is called prosodic
annotation. Prosodic annotation is the annotation of suprasegmental features
of spoken language such as stress, intonation and pauses (McEnery & Wilson
1996:54). Leech, McEnery & Wynne (1997:88) list some uses for prosodically
annotated corpora. These include the study of the grammatical composition of
speech, the use of discourse markers, the occurrence of non-fluency
phenomena, automatic speech segmentation and information flow in
conversation. Such corpofa can also be a help for speech recognition and
synihesis. Leech, McEnery & Wynne (1997:89-90) also compare prosody in
speech to punctuation in text: it is an essential part of it.

There are not many prosodically annotated corpora in the world.
There are, 4however, two well-known corpora with prosodic annotation: the
London-Lund corpus (LLC) and the Lancaster/IBM Spoken English corpus
(SEC) (Leech, McEnery & Wynne 1997:86). The following is an example of

prosodically annotated text from the London-Lund corpus.

Eeva Marin 153

Example 23: Prosodic annotation

1814147011 A 11 ~what a_bout a cigar\ette# . /
1815148011 A20*((4 sylls))* /
18141490 1 1 B 11 *I ~w\on't have one th/anks#* - - - /
181415001 1 A 11 “aren't you .going to sit d/own# - /
181415101 1B 11 NAm]#- /
1814152011 A 11 ~have my _coffee in p=eace# - - - /
1814 1530 1 1 B 11 ~quite a nice .room to 's\1t in ((actually))#/
181415401 1B 11 *MNisn't* it#

1515155011 A 11 **yNes#* - - - /

The codes used in this example are:

end of tone group
~ onset
/ rising nuclear tone
\ falling nuclear tone
A rise-fall nuclear tone
_ level nuclear tone
[1 enclose partial words and phonetic symbols
. normal stress
! booster: higher pitch than preceding prominent syllable
= booster: continuance
_{()) unclear
* * simultaneous speech
- pause of one stress unit
(McEnery & Wilson 1996:55)

McEnery & Wilson (1996:54-55) note that prosodic annotation does not have
to cover all possible nuances of speech, but only the most prominent features.
The rest can be inferred from the context, if that is necessary.

Indeed, thefe are practical reasons which prohibit extensive prosodic
annotation. Prosodic annotation. requires not only highly trained specialists to
listen to speech recordings, but it is also very time-consuming and the
compilation of such a corpus may take years (Leech, McEnery & Wynne
1997:89, McEnery & Wilson 1996:55). In addition, there is a problem with the
“impressionistic nature of the judgements which are made” as McEnery &
Wilson (1996:55) put it; i.e. different listeners may hear the same stretch of
speech quite differently. For. example, some people may hear only a fall in
pitch, but others hear a rise in the end of the fall. Therefore, it is not easy to

produce consistent prosodic annotation.
A So far, prosodic annotation has been done manually and it has been
éonsidered to be impossible for computers (McEnery & Wilson 1996:55).

However, there have also been attempts to insert prosodic annotation

Eeva Marin 154

automatically, which proved to be much faster than manual annotation (Leech,
McEnery & Wynne 1997:90).

Finally, prosodically annotated corpora tend to have a problem with
recoverability. It is hard to remove the tags, since many of them are in the
middle of the words, and revert to the raw corpus. There are, however, attempts
to apply TEI tags to prosodically annotated corpora, which could solve this .
problem. (McEnery & Wilson 1996:56, Leech, McEnery & Wynne 1997:90.)

3.9.2 Spoken language and speech corpora

Yet another types of corpora, which may be briefly mentioned here, are speech
and spoken language corpora. The difference between these, according to
Leech, McEnery & Wynne (1997:89) is that whereas a spoken language corpus
consists of natural spoken language, a speech corpus has “laboratory” samples
of speech. There may be, for example, the same word or sentence pronounced
by speakers of different dialects. Speech corpora are useful for the study of
speech synthesis, since it provides data of the details of pronunciation.

Due to character set problems, it is usually easier to use the normal
alphabet than IPA codes for compiling spoken language corpora, although IPA
codes have also been used. There is also the possibility to use TEI markup to
represent unusual characters (McEnery & Wilson 1996:54). Even in the case of
a normal character set, a system can be devised where normal characters
correspond to certain IPA codes. Thus the corpus is comparable to an IPA-
coded corpus, but it is easier to move from one computer to another, since no
special character set is needed. (cf. McEnery & Wilson 1996:54)

Nevetheless, there are some problems with the annotations. First of
‘all, as Leech (1997a:3) notes, the difference between representation and
interpretation is not always clear. The transcribers first have to interpret what
they hear in order to represent it in writing. There is also the problem that
sounds rarely have clear boundaries, and what is phonetically the same sound
may be quite different in different contexts (McEnery & Wilson 1996554). In
addition, it must be decided what is to be annotated and how — how to annotate

overlapping speech, and whether to annotate such features as false starts,

Eeva Marin 155

hesitations, laughs, coughs and associated body language (McEnery & Wilson
1996:35-36).

Transcribed corpora are especially useful for people who want to
study spoken language, but do not have access to the required equipment to
study recorded speech in laboratory conditions (McEnery & Wilson 1996:54).
However, since the compilation of such corpora needs expert human beings, it .

is time-consuming to prepare them.

This chapter has briefly looked at prosodic and spoken language corpora. Such
corpora are not very common, and their compilation demands lots of resources
and expertise. The following chapter will deal with even rarer types of

annotation.

Eeva Marin 156

3.10 Other types of annotation

In addition to the types of annotation discussed so far, there are several other,
less well-known types. They will be Shorﬂy discussed in this chapter.

Leech, McEnery & Wynne (1997:94-100) discuss stylistic
annotation. In their study, they were interested in annotating speech and
thought presentation and used tags for such features as direct speech, indirect
speech, direct writing etc. The problems included, first of all, problems
defining the tagset. Not only had there been none defined beforehand, so that
they had to start from the beginning, but there were also problems at the
theoretical level: stylistic categories are not as clearly defined as the categories
for most other types of annotation (Leech, McEnery & Wynne 1997:95-96). In
addition, there is no clear relationship between surface structure and the actual
units that are to be tagged (Leech, McEnery & Wynne 1997:97-99), for
example indirect speech cannot always be recognized from the way it is
syntactically or orthographically presented. Different kinds of speech and |
thought representation may also overlap, or be embedded within each other
(Leech, McEnery & Wynne 1997:97-98).

For these reasons, it is also hard to try to devise an automatic tagger
for stylistic features. It might be possible to recognize automatically some
categories, like direct speech; Quite accurately. However, for example free
indirect speech is typically characterized by the lack of clear indicators for it in
text (Leech, McEnery & Wynne 1997:99-100). In any case, the recognition of
stylistic features is to a great extent based on people’s knowledge of literary
texts and understanding of the world, and would require quite a lot of effort to
be modelled by a computer (Leech, McEnery & Wynne 1997:100).

It is also possible to tag further discoursal or pragmatic features in a
text. McEnery & Wilson (1996:52) list such units as “apologies”, “hedges”,
“greetings”, “politeness” and “responses” that could be tagged. Leech,
McEnery & Wynne (1997:91) mention speech act types like “advisement”,
“confirmation”, “question”, “acknowledgement”, “interpretation” and. others
that have been experimented with. As McEnery & Wilson (1996:52) point out,
these kinds of tags have not been used very much not only because they have

to be inserted manually, but also because there are problems in the linguistic,

Eeva Marin 157

theoretical part of the matter. The recognition of these categories is more or
less a matter of interpretation, and different opinions abound.

Raumolin-Brunberg (1997) reports of gathering sociolinguistic
information about a corpus. The corpus of Early English Correspondence
consists of personal letters from 1420-1680. Information such as socio-
economic status, education, sex and age of the author, date of writing and .
recipient were collected (Raumolin-Brunberg 1997:105-107). At the time of
reporting, the information was not yet coded into the corpus, but kept in a
separate database. However, the database allowed a search for, for example,
information about people who lived at a certain place at a certain time and
belonged to a specific occupation (Raumolin-Brunberg 1997:109-110).

Yet another type of annotation is lemmatization. McEnery & Wilson
(1996:42) note that there are good and accurate software available for it, but it
still has not been used very much. The problem here, too, is probably the
surprising extent of ambiguity involved. For example, the words move and
moving seem to belong to the same lemma, but in the connection a very moving
story it can be questioned.

Leech (1997a:15) mentions that the morphological structure of
words could be analysed. That would, no doubt, be of great use in the case of a
language like Finnish, which has a complex morphology. Such analysis has
been done, too.

McEnery & Wilson (1996:57)‘ also mention problem-oriented
tagging. It means that a researcher can add such annotation as is relevant to a
particular research question. The tagset and other instructions for the
application of tags can be chosen according to the needs of the study. For
instance Meyer & Tenney (1993) developed an interactive tagging program
that could be used to add problem-oriented tagging. '

An example of this type of annotation could be, for example, what
Leech (1997a:15) calls the annotation of learner corpora. He suggests that a
researcher could tag classes of errors or features of non-native language
behaviour to a corpus of learner language. This kind of corpus could prove to

be a great help for studying second language acquisition.

Eeva Marin 158

This chapter has dealt briefly with some of the less well-known and
relatively uncommon types of annotation. The next chapter, however, will
move on to a rather different type of corpus annotation. The following chapter

deals with alignment, which concerns bilingual and multilingual corpora.

Eeva Marin 159

3.11 Alignment

In this chapter I discuss alignment, which has to do with bilingual and
multilingual corpora. Bilingual and multilingual corpora are often translation
corpora. This means that the corpus contains both original texts and their
translations into one or more languages. In order to fully take advantage of
such a corpus, the texts need to be aligned.

The purpose of alignment is to show which parts of a text are
translated by which parts of another text (Kay & Roscheisen 1993:121). It
hélps the user of a corpus to instantly retrive both the original sentence and its
translation from the corpus. Alignment, from the computer’s point of view, is
some kind of markup in the texts which indicates which parts correspond to
each other.

The type of alignment that seems to be the most common is called
sentence alignment, whose purpose is to find corresponding sentences in the
original text and its translation (Gale & Church 1993:75-76, Johansson et al.
1996:94). Another type of alignment is called word alignment, which is about
finding word correspondences between the original text and the translation
(Johansson & Hofland 1994:32, Gale & Church 1993:76). Many researchers
seem to see word alignment as the final goal, and sentence alignment only a
step towards it; however, sentence alignment itself can be very useful, and
indeed it depends on the uses of the corpus whether word alignment needs to
be considered at all.

This chapter mainly deals with sentence alignment. This is mostly
because FECCS, the corpus used at the English department at the University of
Jyviskyld, is only aligned by sentences, not by words. This chapter will, first of
all, deal mth the uses of aligned corpora and translation corpora in general;
then, some basic principles of alignment are introduced. After that, three
different types of methods of alignment are briefly presented, with the
empbhasis on the procedure used for FECCS. That is followed by discussion of
the problems of alignment. |

The alignment used for FECCS is based on the same principles as the
alignment of the Norwegian ENPC corpus (English-Norwegian Parallel
Corpus). It has been developed in Oslo and Bergen and later on adapted to

Eeva Marin 160

other language pairs in additions to English and Norwegian, including English-
Swedish and English-Finnish.

3.11.1 Uses for translation corpora and aligned texts

Translation corpora can be used, for example, in the fields of lexicography,
language teaching, translation, and in the study of language universals and ‘
language typology (Johansson & Hofland 1994:25). They are also important in
the development of machine translation (Kay & Roscheisen 1993:121-122).

' Translation corpora can be used, as the name implies, to study
translations. The translations can be compared to the original texts, or maybe to
other translations of the same text. As Johansson & Hofland (1994:25) say,
such comparison brings out similarities and differences between languages, and
shows what is general and what is language specific. Such corpora also make
possible contrastive studies that examine and compare real texts instead of
language systems of two languages. _ _

Johansson and Hofland (1994:35-36) also give examples of more
specific uses of a translation corpus. These include, for example, the study of
translation equivalents and cases when the translation does not use the most
obvious translation equivalent. One can also examine degree of correspondence
between words and phrases, and cases where one sentence does not clearly
correspond to only one sentence in the other text. Johansson and Ebeling
(1994) note that it may also be of interest to examine original and translated
texts in the same language, or compare translations in different languages and
try to find similarities between them. Kay & Réoscheisen (1993:121) mention
that the bilingual corpora that exist nowadays also make possible statistical and
other kinds of empirical studies of translation on a scale that was not possible
before. |

They also give an example of how corpora can be used in machine
translation (Kay & Rdoscheisen 1993:121-122): as the computer is working on a
translation, it can search the corpus to find sentences that are, in a way or
another (e.g. syntactic structure), similar to the sentence that is being
translated. The translations in the corpus have been made by human translators,

and have thus been accepted by them as correct translations. The computer can

- Eeva Marin 161

base its translation on corpus evidence. Much the same is mentionéd by Gale &
Church (1993:76); they claim that aligning sentences is just the first step, after
which words could be aligned, for use in machine translation.

There exists criticism towards translation corpora. Johansson and
Hofland (1994:25) note that some researchers tend to reject translation corpora,
because the language of the translations may be different from the language of -
original texts in the same language. The claim is that such corpora do not
“provide a good basis for contrastive studies”. As Johansson & Ebeling (1994)
point out, such texts “may reveal as much about the translators and the process
of translation as about relationships between the languages involved”. But of
course, a corpus project dealing with translation corpora should take this into
account. The uses of translation corpora may be limited in some ways, but its
nature also makes some other types of research possible (e.g. the study of
translationese, Johansson & Hofland (1994:26)).

Ebeling (1998:101) mentions that there are several browsers for
bilingual corpora. The problem with them, however, tends to be that they were
originally designed for a specific project and thus they may not be well suited
for other kinds of texts and research questions. Some of these programs make
automatic alignment themselves, whereas others require that alignment markup
has been added beforehand. The following section explains how alignment

works.

3.11.2 How alignment works

There are several things that can be taken into account when aligning
sentences. Gale & Church (1993:76) note that the task of alignment is difficult,
and may prevent people from taking advantage of bilingual corpora. They
claim that the methods for alignment tend to be either unavailable, unreliable
or computationally prohibitive. However, in recent years there have been also
good experiences of alignment, including the FECCS project. o
Johansson & Hofland (1994:30) list various methods that different
projects have used to align texts. Generally, it seems that there are two factors
that most alignment programs seem to take into account: sentence length and

some kind of a bilingual dictionary, which includes key words in both

Eeva Marin 162

languages. Some alignment methods also use different kinds of statistical data
to achieve good results.

The use of sentence length in alignment is based on the fact that
longer sentences tend to be translated into long sentences, and short sentences
into short sentences (Gale & Church 1993:75). Sentence length can be
measured in the terms of both number of words and number of characters. -
However, both Gale & Church (1993:87-88, 90) and Johansson & Hofland
(1994:30) note that measuring it by the number of characters is more reliable:
somehow, the original sentence and its translation tend to be close to each other
in terms of number of characters, but not necessarily in the number of words.
Of course, it might be pointed out that both of these studies have dealt with the
alignment of languages that are not too far apart from each other, such as
English and Norwegian or English, German and French. When applied to
languages that are not related to each other, the sentence length might not be
such a good indicator of correspondence.

Many alignment programs also use a lexicon of some sort. ENPC uses
an anchor word list of about 900 words. The words have been selected on the
basis of their frequency and the degreé of their equivalence in the two
languages (Johansson & Hofland 1994:31). However, t1;e alignment method
used by Gale & Church (1993:89), for example, does not use any lexical
information, and they also claim that such information is not necessarily
needed. Their alignment worked well enough for their purposes without any
kind of a word list.

One point worth mentioning here is that the success of alignment
always depends on what kinds of texts are aligned. The following sections of
this chapter will introduce three different methods of alignment. It must be
notedvthat the texts uséd for them were rather different. Gale & Church (1993)
were interested in the alignment of economic reports issued by the Union Bank
of Switzerland, and the Canadian Hansards, which are parliamentary
proceedings. Kay & Réscheisen (1993), in turn, experimented with two
scientific articles that concerned physics. The Norwegian ENPC project,
however, used prose fiction, which is rather different from the others.

Especially the economic reports and parliamentary texts used by Gale &

Eeva Marin 163

Church are probably translated rather literally, so that the translator has not had
much choice of words. The translations of prose fiction, however, sometimes
include very free translations, and thus it cannot be aligned quite as easily as
more formal texts.

For example, Kay & Roscheisen (1993:121) claim that the alignment
of texts on the sentence and paragraph levels is easy and that there is usually no-
problems as to which sentences in translation correspond to sentences in the
original text. However, as the experiences from the FECCS project have
shown, this is not at all the case with fiction texts. Translators have the
tendency to split sentences, combine them, leave them out entirely or move
information to a different part of the text. It has also been noted that not even
paragraphs tend to correspond to each other very well for a reason or another.
This will be dealt with in more detail in section 3.11.6. The following sections,

however, will introduce three different methods of aligning texts.

3.11.3 ENPC

The Norwegian ENPC project (English-Norwegian Parallel Corpus) has
developed a program for adding sentence alignment to texts and their
translations. The program takes into account many things, including sentence
length, proper nouns, cognates, and punctuation marks (Johansson et al.
1996:95, Hofland 1995). The key to the workings of the program, however, are
so-called anchor words, and the anchor list that they form (Hofland &
Johansson 1998:87).

The anchor words are words that are either very common, or
correspond well to each other in the two languages. The selection of words was
partly based on intuition, and partly on manual matching of the texts
(Johansson & Hofland 1994:31). The anchor word list includes about 900
words and their translations. The following is an example from the anchor
word list of the FECCS project, which has used the same program as ENPC to
align texts.

Eeva Marin 164

Example 24: Anchor word list

sing, sings, singing/ laul*
single / yksi*

sister* sisko*

sit* / istu*

situation* tilan*
sixteen* kuu*

sixth* kuud*

sixty*, kuu*

size* ko*

skin / iho*, nahk*
sleep*, slept / un*, nuk*
slow* / hi*

small, little / pien*
smaller pienem*

smallest pieni*

smel* haju*

smil* hymy*

smok* savu*

snow* lum*

The list always has the English word first, and then the possible Finnish
translations following it. It may be noted here that some of the Finnish forms
have been truncated rather a lot to give the program a chance to recognize
inflected forms. Of course, this may also result into incorrect matches.

The program, basically, reads 15 sentences from each of the texts, and
starts to look up the words in them from the anchor word list. Considering the
anchor words and other things like punctuation marks and annotation that the
sentences have in common, the program decides which sentences in the parallel
texts must correspond to each other (Hofland & Johansson 1998:88-94). There
usually is also an overlap of 5 sentences, so that the last five sentences of a
group of 15 will be also the first five sentences of the next group of 15 to be
processed (Hofland & Johansson 1998:88). This ensures that the program
keeps on track even if the texts have a different number of sentences in them,
as is often the case with translations.

The program makes, mostly, 1:1 matches so that one sentence in the
original corresponds to one sentence in the translation. It can, however, make
also 1:2 and 1:0 matches (Johansson et al. 1996:101). These are attempted if
the difference in sentence length seems otherwise too high. '

The success of the program has been rather good. As Hofland (1995)
notes, it will keep on track even if 5-7 sentences are missing from the other

text. The success rate (for English and Norwegian texts) is about 98 per cent

Eeva Marin 165

- (Johansson & Ebeling 1994, Hofland & Johansson 1998:97). The program has
also been tested on other language pairs, such as English-French, English-
German, English-Polish, English-Finnish, English-Swedish and French-
Norwegian, and the results are promising (Hofland & Johansson 1998:98).

The alignment of English and Finnish texts in the FECCS project has
gone rather well. It may be questioned, however, whether the sentence length, |
for example, is a good indication of correspondence between an English and
Finnish sentence. In majority of cases it probably is, but sometimes the
program makes too many 1:2 or 1:0 alignments due to this, even though its
eagerness to make such matches can be adjusted. For example, if the English
sentence Sir! is translated into Herra alikersantti! the sentence length is rather
different, and the program tries to find a 2:1 match, so that the Finnish sentence
gets paired with two short English sentences. There may also be some
problems with the word list, since Finnish lacks such common English words
as articles and prepositions.

In order to go through the alignment program, the texts also need
plenty of annotation to be added beforehand. These include tags that denote
sentence boundaries, paragraph changes, chapter changes, and tags for chapter
headings (Johansson et al. 1996:88-91). The ENPC project chose to use a
tagging system that is based on TEI, because of the advantages to be gained by
using an existing standard (Johansson & Ebeling 1994). The following is an
example of tagged text from the FECCS corpus:

Example 25: Tagged text

<text>

<body>

<divl type=part id=MAl.1>

<head>I Iron Lung</head>

<div2 type=chapter id=MAl.1l.1>

<head>1</head>

<pb n=3><p><s>Time is not a line but a dimension, like the
dimensions of space.</s> <s>If you can bend space you can
bend time also, and if you knew enough and could move faster
than light you could travel backwards in time and exist in
two places at once.</s></p>

<p><s>It was my brother Stephen who told me that, when he
wore his ravelling maroon sweater to study in and spent

a lot of time standing on his head so that the blood would
run down into his brain and nourish it.</s> <s>I did n't
understand what he meant, but maybe he did n't explain it

Eeva Marin 166

very well.</s> <s>He was already moving away from the
imprecision of words.</s></p>

(Margaret Atwood: Cat’s Eye (FECCS))
y .

The <p> -tags denote paragraphs and the <s> -tags sentences. In the beginning
of the above example, there are two <div> -tags marking the beginnings of
major divisions in the texts, and <head> -tags that mark chapter headings. -
Some of these tags can be added automatically, but some have to be inserted
manually. All of them have to be checked manually at one point or another
before alignment.

The alignment program needs these tags not only to recognize
different parts of a text, but also to insert markup that will tell the corpus
browser which sentences, in fact, do correspond. For this purpose, each
sentence in the corpus gets a unique id-attribute and a corresp-value, which
tells what sentence in the other text corresponds to it. The following is an

example of aligned text from FECCS:

Example 26: Aligned text

<p id=MAl.1.1l.pl>

<s id=MAl.1.1.sl1 corresp=MAl1T.1.1.s51>Time is not a line but
a dimension, like the dimensions of space.</s>

<s id=MAl.1.1.s2 corresp=MAl1T.1.1.s2>If you can bend space
you can bend time also, and if you knew enough and could
move faster than light you could travel backwards in time
and exist in two places at once.</s></p>

(Margaret Atwood: Cat’s Eye (FECCS))

In this example, it can be seen that the id-value for the first sentence is
MAI1.1.1.s1. This is a unique identity number that no other sentence in the
database has. The corresp-value for this sentence tells that the Finnish
translation fof this sentence is called MAI1T.1.1.s1. With the help of these
values, it is easy to locate any given sentence in the corpus, and thus searching
the corpus is fast.

However, as Ebeling (1998:104) points out, there is also a downside
to this kind of annotation scheme. Since adding this kind of markup takes

rather a long time, it is not suitable for texts that may be changed from time to

FEeva Marin 167

time. The texts need to be stored permanently, with no need to be manipulated
or updated constantly. |

In general, the experiences with the alignment program have been
rather good. There aré sorﬁe problems with it, though. One of the problems is
with short sentences, where the number of words is low. Johansson et al.
(1996:102) give an example where the program has failed to pair the English -
sentence Please! with the Norwegian sentence Veer sd inderlig snill! This is
because the Norwegian sentence has many more words, including inderlig
which is an intensifying adverb. Johansson et al. (1996:102) point out,
however, that since short sentences are often questions or exclamations,
punctuation marks may be of help to the alignment.

Another problem is formed by complex correspondences that can be
found in very free translations (Johansson et al. 1996:102-103). For example,
the end of one sentence in the original text might be actually the beginning of
the following sentence in the translation (Johansson & Hofland 1994:35).
Similarly, a translator may sometimes split sentences into several shorter ones,
and since the alignment program is not able to do, for example, 1:3 or 2:3
matches, they will be aligned incorrectly.

The following example is from the FECCS corpus:

Example 27: Complex correspondences

<s id=JFl.1.s8 corresp='JF1T.1.s59 JF1T.1.s10'>A man in his
late twenties, in a dark bistre greatcoat, boots and a
tricorn hat, its upturned edges trimmed discreetly in silver
braid, leads the silent caravan.</s>

<s id=JF1.1.s9 corresp='JF1T.l.sll JF1T.1.s512'>The
underparts of his bay, and of his clothes, like those of his
companions, are mud-splashed, as if earlier in the day they
have travelled in mirier places.</s>

<s id=JF1T.1.s9 corresp=JFl.1.s8> A&dnetdntsd kulkuetta
johtaa kolmeakymment& ldhentelevd mies, jolla on
tummanruskea, paksu paallystakki, saappaat ja
kolmikolkkahattu.</s>

<s id=JF1T.1.s10 corresp=JFl.1l.s8>Hillitty hopeapunos
koristaa hatun ylés kaartuvia lieri&.</s>

<s id=JF1T.1.sll corresp=JFl.1l.s9>Hanen raudikkonsa vatsa ja
jalat, hdnen omat vaatteensa samoin kuin hanen
kumppaniensakin ovat tdynnid savitahroja.</s>

<s id=JF1T.1.s12 corresp=JFl.l.s9>Ilmeisesti he ovat
aikaisemmin p&iv&lld kulkeneet kuraisessa maastossa.</s>

(John Fowles: A Maggot/Ilmestys (FECCS))

FEeva Marin 168

These examples have been manually corrected into two 1:2 matches, so that
each English sentence corresponds to two Finnish sentences. The translator has
not only split the original sentences, but also, in the case of the first English
sentence, it has been split so that the contents of the second Finnish sentence
corresponds actually to the middle of the first English sentence. This has been
highlighted in boldface in the example. Also, the beginning of the first Finnish
sentence, in fact, corresponds to the end of the first English sentence. Although
this should not pose any problems to the alignment, since it does not consider
the order of the words, it has been underlined in both the example sentences as
a good example of free translation. In addition to the sentences being divided
differently in the two texts, there may be problems regarding the vocabulary.
The anchor word list certainly does not know words like bistre or tricorn, and
late twenties has been translated into kolmeakymmentd lihentelevd. On the
other hand, there are words that can probably be found in the wordlist, and the
sentence lengths are surprisingly close to each other, if the lengths of the
correct 1:2 alignments are compared.

The following example is also from the FECCS corpus:

Example 28: Free translation

<s id=SK1.1.s5328 corresp=SK1T.1l.s331>But now Tad was with
Cujo again, first hugging him extravagantly and then looking
closely at his face.</s>

<s 1d=SK1.1.s5329 corresp=SK1T.1l.s331>With Cujo sitting down
(his tail thumping on the gravel, his tongue lolling out
pinkly), Tad could almost look into the dog's eyes by
standing on tiptoe.</s>

<s id=SK1T.1l.s331 corresp='SK1l.1.s5328 SK1.1.s329'> Tad oli
kuitenkin ennattidnyt jo koiran luockse ja katsoi sen
ruskeisiin silmiin varpaillaan seisten. </s>

{Stephen King: Cujo (FECCS))

In this example, the translator has left out a rather surprising amount of
information. It cannot be found in any of the surrounding sentences, either. On
the other hand, the translator refers to the dog’s brown eyes, which do not seem
to be mentioned anywhere in the 13,000 word extract of the original text.

In this case, both the vocabulary and the huge difference in sentence

lengths makes it more or less impossible for the alignment program to be able

Eeva Marin 169

to match the sentences correctly. Such cases have to be corrected manually. As
Johansson & Hofland (1994:35) point out, the more the translator has deviated
from the original, the more problems there will be. They also point out
(1994:36) that fully automatic alignment will never be possible because of the
complexity of the translation process.

This section has presented the method for aligning sentences that was
originally developed for the Norwegian ENPC project, and which has been
later on adapted to other languages. To a great extent, it relies on an anchor
word list that includes key words in both of the languages that are being
aligned. The following section, however, briefly describes a rather different

approach to the task of alignment.

3.11.4 Gale & Church’s method

Gale & Church (1993) developed a méthod for aligning sentences that is based
on a statistical model of sentence lengths in characters. Their starting point was
the fact that “longer sentences in one language tend to be translated into longer
sentences in the other language, and that shorter sentences tend to be translated
into shorter sentences” (Gale & Church 1993:75). They first tested their
program on a trilingual corpus of economic reports issued by the Union Bank
of Switzerland (English, French, German) and then tried it on a larger scale and
aligned 90 nﬁllion words of the so-called Canadian Hansards (Gale & Church
1993:75). The Hansards are parliamentary proceedings in English and French.

The program works in two steps. First it aligns the paragraphs, and
then the sentences in them (Gale & Church 1993:79). It assigns a probabilistic
score to each proposed pair of sentences, and then uses the scores to find the
most likely correct alignment (Gale & Church 1993:78). It also makes 1:0, 1:2
and 2:2 matches between sentences in addition to the usual 1:1 matches (Gale
& Church 1993:83).

Gale & Church (1993:78-79, 89) report that the program worked
surprisingly well, considering that it is rather simple. The average erfdr rate
was 4.2%. If only the best-scoring 80% of the corpus was considered, the error

rate dropped down to 0.7%.

Eeva Marin 170

The more complex the sentence corresponencies, the more errors there
were with them. 1:1 matches were the easiest (only 2.6% error rate), 1:2
matches were somewhat harder (14%), and 2:2 matches had an error rate of
over 30% (Gale & Church 1993:85). Curiously enough, all the 1:0 matches that
the computer made were wrong. It missed all the real 1:0 cases, but found them
where they did not exist (Gale & Church 1993:85). ,

Gale & Church (1993:89) claim that their system is fairly language
independent. There are parametres in the program (concerning sentence length
in the two languages) that can be adjusted (Gale & Church 1993:81-82). Even
in their material, however, there was a difference between the success rate of
English-German and English-French alignments: the English-French subcorpus
had more errors in it (5.8%, compared to only 2.7% in the English-German
corpus) (Gale & Church 1993:79, 85). The reason they give for this is that the
original text was in German, so that in the English-French pair of texts both
were translations to begin with. They also note that the overall low error rate is
due to the high number of 1:1 sentence pairs in these texts, and that
linguistically more different languages might be more problematic (Gale &
Church 1993:85-86).

It can, indeed, be questioned how well their system would work with
languages that are very different. In addition, what also must be pointed out is
that the texts they used were rather rigid, formal reports. As Kay & Réscheisen
(1993:140) note, the Hansards are known to be quite literal translations and
they are not very hard to align. It does not seem likely that Gale & Church’s
method would work nearly as well with texts that have been translated more
freely, like prose fiction. |

McEnery & Oakes (1996), in fact, tested the performance of Gale &
Church’s method. They aligned texts of various genres (e.g. fiction texts,
medical papers and newspapers) and tried several language pairs, including
English-Polish, English-Spanish and Chinese-English. They noted that the
results varied across genres and language pairs: with Chinese-English
newspaper texts, the success rate went down to 54.5%. The explanation offered
for this was the high number of 2:1 matches in the Chinese-English texts:
although Gale & Church’s method can deal with 1:1 alignments, the error rates

Eeva Marin 171

seem to be much higher for more complex matches (McEnery & Oakes
1996:213-214). McEnery & Oakes (1996), in fact, developed the program
further by using information about cognates in it.

In all, their approach is rather different from the ENPC project.
Whereas the ENPC alignment uses an anchor word list to find correct matches
for sentences, Gale & Church’s method does not use any lexical information at
all. The following chapter, however, introduces one more different method of

alignment.

3.11.5 Kay & Rascheisen’s method

Kay & Roscheisen (1993) present a method of alignment that is similar to Gale
& Church’s method in the sense that it does not need any wordlists or other
input aside from the texts themselves. Their alignment method is based only on
internal evidence (Kay & Roscheisen 1993:122), in other words, it usés only
information that can be found in the texts themselves. |

Their method is rather interesting, since it uses partial word alignment
in order to align sentences. It is based on the assumption that if a pair of
sentences contains words that can be aligned, then the sentences can also be
aligned (Kay & Roscheisen 1993:121-122). They note that full word alignment
is difﬁ_cult; however, there are some words, like technical terms and proper
nouns, that can be paired quite easily (Kay & Réscheisen 1993:121). Their
alignment method takes advantage of this.

Their program works basically by going through the texts several
times, refining the alignments each time. It first selects sentences that it
considers sure matches (e.g. the first and last few sentences in each text). Then
it constructs a word list which includes likely word alignments based on the
existing sentence alignments. On the basis of the word list, then, it can go on to
make more sentence alignments, refine the word list again, and so on. Kay &
Réscheisen note that it takes four or five passes through the texts for correct
sentence alignment, and the program achieved something like 96% accuracy on
their material. (Kay & Réscheisen 1993: 122-123, 138-139). They used
scientific articles from Scientific American and their German translations (Kay
& Roscheisen 1993:130).

Eeva Marin 172

Kay & Roscheisen (1993:140-141) claim that the texts they used were
hard to align, and that their program produces good results even with relatively
free translations. It seems, however, that they are comparing the ease of the
task to the alignment of the Hansards, which, as noted before, are rather literal
translations. It is hard to believe that translations of scientific texts could still
be considered “free translations” if compared to translations of prose fiction.
However, without seeing the texts, it is not possible to make definite claims;
translations of scientific texts might be rather free, too, depending on what the

translation is used for.

In the previous sections I have introduced three different ways to align parallel
texts. They are all only examples of different methods that exist, and no doubt
they suit certain kinds of texts better than others, and have problems that are
specific to the relevant method of alignment. In the following section, however,

I discuss some problems that are common to the task of alignment in general.

3.11.6 Problems with alignment

Alignment can be done on several different levels. Texts consist of parts,
chapters, paragraphs, sentences, words, and so on. The ease of alignment more
or less direcﬂy depends on the level that is beihg dealt with. It can be presumed
that there are probably no huge problems with the level of chapters, for
example. However, the lower the levél of the units that are being dealt with, the
more difficult the task of alignment will be.

Johansson & Hofland (1994:29) note that there is a good
correspondence between higher-level units such as parts of books or chapters,
and even paragraphs. Kay & Roscheisen (1993:121) also claim that aligning
texts on parégraph level is easy. Gale & Church’s method, indeed; relied on
'paragraph boundaries: the performance of their system degraded noticably
when they tried to use it without péragraph boundaries as their starting point
(Gale & Church 1993:88). However, as Johénsson et al. (1996:91-92) note,
there tend to be differences in paragraph divisions between texts and their
translations. This kind of differences may be found, for example, in the

representation of direct speech in prose fiction.

Eeva Marin 173

Kay & Roscheisen (1993:121) even go as far as to suggest that “there
is rarely much doubt as to which sentences in a translation contain the material
contributed by a given one in the original”. To a human reader, after a careful
examination of the texts, that may be true. However, the computer cannot make
such assessments of freely translated fiction texts very easily. The translator
may have combined or separated parts of sentences rather freely, or left out
part of the information of the original text. The following is an example from
the FECCS corpus. In it, the translator has made four sentences out of the

original one sentence, even though it is otherwise rather literally translated:

Example 29: Differences in sentence division

<s>Tarkoitan, etten ole kauhistunut h&nen tavastaan hallita,
pikemminkin olen hdnen hallintonsa innokas kannattaja, mutta
silti. . . mind kerdan ainoastaan tietoja, vertailen,
seulon, teen johtopidatdksia.</s>

<s>I do n't mean I 'm disturbed by his performance.</s>
<s>I 'm actually rather an enthusiastic supporter of his
administration, but nevertheless</s>

<s>All I 'm doing is collecting information.</s>

<s>I form comparisons, I sift, I make inferences.</s>

(Arto Paasilinna: Janiksen Vuwosi/The Year of the
Hare (FECCS))

Some problems in sentence division also turn up because the translator
has used another punctuation mark than the original writer, or otherwise
somehow changed the typography of the text. The above example has an
example of this, too, when the sentence following the three full stops starts
with a capital letter in English, but not in Finnish. A stretch of text may look
like several sentences in one text, but only one huge sentence in another
because of these kinds of differences. This of course is not a problem for a
human reader, but the computer always has some rather strict basis for
deciding where one sentence ends and another one starts. Especially the
semicolon tends to cause problems; where one text ends the sentence with full
stop, the other has a semicolon there and the sentence continues onwards.-

Some differences in sentence division are caused by grammatical
differences in the languages. Johansson & Ebeling (1994) give the example of

ing-clauses in English (e.g. Jasper drank down his cup at once, and sat looking

Eeva Marin 174

at the thermos, wanting more). Such clauses are often translated into
independent sentences in Norwegian. The same kind of examples can be found
in Finnish, too.

Plenty of differences in sentence division can also be found in
connection of direct speech. The following is an example from the FECCS

corpus.

Example 30: Differences in sentence division (2)

<s>"So," Lizzie had said.</s>
<s>"It means a careful Christmas." </s>

<s>"Eli jouluna taytyy olla toérsdamattsd”, Lizzie oli
sanonut.</s> :

(Joanna Trollope: A Spanish Lover/Espanjalainen
rakastaja (FECCS))

This is a typical example of a case where the translator has had to change the
division of sentences in order to create a good translation that sounds natural in
Finnish. These seem to be quite common with direct speech.

These types of problems with sentence divisions are more common
with some text types than others. Johansson & Hofland (1994:29) note that for
example legal texts tend to have sentence-by-sentence correspondence,
whereas literary texts show much more differences. This can be seen in the
FECCS texts, too: the few European Union directives that are part of the
corpus have just a few sentences that have been divided or combined, whereas

some fiction texts are more or less filled with 1:2 matches.

In this chapter I have explained what alignment is and introduced three '
different methods to align parallel texts. The alignment method used by the
Norwegian ENPC project relied on a word list that is specific to the languages
that are being aligned, whereas the two other methods did not use any external
information at all, but only evidence that could be found in the texts
themselves. Gale & Church’s program compared sentence legths in the original
text and the translation, and calculated probabilities to find out which sentences
are likely to be pairs. Kay & Roscheisen, however, used possible word

correspondences to align sentences correctly.

Eeva Marin 175

Each of these systems has its advantages: they are all suitable for
certain types of texts and situations. The ENPC alignment requires lots of work
before the sentences can be aligned, because markup needs to be added
beforehand and a wordlist for the relevant languages needs to be constructed.
The other two do not require such amount of preparations in advance.
However, the ENPC system was also the most reliable of these. Although the .
success rates of the programs were not so different, it may be noted that the
ENPC alignment was probably applied to rather more difficult texts th# the
other two. Gale & Church, indeed, say that their method could be
recommended as a “first pass”, and that for more accurate results some lexical
information should be given to the program (Gale & Church 1993:87, 90).
However, if there is a need to have only a quick alignment that does not need
to be as accurate as possible, their method will work well enough. Note also
that at least McEnery & Oakes (1996) have updated the program so that it uses
a certain amount of lexical information, too. |

There is, indeed, the question of what type of alignment is actually
needed for a given project. The depth of alignment should always depend on
the uses of the corpus: in some cases, simple paragraph alignment could be
enough. There is necessarily no need to go for sentence alignment, let alone
word alignment. Although this chapter does not explain word alignment, one
may encounter references to it when reading about aligned corpora. It simply
means, basically, that correspondences of individual words are made explicit.
Word alignment is useful in machine translation and other such systems, where
the computer needs to find word correspondencies.

The last section of this chapter considered the problems with
alignment. These mostly have to do with the fact that, regardless of what some
researchers claim, paragraphs and sentences rarely form 1:1 matches all the
time. The section gave examplés of cases when sentence divisions are not
identical in the original and the translation. The reasons for this are many:
some have to do with grammatical differences of the two languages, whereas in

some cases it is simply a matter of the translator’s style and preference.

Eeva Marin 176

3.12 Summary

In this part of the present paper I have discussed the field of corpus annotation.
First of all, I considered general aspects of corpus annotation. This included
general consideration of the uses of corpus annotation, examples of what
annotation may look like, and general guidelines for annotation in the form of
Leech’s seven maxims of annotation. -

Then, chapter 3.2 described how to get texts and how to computerize
them. Chapters 3.3 and 3.4 were about standards, the need for them and what
kinds of efforts there are towards standardization. Chapter 3.4 also introduced
an existing standard, SGML, and the TEI guidelines that are specifically for
encoding texts in the humanities. |

Chapter 3.5 introduced part-of-speech annotation. Part-of-speech
annotation, also known as POS tagging or grammatical tagging, aims to give
each word in a corpus a word-class tag. The chapter explained the Workings of
an automatic tagger, considered different kinds of taggers and tagsets, and
presentedAproblems that are common in POS tagging. The problems include
idiomatic sequences of words and other word combinations, ambiguous words
and the fact that one hudred per cent accuracy does not seem to be possible
even in POS tagging, even though it is vthe most common and easiest of
annotations. POS tagging of languages other than English was also briefly
considered.

Chapter 3.6 was about parsing, which is also known as syntactic
annotation. In parsing, the sentences in a corpus are syntactically analysed and
annotated so that they could be presentéd as syntactic trees. The chapter
explained how an automatic parser works, and explained what kinds of
theoretical models have been used with them. The end of the chapter discussed
the problems with parsing, which mostly have to do with the definition of the
rules that should be used, and their application to natural language.

Chapter 3.7 discussed semantic annotation, which is not nearly as
common as the two previous ones. In practice, semantic tagging usually. means
that words are assigned to relevant_sémantic categories, which try to define
word senses. The chapter considered both technical issues of applying semantic

annotation, and the issue of defining the semantic categories. In the end, some

Eeva Marin 177

problems were mentioned, many of which have to do with the fact that in the
real world, semantic categories are not so clearly defined and therefore are hard
to model with a computer.

Chapter 3.8 briefly discussed anaphoric annotation. Anaphoric
annotation tries to make pronoun references in a text explicit. Although it has
not been used much yet, anaphoric annotation may prove to be significant, due
to its great importance in computational linguistics and natural language
processing.

Chapter 3.9 examined two kinds of annotation which are different
from the previous ones: prosodic and spoken language annotation. Prosodic
annotation is about adding information of such suprasegmental features of
speech as stress, intonation and pauses. Spoken language annotation deals with
the problems of representing speech in writing, and deciding what kinds of
features should be transcribed. In case of both of these, there is the problem
that they have to be done manually, and require experfs who are used to
listening to speech and can transcribe it as accurately as possible.

Chapter 3.10 considered other, even rarer types of annotation. These
included stylistic annotation, discoursal and pragmatic annotation,
sociolinguistic annotation, lemmatization, morphological annotation and
problem-oriented tagging. All of these are quite rare and tend to lack tested
conventions for their application.

Chapter 3.11 told about alignment. Alignment means that the original
text and its translation in a bilingual or multilingual corpus are tagged so that
corresponding sentences can be found easily. There are different types of
algorithms for aligning texts. Most of them take advantage of factors such as
sentence length, language-specific lexicons or probabilistic information.
Alignment can also be done on many different levels: for some purposes,
paragraph alignment may be enough, whereas other uses (such as natural

language processing) need word alignment.

As has been noted many times before, it can be seen that the different types of
annotations tend to build on each other and need each other as their basis. In

the beginning of the continuum, there is part-of-speech tagging: using it is

Eeva Marin 178

fairly secure, since there are agreed conventions for doing it and the process is
mostly automated. In the other end of the continuum, there are some of the less
common annotations such as stylistic annotation: using them is less secure,
since there are no agreed-upon methods and predefined categories of tags for
applying them, they are not highly automated and the problems involved are
not well known (Leech, McEnery & Wynne 1997:100-101). Of course, the
conventions for applying certain kinds of tags can only develop through many
experiments and the combined effects of several research projects. Therefore,
one should not avoid the less common types of annotation, if there is the need
and resources to go for them.

Many of the types of annotation presented here do indeed seem
tempting. However, getting an annotated corpus is not fast, and it might cost
quite a lot, too. As Hockey (1997:107) points out, the usefulness of a corpus
increases as it gets more markup into it, but at the same time, it is more
expensive to create. Even in the case of automatic tagging the time and money
required to complete the corpus may be astounding, if the whole process is
considered. Even though the computer might do its task rather fast, there are
other parts such as scanning, proofreading, and post-checking the tags that can
take a very long time.

The division of tasks between the computer and human beings is
certainly something that has to be considered, too. The computer is faster, but it
cannot handle well tasks that require interpretation or knowledge of the outside
world. On the other hand, the errors the computer makes are at least consistent:
human beings make mistakes out of boredom and tiredness, and make different
interpretations of the same kind of examples (cf. Baker 1997:243-244). In
addition, on one hand, the computer does not demand to be paid for the task;
on the other hand, the programs it needs may be hard to get, expensive or may
have to be programmed for the purpose, which of course costs money.

In addition to the question of speed and money there is the question of
what is even possible. As has been noted before, it may be easy to define
categories that would be useful to the user of the corpus, but then, might be
more or less impossible to annotate within reasonable time and cost. If one is

willing to annotate everything manually, one can try to define as fine-grained

Eeva Marin 179

categories as one wants to; however, practically, fully manual insertion of tags
is usually not plausible, and compromises have to be made. The computer can
only distinguish certain features of the text automatically, and one has to accept
this at the moment. It is not certain that these problems will be easily solved in
the future, either, since it does not seem that computers will be able to deal
with such tasks that demand extensive knowledge of the outside world any
time soon.

In addition to these complications, there is the fact that learning the
annotation scheme takes quite a lot of time for the humans involved. Whether
the annotation is done manually or automatically, the humans dealing with it
need to understand what the tags mean and how they are supposed to be
applied. Learning to understand the annotation in use may demand quite a lot
of effort, especially for people who have not dealt with computers and
programming very much before. Although annotating a corpus does not require
programming skills, such skills are an advantage. The annotations are easier to
read and the principle behind them easier to comprehend, if one is used to the
way things are presented to the computer.

It is worth noting that depending on the type of annotation, there are
commercial services available to do the tagging. A quick browse through the
Internet seems to suggest that there are actually quite a few groups who do

part-of-speech annotation or parsing. For example, the University of Lancaster

(http://www.comp.lancs.ac.uk/ucrel/claws/) provide part-of-speech tagging
services.

However, whether the annotation is performed automatically or
manually, there has to be some kind of annotation manual, documentation
which explains all the tags that are used. The manual has to not only name all
the possible tags, but also explain how they have been used, and what kinds of
decisions have been made in problematic cases. The manual does not have to
be complete to begin with, but it can be developed as the annotation project
proceeds. The annotation manual is useful not only to the annotators
themselves, but to the end users who want to understand how the corpus has

been tagged and why certain decisions have been made. It is good to remember

Eeva Marin 180

to try to document everything that is done during a project: it can prove to be
invaluable help to someone else, later on.

As Leech (1997a:15) says, “annotation is an open-ended area of
research, which is very much under development”. This chapter has tried to
give a general idea of what kinds of annotations exist, and what are gradually

emerging.

Eeva Marin 181

CONCLUSION

In the present paper, I have dealt with the question of corpus compilation. The
present paper, first of all, had a general introduction to corpus linguistics; after
that, Part Two and Part Three dealt with computer issues and annotation,
respectively.

The first part told about computer corpora in general: what they are, '
how to use them, and what they can be used for. In the first part, I gave the
reader a general introduction to the field of corpus linguistics. First, different
fypes of corpora were introduced and classified. After that, several important
terms were explained and illustrated. The terminology covered terms relevant
in both the use and compilation of corpora. I also introduced three programs
that serve as good examples of corpus software. In the end of the chapter,
several uses for corpora were discussed.

The second part of the presént paper dealt with questions related to
computer hardware and software. The chapters in Part Two gave general
advice on many computer-related issues: How to select suitable hardware and
operating system, how to deal with character set problems, how to store the
data and where to acquire corpus software. The chapters also brought out many
possible problem points in the use of computers, such as moving the data
between different types of computers. _

The third part of the present paper introduced corpus annotation. In
the third part, I began by introducing what corpus annotation is and how it is
ushally applied. Secondly, different ways of acquiring suitable texts were
discussed. Thirdly, Part Three also gave general information about standards,
and introduced an existing text encoding standard that is relevant in corpus
linguistics. In the rest of Part Three I discussed different types of annotations.
They were introduced in a rough order of their frequency; part-of-speech
annotation, which was introduced first, is also the most common type of
annotation. From there, the present paper proceeded through parsing, semantic
annotation, anaphoric annotation, i)rosody and spoken language annotation to
other types of annotation, some of them quite rare. In the end of Part Three I
described alignment, which concerns bilingual and multilingual corpora.

Alignment means that corresponding parts of an original text and its translation

Eeva Marin 182

are found, so that they can be examined simultaneously. In practice, this often
means that specific annotation is added to the corpus to tell the computer which

parts of the texts are corresponding.

The rest of the present paper will consider a few more points that are
important, but belong here, in the end, rather than under any more specific
headings. All of these points have to do with corpus compilation in general.

First of all, the percentage describing the success of, say, automatic
corpus annotation, does not tell the whole truth. For example, many automatic
part-of-speech taggers are reported to achieve around 98% accuracy. Of course,
this means that 98% of the tags were correctly applied; however, it also means
that two out of one hundred tags are wrong. To the users, in practice, that may
actually seem quite a number of errors.

For example, imagine reading a book that has been proofread hastily.
Let’s say there is a typo or a misprint every ten pages. Statistically this is not
very much, if the percentage of correctly typed words are counted; to the
reader, however, the text gives a very bad impression of being clumsily written
or badly checked.

The same may be true with a corpus. Although researchers seem to
agree that some amount of errors is (statistically) acceptable, in practice, the
errors may seem to leap out of the paper. No amount of post-checking is likely
to remove all the errors: on one hand, some of the errors may be caused by
ambiguous units that cannot be unambiguously tagged, and on the other,
human beings make errors too. This is something that has to be accepted with
corpora. Although there undoubtedly are some well-known corpora in the
world that are almost error-free, this is only because they have existed for a
long time and many people have worked with them. They have had both the
time and other resources to root out all the errors. In a small research project,
however, errors will be inevitable. They will occur in all stages of corpus
compilation — in scanning, proofreading, tagging, alignment and post-checking.
The existence of errors in corpora is something that has to be accepted, and it is
useful to keep in mind how large a portion of the corpus does rot have errors in
it, after all.

Eeva Marin 183

Secondly, document everything that you do. This does not only mean
the annotation scheme that part three of the present paper mentioned several
times, it means everything: what kinds of scanner settings were used to achieve
the best results, what formats the texts were saved in, what kind of directory
structure the files were stored in, the principles of naming the files, and so on.
Write down all complications: for example, were there problems moving the
files from a computer to another? What happened to special characters when
the file was converted to another format, or moved to a different type of a
computer? How did you solve the problem of characters that are not part of the
standardized Low ASCII character set?

Such documentation has many uses. It is important if new people
come to work in the same project: they can avoid making the same mistakes. It
can also be very useful to other projects that are only starting. It is likely that
many projects have the same type of problems, for example with regard to
character sets, and it is of great importance to hear about others’ experiences
and solutions. Besides, writing down everything means also that you do not
have to remember all the little details: you can come back to your notes and
check how a problem was solved the last time it occurred.

Thirdly, a piece of advice that I would like to give about using
computers is that it is worth to learn to use ordinary software, such as file
managing and word processing tools, properly. It sometimes seems that many
people waste their time with computers because quite ordinary procedures,
such as copying files from one place to another, takes far too much time.
Personally, I frequently meet people who, for example, copy files one at a time
instead of selecting all of them with a few clicks of the mouse and copying
them all at once. As well, often people do not use word processors’ copying
and pasting functions as often as they could be used, do not know the shortcut
keys for them, and do not have any idea of what macros are. By learning to use
simple functions like them, the overall time of processing texts can be reduced
drastically. For instance, manual tagging often means repeating the same codes
all the time, and it is a waste of time to type them all over again if they could
be made into macros so that one code would be behind a simple key

combination.

Eeva Marin 184

Also, learn to take advantage of the functions that a word processor
offers. For example the proofread tool should be used; it does not weed out all
the errors and mistypings, but the computer is arguably adept at noticing
certain kinds of mistakes that occur. Modern word processors include quite a
few tools the usefulness of which may not be realized without trying them out.

Generally, it is worth the trouble to learn to use the computer and its
software properly. Not everything has to be learned at once, of course; it is
easiest to learn new procedures gradually. However, users should not think that
they already know everything that they need to know. In many cases, people do
not use programs as efficiently as they could because they simply do not know
that something could be done faster. In the long run, it is worth the trouble to
spend some time learning to use new tools; with time, it makes using
computers much faster, easier and more fun. Of course, the overall efficiency
of work is also improved, since more time is available for the real work as the

commonplace tasks can be handled faster.

In the present paper, I have tried to give an overall picture of corpus
compilation and introduce some general principles, alongside with examples
that are likely to be relevant even later. Although the scope of the present paper
is rather wide, it has not given very practical advice for many issues. The
reason for this is that since computers and everything related to them develops
rather fast, it would not be useful to start giving details of facts that will not
apply a year later.

In practice, if you want to learn to do something that is presented here,
get/a’ hold of some more detailed information of the topic. For example, if you
want to learn more about POS tagging, find an annotation manual that was
written by a previous project. Even better, get hold of the people who did it and
ask them what you need to know. Ask them if they have a tutorial that they
used to train their annotators. Search for free demos of annotated corpora to see
how they work: there are some corpora that can be accessed through the
Internet, and hopefully, there will be more of them in time. Get to know as
many corpora with POS tagging as possible, see what kind of annotation they

use, and how the programs with them work. Even if you do not get a chance to

Eeva Marin 185

try them out yourself, there may be written reports of other people’s
experiences. Then you can decide what kind of tagging would be the best for
your corpus, and how to best achieve it.

In the present paper I have tried to collect under one heading all those
bits and pieces about compiling a corpus that are relevant for any corpus
project. Even though some of the information is rather theoretical, it should
give a basis from which one can go on to find further information of specific
types of corpora, and of more practical matters. I hope that the present paper
proves to be useful for anyone who has an interest towards corpora and their

compilation.

Eeva Marin 186

REFERENCES

Aijmer, K., B. Altenberg and M. Johansson (eds.) 1996. Languages in contrast.
Papers from a Symposium on Text-based Cross-linguistic Studies,
Lund 4-5 March 1994. Lund: Lund University Press

Antworth, Evan L. and J. Randolph Valentin 1998. Software for doing field
linguistics, in Lawler and Dry (eds.) 1998, 170-196.

Armstrong, Susan (ed.) 1993. Using Large Corpora. London: A Bradford
Book, The MIT Press.

Bailey, Richard W. and Anne Curzan 1997. The Diary of Henry Machin: An
electronic text, in Hickey et al. (eds.) 1997, 25-32.

Baker, John Paul 1997. Consistency and Accuracy in Correcting Automatically
Tagged Data, in Garside et al. (eds.) 1997, 243-250.

The Bank of English — Questions and Answers. <http://titania.cobuild.
collins.co.uk/boe_info.html> undated (Accessed 25 Nov. 1997).

Barnbrook, Geoff 1996. Language and Computers — A Practical Introduction
to the Computer Analysis of Language. Edinburgh: Edinburgh

University Press.

Bateman, Jeremy, Jean Forrest and Tim Willis 1997. The Use of Syntactic
Annotation Tools: Partial and Full Parsing, in Garside et al. (eds.)
1997, 166-178.

Biber, Douglas, Edward Finegan and Dwight Atkinson 1993. ARCHER and its
challenges: Compiling and exploring a representative corpus of
historical English registers, in Fries et al. (eds.) 1993, 1-14.

Biber, Douglas, Susan Conrad and Randi Reppen 1994. Corpus-based
Approaches to Issues in Applied Linguistics, Applied Linguistics 15/2,
169-189.

Eeva Marin 187

Biber, Douglas, Susan Conrad and Randi Reppen 1998. Corpus Linguistics:
Investigating Language Structure and Use. Cambridge: Cambridge

University Press.

Burnard, Lou 1992. Tools and Techniques for Computer-assisted Text
Processing, in Butler (ed.) 1992, 1-28.

Butler, Christopher S. (ed.) 1992. Computers and Written Texts. Oxford:
Blackwell.

Byers, Robert A. 1985. Introduction to UNIX System V. Culver City,
California: Ashton-Tate.

CETH (Center for Electronic Texts in the Humanities) (homepage).
<http://www. ceth.rutgers.edu> undated (Accessed 8 Jun. 1999).

CETH newsletter, spring 1995, <http://www.ceth.rutgers.edu/Ceth/
newsletter/news31/ocr.html> undated (Accessed 9 Dec. 1998).

Collins COBUILD (homepage). <http://titania.cobuild.collins.co.uk> undated
(Accessed spring 1999).

Collins COBUILD. Information about the CobuildDirect Service. <http://
www.cobuild.collins.co.uk/direct info.html> undated (Accessed 8

Jun. 1999).

Conexor Oy (homepage). <http://www.conexor.fi> 1997-1998 (Accessed 8
Jun. 1999).

Deitel, H. M and P. J. Deitel 1994. C — How to Program (Second edition). New
Jersey: Prentice-Hall.

Dougherty, Dale and Tim O’Reilly 1988. DOS meets UNLX. USA: O’Reilly &

Associates, Inc.

Dry, Helen Aristar and Anthony Rodrigues Aristar 1998. The Internet: an
introduction, in Lawler and Dry (eds.) 1998, 26-61.

Eeva Marin | 188

Ebeling, Jarle 1998. The Translation Corpus Explorer: A browser for parallel
texts, in Johansson and Oksefjell (eds.) 1998, 101-112.

Eloranta, Jussi, Seppo Kallio and Matti Levanen 1994. Unix — kdyttdjan opas
(3. uudistettu painos). Kayttdjin opas N:o 16. Jyviaskyld: Jyviaskyldn
yliopiston ATK-keskus.

European Union 1995. The Green Paper on Copyright and Related Rights in
the Information Society. <http://www.ispo.cec.be/infosoc/legreg/
com95382.doc> 1995 (Accessed spring 1999).

The FECCS (Finnish-English Contrastive Corpus Studies) corpus, compiled at.
the Department of English at the University of Jyvéskyla.

Fligelstone, Steve 1992. Developing a scheme for annotating text to show

anaphoric relations, in Leitner (ed.) 1992, 153-170.

Fligelstone, Steve, Mike Pacey and Paul Rayson 1997. How to Generalize the
Task of Annotation, in Garside et al. (eds.) 1997, 122-136.

Fries, Udo, Gunnel Tottie and Peter Schneider (eds.) 1994. Creating and Using
English Language Corpora: Proceedings from the Fourteenth
International Conference on English Language Research on
Computerized Corpora, Zirich 1993. Amsterdam: Rodopi.

Gale, William A. and Kenneth W. Church 1993. A Program for Aligning
Sentences in Bilingual Corpora, in Armstrong (ed.) 1993, 75-102.

Garside, Roger and Nicholas Smith 1997. A Hybrid Grammatical Tagger:
CLAWS 4, in Garside et al. (eds.) 1997, 102-121.

Garside, Roger and Paul Rayson 1997. Higher-level Annotation Tools, in
Garside et al. (eds.) 1997, 179-193.

Garside, Roger, Geoffrey Leech and Anthony McEnery (eds.) 1997. Corpus
Annotation: Linguistic Information from Computer Text Corpora.

London: Longman.

Eeva Marin 189

Garside, Roger, Steve Fligelstone and Simon Botley 1997. Discourse
Annotation: Anaphoric Relations in Corpora, in Garside et al. (eds.)
1997, 66-84.

Glossary of corpus linguistics. <http://www-clg.bham.ac.uk/glossary.htm>
undated (Accessed 11 Mar. 197).

Granger, Sylviane 1996. From CA to CIA and back: An integrated approach to
computerized bilingual and learner corpora, in Aijmer et al. (eds.)
1996, 37-51.

Greenbaum, Sidney 1993. The Tagset for the International Corpus of English,
in Souter & Atwell (eds.) 1993, 11-24.

Guthrie, Louise 1993. A Note on Lexical Disambiguation, in Souter & Atwell
(eds.) 1993, 227-238.

Healey, Antonette diPaolo 1997. Wood-gatherers and cottage builders: Old
words and new ways at the Dictionary of Old English, in Hickey et al.
(eds.) 1997, 33-46.

Hickey, Raymond, Merﬁa Kyt6, Ian Lancashire and Matti Rissanen (eds.)
1997. Tracing the Trail of Time: Proceedings from the Second
Diachronic Corpora Workshop. Amsterdam: Rodopi.

Hirvonen, Pertti 1994. OWjelmoinnin alkeet C-kieltd kdyttien.
Oheismateriaalia itseoppijalle. Opetusmonisteita OM-07. Jyvaskyla:
Tietojenkisittelytieteiden laitos.

Hirvonen, Pertti 1995. Ohjelmoinnin peruskurssi C-kieltd kdyttden.
Opetusmonisteita OM-08. Jyviskyli: Tietojenkisittelytieteiden laitos.

Hockey, Susan 1998. Textual Databases, in Lawler and Dry (eds.) 1998, 101-
137. o

Hoﬂand, Knut 1995. 4 Program for Aligning English and Norwegian
Sentences. Paper from ALLC/ACH’95, Santa Barbara, July 11-15,
1995.

Eeva Marin 190

Hofland, Knut 1997. From sentence alignment to word alignment. Paper
presented at the Fourth Nordic Symposium on text-based contrastive
studies, 25-27 April 1997.

ICAME (International Computer Archive of Modern and Medieval English)
(homepage). <http://nora.hd.uib.no/icame.html> undated (Accessed 8
Jun. 1999).

Iomega (homepage). <http://www.iomega.com> 1999 (Accessed spring 1999).

Jénssen, Sylvia 1992. Tracing cohesive relations in corpora samples using
dictionary data, in Leitner (ed.) 1992, 143-152.

Johansson, Stig 1986. The Tagged LOB Corpus: User’s Manual. Bergen:

Norwegian Computing Centre for the Humanities.

Johansson, Stig and Jarle Ebeling 1994. The English-Norwegian Parallel
Corpus: Introduction and Applications. Paper submitted to The
XXVIII International Conference on Cross-Language Studies and
Contrastive Linguistics, Rydzyna, Poland, December 15-17, 1994.

Johansson, Stig and Knut Hofland 1998. The Translation Corpus Aligner: A
program for automatic alignment of parallel texts, in Johansson and
Oksefjell (eds.) 1998, 87-100.

Johansson, Stig and Signe Oksefjell (eds.) 1998. Corpora and Cross-linguistic
Research: Theory, Method and Case Studies. Amsterdam: Rodopi.

Johansson, Stig, Jarle Ebeling and Knut Hofland 1996. Coding and aligning the
' English-Norwegian Parallel Corpus, in Aijmer et al. (eds.) 1996, 87-
112.

Jyvdskylin yliopiston kirjaston tutkielmapankki (homepage). <http://
docuweb.jyu.fi> undated (Accessed 8 Jun. 1999). -

Kahrel, Peter, Ruthanna Barnett and Geoffrey Leech 1997. Towards Cross-
Linguistic Standards or Guidelines for the Annotation of Corpora, in
Garside et al. (eds.) 1997, 231-242.

Eeva Marin 191

Kay, Martin and Martin Roscheisen 1993. Text-Translation Alignment, in
Armstrong (ed.) 1993, 121-142.

Kiianmies, Matti 1995. Windows 3.11 Askel askeleelta. Jyviskyld: Suomen
ATK-kustannus Oy.

Kivimaki, Jyrki and Kimmo Rousku 1996. Windows 95 — tehokdyttdjiin opas, -
osa I. Jyvaskyld: Suomen ATK-kustannus Oy.

Kurzweil, Ray 1996. Why I am Building Reading Machines Again.
' <http://www.kurzweiledu.com/readingmachinesl.html> 19 Jun. 1998
(Accessed 9 Dec.1998).

Lauridsen, Karen M. 1996. Text corpora and contrastive linguistics: Which
type of corpus for which type of analysis? in Aijmer et al. (eds.) 1996,
63-71.

Lawler, John and Helen Aristar Dry (eds.) 1998. Using Computers in
Linguistics — A Practical Guide. London: Routledge.

Lawler, John M. 1998. The Unix™ language family, in Lawler and Dry (eds.)
1998, 138-169.

Leech, Geoffrey 1993. Corpus Annotation Schemes, Literary & Linguistic
Computing 8(4), 275-281.

Leech, Geoffrey 1997a. Introducing Corpus Annotation, in Garside et al. (eds.)
1997, 1-18.

Leech, Geoffrey 1997b. Grammatical Tagging, in Garside et al. (eds.) 1997,
19-33.

Leech, Geoffrey and Elizabeth Eyes 1997. Syntactic Annotation: Treebanks, in
Garside et al. (eds.) 1997, 34-52.

Leech, Geoffrey and Steven Fligelstone 1992. Computers and Corpus Analysis,
in Butler (ed.) 1992, 115-140.

Eeva Marin 192

Leech, Geoffrey, Tony McEnery and Martin Wynne 1997. Further Levels of
Annotation, in Garside et al. (eds.) 1997, 85-101.

Leech’s Maxim’s of Annotation. <http://www.ling.lancs.ac.uk/monkey/ihe/
linguistics/corpus2/2maxims.htm> undated (Accessed 19 Aug. 1998).

Leitner, Gerhard (ed.) 1992. New Directions in English Language Corpofa: :
Methodology, Results, Software Developments. Berlin: Mouton de
Gruyter.

Manual to the Diachronic Part of the Helsinki Corpus of English Texts —
Coding Conventions and List of Source Texts.
<http://www.helsinki.fi/hum/eng/projects/manuaali.html> undated
(Accessed 25 Nov. 1997)

Marcus, Mitchell P., Beatrice Santorini and Mary Ann Marcinkiewicz 1993.
Building a Large Annotated Corpus of English: The Penn Treebank,
in Armstrong (ed.) 1993, 273-290.

Mauranen, Anna 1997. Introduction to Corpus Linguistics. A course given at
the University of Jyviskyld, Department of English, 3 and 10"
October 1997.

McEnery, Tony and Andrew Wilson 1996. Corpus Linguistics. Edinburgh:
Edinburgh UnjVersity Press.

McEnery, Tony and Michael Oakes 1996. Sentence and word alignment in the
CRATER Project, in Thomas & Short (eds.) 1996, 211-231.

McEnery, Tony and Paul Rayson 1997. A Corpus/Annotation Toolbox, in
Garside et al. (eds.) 1997, 194-208.

Meyer, Charles F. and Richard L. Tenney 1993. Tagger: An Interactive
Tagging Program, in Souter & Atwell (eds.) 1993, 25-36.

Part-of-speech Annotation: An Example. <http://www.ling.lancs.ac.uk/

monkey/ihe/linguistics/corpus2/2posex.htm> undated (Accessed 1
Dec.1998).

Eeva Marin 193

Patten, Terry 1992. Computers and Natural Language Parsing, in Butler (ed.)
1992, 29-51.

Pennington, Martha C. and Vance Stevens (eds.) 1991. Computers in Applied
Linguistics: An International Perspective. Clevedon: Multilingual
Matters Ltd.

Peters, Carol and Eugenio Picchi. Bilingual reference corpora for translators
and translation studies. <http://www.ilc.pi.cor.it/dbt/art_comp.htm>
undated (Accessed 17 Mar. 1997).

Raumolin-Brunberg, Helena 1997. Incorporating sociolinguistic information
into a diachronic corpus of English, in Hickey et al. (eds.) 1997, 105-
118.

Rogers, Henry 1998. Education, in Lawler and Dry (eds.) 1998, 62-100.

Roponen, Seppo and Timo Harmo 1991. Sind ja tietokone: tietokonetietoa

humanisteille. Helsinki: Gaudeamus.

Sampson, Geoffrey 1991. Analysed Corpora of English: A Consumer Guide, in
Pennington & Stevens (eds.) 1991, 181-193.

Sanches Leén, Fernando and Amalio F. Nieto Serrano 1997. Retargeting a
Tagger, in Garside et al. (eds.) 1997, 151-165.

Simons, Gary F. 1998. The Nature of Linguistic data and the requirements of a
computing environment for linguistic research, in Lawler and Dry

(eds.) 1998, 10-25.

Sinclair, John 1991. Corpus, Concordance, Collocation. Oxford: Oxford

University Press.

Smith, Nicholas 1997. Improving a Tagger, in Garside et al. (eds.) 1997, 137-
150.

Souter, Clive and Eric Atwell (eds.) 1993. Corpus-based Computational
Linguistics. Amsterdam: Rodopi.

Eeva Marin 194

Sperberg-McQueen C. M. and Lou Burnard 1994. Guidelines for Electronic
Text Encoding and Interchange (TEI P3) Vol I. Chicago-Oxford:
ACH, ACL and ALLC.

Stubbs, Michael 1994. Grammar, Text and Ideology: Computer-assisted

Methods in the Linguistics of Representation. Applied Linguistics
15/2: 201-223.

Thomas, Jenny and Mick Short (eds.) 1996. Using Corpora for Language

Research. London: Longman.

UCREL. CLAWS part-of-speech tagger. <http://www.comp.lancs.ac.uk/ucrel/
claws/> undated (Accessed 8 Jun. 1999).

UCREL. Corpus Annotation. <http://www.comp.lancs.ac.uk/ucrel/annotation.
html> undated (Accessed 19 Aug. 1998).

W3 Corpora (homepage). <http://clwww.essex.ac.uk/w3c/> 1998 (Accessed
spring 1999).

W3 Corpora. Corpus Linguistics Software. <http://clwww.essex.ac.uk/w3c/

corpus_ling/content/software.html> June 1998 (Accessed 8 Jun.
1999).

Wilson, Andrew and Jenny Thomas 1997. Semantic Annotation, in Garside et
al. (eds.) 1997, 53-65.

Wilson, Andrew and Paul Rayson 1993. The Automatic Content Analysis of
Spoken Discourse: A Report on Work in Progress, in Souter & Atwell
(eds.) 1993, 215-226.

WordSmith Tools 3.0 (English Language Teaching Catalogue, Oxford

University Press). <http://wwwl.oup.co.uk/elt/cataloguw/multimed/
4589846/4589846.html> undated (Accessed 8 Jun. 1999).

WordSmith Tools 3.0 (screenshot: Concord: A Concordance).

<http://www1.oup.co.uk/elt/catalogu/multimed/4589846/screenl/text
1.html> undated (Accessed 8 Jun. 1999).

Eeva Marin 195

Voutilainen, Atro and Juha Heikkild 1994. An English Constraint Grammar
(ENGCGQG): a surface-syntactic parser of English, in Fries et al. (eds.)
1994, 189-199.

Eeva Marin

Appendix 1

APPENDIX 1: CONCORDANCE OF BLUE

Concordance of the word blue, sorted by the first word to the right of the

central word.

WordSmith Tools Concordancer

16:43,

BLUE
31.05.1999

134 entries in total. Windows ANSI format.
search word: BLUE

sort:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
138
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1st word to right then

e, too. Women should never wear blue
his eyes, that are of a vacant blue
an. I was a bit blue, and being blue
ole painted terracotta and deep-blue
indows smouldering. It was that blue
een, the newly cxtended kitchen blue
roadside diners from the 1950s. Blue

‐ it 's too innocent a

almost as if he were blind,

always makes me satirical, s
and Chinese-yellow, with pol
and red, that blue especiall
and russet and cream. "Why i
and green neon spells the na

before realising that the red, blue and orange computer men repr

blue
blue
blue,
blue,

rowing all over them, green and
droom where a truly magnificent
e, painted grey. The carpet was
xited with Gillian. I was a bit
up the caterpillars, which are
en she pulled on a light fluffy
see the country, and we sure in
f-naked body. Now she takes the
ly away and reaches for another
mirror and one of the minuscule
ped pine of the dresser and the blue
else, and I said it out of the blue,
d wear the distinctive electric-blue
woman, was resplendent in pale-blue
e nephew fills his glass from a
mdash; she was wearing a bright
atalie. She had put on her best

It was that blue and red, that
ky and flaxen-haired, with cold
ely pale oval madonna face with
continue straining your lovely
trudged through icy snow. Blank
. And this old woman's freakish
t-chested and had pale skin and
e? The gentle pity in the faded
ell, but at least the prominent
s to them, even when his wvacant
owever, he stared down with his
oyish looks, fluffy blond hair,
he colour of her somewhat blank
in the metropolis. But his baby
me through them, which made her
s her head; at which his vacant
accident,"” said Alice, and her
ng look in both pairs of bright
sh face, the soft skin, the shy
me man with wavy brown hair and
y was n't Daddy. He had Daddy's

blue
blue
blue
blue
blue

blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue
blue

blue-

blue-

and yellow. Kevin dared Jame
and yellow parrot sat in a t
and the walls were baby blu
and being blue always makes
striped, and velvety and coo
angora jumper. She had thin
blazes are seeing it now. No
bottle and moistens a corner
bottle. That has a goose qui
bottles, stoppered with a co
bowl of orange marigolds and
but in my mind it was as if
cap bands, shoulder boards a
chiffon and cloth of silver,
and-white china decanter of
dress from the early days of
dress with the wide white co
especially, I felt in need o
eyes and a sharp chin. I had
eyes and her hair was light-
eyes and end up bumping into
eyes stared at the old man w
eyes had turned it into some
eyes and long fingers. Her h
eyes robbed Mattie of the an
eyes had not been veiled. Th
eyes were on Farthing and he
eyes at the old table just b
eyes and shy smile, Billy wa
eyes ‐ I tell you, litt
eyes missed very little. Bef
eyes look huge. "You could n
eyes look away from her brow
eyes opened wide with fancie
eyes, she concealed them. Te
eyes, the warm damp lips. Al
eyes, straight nose and stro
eyes, Daddy's dark brown hai

Eeva Marin Appendix 1

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

o dangerous. Cold and murderous blue eyes. He had really wanted t
straight nose and bright, pale blue eyes. She had never known an
edulously into a pair of watery blue eyes. "What you gapin' at?
rom remarkable, slanted, violet-blue eyes. Standing over her, he
t meeting. She had been wearing blue faded jeans, and a white swe
d clothes. Spitting that Maid's blue flame right in the face and
avelling through the air like a blue flame, killing her victims s
to boil on the hissing ring of blue-and-~orange flames. "Twins,"
ug beside her. He was wearing a blue fleecy sleeping suit embroid
n — " She gestured at the blue frills of her nylon nightgow
nuine Austrian princess, a real blue-blood from the House of Habs
rward, widening her pale bright blue give-away impenetrable eyes
There are some small and corked blue glass bottles also; a comb,
ines of the olive-dun and grape-blue hills punctuated by saffron
d it? Flying, flying across the blue hills and crystal lakes and
joyous bells far off beyond the blue hills, beyond the green mead
r if it comes to that, but in a blue Honda he finds the keys tuck
ght eye was green, her left eye blue. I 'd seen a white cat like
had to unfreeze the pipes with blue-flames. In the beginning we
-green, lemon-yellow, and berry-blue. In its polished metal and P
t day in early July, the sky so blue it made his eyes ache. He re
better. Then, quite out of the blue, it is discovered by one of
simmering greens. Lovella wore blue jeans and a plain white tee
s, almost into a bonnet, by the blue kissing-ribbons beneath her
propped up in bed and wearing a blue lacy nightgown, smiled at hi
l1id into her unconscious like a blue laser and exposed secrets th
eet encased in good, dull, dark-blue leather loafers. She knew ex
ght of space and blackness, the Blue Life Lounge huddles like a r
hat across the highway from the Blue Life Lounge is a motel where
8 In the Blue Life Lounge, a woman brushes
e highway from the motel to-the Blue Life Lounge and gets in his
e and my windows flickered with blue light, tree branches illumin
s and white stocks for morning, blue liveries with brass buttons
ist in his hand murmured to the blue-eyed man and the smiling, be
nt of Daddy's thumb, with faint blue markings on his carapace. Sh
, maybe nine by nine, with four blue molded-plastic chairs hooked
small piece of bread. "Blimmin' blue,” muttered Tom to himself as
vanished round a corner where a blue neon sign said, "Bar E1l Nido
ves, just like that, out of the blue. No, usually if you want thi
ernoon sun against the crinkled blue of the sea and, breasting a
ing undefined; except the eyes. Blue, of course. Not very large a
They were already known to be blue-whites, once also called Top
hristmas tree lights, yellow or blue or green. These are called "
hair dyed straw-blonde or baby-blue, or, even more startling aga
r feet were painted with indigo-blue patterns. She gave each of t
He wore dark corduroys, a navy blue pea jacket, and a fisherman'
wearing grey slacks and a dark~blue plaid shirt, packing our foo
sessed. Tonight he wore a faded blue polka-dot cravat at his thro
an sprint to a large silver and blue Road King, which he enters t
dress of dark blue satin, and a blue rose at the apex of her deco
herself between a lady in royal-blue ruffles with a fan and casta
if she could come get the navy blue rug from the dining room. "N
rug from the dining room. "Navy blue rug," Macon repeated. (He wa
wn her chin, it was matting her blue sailor dress, blood, oh dear
ess and wearing a dress of dark blue satin, and a blue rose at th
at was the Countess of Powis in blue satin, diamond-embroidered;
dinner at Dunbarton, out of the blue, she decided it could n't be
ter was easing off the bone and blue skin. "I am not from the Peo
on. A soft June morning with a blue sky and a gentle breeze: Six
bright for safety, with a pale blue sky arching much too high ab
the end of its tiny tunnel. Ice-blue sky, yellow dumps, black vel

Eeva Marin Appendix 1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

ng clouds which had crowded out blue sky, leaving only an occasio
in white clouds sail across the blue sky. Small birds flew by ove
were differently shaped, large blue spheres with, above them, st
were to the wisdom of a yellow, blue-eyed spirit who had foreseen
d navy school uniform skirt and blue striped blouse, which passed
mdash; a small man waited, in a blue suit. He carried a placard w
ir driver, similarly dressed in blue suits, with gold teeth and a
of a tyrannical conductor in a blue swallow-tailed coat, were fi
old biddy. I pull on my powder-blue sweatsuit, my disguise as a
was streaked now with midnight blue, the surrounding tissue a ra
Meissen imitations of K'ang Hsi blue-and-white: the porcelain his
ly have helped that I was a bit blue. The fact that they reserved
at topaz. Such a beautiful deep blue they 'd made it, when it mus
he used it, which was seldom. A blue threadbare carpet was spread
range, Harriet's room, with its blue-striped ticking curtains cho
ut on her eye make-up. That was blue, too. Women should never wea
e, least of all a fence, even a blue-chip top-of-the-market fence
She blew it up for me. It was blue, translucent, round, like a
ly striped with red, yellow and blue under the turning lights. Wi
colors on a matte board: cobalt blue, violet, and rose bleeding t
burnt-orange carpet and striped blue wallpaper. However, the matt
green was more unusual, but the blue was clear and stark. The two
, Toronto the Good, Toronto the Blue, where you could n't get win
t 's most often a bolt from the blue which strikes down a good wi
s blue, and the walls were baby blue with white trim: the decor o
y call Black Irish: darkhaired, blue-eyed, with (perhaps) a strea
he steps in her ankle boots and blue woollen dress, and stood shy

FEeva Marin Appendix 2

APPENDIX 2: TCE PRINTOUT

Tce printout, search word blue. Note that the program has inserted -tags
around each occurrence of blue in order to highlight the items that were found.
The program sometimes makes errors with them; in some cases, the tags have

been applied to an adjacent word, not to the search word blue.

<s id=MAl.2.1.s21 corresp=MAlT.2.1.s520>First prize a week in

Toronto, second prize two weeks in Toronto, Toronto the Good,

Toronto the Blue, where you could n't get wine on Sundays.</s>
<s 1d=MAl1T.2.1.s520 corresp=MAl.2.1.s21>Ensimmdinen palkinto

viikko Torontossa, toinen palkinto kaksi viikkoa Torontossa,
Mainiossa Torontossa, Sinisessd Torontossa, missd ei saanut

viinid sunnuntaisin.</s>

<s id=MA1.2.3.s32 corresp=MAlT.2.3.s532>It was blue,
translucent,

round, like a private moon.</s>

<s id=MAl1T.2.3.s32 corresp=MAl.2.3.s32>Se oli sininen, lé&pikuultava
ja py6red, kuin ikioma kuu.</s>

<s id=MAl.2.3.s39 corresp=MAlT.2.3.s39>The motel is the kind

we 're used to: a row of cottages, flimsily built, strung together
with Christmas tree lights, yellow or blue or green.</s>

<s 1d=MA1T.2.3.539 corresp=MAl.2.3.s39>Motelli on niitd joita

me yleensdkin k8ytdmme: rivi hataratekoisia mokkej& jotka on
yhdistetty toisiinsa joulukuusenlampuilla, <pb n=46> keltaisilla
ja punaisilla ja vihreilld.</s>

<s id=JB1.1.s127 corresp=JBFl.1.s125>A soft June morning with
a blue sky and a gentle breeze.</s>

<s id=JBF1.1.s125 corresp=JBl.1l.sl27>Lemped kesadkuun aamu,
sininen taivas ja kevyt tuulenhenki.</s>

<s id=JBl.2.s261 corresp=JBF1.2.s5248>I was a bit blue,
and being blue always makes me satirical, so I expect the odd
unfair jest might have escaped my lips.</s>

<s id=JBFl.2.s5248 corresp=JBl1.2.s5261>01lin hiukan alakuloinen,
ja alakulo tekee minut aina sarkastiseksi, joten huuliltani
on saattanut karata muutama epdoikeudenmukainen ivapuhe.</s>

<s id=JBl1.2.s261 corresp=JBFl1.2.s5248>I was a bit blue, and being
blue always makes me satirical, so I expect the odd unfair
jest might have escaped my lips.</s> o

<s i1d=JBF1l.2.s5248 corresp=JBl.2.s261>0lin hiukan alakuloinen,

ja alakulo tekee minut aina sarkastiseksi, joten huuliltani

on saattanut karata muutama epdoikeudenmukainen ivapuhe.</s>

<s id=JBl.3.s51 corresp=JBF1l.3.s50>We 'd been discussing something

Eeva Marin Appendix 2

else, and I said it out of the blue, but in my mind it
was as if we 'd just been talking about Oliver, and the way

she answered, as if she thought we 'd just been talking about
Oliver too and there was n't any break in that conversation
even though we 'd been through lots of different subjects in

the meantime, made me feel very cheerful.</s>

<s 1id=JBF1l.3.s50 corresp='JB1l.3.s50 JB1.3.s51'> "Kaytatko sini
meikki&d?" Olimme puhuneet jostain aivan muusta ja kysymys tuli
kuin salama kirkkaalta taivaalta, mutta minusta tuntui, ettd
olimme juuri puhuneet Oliverista, ja Gillianin tapa vastata,
ik&4n kuin h&nestdkin tuntuisi, ettid olimme juuri puhuneet Oliverista
ja keskustelu jatkuisi siitd saumattomasti - vaikka tosiasiassa
olimme k&yneet ldpi jo lukuisia muita aiheita - teki minut hyvin
iloiseksi.</s>

<s id=JB1.3.s196 corresp=JBFl.3.s191>Looking back, it might
actually have helped that I was a bit blue.</s>

<s id=JBFl.3.s191 corresp=JBl1.3.s196> Kun nyt muistelen sita
aikaa, luulen, ettd minun hienoinen alakuloni oli oikeastaan
avuksi.</s>

<s id=WB1.2.sl141l corresp=WB1T.2.s142>Tonight he wore a faded
blue polka-dot cravat at his throat which set off his

tan admirably.</s>

<s id=WB1T.2.s8142 corresp=WBl.2.s141>Sind iltana h&nelléd oli
kaulassaan haalistunut sinipilkullinen solmio, joka toi rusketuksen
esiin suorastaan ihailtavasti.</s>

<s id=WB1.2.3.s527 corresp=WB1T.2.3.s28> He had a long, straight
nose and bright, pale blue eyes.</s>

<s id=WB1T.2.3.s28 corresp=WB1.2.3.s27> John Clearwaterilla
oli pitk&d suora nenid ja kirkkaat vaaleansiniset silmit.</s>

<s id=ABR1.1.1.s146 corresp=ABRF1.1.1.s143>It was that blue
and red, that blue especially, I felt in need of now, a need

as real as that of the body when it craves fresh fruit, or vitamins,
or chastity, or sex.</s>

<s id=ABRF1.1.1.s5143 corresp=ABR1.1.1.sl146>Juuri sitd sinista

ja punaista, etenkin sinist&, tunsin nyt tarvitsevani, tarve

joka oli yhtd todellinen kuin ruumiilla kun se kaipaa tuoretta
hedelm&da tai vitamiinia, siveyttd tai seksid.</s>

<s id=ABR1.1.1.s146 corresp=ABRF1.1.1.s5143>It was that blue
and red, that blue especially, I felt in need of now,

a need as real as that of the body when it craves fresh fruit,
or vitamins, or chastity, or sex.</s>

<s id=ABRF1l.1.1.s143 corresp=ABR1.1.1.s146>Juuri sit& sinistéa
ja punaista, etenkin sinist&, tunsin nyt tarvitsevani, tarve-
joka oli yhtd todellinen kuin ruumiilla kun se kaipaa tuoretta
hedelm#a tai vitamiinia, siveyttd tai seksia.</s>

<s id=ABR1.1.1.s691 corresp=ABRF1.1.1.s5682>Then, quite out of
the blue, it is discovered by one of the most exciting
younger French directors, Francois Masson, Paul is invited to
write the scenario, the film takes Cannes by storm, and suddenly

Eeva Marin Appendix 2

Paul finds himself established.</s>

<s id=ABRF1.1.1.s5682 corresp=ABR1.1.1.s5691>Sitten aivan yll&dttden
siihen iskee silmansd yksi jannitt&vimmistd nuorista ranskalaisista
ohjaajista, Francoise Masson, Paulia kehotetaan kirjoittamaan
kdsikirjoitus, elokuva valloittaa Cannesin yhdelld rysiyksells,

ja dkki&d Paul huomaa olevansa tunnettu mies.</s>

<s id=ABR1.1.1.s751 corresp=ABRF1.1.1.s5742>In Germany they later
portrayed the Plague as a maid travelling through the air like

a blue flame, killing her victims simply by raising an
arm.</s>

<s id=ABRF1.1.1.s5742 corresp=ABR1l.1.1.s751>Saksassa rutto kuvattiin
myShemmin neidoksi, joka matkasi ilman halki kuin sininen liekki

ja tappoi uhrinsa vain k&ttd kohottamalla.</s>

<s id=ABR1.1.1.5936 corresp=ABRF1.1.1.s5927>Spitting that Maid's
blue flame right in the face and saying: "Come on, I

dare you!"'</s>

<s id=ABRF1.1.1.s5927 corresp=ABR1.1.1.s5936>Sylked sen Neidon
sininen liekki pédin silmid ja sanoa: 'Kdy paddlle jos uskallat!'"</s>

<s id=BCl.6.s172 corresp=BClT.6.s176>The four fat Party Members,
at whom this outburst was directed, were far too busy to notice:
they were ogling their second helping of trout whose flesh,

at that moment, the waiter was easing off the bone and blue
skin.</s>

<s id=BClT.6.s176 corresp=BCl.6.s172> Nelj&alla lihavalla
puolueen

jdsenelld, joille tdma purkaus oli suunnattu, el ollut aikaa
kuunnella; he ahmivat silmilla&n toista taimenannostaan, jonka
lihaa tarjoilija juuri silla hetkelld irrotteli ruodosta ja
sinisestd nahasta.</s>

<s id=BC1.13.s58 corresp=BC1lT.13.s58>The monkeys wore ruffs

and powdered wigs -and, under the baton of a tyrannical conductor
in a blue swallow-tailed coat, were fiddling and scraping,
trumpeting, strumming and singing: in mockery of Count Briihl's
private orchestra.</s>

<s id=BClT.13.s558 corresp=BC1l.13.s58> Apinoilla oli yll&aan
royvheloita

ja puuteroitu peruukki, ja siniseen haarapasskytakkiin
sonnustautuneen

itsevaltaisen kapellimestarin puikon johdolla ne <pb n=54>
vinguttivat

ja kitkuttivat, toitottivat, ndppdilivit ja lauloivat —
pilkkasivat kreivi Brithlin yksityisorkesteria.</s>

<s id=BC1.20.s3 corresp=BClT.20.s3>The carpet was blue,
and the walls were baby blue with white trim: the decor of the
nursery, of the fresh start.</s>

<s id=BC1T.20.s3 corresp=BCl.20.s3>Matto oli sininen ja
vaaleansinisisséa

seinissd oli valkoiset reunukset; lastenhuoneen sisustus, uuden
alun sisustus.</s>

Eeva Marin Appendix 2

<s 1d=BCl1.20.s3 corresp=BC1lT.20.s3>The carpet was blue, and

the walls were baby blue with white trim: the decor of
the nursery, of the fresh start.</s>

<s id=BC1T.20.s3 corresp=BCl.20.s3>Matto oli sininen ja
vaaleansinisissa

seinissd oli valkoiset reunukset; lastenhuoneen sisustus, uuden
alun sisustus.</s>

<s 1d=BC1.20.s37 corresp=BClT.20.s37>The curtain rose on Lucienne
Boyer, "La Dame en Bleu": a compact and rounded woman, approaching
fifty yet apparently ageless and wearing a dress of dark blue
satin, and a blue rose at the apex of her decollet,.</s>

<s id=BC1lT.20.s37 corresp=BC1l.20.s37> Esirippu nousi ja sen
takaa ilmestyi Lucienne Boyer, <foreign lang=fr>La Dame en Bleu
</foreign>; kiinted ja pydred nainen, joka ldhenteli viittdkymments,
mutta néytti isdttoémiltd, ylldsdn tummansininen satiinipuku ja
kaula-aukon pohjukassa sininen ruusu.</s>

<s 1d=BCl1.20.s537 corresp=BClT.20.s37>The curtain rose on Lucienne
Boyer, "La Dame en Bleu": a compact and rounded woman, approaching
fifty yet apparently ageless and wearing a dress of dark blue

satin, and a blue rose at the apex of her decollet,.</s>

<s 1id=BC1lT.20.s37 corresp=BC1.20.s37> Esirippu nousi ja sen
takaa ilmestyi Lucienne Boyer, <foreign lang=fr>La Dame en Bleu
</foreign>; kiinted ja pydred nainen, joka l&dhenteli viittékymmentd,
mutta naytti isttémiltd, yll&sdn tummansininen satiinipuku ja
kaula-aukon pohjukassa sininen ruusu.</s>

<s id=RD1.4.s58 corresp=RDFl.4.s60>Fred was delighted and led
her up to his bedroom where a truly magnificent blue

and yellow parrot sat in a tall cage.</s>

<s 1id=RDF1.4.s60 corresp=RD1.4.s58>Ilahtuneena Fred ohjasi hé&net
huoneeseensa, jossa todella upea sinikeltainen papukaija kokotti
kookkaassa hdkissa.</s>

<s id=RD1.7.s89 corresp=RDF1l.7.s59>She had a lovely pale oval

madonna face with blue eyes and her hair was light-brown.</s>
<s id=RDF1l.7.s9 corresp=RDl.7.s9>H&dnelld oli suloiset kalpeat
soikion muotoiset madonnankasvot, siniset silm&t ja vaaleanruskeat
hiukset.</s>

<s id=RD01.1.51149 corresp=RDOLT.1l.s1138>Stuff was growing all
over them, green and blue and yellow.</s>

<s id=RDO1T.1.s1138 corresp=RDO1l.1.s51149>Niissd kasvoi joka
puolella jotain vihreda ja sinistd ja keltaista.</s>

<s id=MD1.1.s63 corresp=MDFl.1.s66>She leaned forward, widening

her pale bright blue give-away impenetrable eyes at him.</s>
<s id=MDF1.1.s66 corresp=MDl.l1l.s63>Kate kumartui l&hemm&ksi

ja levitti suuriksi vaalean kirkkaansiniset vilpittomé&t tutkimattomat
silminsi.</s>

<s id=MD1.1.s480 corresp=MDFl.1.s5486>In a despair of uncertainty,
she took to going round in her old navy school uniform skirt

Eeva Marin Appendix 2

and blue striped blouse, which passed without comment

for some weeks, until Hunt said, this time not unkindly, "Going
to wear those for the rest of your adult life, sweetie?"</s>

<s id=MDF1.1.s486 corresp=MD1.1.s480>Tuskaisen ep&dvarmuuden
vallassa Kate alkoi liikkua vanhassa laivastonsinisess&d koulu-
univormun

hameessa ja sinisessid raidallisessa puserossa, joihin ei pariin
viikkoon kohdistunut huomautuksia, kunnes Hunt sanoi, ja varsin
ystidvallisesti sills kertaa: "Aiotko kayttdad noita koko aikuisen
elimisi, kultaseni?"</s>

<s id=MD1.1.s680 corresp=MDF1l.1.s5685>If Evelyn felt slight misgivings
as Ted and Kate greeted one another by telling one another how

much they had heard about each other, with a challenging look

in both pairs of bright blue eyes, she concealed them.</s>

<s i1id=MDF1l.1.s5685 corresp=MD1.1.s5680> Mikdli Evelyn tunsi heikkoja
ep&ilyksid, kun Ted ja Kate tervehtivdt toisiaan sanomalla kuulleensa
toisistaan hyvin paljon, haastava ilme molemmissa kirkkaansinisisséa
silmépareissa, hin salasi sen.</s>

<s i1d=MD1.1.s683 corresp=MDFl.1.s5688>Kate, for her part, was
thoroughly looking forward to her evening; Stuart was baby-sitting
so in theory at least she would n't have to hurry back, the

spring sun was pouring through the windows onto the pale gold
wooden floor and the stripped pine of the dresser and the blue
bowl of orange marigolds and marguerites, it would be a good
dinner because Evelyn's oven unlike her own was not bought from

a junkshop and standing on a slant, the drink that Ted had poured
for her was substantial, and she was delighted to find Hugo
Mainwaring, one of her favourite recent acquaintances, who treated
her with an asexual teasing <pb n=38>gallantry that made her

feel extremely buoyant.</s>

<s id=MDFl1.1.s688 corresp=MDl.1l.s683>Kate puolestaan odotti

iltaa innostuneesti: Stuart oli lastenvahtina joten ainakaan
teoriassa hinen ei tarvitsisi kiiruhtaa heti kotiin; kevdtaurinko
paistoi ikkunoista vaalean kullanvariselle puulattialle, astiakaapin
pelkistetylle minnylle ja siniselle maljakolle jossa oli oransseja
kehakukkia ja pdivinkakkaroita; ateria olisi hyvd, silléa toisin
kuin heillsd Evelynin liettd ei ollut ostettu romukaupasta eika

se seissyt vinossa, Tedin kaatama ryyppy oli runsas ja hénta
ilahdutti tavata Hugo Mainwaring, uusi tuttava josta h&n piti

ja joka suhtautui hdneen epidseksuaalisen ja kiusoittelevan
ritarillisesti,

mikd sai h&net tuntemaan olonsa erityisen loistavaksi.</s>

<s id=DFl.2.s8313 corresp=DFFl.2.s311>Tears welled in her <pb
n=26>uncontrollably as they had earlier, and she stared at me
through them, which made her blue eyes look huge.</s>

<s id=DFFl1.2.s5311 corresp=DFl.2.s313>Kyynelet valuivat valtoimenaan
aivan kuten aiemminkin, ja h&n tuijotti minua niiden l&pi, mika

sai h&dnen siniset <pb n=33> <blankline> silmdnséa
valtavan suuren ndkdisiksi.</s>

<s i1d=DF1.2.s337 corresp=DFF1l.2.s335>Such a beautiful deep
blue

they 'd made it, when it must have been almost colourless to
begin with.</s>

Eeva Marin ' Appendix 2

<s id=DFF1.2.s335 corresp=DF1.2.s337>Ne oli saatu niin kauniin
syvinsinisiksi, vaikka ne olivat alun alkaen olleet varmaan
miltei varittoémid.</s>

<s id=NG1.2.s34 corresp=NGFl.2.s34>Blue, of course.</s>

<s id=NGF1.2.s34 corresp=NGl.2.s34>Siniset, tietysti.</s>

<s 1d=SGl.2.s108 corresp=SGFl.2.s5100>Her left eye had been blackened
not long ago and it was streaked now with midnight blue,
the surrounding tissue a rainbow of green and <pb n=12>yellow

and gray.</s>

<s id=SGF1.2.s100 corresp='SGl.2.s5107 SG1.2.s108'>Hanen yl&huulensa
oli turvoksissa kuin lapsella joka vasta opettelee pitdmdén
polkupydridd pystyssd, vasen silmd oli &skettdin isketty mustaksi

ja sitd koristi yoénsinisen ja vihredn ja keltaisen ja harmaan
sekamelska.</s>

<s id=8G1.2.s5150 corresp='SGFl.2.s138 SGFl.2.s5139'>Lovella wore
blue jeans and a plain white tee shirt wrongside out,

the Fruit of the Loom label visible at the back of her neck.</s>
<s id=SGF1.2.s5138 corresp=SGl.2.s150>H&nellad oli siniset farkut,
ja valkoinen T-paita oli v&&rinp&in niin ettd hedelménkuvat
olivat selk&dpuolella.</s>

<s id=SGF1.2.s5139 corresp=SGl.2.sl50>Paidan helma oli solmittu
vydtarén yliapuolelle.</s>

<s id=SGl.4.s6 corresp=SGFl.4.s6>The dawn was laid out on the
eastern skyline like watercolors on a matte board: cobalt
blue,

violet, and rose bleeding together in horizontal stripes.</s>

<s id=SGFl.4.s6 corresp=SGl.4.s6> Aamurusko levittdytyi it&iselle
taivaalle kuin vesivarimaalaus, toisiinsa sekoittuvina
kobolttisinisina,

violetteina ja ruusunpunaisina juovina.</s>

<s id=SGl.4.s82 corresp=SGFl.4.s80>The sunlight, intermittent

for the last hour, was now largely blocked by incoming clouds

which had crowded out blue sky, leaving only an occasional
patch, like a hole in a blanket.</s>

<s id=SGF1l.4.s80 corresp=SGl.4.s82> Viime tunnin epavakainen
auringonpaiste oli nyt peittynyt paksuneviin pilviin jotka tdyttivit
lidhes koko taivaan.</s>

<s id=SGl.4.s98 corresp=SGFl.4.s96>Her right -eye was green,

her left eye blue.</s>

<s id=SGFl.4.s96 corresp=SGl.4.s98>0ikea silm& oli vihred, vasen
~sininen.</s>

<s id=SG1l.5.s565 corresp=SGFl.5.s65>At intervals, thunder rumbled
in the distance and my windows flickered with blue light,
tree branches illuminated briefly before the room went black
again.</s>

Eeva Marin ' Appendix 2

ukkonen, ja ikkunoissa vdlkehtivad sininen valo sai puunlatvat
kuvastumaan mustina siluetteina taivasta vasten.</s>

<s 1d=S8G1.5.s159 corresp=SGFl1.5.s5157>The room was small, maybe

nine by nine, with four blue molded-plastic chairs hooked
together at the base, a low wooden table covered with old magazines,
and a television screen affixed, at an angle, up in one corner

of the room.</s>

<s id=SGF1.5.s5157 corresp=5Gl.5.s5159>Huone oli pieni, vain vajaat
kolme metrid kanttiinsa, ja sielld oli neljd sinistd muovivalutuolia,
vanhoilla aikakauslehdilld lastattu matala puupdyté@ sekd nurkassa
seindidn ankkuroitu televisio.</s>

<s i1id=SG1.5.s5171 corresp=SGFl.5.s5168>The green was more unusual,
but the blue was clear and stark.</s>

<3 1id=SGFl1.5.s5168 corresp='SGl.5.s5170 SG1.5.s171'> Kaksivérinen
katse nousi ja kohtasi omani ja huomasin miettivani pidinké
enemmidn sinisistd vaili vihreistd silmist&.Vihred <pb n=44> oli
epdtavallisempi, mutta sininen oli kirkas ja vahva.</s>

<s i1id=SK1.1.s370 corresp=SK1T.1l.s374>Her daughter turned, her
daughter turned, turned, and there <pb n=16>was blood all over
her mouth, it was down her chin, it was matting her blue
sailor dress, blood, oh dear God dear Jesus Joseph and Mary

so much <hi rend=italic>blood</hi> —</s>

<s id=SK1T.1.s374 corresp=SK1l.1.s370> Hanen tyttédrensd kdantyi
ja verta oli joka puolella, suussa, leualla, siniselld mekolla,
verta, voi hyvd Jumala, Jeesus, Joosef ja Maria, miten paljon
<hi rend=italic>verta</hi> — </s>

<s id=DKl.1l.2.s15 corresp=DK1T.1.2.s15> His room has burnt-orange
carpet and striped blue wallpaper.</s>

<s id=DK1lT.1.2.s15 corresp=DK1l.1.2.s15>Hé&nen huoneessaan on
poltetun oranssin vdrinen matto ja siniraidalliset sein&paperit.</s>

<s id=DK1.1.3.s2 corresp=DK1T.1.3.s2> He had Daddy's

blue eyes, Daddy's dark brown hair, Daddy's too-big ears, Daddy's
freckled nose; he was a dead ringer for the Martin Stillwater
pictured on the dust jackets of his books.</s>

<s 1d=DK1T.1.3.s2 corresp=DKl.1l.3.s2>H&nelld oli isdn siniset
silmi#t, is&n tummanruskea tukka, is&n liian isot korvat, isé&n
kesakkoinen nend; hdn oli sen Martin Stillwaterin kaksoisolento,
jonka kuva komeili kirjojen takakansissa.</s>

<s id=DK1.1.3.s879 corresp=DK1T.1l.3.s75> Bob was a bug, a slow-moving
black beetle as large as the last joint of Daddy's thumb, with
faint blue markings on his carapace.</s>

<s id=DK1T.1.3.s75 corresp=DK1.1.3.s879>Bob o0li hy®énteinen, -isidn
peukalonpddn suuruinen hidasliikkeinen musta kovakuoriainen,

jonka selkdkilvessd oli himmesnsinisid taplia.</s>

<s id=DK1.1.6.s2 corresp=DKIT.l.6.s2> Beneath that enormous

weight of space and blackness, the Blue Life Lounge huddles
like a research station on the floor of an ocean trench, pressurized
to resist implosion.</s>

Eeva Marin ' Appendix 2

<s id=DK1T.l1.6.s2 corresp=DKl.1.6.s2>Blue Life Lounge kyyhdétt&aa
avaruuden ja pimeyden valtavan painon alla kuin valtameren haudan
pohjalla sijaitseva tutkimusasema, jonka sis<&ma ilmanpaine
estdi sitd luhistumasta kokoon.</s>

<s id=DK1.1.6.s4 corresp=DK1T.l.6.s4>Blue and green neon
spells the name in lazy script and outlines the structure, glimmering
in the aluminum and beckoning with as much allure as the lamps

of Neptune.</s>

<s i1d=DK1T.l.6.s4 corresp=DKl.l1.6.s4>Sinist& ja vihre&d valkkyva
neonvalo riipustaa nimen laiskasti virtaavana kirjoituksena

ja piirtii rakennuksen &d&riviivat, heijastuu alumiinipinnasta

ja vilkuttaa houkuttelevasti kuin Neptunuksen lyhdyt.</s>

<s id=DK1.1.8.s1 corresp=DK1T.1.8.s1>In the Blue Life
Lounge, a woman brushes against the killer and slides on to
the bar stool beside him.</s>

<s id=DK1T.l1.8.sl corresp=DKl.1.8.s1>Blue Life Loungessa muuan
nainen koskettaa kevyesti tappajaa ja liukuu istumaan hénen
vieressidin olevalle baarituolille.</s>

<s id=DK1.1.8.s510 corresp=DK1T.1.8.s10> Heather tells him that
across the highway from the Blue Life Lounge is a motel
where, if a girl is known to the management, rooms can be rented
by the hour.</s>

<s id=DK1T.1.8.510 corresp=DKl.1.8.sl0>Heather kertoo hénelle,
ettsd valtatien toisella puolella, vastapddta Blue Life Loungea,
on motelli mistd saa vuokrata huoneita tunniksi, jos tyttd vain
on johdon tuttuja.</s>

<s id=DK1.1.8.s535 corresp=DK1T.1.8.s35> Minutes later, after
showering and dressing, he crosses the highway from the motel
to-the Blue Life Lounge and gets in his rental car.</s>

<s id=DK1T.1.8.s35 corresp=DK1l.1.8.s35>Kun tappaja on kdvaissyt
suihkussa ja pukeutunut, h&n ylittd& pari minuuttia mydhemmin
motellin ja Blue Life Loungen vdlisen valtatien ja nousee vuokrattuun
autoonsa.</s>

<s id=DK1.1.12.s9 corresp=DK1T.1.12.s9>He is prepared to hotwire
a car if it comes to that, but in a blue Honda he finds
the keys tucked behind the sun visor.</s>

<s id=DK1T.1.12.s9 corresp=DK1l.1.12.s9>H&n on varautunut tarpeen
vaatiessa kdynnist&m&&n auton virtalukon johtojen avulla, mutta
16ytasa sinisen Hondan avaimet hdikdisysuojuksen takaa.</s>

<s id=DK1.1.14.s38 corresp=DK1T.1l.14.s38>Always wanted to see
the country, and we sure in blue blazes are seeing it
now.</s> .

<s id=DK1T.1.14.s38 corresp=DKl.1.14.s38>Me ollaan aina haluttu
nihda maata, ja nyt me totta viekdsdn nahdasn.</s>

<s id=DK1.1.14.s56 corresp=DK1T.1.14.s554>Through the rippling
rain on the windshield, the killer watches the white-haired
man sprint to a large silver and blue Road King, which

Eeva Marin ‘ Appendix 2

he enters through the driver's door at the front.</s>

<s id=DK1T.1.14.s54 corresp=DKl.1.14.s56>Tappaja ndkee sateen
sumentaman tuulilasin l&api, miten valkotukkainen mies juoksee
suuren variltddn hopeanharmaan ja sinisen Road Kingin kuljettajan
puoleiselle etuovelle ja astuu sisdsdn.</s>

<s 1d=MM1.1.s5369 corresp=MMIT.1l.s5376>A blue threadbare
carpet was spread across the floor with bits of matting added

by the window and bed.</s>

<s id=MMIT.1.s376 corresp=MM1l.1l.s369>Lattialla oli ohueksi kulunut
sininen kiinted matto, johon oli lisdtty uusia paloja ikkunan

ja vuoteen eteen.</s>

<s id=MM1.2.s5168 corresp=MM1T.2.s5180>She clomped down the steps

in her ankle boots and blue woollen dress, and stood

shyly beside Willie, twisting the hem of her dress in her hand
till her knickers came into view.</s>

<s id=MM1T.2.s180 corresp=MM1.2.s5168> Tyttd tallusteli portaat
alas ja j&i seisomaan ujosti Willien viereen vé&nnellen hameenhelmaa
kdsissddn niin ettd alushousut nakyivat.</s>

<s id=MM1.3.s539 corresp=MM1T.3.s37>"Blimmin' blue," muttered
Tom to himself as he observed Willie's face.</s>

<5 id=MM1T.3.s37 corresp=MM1.3.s39> "Ettd on sininen", mutisi
Tom katsellessaan Willien naamaa.</s>

<s id=CPl.1.s76 corresp=CPlT.l.s78>He wore dark corduroys, a

navy blue pea jacket, and a fisherman's cap, and he smelled
of herring and onions.</s>

<s id=CP1lT.1.s78 corresp=CPl.1.s76>Hdnella oli tummat samettihousut,
tummansininen merimiestakki ja kalastajanlakki ja han loyhkédsi
silliltd ja sipulilta.</s>

<s id=CP1l.1.s303 corresp=CP1lT.1.s5304>She was tall and thin and
flat-chested and had pale skin and blue eyes and long
fingers.</s>

<s id=CP1T.1.s304 corresp=CPl1.1.s303> H&n oli pitkd ja laiha
ja lattearintainen, ja h&nelld oli hyvin vaalea iho ja siniset
silmat ja pitkat sormet.</s>

<s id=CP1.1.s5473 corresp=CPlT.1l.s472>He was then in his middle
thirties, a tall and handsome man with wavy brown hair and
blue

eyes, straight nose and strong chin, and a mouth given easily

to laughter.</s>

<s id=CP1T.1.s472 corresp=CPl.1.s473>H&n oli silloin noin
kolmekymmentaviisivuotias,

pitki ja komea mies, jolla oli kiharainen ruskea <pb n=30> tukka
ja siniset silmdt, suora nen& ja voimakas leuka ja suu joka
antautui helposti nauruun.</s>

<s id=CPl1.1.s5732 corresp=CP1lT.1l.s733>I sat on a bench with my
mother and watched thin white clouds sail across the blue
sky.</s>

Eeva Marin Appendix 2

<s id=CP1T.1.s5733 corresp=CPl.1.s732>Min4 istuin penkille &idin

kanssaja katselin ohuita valkoisia pilvid, joita purjehti siniselléa
taivaalla.</s>

<s id=CP1.1.s808 corresp=CPlT.1.s806>Unless you want to continue
straining your lovely blue eyes and end up bumping into
walls.</s>

<s id=CP1lT.1.s806 corresp=CPl.1.s808>Jollet halua edelleen rasittaa
kauniita sinisid silmi&si ja paatysd siihen, ettd lopulta kdvelet
péin seiniid.</s>

<s 1d=CP1.1.s911 corresp=CPlT.1l.s906>Another boy came over,

lanky and flaxen-haired, with cold blue eyes and a sharp
chin.</s>

<s id=CP1T.1.s906 corresp=CP1l.1.s911> Paikalle tuli joku toinenkin
poika, hontelo ja vaaleatukkainen; hdnelld oli kylmdt siniset
silmdt ja teridva leuka.</s>

<s id=CP1.1.s5939 corresp=CP1T.1.s5934>Cold and murderous blue
eyes.</s>

<s id=CP1T.1.s5934 corresp=CPl.1.s5939>Kylmidt ja murhanhimoiset
siniset silm&t.</s>

<s id=CP1.1.s1271 corresp=CP1lT.1.s1258>It seemed to come from
the earth itself, a low enthralling tinkle of sound, like joyous
bells far off beyond the blue hills, beyond the green
meadows, far, far away.</s>

<s id=CP1T.1l.s1258 corresp=CPl.1.s1271>Se tuntui tulevan suoraan
maasta, tuo lumoava hiljainen helind joka oli kuin iloista
kellojensoittoa

kaukana sinisten vuorten toisella puolella, vihreiden niittyjen
toisella puolella, kaukana, hyvin kaukana.</s>

<s id=CP1.1.s1326 corresp=CP1T.1.s1311>Flying, flying across

the blue hills and crystal lakes and sunlit meadows of

my enchanted land.</s>

<s id=CP1T.1l.s1311 corresp=CPl.1.s1326>Se lensi lentdmdstd p&&dsty&didn
yli sinisten vuorien ja kristallinkirkkaiden j&rvien ja aurinkoisten
niittyjen minun lumotussa maassani.</s>

<s id=ST1.1.1.s6 corresp=STFl.1l.1.s6>The Queen watched with
amused incomprehension for a while, before realising that the
red, blue and orange computer men represented the present
composition of the House of Commons.</s>

<s id=STFl.1l.l1l.s6 corresp=STl.1l.1.s6>Kuningatar tuijotti ruutua
huvittuneen pdllamystyneend, kunnes tajusi ettd punaiset, siniset
ja oranssit tietokoneukot esittivdt parlamentin alahuoneen
senhetkista

kokoonpanoa.</s>

<s id=S8ST1.1.9.s8152 corresp=STFl1.1.9.s157>He 'd seen her photograph
in the paper every day, but nothing had prepared him for the

fresh face, the soft skin, the shy blue eyes, the warm
damp lips.</s>

Eeva Marin Appendix 2

<s id=STF1.1.9.s5157 corresp=ST1.1.9.s5152>H&n oli ndhnyt Dianan
kuvan lehdessid joka pdivi, mutta mik&in ei ollut valmistanut
hadnt& t&mén raikkaille kasvoille, pehmedlle iholle, ujoille
sinisille silmille ja l&mpimille kosteille huulille.</s>

<s id=J0T1.1.1.s125 corresp=JOT1T.1.1.s121>The stairwell was
yellow and white, the sitting <pb n=9> room deep-green, the
newly cxtended kitchen blue and russet and cream. </s>

<s id=JOT1T.1.1.s121 corresp=JOT1.1.1.s125>Portaikko oli keltainen
ja valkoinen, olohuone syvdn vihre&, vasta laajennettu keittio
sininen, punertavan ruskea ja kermanvaalea.</s>

<s id=J0T1.1.2.s126 corresp=JOT1T.1.2.s5125>"I mean — "
She gestured at the blue frills of her nylon nightgown.</s>

<s id=JOT1T.1.2.s5125 corresp=JOT1l.1.2.s1l26>"Tarkoitan ettd —
" Han viittasi nailonaamutakkinsa sinisiin réyheléihin.</s>

<s id=J0T1.1.3.s75 corresp=JOT1T.1.3.s72>At Seville Airport
— battered and abandoned-looking like all minor airports
— a small man waited, in a blue suit.</s>

<s id=JOT1T.1.3.s872 corresp=JOT1.1.3.s75>Sevillan lentoasemalla,
joka oli rénsistynyt ja hylatyn ndkdinen kuten kaikki pienet
lentoasemat, odotti sinipukuinen, pieni mies.</s>

<s id=J0T1.1.3.s132 corresp=JOT1T.1.3.s129>Would they be small
and square and energetic like their driver, similarly dressed
in blue suits, with gold teeth and an unshakeable view
of the only kind of English person who came to Spain being that
in search of sun, sangria and golf courses?</s>

<s id=JOT1T.1.3.s5129 corresp=JO0T1.1.3.s5132>0lisivatko he
pienikokoisia,

mutkattomia ja tarmokkaita kuten autonkuljettajakin, olisiko
heill&kin sininen puku, kultahampaat ja vankkumaton ké&sitys,
ettd kaikki Espanjaan tulevat englantilaiset hakivat sieltéa
aurinkoa, sangriaa ja golfkentti&g?</s>

<s id=J0T1.1.3.s5211 corresp=JOT1T.1l.3.5209>They paced slowly

by, under Frances's gaze, the dog's claws clicking on the cobbles,
and then vanished round a corner where a blue neon sign
said, "Bar El Nido" with a helpful indicating arrow.</s>

<s 1d=JOT1T.1.3.5209 corresp=JOT1.1.3.s211>He astelivat hitaasti
ohi Francesin katsellessa — koiran kynnet rapsahtelivat
mukulakivilla — ja katosivat sitten kulmauksesta, missd
sininen neontaulu julisti suuntanuolen avustamana: Bar El Nido.</s>

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

