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Generating Hyperspectral Skin Cancer Imagery using
Generative Adversarial Neural Network

Leevi Annalal*, Noora Neittaanmiki2, John Paoli®, Oscar Zaar® and Ilkka Polonen!

Abstract—1In this study we develop a proof of concept of
using generative adversarial neural networks in hyperspectral
skin cancer imagery production. Generative adversarial neural
network is a neural network, where two neural networks
compete. The generator tries to produce data that is similar
to the measured data, and the discriminator tries to correctly
classify the data as fake or real. This is a reinforcement
learning model, where both models get reinforcement based
on their performance. In the training of the discriminator we
use data measured from skin cancer patients. The aim for the
study is to develop a generator for augmenting hyperspectral
skin cancer imagery.

I. INTRODUCTION

In the northern countries, melanoma incidence is increas-
ing and the increase is predicted to continue [1]. Furthermore
the clinical accuracy of the skin lesion classification is poor,
leading to costly surgery that could be avoided [2]. There is
a need for reliable non-invasive methods for clinical use for
skin lesion diagnostics.

Hyperspectral imaging is one such potential tool, and it
has been previously used successfully in classification of
skin lesions [3], [4]. While in both articles, the results were
promising, both of the datasets used were relatively small.
Furthermore, if the models would be used in marginally
different situations, either a lengthy data-gathering process
would have to take place or the existing data could be reused
as is or through a data transformation/augmentation process.
This transformation or augmentation could be achieved by
mathematically modeling the interaction of the light and the
matter as well as the structure of the matter, but the uncer-
tainties are high and the computations complex, downgrading
the usability.

Another way to transform or augment data is through a
GAN [5]. The basic idea of the GAN is that the generator
network and the discriminator network compete in a game.
The discriminator networks task is to determine whether or
not the data given to it represents the training data or not. The
task of the generator network is to produce data similar to
the training data to trick the discriminator. The only input the
generator receives during this time is yes/no confirmations
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from the discriminator, while the discriminator is trained with
the full training data set.

GANs have been previously used in the field of medical
imaging [6]. The use cases include denoising [7], image
reconstruction [8], artifact removal [9], superresolution [10],
image synthesis [11], classification [12] and segmentation
[13]. Despite producing promising results, the field of using
GANSs in the medical field is still young, and there is lots of
room for experimenting [6].

In the more specific field of hyperspectral (medical) imag-
ing, GANs have been used in two different ways [14],
[15]. In [14], hyperspectral images of lung samples were
automatically stained using trained conditional GAN (cGAN)
[16]. In [15], Wasserstein distance was used as basis for
modifying GAN and the resulting networks were verified
using data sets from different fields of study. There are also
various different approaches to using GANs in hyperspectral
classification problems (for example [17], [18]).

The objective of this study is to provide the reader with
a minimal working example of a proof-of-concept level
data augmentation tool for hyperspectral skin cancer image
production.

II. MATERIALS AND METHODS
A. Generative Adversarial Neural Network Architecture

The used GAN was one implementation of deep convolu-
tional GAN (DCGAN) [19]. The used generator architecture
(Table I) consisted of input layer and three transposed con-
volution blocks. The first two convolutional blocks had two
3-dimensional convolutional layers, the first of which took
into account the spectral domain, and the second the spatial.
The last block had one convolutional layer, that worked in
all dimensions. Next in the blocks was batch normalisation
[20]. The last two blocks utilized striding, which in the case
of transposed convolution increases the output size which in
the end will be 40 x 40 x 40 pixels. The activation function
used in the blocks was leakyReLLU [21] and the loss function
is cross entropy between a data cube full of ones and the
generated data cube. Both the generator and discriminator
used the Adam-optimizer [22], with a learning rate of 1074,
£ =0.9, B2 =0.999, and € = 1077,

The discriminator architecture (Table II) consisted of
two blocks that contained a 3-dimensional convolution and
dropout of 0.3 [23] and an output block that contained
flattening and output layers. The activation function used
in the convolutional layers was leakyReLU and the loss
function was a sum of generator loss and cross-entropy
between data cube full of ones and training data.



TABLE 1
THE ARCHITECTURE OF THE USED GENERATOR NETWORK.

Layer Kernel/Pool Size, Filters/
Strides and Activation Units

Dense LeakyReLU 100

Batch Normalization

Conv3DTranspose (5,1,1), (1,1,1), LeakyReLU 128

Batch Normalization

Conv3DTranspose (1,5,5), (1,1,1), LeakyReLU 128

Batch Normalization

Conv3DTranspose (5,1,1), (2,1,1), LeakyReLU 64

Batch Normalization

Conv3DTranspose (1,5,5), (1,2,2), LeakyReLU 64

Batch Normalization

Conv3DTranspose (5,5,5), (2,2,2), LeakyReLU 1

Optimiser: Adam

Loss: Cross entropy

TABLE I
THE ARCHITECTURE OF THE USED DISCRIMINATOR NETWORK.

Layer Kernel/Pool Size, Filters/
Strides and Activation Units

Conv3D (5,5,5), (2,2,2), LeakyReLU 64

Dropout (0.3)

Conv3D (5.5.5), (2,2,2), LeakyReLU 128

Dropout (0.3)

Flatten

Dense 1

Optimiser: Adam

Loss: Cross entropy

B. Data Capturing and Preprosessing

Raw hyperspectral measurement data was captured at
Sahlgrenska University Hospital during 2018 — 2019, using
Revenio Prototype 2016 hyperspectral imager with spatial
resolution of 1920 x 1200 pixels and spectral resolution of
120 wavelengths. The camera uses Fabry-Pérot interferom-
eter technology [24]. All patients volunteered to participate
in the study. The study protocol followed the Declaration of
Helsinki and it was approved by the local ethics committee.
The captured dataset consists of 316 hyperspectral images
of skin. The type of lesions varies with main portion of
the images being of melanoma malignum, dysplastic nevus,
bening nevus or melanoma in situ (Table IIT). A portion of
the images have no label.

TABLE III
THE DISTRIBUTION OF LABELS IN THE USED HYPERSPECTRAL DATASET.

Label Count
Dysplastic nevus 81
Melanoma in situ 76
Melanoma malignum 65
Benign nevus 27
Others 58
Unlabeled 9

The captured raw measurement data cubes were then
processed to radiance using a fpipy Python package [25]
and downsampled to 40 x 40 x 40 pixels data cubes by
averaging. Dataset size is increased by mirroring images by
its three spatial symmetry axes, increasing the amount of
images eight-fold to 2528. This data was used in training

the generator and discriminator networks to produce similar
data and to classify the data as real or fake. Various selected
wavelength bands from the training data can be seen in
Figure 1 and a typical radiance spectrum from data can be
seen in Figure 2.
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Fig. 1.

Selected bands from training data hyperspectral image

III. RESULTS AND DISCUSSION

Generated hyperspectral images (Figure 3) shows positive
and negative patterns. All bands, except the first band at 462
nm, look similar to the measured data in texture. They are
obviously not random, and the patterns persist from band
to band. However, the lesions in the generated data tend to
have slight gradual shift, as can be witnessed in the Figure
3 right column. When one looks at the bottom right corner
of each of the three images one sees that the lesion moves
significantly to the right, in contrast to Figure 1, where the
lesion becomes a little less clear, but does not move. The
first band (Figure 3, 462 nm) shows some artefact.

Both of these problems likely have their roots in the
convolution layers. There is no data before the first layer
to convolute with. Therefore, the training affects it less. The
shift of the lesions/features may have a root in the depth of
the convolution. The convolution that addresses the layers 32
— 36 has little information on the layers 1 — 5.



The typical radiance spectrum (Figure 4) from generated
data looks similar to the typical radiance of the measured
data (Figure 2), except for the artefact that causes the
spectrum to fluctuate. This means that in the spectral domain
the orders of magnitude are correct and the wave bands are
correctly generated in that sense.

Further research of the use of GANs in the field of
hyperspectral imaging are needed. The used DCGAN could
be made deeper or wider, and different conditional GANs
[16] could be experimented with. The future training should
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0.02 1 [26]. A larger dataset should also be gathered to increase
the likelihood of succesful training. In order to achieve

450 500 550 600 65 700 750 800 850 this, one could try to experiment with a way to combine

Wavelength (nm) data from different studies and hyperspectral cameras in

a robust manner to enlarge the size of the usable data.
When the GAN produced data is judged accurate enough
repression of measured data, it can be used for example in
the training of other machine learning algorithms for tasks
such as model inversion (such as in [27]) and hyperspectral
image classification (example in the medical field [3]). There
is also need to compare the method for more traditional data
462.0 nm 469.0 nm augmentation methods.

Fig. 2. Typical radiance in the training data
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Fig. 4. Typical radiance in the generated data

IV. CONCLUSION

This study presented a proof of concept for producing
augmented hyperspectral data using GAN. The used gen-
erator network was not fine-tuned to its full potential and
in all likelihood there is much room for improvement in the
network developement as well, as the first passable iteration
was presented.

This study would have benefited from a larger hyperspec-
tral dataset. In further research, such dataset should be gath-
ered either by physically measuring or utilizing previously
gathered different datasets in novel way.

An aim for further research could be to utilize data
produced by GANS in further machine learning applications
for skin cancer diagnostics by hyperspectral data to see how
useful the generated data is. In further research there is a

582.0 nm 624.0 nm

Fig. 3. Selected bands from a generated hyperspectral image



call for using GAN-augmented data in machine learning
applications to improve the quality of the algorithm training.
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