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Abstract

In this thesis, it is shown how charge-exchange reactions and nuclear muon
capture can be utilised to probe neutrinoless double-beta (0νββ) decay,
a beyond-Standard-Model process that, for the time being, has not been
observed despite massive experimental efforts. If detected, 0νββ decay would
not only prove the existence of physics beyond the Standard Model but also
provide precious information on the yet unknown nature and mass-scale
of neutrinos. Hence, improving the theoretical description of the related
nuclear-structure physics is a crucial aid in planning the future experiments.

The 0νββ decay proceeds through virtual states of an intermediate nucleus
to the ground or excited states of the decay daughter. The decaying, the
intermediate and daughter nuclei form a so-called double-beta-decay triplet.
One way to improve the description of the related nuclear structure is fine-
tuning the nuclear-model parameters by exploiting available data on relevant
measured processes. To that end, one can study complementary nuclear
processes for which experimental data exist or are being or will be measured.
In this thesis, it is proposed that one can probe the 0νββ decay by studying
the strength distributions of charge-exchange reactions and ordinary muon
capture in the double-beta-decay triplets. By studying these nuclear processes
one can not only probe the intermediate states of the double-beta decay, but
also eventually shed light on the highly debated effective values of the weak
couplings in wide excitation-energy and momentum-exchange regions relevant
for 0νββ decay.

All the computations presented in the thesis were performed in the proton-
neutron quasiparticle random-phase approximation (pnQRPA) framework.
pnQRPA allows accommodating large no-core single-particle bases includ-
ing all the relevant spin-orbit-partner orbitals, hence providing access to
wide excitation-energy regions. Since pnQRPA has shown to be capable of
describing the gross features of the distributions of nuclear states, it is an
excellent tool for simultaneous consistent description of double beta decay,
charge-exchange reactions and muon capture.

The thesis consists of five publications and an introductory part. Articles
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[I, II] cover probing the 0νββ matrix elements by isovector spin-multipole
transitions in the key double-beta-decay triplets, and articles [III, IV, V]
probing the 0νββ decay in various ways by ordinary muon capture. In the
introductory part, the study of this thesis is set in the wider frame of weak-
interaction processes, and the theoretical formalism and results of all five
publications are twined together.



Tiivistelmä

Tässä väitöskirjassa esitetään, kuinka varauksenvaihtoreaktioita ja myonisiep-
pausta voidaan hyödyntää neutriinottoman kaksoisbeetahajoamisen (0νββ),
erään hiukkasfysiikan standardimallin ulkopuolisen prosessin, tutkimuksessa.
Tähän mennessä 0νββ-hajoamista ei olla onnistuttu havaitsemaan mittavista
kokeellisista yrityksistä huolimatta, mutta löydyttyään se paitsi todistaisi
standardimallin ulkopuolisen fysiikan olemassaolon, myös tarjoaisi arvokasta
tietoa toistaiseksi tuntemattomista neutriinon luonteesta ja massaluokasta.
Tämän vuoksi prosessiin liittyvän ydinrakennefysiikan teoreettisen kuvauksen
kehittäminen on tulevien kokeiden suunnittelun kannalta elintärkeää.

0νββ-hajoaminen etenee väliytimen virtuaalisten tilojen tytärytimen perus-
tai viritystiloille. Hajoava ydin, väliydin ja tytärydin muodostavat niinsanotun
kaksoisbeetahajoamistripletin. Yksi keino kehittää triplettiin liittyvän ydin-
rakenteen kuvausta on hienosäätää ydinmallin parametreja hyödyntämällä
saatavilla olevaa tietoa olennaisista mitatuista prosesseista. Tätä ajatellen
voidaan tutkia vastaavanlaisia prosesseja, joista on olemassa kokeellista tie-
toa tai joita mitataan parhaillaan tai tullaan mittaamaan tulevaisuudessa.
Tässä väitöskirjassa esitetään, että 0νββ-hajoamista voidaan ennustaa tutki-
malla varauksenvaihtoreaktioiden ja myonisieppauksen voimakkuusjakaumia
kaksoisbeetahajoamistripleteissä. Tutkimalla näitä ydinprosesseja pystytään
paitsi tutkimaan kaksoisbeetahajoamisen välitiloja, mutta lopulta myös va-
lottamaan kiisteltyjä heikon vuorovaikutuksen kytkentävakioiden efektiivisiä
arvoja laajoissa viritysenergia- ja liikemääränvaihtoalueissa, jotka ovat olen-
naisia 0νββ-hajoamiselle.

Kaikki tässä väitöskirjassa esitetyt laskut on tehty pnQRPA (engl. proton-
neutron quasiparticle random-phase approximation) -mallin avulla. Sen ansios-
ta laskuissa voidaan käyttää suuria yksihiukkaskantoja, joissa kaikki orbitaalit
ovat aktiivisia ja jotka sisältävät kaikki tarpeelliset spin-rata -pariorbitaalit,
mikä mahdollistaa laskujen ulottamisen laajoille viritysenergia-alueille. Koska
pnQRPA on osoittautunut kykeneväksi kuvaamaan ytimien tilojen jakaumien
yleisiä ominaisuuksia, on se erinomainen työkalu kaksoisbeetahajoamisen,
varauksenvaihtoreaktioiden ja myonisieppauksen yhtäaikaiseen yhteneväiseen
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kuvaamiseen.
Väitöskirja koostuu viidestä artikkelista sekä yhteenvedosta. Artikkeleissa

[I, II] käsitellään 0νββ-hajoamisen matriisielementtien tutkimista isovektori-
spin-multipoli -siirtymien avulla tärkeimmissä kaksoisbeetahajoamistripleteis-
sä, ja artikkeleissa [III, IV, V] käsitellään 0νββ-hajoamisen ennustamista
monin eri tavoin myonisieppauksen avulla. Yhteenveto-osiossa väitöskirjassa
tehty tutkimus kytketään laajempaan heikon vuorovaikutuksen prosessien
tutkimusalaan, sekä kaikkien viiden artikkelin laskujen teoreettinen muotoilu
ja tulokset liitetään yhteen.
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Chapter 1

Introduction

The present knowledge of particle physics is based on the Standard Model,
which is extremely successful theory of fundamental interactions and of all
known elementary particles. However, the solar-neutrino experiments [1–3]
have proven that neutrinos have a non-zero mass, which conflicts with the
Standard Model as we know it. This signifies that the Standard Model’s
perception of neutrinos is not accurate making the search of new physics
beyond the Standard Model most intriguing [4–6]. At present, the most
practical way to access not only the absolute mass-scale of neutrinos but
also the yet-to-be-determined character of the neutrino, whether it is Dirac
or Majorana, is measuring neutrinoless double-beta (0νββ) decay of atomic
nuclei [7, 8].

Double-beta (ββ) decay is a weak interaction process in which two neutrons
of the mother nucleus are transformed into protons (or vice versa), while
two electrons (or positrons) are emitted 1. There are two modes of this
process: two-neutrino double-beta (2νββ) decay and neutrinoless double-beta
(0νββ) decay. In the 2νββ decay the lepton number is conserved, hence two
(anti)neutrinos are emitted during the process, whereas in 0νββ decay no
neutrinos are emitted and the Standard Model’s lepton-number conservation
law is violated. This also means that neutrino has to be its own antiparticle,
or Majorana particle, which is not predicted by the Standard Model. These
circumstances emphasize why observing neutrinoless double-beta decay would
make a groundbreaking discovery [9].

There are numerous completed, ongoing and planned large-scale experi-
ments searching for 0νββ decay [10–19]. Despite the tremendous experimental
effort the 0νββ decay is yet to be observed. Since planning the experiments
is a formidable and high-cost task, it is of utmost importance to refine the

1The latter decay mode can be accompanied by β+/electron-capture or double electron-
capture processes.
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theoretical predictions of 0νββ decay. At present, there are lots of discrepan-
cies in the calculated values of the nuclear matrix elements involved in the
determination of the half-life of the of 0νββ decay [20] partly related to the
fact that the reaction mechanism is not entirely known [21, 22], partly due
to the shortcomings of different theoretical approaches. The discrepancies
are also subject to the model dependence due to different nuclear effective
interactions and theoretical frameworks applied. These dependences are
related to the systematic model dependence when describing any quantity
of interest. In addition, calculated quantities including the the 0νββ ma-
trix elements are often subject to statistical model uncertainties due to the
methods often employed in constraining the effective interaction parameters
from the experimental data. Nevertheless, one of the largest uncertainties are
the half-lives of 0νββ decay being proportional to the fourth power of the
debated effective value of the weak axial-vector coupling constant gA. Many
studies indicate that the experimental values of observables related to this
weak coupling are systematically smaller than the theory predictions, which
has lead to the long-standing puzzle of gA quenching [23].

One approach to improve the theoretical predictions of 0νββ decay is
fine-tuning the model parameters by exploiting available data on relevant
measured processes such as β decay, 2νββ decay, charge-exchange reactions
and charged-lepton capture. To that end, in this work we studied the strength
distributions of charge-exchange reactions and ordinary muon capture in the
isobaric triplets corresponding to the ββ decay of the key 0νββ-candidates
76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te and 136Xe. The computations were
performed in the framework of the proton-neutron quasiparticle random-phase
approximation (pnQRPA) with large no-core single-particle bases in order
to describe the strength distributions in wide-excitation regions up to about
50 MeV. By studying these strength distributions we can not only probe
the intermediate states of the double-beta decay (See Fig. 1.1), but also
eventually shed light on the unknown effective values of the weak couplings
in wide excitation-energy and momentum-exchange regions relevant for 0νββ
decay.

Where 2νββ decay proceeds only via the 1+ virtual states of the interme-
diate nucleus, 0νββ decay can access states of every possible multipolarity
Jπ [24]. The virtual Gamow-Teller (GT) transitions trough 1+ states have
typically been probed by β− or β+ type L = 0 2 charge-exchange reactions
[25–27]. Recently data on the location of the isovector spin-dipole (L = 1) gi-
ant resonances became available from charge-exchange reactions performed at
the Research Center for Nuclear Physics (RCNP), Osaka, Japan, enabling us

2L refers to the orbital angular momentum of the transition operator.
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Figure 1.1. Schematic figure of a ββ-decay triplet with the corresponding β−
type (p,n) and β+ type (n,p) charge-exchange reactions and ordinary muon
captures to the intermediate states. The dashed blue arrows refer to the virtual
transitions of the 0νββ decay trough different Jπ states.

to probe the higher-multipole virtual transitions. In article [I], we studied the
β− (β+) -type of isovector spin-dipole (L = 1) and spin-quadrupole (L = 2)
transitions from the 0+ ground states of the initial (final) even-even nuclei
of the 0νββ-decay triplets to the excited states of the intermediate odd-odd
nuclei, and in article [II], we computed the 0νββ matrix elements exploiting
the newly available data on isovector spin-dipole Jπ = 2− transitions for the
first time.

Inspired by the newly discovered muon capture giant resonance in 100Nb
[28], we computed the ordinary muon capture (OMC) strength function in
100Nb and compared it against the measured strength function in article [III]
for the first time. The computations were performed using the Morita-Fujii
formalism of OMC [29] by extending the original formalism beyond the leading
order. In articles [IV, V] of the thesis, we extended the study of article [III]
by computing the ordinary muon capture rates on the daughter nuclei of the
key 0νββ decay triplets, and finally by comparing the average muon capture
matrix elements with the corresponding 0νββ-decay matrix elements. In all
cases, we compared the obtained total muon capture rates with the Primakoff
estimates in order to shed light on the gA quenching.

The introductory part is organized as follows. In Chapter 2, we introduce
the nuclear theory tools for solving the nuclear many-body problem. In
Chapter 3, we briefly review the concept of double-beta decay. In Chapter 4,
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we outline the charge-exchange-reaction formalism and discuss the results of
articles [I] and [II]. In Chapter 5, we outline the muon-capture formalism,
discuss the results of articles [III, IV, V], and speculate on some future
prospects. Quite some emphasis is given to the theory part, not only due
to the author’s genuine interest in the subject, but also due to the updates
made to the theory developed in 1960’s. In Chapter 6, the main results of
the thesis are summarized.
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Chapter 2

Nuclear Models

We begin with the very heart of the theoretical nuclear physics: the nuclear
many-body problem and different nuclear models aiming to solve the problem.
The focus is mainly in the nuclear mean field approaches, especially in the
proton-neutron version of the quasiparticle random-phase approximation
(QRPA) being the nuclear-structure approach of our choice in the thesis.

2.1 The Nuclear Many-Body Problem

A nucleus AZXN consists of A nucleons, Z protons and N neutrons, interacting
through strong (along with weak and electromagnetic) interaction. Solving
the resulting nuclear many-body problem is one of the main goals of nuclear
physics. Accomplishing the goal is a formidable task due to the extremely
complex nature of the nuclear strong force. At low energies, such as the
nuclear excitations, the underlying theory of quantum chromodynamics (QCD)
is non-perturbative, and hence extremely difficult to solve. Nuclei are built of
nucleons that are, in turn, complex structures made of quarks, antiquarks
and gluons - hence not fundamental particles. Consequently, the strong
nuclear force is only an ’effective’ force arising from QCD and at present our
knowledge of it is restricted to models [30].

The ab initio methods are aiming at solving the non-relativistic Schrödinger
equation

H |Ψ〉 = E |Ψ〉

for all constituent nucleons and all forces between them from first principles,
or ab initio. In this framework the modeling of nuclear physics phenomena is
based on the implementation of nucleon-nucleon and three-nucleon interactions
derived from more fundamental theories, e.g. chiral effective field theory
(EFT). The Schrödinger equation is then solved either by solving the equation
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exactly for the lightest nuclei with A ≤ 5 [31], or by using new methods and
well-constrained approximations for the heavier nuclei [32]. While some ten
years ago the ab initio theories were able to reach only the very lightest nuclei
of the nuclear chart [33–35], the theories are developing in accelerating pace,
and nuclei as heavy as tin [36] have already been reached.

However, since in this study we are interested in medium-heavy to heavy
open-shell nuclei, we need to do some simplifying approximations on the
nuclear interactions. A certain widely used method is the nuclear mean field
approximation, which is discussed in the following subsection.

2.2 Nuclear Mean Field
Instead of solving the nuclear many-body problem of A strongly interacting
nucleons, we can treat the nucleus as system of weakly interacting nucleons
independently moving in an average potential created by the nucleons them-
selves, hence disregarding the mesonic or quark degrees of freedom. This is a
justified choice due to the fact that the nucleons are, on average, relatively far
apart, and thus the strong character of the nucleon-nucleon force is remarkably
reduced. There is also experimental evidence supporting the idea of such an
average potential, such as the existence of the so-called magic numbers. At
these proton and neutron numbers shell effects analogous to the shell closure
of electron shells of atoms take place, which leads to the idea of neutrons and
protons in the nucleus having a similar kind of shell structure as electrons in
an atom [37].

In the mean field approximation the nucleons in the nucleus are converted
into a system of A weakly-interacting particles. In this approximation, the
nuclear many-body Hamiltonian can be written in the form

H =
[
T +

A∑
i=1

v(ri)
]

+
[
V −

A∑
i=1

v(ri)
]

:= HMF + VRES , (2.1)

where HMF is the nuclear mean-field Hamiltonian and VRES the residual
interaction [38]. Hence, the system of strongly interacting fermions becomes
a system of non-interacting particles in an external potential v(r).

The Schrödinger equation corresponding to the mean-field Hamiltonian of
Eq. (2.1) is easily solved, since it can be separated to A identical one-particle
Schrödinger equations. However, the problem lies on determining the optimal
mean-field that would minimize the residual interaction between the particles
so that it could be treated as a small perturbation. The residual interaction
can be numerically solved from a Rayleigh-Ritz variational problem [39] by
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Figure 2.1. Schematic figure of Woods-Saxon -based mean field potentials for
protons and neutrons. The different orbitals and shells are labeled. The magic
numbers are indicated as circled numbers.

Hartree(-Fock) method, or by using a suitable phenomenological potential
[38].

Throughout this study, we use the Woods-Saxon potential with Bohr-
Mottelson [40] parametrization, which is optimized for nuclei close to the
β-stability line. However, the central potential alone does not suffice to
reproduce the experimentally observed behavior of the single-particle states.
In order to reproduce the observed shell structure and the magic numbers of
the nucleus, one has to add supplementary terms resulting from the Coulomb
force and from the spin-orbit interaction to the mean-field potential. The
origin of the spin-orbit effect is not well understood, and hence one has to
resort to a phenomenological description of it [40]. After all the needed terms
have been added to the mean-field potential, the resulting Woods-Saxon
Hamiltonian can be diagonalized by direct numerical methods, or in terms
of linear combinations of harmonic oscillator wave functions as described in
detail in [38]. In Fig. 2.1 the Woods-Saxon potentials with magic numbers,
orbitals and shells labeled are presented schematically for both protons and
neutrons. Note that the potential well is shallower for protons than for
neutrons due to the Coulomb force.

After diagonalizing the mean-field Hamiltonian, we are left with looking
for the residual interaction VRES, and diagonalizing the full Hamiltonian
of Eq. (2.1). To do this, we must first choose a suitable valence space,
where the interactions can take place. In order to reduce the computational
burden, the complete set of nuclear orbitals is often divided in three parts:
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an inert core consisting of filled orbitals of non-interacting nucleons, the
valence space, and the external space, where the orbitals remain empty. Then,
the residual interaction is defined as an effective interaction in the valence
space. This valence-space interaction is often found by using perturbative
methods starting from the nuclear-matter G-matrix interaction. In this thesis
we start from the Bonn one-boson-exchange G-matrix [41] and obtain the
two-nucleon interaction in finite nuclei by phenomenological adjustments of a
few key parameters defining the magnitudes of the corresponding two-body
interaction matrix elements.

Many nuclear theories, such as Hartree-Fock methods, nuclear shell model,
Tamm-Dancoff approximation and quasiparticle random-phase approximation
(QRPA), rely on the mean-field approximation [42]. Of these theories, espe-
cially the nuclear shell model and proton-neutron QRPA have been commonly
used in the double-beta-decay calculations. The nuclear shell model has been
used already for decades in the nuclear-structure calculations of light nuclei
[37, 38, 43]. However, the method is ineffective for medium-heavy or heavy
nuclei since the configuration spaces are usually too large to handle without
truncations in them. Hence, from now on we will focus on the QRPA method,
especially on the proton-neutron version of it, which is applicable for the
purposes of our study.

2.3 Proton-Neutron Quasiparticle Random-Phase
Approximation

The proton-neutron quasiparticle random-phase approximation (pnQRPA)
describes nuclear excitations in open-shell odd-odd nuclei in terms of proton-
neutron quasiparticle pairs. These excitations are particularly useful for
studying charge-changing reactions such as β decays and captures of charged
leptons. Even though pnQRPA often fails to reproduce the energy-level
structure of the nuclei in detail, it manages to reach high excitation energies
with reasonable computational effort and it is shown to describe the gross
features of reaction strength functions in a satisfactory way [44]. The downside
of pnQRPA theory is that it has some adjustable parameters, for example
the particle-particle interaction parameter gpp, which have a strong influence
on theoretical predictions of nuclear structure [45, 46]. The values of these
parameters are somewhat uncertain, and they need to be constrained by
experimental data.

Forming the pnQRPA states begins with the choice of proton and neutron
single-particle bases. We choose large no-core Woods-Saxon single-particle
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bases containing the orbitals up to a couple of shells above the corresponding
Fermi surfaces (the highest occupied single-particle states) for both protons
and neutrons. The large bases are needed in order to reach the giant-resonance
regions we are interested in at high energies up to 50 MeV.

In order to form the proton and neutron quasiparticle spectra needed
in the pnQRPA procedure, we follow the Bardeen-Cooper-Schrieffer (BCS)
method [38] that was originally developed by J. Bardeen, L. Cooper, and J.
R. Schrieffer [47] for the microscopic description of the superconductivity of
metals in terms of correlated electron pairs. Having noticed similar pairing
effect in nuclei, A. Bohr, B. R. Mottelson and D. Pines [48], and S. T. Belyaev
[49] come up with an idea to apply the same method to nuclei, which has
later become a standard part of the nuclear-structure calculations.

The BCS ground state of an even-even nucleus can be written in terms of
paired protons and paired neutrons in the form

|BCS〉 =
∏
α>0

(ua − vaA†α) , (2.2)

where α and a denote the quantum numbers of the orbitals as α = (a,mα)
and a = (na, la, ja), following the Baranger notation, and va and ua are the
occupation and vacancy amplitudes of orbital α, respectively.

A†α = c†αc̃
†
α (2.3)

is the pair creation operator, where c†α is the particle creation operator and
c̃α = (−1)ja+mac−α.

The BCS ground state defined in Eq. (2.2) is the vacuum for BCS
quasiparticles that are created and annihilated by the operators a†α and aα
defined by the Bogoliubov-Valatin transformation

a†α = uac
†
α + vac̃α ,

ãα = uac̃α − vac†α
(2.4)

introduced first by N. N. Bogoliuv [50], and later by J. G. Valatin [51]. Here
α̃ = (−1)ja+maa−α similarly as in the case of particle operators.

The energy of the BCS ground state of Eq. (2.2) is then minimized by
varying the parameters ua and va using the Rayleigh-Ritz method [39]. The
BCS ground state does not possess good particle number. This lack can be
mitigated by constraining the average number of nucleons in the BCS state
by the number of valence nucleons in a given even-even nucleus of interest.
This even-even nucleus can be called reference nucleus, and it is the starting
point of the pnQRPA procedure to create the states of the adjacent odd-odd
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nucleus by quasiproton-quasineutron excitations on the pnQRPA ground state
of the reference nucleus. As a result of the constrained variational problem,
one obtains the single-quasiparticle energies and the occupation amplitudes
of the BCS states as explained in detail in [38]. The lowest quasiparticle
energies of the protons and neutrons are adjusted to the empirical pairing
gaps by scaling the pairing strength parameters g(p)

pair and g
(n)
pair.

Finally we find the wave functions and excitation energies for the com-
plete set of Jπ excitations in the odd-odd nuclei by performing a pnQRPA
diagonalization in the unperturbed basis of quasiproton-quasineutron pairs
coupled to Jπ [38, 52]. The resulting pnQRPA states in odd-odd nuclei are
of the form

|JπkM〉 =
∑
pn

[XJπk
pnA†pn(JM)− Y Jπk

pn Ãpn(JM)]|pnQRPA〉 , (2.5)

where k labels the states of spin-parity Jπ, the quantities X and Y are
the forward- and backward-going pnQRPA-amplitudes, A† and Ã are the
quasiproton-quasineutron creation and annihilation operators, M is the z
projection of J and |pnQRPA〉 is the pnQRPA vacuum. The transition
densities corresponding to transitions between the 0+

gs ground state of the
even-even reference nucleus and a Jπk excited state of the corresponding
odd-odd nucleus, can then be written as

(0+
gs||[c†pc̃n]J ||Jπk ) =

√
2J + 1

[
vpunX

Jπk
pn + upvnY

Jπk
pn

]
, (2.6)

(Jπk ||[c†pc̃n]J ||0+
gs) =

√
2J + 1

[
upvnX

Jπk
pn + vpunY

Jπk
pn

]
, (2.7)

where v (u) is the BCS occupation (vacancy) amplitude in the even-even
nucleus. The formalism is explained in more detail in Refs. [38, 52]. These
transition densities can be used as inputs in computations of many kinds of
nuclear processes.

The pnQRPA Hamiltonian includes particle-hole and particle-particle chan-
nels. The particle-hole contribution is proportional to the particle-hole matrix
elements gph〈pn−1; Jπ|V |p′n′−1; Jπ〉, where Jπ is the spin-multipolarity of the
states in the intermediate odd-odd nucleus, and the particle-particle contribu-
tion is proportional to the particle-particle matrix elements gpp〈pn; Jπ|V |p′n′; Jπ〉.
Here gph and gpp are the particle-hole and particle-particle renormalization
factors correspondingly.

The values of the particle-particle and particle-hole parameters are, how-
ever, somewhat uncertain. Especially the value gpp has been under debate
since the mid 80’s. One idea was to probe the virtual transitions of 0νββ
decay by adjusting the parameter to the β− decays or electron capture (EC)
data [53, 54]. Unfortunately, the EC or β− measurements can only probe the
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Figure 2.2. Panel (a): Dependence of M (2ν) on gpp, Panel (b): Dependence of
gpp on gA, for different mass numbers. Figures: [II].

virtual transitions trought the lowest intermediate Jπ states. However, it has
turned out that the two-neutrino double-beta (2νββ) decay matrix elements
are particularly sensitive to this parameter [55–57]. An illustration of this is
shown in Fig. 2.2a, which is taken from article [II]. This phenomenon has
lead to the idea of deducing the value of the NME of the neutrino-mass mode
of 0νββ decay by fitting the gpp to the half-lives of 2νββ decay [46, 58]. This
method has been widely used in the 0νββ decay studies, see, e.g., [59, 60].

Throughout the studies of this thesis, we have used a more sophisticated
method, the so-called partial isospin restoration scheme first introduced in
[61], for fitting the particle-particle parameters of the pnQRPA: The particle-
particle parts of the pnQRPA matrices are divided into isoscalar (T = 0) and
isovector (T = 1) parts by the decomposition

gpp〈pn; Jπ|V |p′n′; Jπ〉 → gT=1
pp 〈pn; Jπ;T = 1|V |p′n′; Jπ;T = 1〉

+ gT=0
pp 〈pn; Jπ;T = 0|V |p′n′; Jπ;T = 0〉 .

(2.8)

The isovector parameter gT=1
pp is then adjusted so that the Fermi part of the

2νββ NME vanishes, and thus the isospin symmetry is partially restored.
This is a justified choice, since isospin is known to be a quite well conserved
quantum number of nuclear states. Then, we independently vary the isoscalar
parameter gT=0

pp such that the calculated NME reproduces the measured 2νββ
half-life. However, the value of gpp also depends on the chosen value of gA
(see Fig. 2.2b taken from article [II]), so the fitting has to be done for each
gA value separately.
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The particle-hole parameter gph, in turn, has traditionally been adjusted
to reproduce the phenomenological energetics of the “left-hand-side” Gamow-
Teller giant resonance (GTGR) in the 1+ channel of the calculations [24, 52,
55, 56]. This parameter value is then applied to each multipole. However,
in the article [II] we experiment also with different adjusting methods for
this parameter by utilising the newly available data on isovector spin-dipole
excitations.
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Chapter 3

Double-Beta Decay

The search for a process known as double-beta decay was first motivated by
the postulation of neutrino by W. Pauli in 1930 [62]. He proposed an electron
neutrino to explain how the energy, momentum and angular momentum in
beta decay could be conserved. Soon after that, in 1933, E. Fermi developed
the theory of β−(β+) decay mediated by weak interaction:

(A,Z)→ (A,Z + 1) + e− + ν̄e ,

(A,Z)→ (A,Z − 1) + e+ + νe ,
(3.1)

where A and Z are the mass and atomic numbers of the decaying nucleus,
e−(e+) the electron (positron), and νe(ν̄e) the electron (anti-)neutrino.

In 1935 M. Goeppert-Mayer [63] came up with the idea of double-beta
decay, in which two electrons and two electron antineutrinos are emitted
simultaneously:

(A,Z)→ (A,Z + 2) + 2e− + 2ν̄e . (3.2)
This process is nowadays known as two-neutrino double-beta (2νββ) decay,
or ordinary double-beta decay. The process could take place in even-even
nuclei, where single-beta decay is energetically forbidden, but decaying by
emitting two electrons simultaneously is energetically possible (see Fig. 3.1
for explanation).

In 1937 E. Majorana proposed that if neutrino was its own antiparticle,
later known as Majorana-particle, the theory of β decay would remain un-
changed [64]. A couple of years later, in 1939, W. F. Furry [65] invented the
concept of neutrinoless double-beta decay

(A,Z)→ (A,Z + 2) + 2e− , (3.3)

which would require that the neutrino is a Majorana-particle. The process
would occur in two stages: first a neutron in the initial nucleus (A,Z) emits
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Figure 3.1. Schematic figure illustrating a circumstance, in which single-beta
decay is energetically forbidden, but double-beta decay is allowed.

an electron and a virtual antineutrino and turns into a proton. This leads to
virtual states in the intermediate nucleus (A,Z + 1) of the 0νββ decay. Then,
the virtual neutrino (which is also antineutrino, νe = ν̄e, since neutrino is a
Majorana-particle) is absorbed by a neutron of the intermediate nucleus, thus
turning into proton and simultaneously emitting an electron in an inverse
β-decay process. As a result, the final nucleus (A,Z + 2) of 0νββ decay is
reached and two electrons have been emitted, without any antineutrinos in
the final state (see Fig. 3.2, where the two decay modes are presented). This
process would also be a lepton-number violating process, since the lepton
numbers of the initial and final states differ by two. These are the features that
make neutrinoless double-beta decay, even today, a particularly interesting
probe for physics beyond the Standard Model. However, at this point it should
be remarked that Standard Model, as we know it today, was invented well
after these developments, in mid-1970s.

First experiments aiming for detecting double-beta decay were set up
in 1948, even before neutrino was observed in 1956 [66], and first 2νββ
decays were observed in 1950. A lot of effort has been directed to observing
(neutrinoless) double-beta decay ever since, and two-neutrino double-beta
decay has been observed in about ten nuclei (see, e.g., Refs.[67–70]) the
half-lives ranging from 1019 years upwards. The existence of neutrinoless
double-beta decay, in turn, remains a mystery. For those, who are interested,
the history of the investigation of double-beta-decay is thouroghly reviewed
e.g. in Refs. [71, 72].

Although there are some tens of ββ-unstable nuclides, there are only a
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Figure 3.2. The two modes of double-beta decay.

handful of candidates of any practical interest for the study of 0νββ decay.
A suitable candidate needs to have a sufficiently high ββ-decay Q-value to
have high decay probability, and in order to distinguish 0νββ decay from the
dominating two-neutrino channel, the two-neutrino half-life should be as long
as possible in order to reduce the number of 2νββ counts at the ββ end-point
energy where the 0νββ signal is to be detected. A good candidate also has
large natural isotopic abundance and compatibility with a well-established
detection technique. The most promising candidates from the experimental
point of view are 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe
and 150Nd [73]. There have been some claims of detecting 0νββ decay [74],
however, the results are controversial, and only lower limits for the 0νββ
decay half-life have been approved.

Where two-neutrino double-beta decay runs only trough the Jπ = 1+

states, Fermi transitions being suppressed by the isospin selection rules, the
neutrinoless version runs trough all possible Jπ states [75]. Furthermore,
the momentum exchange involved in 0νββ decay is of the order of 100 MeV,
which allows it to run trough high-lying excited states. This has lead to the
idea of using weak-decay processes, such as charge-exchange reactions and
muon capture, being able to access highly excited Jπ states, to probe the
intermediate states of 0νββ decay [45, 76, 77].

In the following subsections the underlying theoretical apparatus behind
2νββ and 2νββ decays is briefly introduced. We follow the theoretical
framework introduced in, e.g., [24, 78].
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3.1 Two-Neutrino Double-Beta Decay
The half-life of a ground-state-to-ground-state two-neutrino double-beta decay
can be written in the form[

t
(2ν)
1/2 (0+

i → 0+
f )
]−1

= (geff
A )4G2ν

∣∣∣M (2ν)
∣∣∣2 , (3.4)

where geff
A is the effective value of the weak axial-vector coupling strength.

The factor G2ν is a leptonic phase-space factor (in units of inverse years)
defined in [79]. The ground states of the initial and final nuclei are denoted
by 0+

i and 0+
f , correspondingly.

The Gamow-Teller NME involved in Eq. (3.4) can be written as

M (2ν) =
∑
m,n

(0+
f ‖
∑
k t
−
k σk‖1+

m)〈1+
m|1+

n 〉(1+
n ‖
∑
k t
−
k σk‖0+

i )
Dm + 1 (3.5)

with the energy denominator

Dm =
(

1
2∆ + 1

2 [E(1+
m) + Ẽ(1+

m)]−Mi

)
/me , (3.6)

where ∆ is the nuclear mass difference between the initial and final 0+ ground
states, Mi the mass of the initial nucleus, and me the electron rest mass.
Ẽ(1+

m) and E(1+
m) are the (absolute) energies of themth 1+ state in a pnQRPA

calculation based on the left- and right-side ground states.
To do the calculations as precisely as possible, the difference [E(1+

m) +
Ẽ(1+

m)]/2 −Mi is adjusted to the measured energy difference between the
first 1+ state in the intermediate nucleus and the ground state of the initial
nucleus. The same procedure is followed in the calculations of the 0νββ
NMEs, as will be stated in the following subsection. The quantity 〈1+

m|1+
n 〉

in Eq. (3.5) is the overlap between the two sets of 1+ states and it can be
written as

〈1+
m|1+

n 〉 =
∑
pn

[
X1+

m
pn X̄

1+
n
pn − Y 1+

m
pn Ȳ

1+
n

pn

]
, (3.7)

where the quantities X and Y (X̄ and Ȳ ) denote the pnQRPA amplitudes
originating from the calculation based on the left-side (right-side) nucleus.
The overlap factor matches the corresponding states in the two sets of states
based on the left- and right-side even-even reference nuclei and makes the
computed NMEs more stable. For deformed nuclei, especially when the
deformations of the initial and final nuclei are considerably different, the role
of the overlap factor becomes of great importance [80, 81].

In principle, the expression in Eq. (3.5) should also contain a Fermi part
but our choice for the gT=1

pp parameter forces this contribution to zero, as was
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explained in Sec. 2.3. This is justified since the ground states of the mother
and daughter nuclei belong to different isospin multiplets, and due to the
isospin symmetry, the Fermi contribution to the 2νββ NME should vanish,
leaving the Gamow-Teller NME in Eq. (3.5) as the sole contributor to the
2νββ decay rate. However, recent studies [23, 82] of β decays have shown that
various terms going beyond Gamow-Teller transitions have non-negligible
contributions to the β-decay rates. Consequently, the role of forbidden
transitions is expected to be of relevance also in modeling double beta decays
in general.

3.2 Neutrinoless Double-Beta Decay

In this section it is assumed that 0νββ decay is dominated by the light-
Majorana neutrino-exchange mechanism, and other possible mechanisms are
neglected. Here we are only interested in the ground-state-to-ground-state
transitions between initial and final even-even nuclei of the double-beta-decay
isobaric triplet. The half-life for such a 0νββ transition can be written as

[
t
(0ν)
1/2 (0+

i → 0+
f )
]−1

= (geff
A )4G0ν

∣∣∣M (0ν)
∣∣∣2 ∣∣∣∣∣〈mν〉

me

∣∣∣∣∣
2

, (3.8)

where G0ν is a phase-space factor for the final-state leptons in units of inverse
years (see [79]). The effective light-neutrino mass, 〈mν〉, of Eq. (3.8) is defined
as

〈mν〉 =
∑
j

(Uej)2mj (3.9)

with mj being the mass eigenstates of light neutrinos. The amplitudes Uej
are the components of the electron row of the light-neutrino-mass mixing
matrix [83].

The 0νββ-decay NME M (0ν) in Eq. (3.8) is defined as

M (0ν) = M
(0ν)
GT −

(
gV

geff
A

)2

M
(0ν)
F +M

(0ν)
T , (3.10)

where we have adopted the conserved-vector-current (CVC) value gV = 1.0
for the weak vector coupling strength. The double Fermi, Gamow-Teller, and
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tensor nuclear matrix elements in Eq. (3.10) are defined as

M
(0ν)
F =

∑
k

(0+
f ||
∑
mn

hF(rmn, Ek)t−mt−n ||0+
i ) , (3.11)

M
(0ν)
GT =

∑
k

(0+
f ||
∑
mn

hGT(rmn, Ek)(σm · σn)t−mt−n ||0+
i ) , (3.12)

M
(0ν)
T =

∑
k

(0+
f ||
∑
mn

hT(rmn, Ek)ST
mnt

−
mt
−
n ||0+

i ) , (3.13)

where t−m is the isospin lowering operator (that changes a neutron into a
proton) for the nucleon m. The operator

ST
mn = 3[(σm · r̂mn)(σn · r̂mn)]− σm · σn (3.14)

is the spin tensor operator. The summation over k in Eqs. (3.11)–(3.13) runs
over all the states of the intermediate odd-odd nucleus, and Ek is the excitation
energy of a given state. 0+

i (0+
f ) denote the ground state of the initial (final)

even-even nucleus. Here rmn = |rm−rn| denotes the relative distance between
the two decaying neutrons, labeled m and n, and r̂mn = (rm − rn)/rmn. The
terms hK(rmn, Ek), K = F,GT,T are the neutrino potentials defined in [78].

In the pnQRPA framework the nuclear matrix elements of Eqs. (3.11)–
(3.13) can be written as

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′+J+J ′√2J ′ + 1

×
{
jp jn J
jn′ jp′ J ′

}
(pp′; J ′||OK ||nn′; J ′) (3.15)

× (0+
f ||
[
c†p′ c̃n′

]
J
||Jπk1)〈Jπk1|J

π
k2〉(J

π
k2||

[
c†pc̃n

]
J
||0+

i ) ,

where the summations over k1 and k2 run over the different left- and right-
hand pnQRPA solutions for a given multipole Jπ. Here the 2× 3 quantity
inside the curly brackets is the Wigner 6j-symbol. The operators OK inside
the two-particle matrix element can be written as

OF = hF(r, Ek)[fCD(r)]2 , (3.16)
OGT = hGT(r, Ek)[fCD(r)]2σ1 · σ2 , (3.17)
OT = hT(r, Ek)[fCD(r)]2ST

12 , (3.18)

where ST
12 is the tensor operator of Eq. (3.14) and r = |r1− r2| is the distance

between the involved nucleons. The energy Ek is the average of the kth left-
and right-hand-side pnQRPA-computed eigenvalues, corresponding to a given
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multipole Jπ. The term 〈Jπk1|J
π
k2〉 is the overlap between the two sets of Jπ

states that, similarly as in Eq. (3.7), can be written as

〈Jπk1|J
π
k2〉 =

∑
pn

[
X
Jπk1
pn X̄

Jπk2
pn − Y

Jπk1
pn Ȳ

Jπk2
pn

]
, (3.19)

where X and Y (X̄ and Ȳ ) are the pnQRPA amplitudes of the final (initial)
nucleus.

The factor fCD(r) in Eqs. (3.16)–(3.18) involves the nucleon-nucleon short-
range correlations (SRC) [84, 85]. We use the CD-Bonn form [86] for it, with
the parametrization

fCD(r) = 1− 0.46e−(1.52/fm2)r2 [1− (1.88/fm2)r2] . (3.20)
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Chapter 4

Charge-Exchange Reactions

Charge-exchange reactions (CXRs) of nuclei are strong-interaction reactions
a
za+A

Z X→ a
z±1 b+ A

Z∓1 Y , (4.1)

where a particle a with charge z interacts with the nucleus X with atomic
number Z by changing the atomic number of the nucleus by one. At the same
time a particle b with charge z ∓ 1 is emitted. The charged particles (a, b)
can be e.g. (p, n) or (3He, t) for the β−-type reactions, or (n, p), (d,2He), or
(t,3He) for the β+-type reactions. In Refs. [87, 88] it was manifested that the
virtual states and the corresponding charge-exchanging virtual transitions of
0νββ decay could be probed by the charge-exchange reactions starting from
the initial/final nucleus of the ββ decay.

The virtual Gamow-Teller (GT) type transitions from 0+ ground states of
the initial and final even-even nuclei of the double-beta-decay triplet, which
constitute the 2νββ decay NME, have traditionally been probed by the partial-
wave L = 0 CXRs by using the β− type of (p, n) or (3He,t) reactions and
β+ type of (n, p), (d,2He), or (t,3He) reactions [25, 27, 89]. Results of these
studies can be compared with theoretical calculations of the Gamow-Teller
and isovector spin-monopole (IVSM) strength distributions computed in, e.g.,
Refs. [90–92]. Recently, especially the partial-wave L = 1 CXRs to 2− states
have become popular by the improved experimental methods and facilities,
e.g., the RCNP in Osaka, Japan [93]. These studies are considered to be
relevant for the 0νββ decays, since a considerable part of the corresponding
NME is built from virtual transitions via the Jπ = 2− multipole states [78].
Inspired by this, we studied the L = 1 and L = 2 spin-multipole strength
distributions in this thesis.

In Section 4.1 we will introduce the theoretical aspects of the spin-multipole
transition strengths briefly, and in Section 4.2 we will summarize articles [I]
and [II] of the thesis.

21



4.1 Spin-Multipole Operators and Transition
Strengths

Here we are interested in the spin-dipole (L = 1) and spin-quadrupole (L = 2)
type of transition strengths from 0+

i (0+
f ) ground state of the even-even initial

(final) nucleus of the double-beta-decay triplet to Jπ excited states of the
intermediate odd-odd nucleus. The transition strength to ith Jπ state can be
written in the form [38]

S±L,J(i) = |(Jπi ||O±L,J ||0+)|2 , (4.2)
where the reduced nuclear matrix element is written with the help of Wigner-
Eckart theorem in the usual way as

(Jπ||O±L,J ||0+) =
∑
a,b

(a||O±L,J ||b)√
2J + 1

(Jπ||[c†ac̃b]J ||0+) , (4.3)

where a (b) denotes the initial (final) state quantum numbers, (a||O±L,J ||b) is
the reduced one-body transition matrix element, and (Jπ||[c†ac̃b]J ||0+) is the
one-body transition density introduced in Chapter 2.

For the spin-multipole transitions the transition operators are of the form
O±L,J = rL[YLσ]J iLt± , (4.4)

where YL is a spherical harmonic with the rank L, σ the Pauli spin vector,
and t+ (t−) the isospin raising (lowering) operator [94]. Hence, the one-body
transition matrix element in Eq. (4.3) becomes

(a||O±L,J ||b) =(nf lf 1
2jf ||r

L[YLσ]J iL||nili 1
2ji)

=
√

6ĵf Ĵ ĵi
(−1)lf√

4π
l̂f L̂l̂i

(
lf L li
0 0 0

)
lf

1
2 jf

li
1
2 ji

L 1 J


×R(L)

fi (−1)
1
2 (li−lf+L) .

(4.5)

Here n denotes the principal quantum number, l the orbital angular momen-
tum, and j the total angular momentum. The effect of the isospin operator is
taken into account by the fact that the initial and final single-particle states
have different isospin projections. The 2× 3 quantity in the parenthesis is
the Wigner 3j-symbol, and the 3× 3 quantity inside the curly brackets is the
Wigner 9j-symbol. R(L)

fi is the radial integral defined in [38] as

R(L)
fi =

∫ ∞
0

gnili(r)rLgnf lf (r)r2dr , (4.6)

where gnl(r) is the harmonic oscillator wave function corresponding to quan-
tum numbers n and l.
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4.2 Results
In Ref. [94] the authors studied isovector spin-dipole (L = 1) and spin-
quadrupole (L = 2) transitions in a few closed-shell nuclei using the proton-
neutron random-phase approximation (pnRPA) framework. In article [I] we
have extended these studies by computing the isovector spin-dipole (L =
1) and spin-quadrupole (L = 2) transition-strength distributions in open-
shell nuclei in the proton-neutron quasiparticle random-phase approximation
(pnQRPA) framework with large no-core single-particle bases.

We investigated L = 1 transitions leading to excited states with spin-
parities Jπ = 0−, 1−, 2−, and L = 2 transitions leading to the states with Jπ =
1+, 2+, 3+, in the key ββ-decay triplets. The transitions from the 0+ even-
even nuclei (76Ge,76Se), (82Se,82Kr), (96Zr,96Mo), (100Mo,100Ru), (116Cd,116Sn),
(128Te,128Xe), (130Te,130Xe), and (136Xe,136Ba) to the excited states of the
intermediate odd-odd nuclei 76As, 82Br, 96Nb, 100Tc, 116In, 128I, 130I, and 136Cs
are computed in the pnQRPA framework introduced in Sec. 2.3. Since we
were interested in the giant-resonance regions of the spectra, we used large
no-core single-particle bases in order to describe the spectra reliably at high
energies up to E = 50 MeV.

We decomposed each isobaric ββ-decay triplet with mass number A to “left-
hand-side” even-even (A,N,Z), “right-hand-side” even-even (A,N−2, Z+2),
and “intermediate” odd-odd (A,N − 1, Z + 1) nuclei, where N refers to the
neutron number and Z to the atomic number of the nucleus. We formed
the spectra of Jπ excitations in the intermediate odd-odd nuclei applying
the pnQRPA formalism to the left-hand-side and right-hand-side even-even
nuclei. In this way we obtain two sets of energies and wave functions for each
Jπ state.

With the help of the pnQRPA wave functions we then formed the strength
distributions of the isovector spin-dipole (IVSD) and isovector spin-quadrupole
(IVSQ) excitations for the left-hand-side (IVSD- and IVSQ-) and right-hand-
side (IVSD+ and IVSQ+) initial ground states. The corresponding strength
functions to the ith Jπ state of the odd-odd nucleus are

S(IVSD−)(i) = |(Jπi ||O−1,J ||0+
L)|2 (4.7)

S(IVSD+)(i) = |(Jπi ||O+
1,J ||0+

R)|2 (4.8)

S(IVSQ−)(i) = |(Jπi ||O−2,J ||0+
L)|2 (4.9)

S(IVSQ+)(i) = |(Jπi ||O+
2,J ||0+

R)|2 , (4.10)

where the operators O±1,J and O±2,J are the operators defined in Eq. (4.4).
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Since the pnQRPA bases where we performed our calculations are discrete,
the resulting strength distributions are also discrete, and not easily comparable
with experiments. Therefore we folded them with a Lorentzian folding function
[95]. The resulting Lorentzian folded strength distributions for two example
cases: A = 136 and A = 82 are shown in Figs. 4.1 and 4.2. In the panels
(a) we show the IVSD− distributions, corresponding to β− transitions with
L = 1 from the left-side even-even nucleus, for different multipoles Jπ,
in the panels (b) the analogous IVSD+ distributions, corresponding to β+

transitions from the right-side even-even nucleus, in the panels (c) the IVSQ−
distributions, corresponding to β− transitions with L = 2 from the left-side
even-even nucleus, and in the panels (d) the analogous IVSQ+ distributions,
corresponding to β+ transitions from the right-side even-even nucleus. The
solid line represents the sum of the distributions with different multipolarities.
The energies are given in MeV with respect to the ground state of the
intermediate odd-odd nucleus.

Fig. 4.1 represents a typical case in our study: for the L = 1 β− transitions
the average energy is highest for the 0− excitations and lowest for the 2−
excitations (for a few exceptions the average energy was lowest for the 1−
excitations, like in the example case shown in Fig. 4.2). This kind of behavior
was also noticed in earlier studies of Refs. [94, 96, 97]. It can also be seen
that the strength for Jπ = 0−, 1− is concentrated in a few peaks, whereas the
strength for Jπ = 2− is more spread, which was also noted in Ref. [94]. On
the other hand, similar effects can be seen in the case of L = 2 β− transitions:
The 1+ excitations are the highest in energy, whereas the 3+ excitations are
the lowest. Jπ = 1+ strength is concentrated on a few peaks, whereas for the
Jπ = 2+, 3+ excitations the strength distributions are much more fragmented.
This was also seen in Ref. [94].

We also deduced the total transition strengths from the original pnQRPA
spectra. It was seen that in the case of L = 1 transitions for both the IVSD−
and IVSD+ total strengths the largest fraction of the strength comes from 0−
transitions and smallest from 2− transitions, except for the A = 82 system
shown in Fig. 4.2, for which the 1− excitations dominate the total transition
strength. This kind of trend was also noted in Ref. [94] for closed-shell nuclei.
However, in Ref. [94] it was concluded that for L = 2 transitions the largest
fraction of the strengths comes from 1+ excitations and smallest from 3+

transitions, whereas in our study this was only true for the A = 116 and
A = 100 cases. This is most likely due to the fact that we were dealing with
open-shell nuclei whereas in [94] the nuclei are magic. The results of this
study are summarized in more detail in Table III of article [I].

To conclude the results of article [I], we saw that there is a considerable
difference in the giant-resonance energy centroids of the various Jπ states
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Figure 4.1. Isovector spin-multipole strength distributions for the A = 136
system. (a) L = 1 β− (b) L = 1 β+ (c) L = 2 β− (d) L = 2 β+. The solid line
represents the sum of the dashed, dotted and dash-dotted individual contribu-
tions. Energies are measured relative to the ground state of the odd-odd final
nucleus. The strengths are given in units of fm2 for Jπ = 0−, 1−, 2− and in fm4

for Jπ = 1+, 2+, 3+. Figure: [I].

corresponding to a given L. For L = 1 transitions the transition strengths were
highest for the lowest-J transitions and lowest for the highest-J transitions,
except for the A = 82 system. For L = 2 transitions there was no clear
ordering for the transition strengths.

The observations made in article [I] led to the idea of making comparisons
between the calculated strength functions with available experimental data.
This was done in article [II], where we compared the computed isovector
spin-dipole (L = 1) Jπ = 2− strength distributions in the ββ-decay triplets
against the experimental data that recently became available from (3He,t)
charge-exchange reactions performed at the Research Center for Nuclear
Physics (RCNP), Osaka, Japan [25, 26, 89, 98–100]. We then computed the
0νββ NMEs based on the values of the 2− particle-hole parameter gph(2−),
fixed for the first time by the observed locations of the IVSD giant resonances.

The particle-hole parameter gph, a key parameter of pnQRPA as stated
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Figure 4.2. The same as in Fig. 4.1 for A = 82. Figure: [I].

in Sec. 2.3, is associated to the spin-isospin correlations and the locations of
giant resonances [38]. Traditionally it has been adjusted to the location of
Gamow-Teller giant resonance, and the fitted value gph(1+) then together with
the gpp fixes the contribution of the 1+ channel to the 0νββ NME. However,
the 1+ contributions are in many cases smaller than the contributions coming
from the 2− isovector spin-dipole excitations (see Fig. 4.3). This observation
led to the idea of fixing the contribution of the 2− channel separately to
the observed locations of IVSD giant resonances. We used the traditional
Gamow-Teller method as a starting point (we call this Model 1), but explore
how the particle-hole parameter gph(2−) changes the values of the 0νββ NMEs
by fitting the Jπ = 2− channel separately (Model 2) and by using the gph(2−)
parameter for all channels excluding the 1+ channel (Model 3).

Based on these data reported in Refs. [25, 26, 89, 98–100], the experimental
GT and IVSD centroid energies for the double-beta-decay nuclei of current
interest can be expressed approximately as

E(GT) ≈ 9 + 0.4TZ MeV
E(SD) ≈ 16.5 + 0.4TZ MeV ,

(4.11)
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Figure 4.3. Multipole decomposition of the total 0νββ nuclear matrix element
M (0ν) of (a) 76Ge and (b) 128Te. Figures: [II].

where TZ = 1
2(N − Z). The uncertainties of the GT and IVSD energies are

≈ ±0.5 MeV and ≈ ±1 MeV, respectively. In article [II] we adjusted the
gph(1+) and gph(2−) into these values, respectively. For A = 96 we used
the measured centroid, as the linear fits of Eq. (4.11) did not reproduce
the measured values well. The resulting particle-hole parameter values are
introduced in Table 4.1. The ’WS’ and ’sp’ bases refer to the bare Woods-
Saxon bases and their slightly modified versions, to better reproduce the
experimental quasiparticle spectra of relevance to this study. In the cases of
mass numbers A = 96, 100 the use of the bare Woods-Saxon bases resulted in
a nonphysical gpp behavior of the 2νββ results, and we used therefore only
the sp bases. On the other hand, for A = 116 the use of the bare Woods-
Saxon bases results in a good correspondence between the calculated and
experimental quasiparticle spectra, so no modifications in the single-particle
energies were necessary.

A couple of examples of the distributions corresponding to the different
gph values listed in Table 4.1 are shown in Fig. 4.4. In the A = 76 case (panel
(a)) the large, about 30%, deviation between the values of gph(1+) and gph(2−)
(see Table 4.1) results in large deviations between the strength functions
calculated using the WS basis. The same kind of observation can be seen
in the A = 116 case (panel (b)). On the other hand, in the A = 76 case for
the sp basis the difference between the different gph values is smaller, which
leads to smaller deviations between the strength functions. The conclusion
that can be drawn from these observations is that the strength functions are,
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Table 4.1. Particle-hole parameters of the pnQRPA calculations for the key
0νββ decaying nuclei. Column two indicates the basis that was used in the
calculations. Columns three and four list the experimental centroid energies of
the IVSD Jπ = 2− resonances and the GT Jπ = 1+ resonances. The last two
columns list the values of the particle-hole parameters adjusted to the locations
of the IVSD resonance and the GTGR. Table: [II].

Nucleus Basis E(SD2−) E(GT) gph(2−) gph(GT)
(MeV) (MeV

76Ge WS 18.9± 1.0 11.4± 0.5 0.9± 0.2 1.24± 0.13
sp 1.2± 0.3 1.03± 0.13

96Zr sp 22± 1.0 12.7± 0.5 0.8± 0.2 0.84± 0.09
100Mo sp 19.7± 1.0 12.2± 0.5 1.0± 0.2 1.19± 0.08
116Cd WS 20.5± 1.0 13.0± 0.5 1.07± 0.09 0.85± 0.13
128Te WS 21.3± 1.0 13.8± 0.5 1.7± 0.2 1.64± 0.08

sp 1.9± 0.2 1.40± 0.09
130Te WS 21.7± 1.0 14.2± 0.5 1.7± 0.2 1.58± 0.08

sp 1.9± 0.2 1.36± 0.09
136Xe WS 22.1± 1.0 14.6± 0.5 1.0± 0.2 1.36± 0.07

sp 0.9± 0.2 1.18± 0.08

indeed, quite sensitive to the value of gph.
The values of the total 0νββ matrix elements computed using the different

models for the gph value are presented in Table 4.2. Here we only show
the main results, and more comprehensive analysis is made in article [II].
The main point to notice on Table 4.2 is that the adoption of the IVSD
Jπ = 2−-fitted value of gph for the 2− channel of the 0νββ NMEs (Model 2)
affects the NMEs negligibly for all of the cases but adoption of gph(2−) for all
multipoles Jπ 6= 1+ (Model 3), however, causes larger deviations in all cases.
All in all, the effect of gph(SD2−) is in most cases moderate even though in
some cases there are notable differences between the different gph values in
Table 4.1. On the other hand, the use of large no-core single-particle bases
accounts for most of the deviations between the present NMEs and the ones
of Ref. [78] computed in much smaller single-particle bases without access to
the data on IVSD strength functions.

Altogether, the obtained results deviate from the results of Hyvärinen et
al [78] by less than 4% for A = 76 and 136, and about 10− 18 % for the rest.
The differences are mostly arising from the extension of the single-particle
valence spaces, and the effect of variations in the value of gph is relatively
smaller.
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Table 4.2. Values of the 0νββ NMEs for geff
A = 1.00. The first column indicates

the transition, the second column the basis used in the calculation, and the third
one the model adopted for the gph values: Model-1: gph(GT) used for all Jπ,
Model-2: gph(SD2−) used for Jπ = 2−, for the rest gph(GT) is used, Model-3:
gph(GT) used for Jπ = 1+, for the rest gph(SD2−) is used. The last row for each
transition corresponds to the earlier calculations performed in Ref. [78]. The
quoted errors only take into account uncertainties due to the strength of the
particle-hole interaction. The table is a summary of Table V of [II].

Nuclear transition Basis Model M (0ν)

76Ge −→ 76Se sp 1 6.9± 0.3
sp 2 6.8± 0.3
sp 3 6.6± 0.4

sp, small [78] 1 6.54
96Zr −→ 96Mo sp 1 5.3± 0.2

sp 2 5.3± 0.2
sp 3 5.5± 0.4

sp, small [78] 1 4.47
100Mo −→ 100Ru sp 1 5.54± 0.10

sp 2 5.55± 0.11
sp 3 5.9± 0.4

sp, small [78] 1 4.98
116Cd −→ 116Sn WS 1 5.7± 0.2

WS 2 5.7± 0.2
WS 3 5.39± 0.13

WS, small [78] 1 4.93
128Te −→ 128Xe sp 1 5.52± 0.15

sp 2 5.47± 0.15
sp 3 4.9± 0.3

sp, small [78] 1 5.74
130Te −→ 130Xe sp 1 4.77± 0.12

sp 2 4.72± 0.12
sp 3 4.1± 0.2

sp, small [78] 1 5.27
136Xe −→ 136Ba sp 1 3.72± 0.09

sp 2 3.76± 0.10
sp 3 4.1± 0.3

sp, small [78] 1 3.50
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Figure 4.4. Isovector spin-dipole Jπ = 2− strength functions for (a)A = 76
and (b) A = 116 calculated using either a Woods-Saxon (WS) or a modified
Woods-Saxon (sp) single-particle basis, and gph values obtained by fitting to the
location of either the Gamow-Teller (GT) or the IVSD Jπ = 2− giant resonance.
Figures: [II].
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Chapter 5

Ordinary Muon Capture

Ordinary muon capture (OMC) is a semileptonic weak interaction process
quite like electron capture (EC). The OMC process we are interested in here
can be written as

µ− + A
ZX(0+)→ νµ + A

Z−1 Y(Jπ) , (5.1)

where the negative muon (µ−) is captured by the 0+ ground state of the
even-even nucleus X of mass number A and atomic number Z (see Fig. 5.1).
The process leads to the Jπ multipole states of Y, the odd-odd isobar of the
mother nucleus, of atomic number Z − 1; here J is the angular momentum
and π the parity of the final state. At the same time a muon neutrino νµ
is emitted. In muon capture process also a gamma photon may be emitted.
This kind of a reaction is called radiative muon capture (RMC). However, we
will only consider the ordinary, non-radiative, version of muon capture.

The large mass of the captured muon, which is about 200 times the electron
rest mass, makes the difference between OMC and EC. The momentum
exchange involved in OMC, Q ≈ 50 − 100 MeV, is remarkably larger than
the momentum exchange taking place in EC or β decay. This induces highly
forbidden transitions leading to final states with large angular momenta and
high excitation energies. However, the large mass of the captured muon also
leads to a more complex theoretical treatment of the process in contrast to
EC or β decay. The muon recoil activates also induced parts of the nucleonic
weak current, especially the pseudoscalar current [101–103], which means that
the theoretical expression for the partial OMC rates gets complicated.

In Ref. [104], Kortelainen and Suhonen proposed that these features
make OMC a particularly interesting probe for gaining information on the
matrix elements of 0νββ decay. Since the large mass of the muon allows
OMC to excite various Jπ states in wide excitation-energy region, it could
be used in investigations of the intermediate virtual states of 0νββ decay at
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high energies, where the EC or β decay -type of transitions can only probe
the virtual transition through the lowest Jπ state. Also the available data
concerning the charge-exchange reactions introduced in Section 4 is, for the
time being, restricted to certain multipoles, especially the data concerning
higher multipoles being out of reach. In turn, partial OMC rates to states
even with high multipolarities can be extracted [105]. That being said, it is
not straightforward to extract the partial rates between definite nuclear states,
since the high energy release excites numerous levels of the final nucleus.

On the other hand, testing gA at high momentum transfer relevant for
0νββ decay is of utmost importance [106], and to that end OMC is an ideal
probe. Since the induced terms of the effective weak current are activated
in OMC, it can also be used as a test laboratory for the proton’s induced
pseudoscalar form factor gP, which was already noticed in 1965 by Gillet and
Jenkins [107].

Most of the basic concepts of muon physics are from 1950s and 1960s, the
era of remarkable progress in the study of weak processes [108–110]. In 1953,
Godfrey proposed the first partial muon capture rate measurement on 16O
[111]. Godfrey also established an approximate theoretical relation between
muon-capture and β-decay matrix elements. In 1959, H. Primakoff published
a comprehensive review of the theory of muon capture [112]. He introduced a
phenomenological formula, nowadays known as the Primakoff formula, for
the total muon capture rate

WPr.(A,Z) = Z4
effX1

[
1−X2

(
A− Z

2A

)]
. (5.2)

Here A, Z and Zeff are the mass number, atomic number and effective atomic
number of the nucleus, X1 the reduced muon-capture rate for OMC on
hydrogen, and X2 a parameter that takes into account the Pauli exclusion
principle. The typical X factor values are

X1 = 170 1/s and X2 = 3.125 .
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We will utilize this formula later on to estimate the total muon capture rates
in the absence of experimental data.

The paper of Primakoff was soon followed by the paper of theory of
allowed and forbidden muon capture by M. Morita and A. Fujii [29] in 1960.
The robust formalism developed in the paper has been widely used [76, 77,
101, 102, 104, 107, 113–115], and it is also our choice in this thesis. Slightly
different muon capture formalism, presented in the paper by Walecka [108],
has also been employed in many studies, e.g. in [116–119]. It should be noted
that the total capture rates obtained by this formalism seem to deviate from
those obtained by the Morita-Fujii formalism. The origin of the discrepancy
is yet not understood.

It is perhaps worth elaborating the Morita-Fujii formalism, since when
performing the computations for this thesis it soon emerged that some im-
provements to the original formalism were in order. The formalism is quite
involved, and those, who are not interested in all the details on the way, may
proceed to Section 5.1.5, where the resulting muon capture rate formula is
presented.

5.1 Ordinary Muon Capture Formalism
In this section, we will mainly follow the steps made in the paper of Morita
and Fujii [29] and add some clarification and/or update, where needed. We
will start by introducing some necessary Dirac algebra and notations that we
will face in the ordinary muon capture theory of Morita and Fujii [29]. Then,
we will go trough the involved effective Hamiltonian, lepton wave functions,
nuclear matrix elements, and finally the capture rate. In the end, some future
prospects to develop the muon capture theory are discussed.

5.1.1 Preparation: Dirac algebra and Notations
In the mathematical formulation of muon capture, we will use the Dirac
algebra familiar in the particle and neutrino physics fields. Since there are
numerous different representations for the Dirac gamma matrices, we will
start by introducing the representation adopted in the Morita-Fujii theory.
Here the Dirac gamma matrices, which are the generators of the Euclidean
Clifford algebra, satisfy the anticommutation relations

{γµ, γν} = γµγν + γνγµ = 2δµν14 , (5.3)

where δµν is the Kronecker delta, and 1 the 4-by-4 identity matrix. Morita
and Fujii chose the non-relativistic representation for the gamma matrices,
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with the sign convention traditionally used in the β-decay theory [120, 121].
In this representation, the gamma matrices are written as

γ =
(

0 −iσ
iσ 0

)
, γ4 =

(
−12 0

0 12

)
, γ5 = γ1γ2γ3γ4 =

(
0 12
12 0

)
, (5.4)

where σ is the Pauli vector defined as

σ = (σ1, σ2, σ3) ,

whose components are the familiar 2x2 Pauli matrices.
Since the lepton spinors we are operating at are four-vectors, we need 4x4

Pauli matrices traditionally called Σi. They are defined (in the vector form)
as

Σ =
(

σ 0
0 σ

)
. (5.5)

Furthermore, we will need the αi and β matrices familiar from the Dirac
theory. They are all Hermitian and unitary, and they are defined as

α =
(

0 σ
σ 0

)
, β =

(
12 0
0 −12

)
. (5.6)

Trough the muon-capture theory we adopt the units ~ = c = me = 1, and
use the shorthand notation κ for the total and orbital angular momentum, j
and l, of the neutrino. κ is defined such that

l = κ and j = l − 1
2 for κ > 0

l = −κ− 1 and j = l + 1
2 for κ < 0 .

(5.7)

Hence, summation over κ means summation over all possible values of j and
l. The orbital angular momenta corresponding to κ and −κ are distinguished
by denoting them as l and l̄, respectively.

We will change the notation of the coupling constants in the Morita-Fujii
paper by making the replacements

CV → gV , CA → −gA and CP → −gP

in order to be consistent with the convention used in the earlier papers of the
Jyväskylä group [76, 77, 101, 102, 104].
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5.1.2 Effective Hamiltonian
Before jumping into the definition of the muon capture matrix elements we
need to introduce the underlying interaction Hamiltonian. If the lepton bare-
nucleon coupling is assumed to be via vector and axial vector interactions
of the Fermi type, the interaction Hamiltonian density for ordinary muon
capture by a proton, µ− + p→ νµ + n, can be written as [29, 122]

H = ψ̄nHψp

with
√

2H =γλ[gV(ψ̄νγλψµ) + g′V(ψ̄νγλγ5ψµ)]
− iγλγ5[gA(ψ̄νiγλγ5ψµ) + g′A(ψ̄νiγλψµ)]
− γ5[gP(ψ̄νγ5ψµ)− g′P(ψ̄νψµ)]
+ σλρ[gMpρ(ψ̄νiγλψµ) + g′Mpρ(ψ̄νiγλγ5ψµ)] ,

(5.8)

where
ψ̄ = ψ†γ4

and
σλρ = 1

2[γλγρ − γργλ] .

The subscripts n, p, ν and µ refer to the neutron, proton, neutrino, and muon,
respectively. The gammas γλ,ρ,5 are the gamma matrices defined in Sec. 5.1.1
and pρ the four-momentum pρ = (−i∇,−∂/∂t), which acts on the lepton
covariants, but not on ψp.

The first three terms in Eq. (5.8) represent the vector, axial vector and in-
duced pseudoscalar interactions, respectively. The last term is the interaction
that is added by the conserved vector current (CVC) hypothesis. Assuming
time reversal invariance of the Hamiltonian, all the coupling constants g and
g′ can be chosen to be real. Furthermore, assuming that the neutrino is
(almost) left-handed we can conclude thatgi = g′i . Comparing then the weak
current with the electromagnetic current gives

gM = gV(µp − µn)/(2M) ,

where µp(µn) is the magnetic moment of proton(neutron) in nuclear mag-
netons, for which µp − µn = 3.706, and M is the average nucleon mass.
The partially conserved axial-vector current (PCAC) hypothesis suggests a
Goldberger-Treiman value for the ratio gP/gA = 6.8 [123] (note that this
value is different from the one suggested in Ref. [29]) for free nucleons, but
the value of gP may need to be renormalized in the nuclear medium.
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Using the above-mentioned couplings, the Hamiltonian density can be
written as

H = ψ†nHψp

with
H =gV[14 · L(14)−α · L(α)]

− gA[Σ · L(Σ)− γ5 · L(γ5)]− gPβγ5 · L(βγ5)
+ (gV/(2M))(µp − µn)[−iβΣ · p× L(α) + βα · pL(14)− iβα · p4L(α)] ,

(5.9)
where p4 is the fourth component of the momentum four-vector, corresponding
to energy. Furthermore, the lepton covariants are abbreviated as

L(σ) = ψ†ν [(1 + γ5)/
√

2]σψµ . (5.10)
Contrary to the β decay theory we cannot leave the nuclear matrix

elements as phenomenological parameters, since we only know the transition
rate of the muon capture reaction but not the shape of the neutrino spectrum.
Therefore, we have to reduce all the relativistic nuclear matrix elements (i.e.
the momentum-type matrix elements) into nonrelativistic forms. This in done
in [29] by transforming the nuclear part of the interaction Hamiltonian (5.9)
into nonrelativistic form by the Foldy-Wouthuysen transformation modified
by Rose and Osborn [124]. The relativistic nucleon wave function

ψ =
(
v
u

)
is replaced by

ψ =
(
− 1

2Mσ · pu
u

)
, (5.11)

where u and v are the large and small components of the Dirac spinor,
corresponding to the eigenvalues −1 and +1 of the β matrix of Eq. (5.6),
correspondingly.

The transformed interaction Hamiltonian becomes
H = u†nHup

with
H =gV1 · L(1)− gAσ · L(σ)

+ (gV/2M)[2L(α) · p + p · L(α) + iσ · p× L(α)]
− (gA/2M)[2L(γ5)σ · p + σ · pL(γ5)]
+ (gP/2M)σ · pL(βγ5) + (µp − µn)(gV/2M)[iσ · p× L(α)] ,

(5.12)

where all terms of the order 1/M2 are omitted. The differential operators
only act on the lepton covariants but not on up.
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5.1.3 Lepton Wave functions
In order to form the matrix elements for the muon capture process we need
to describe the involved leptons, i.e. the muon and the muon neutrino, in
terms of wave functions. We will begin with introducing the wave function of
the emitted neutrino.

The spherical wave function for the free neutrino with linear momentum q
and spin m = ±1

2 can be written as an expansion in terms of the normalized
spherical spinors χκµ

ψν(q,m; r) =
∑
κµ

il(l µ−m 1
2 m|jµ)Y µ−m

l (q̂)ψ(ν)
κµ , (5.13)

where
ψ(ν)
κµ =

(
−ifκχ−κµ
gκχ−κµ

)
, (5.14)

and

gκ = π−1/2jl(qr) , fκ = π−1/2Sκjl̄(qr) ,
χκµ =

∑
m′

(l µ−m′ 1
2 m

′|jµ)Yl,µ−m′(r̂)ψm
′

1/2 .
(5.15)

Here jl(qr) is the spherical Bessel function, Sκ the sign of κ, Yl,µ−m′ the
Laplace’s spherical harmonics and ψm′1/2 the spin wave functions in two dimen-
sions. The quantities (j1 m1 j2 m2|j3 m3) in Eqs. (5.13) and (5.15) are the
Glebsch-Gordan coefficients. The angular momenta l and l̄ correspond to κ
and −κ, respectively. The neutrino wave function of Eq. (5.13) is normalized
such that ∫

ψ†ν(q′,m′; r)ψν(q,m; r)dr = δmm′δ(q′ − q) . (5.16)

The wave function of the captured muon can be expressed in a similar way
as the free neutrino wave function. However, since the muon is initially bound
on an atomic orbit of the initial nucleus, the wave function corresponds to a
definite orbit. That is, the bound state muon wave function can be written as

ψµ(κ, µ; r) = ψ(µ)
κµ =

(
−iFκχ−κµ
Gκχκµ

)
, (5.17)

where Gκ and Fκ are the radial wave functions of the bound state [29].
After being stopped in the outer shells of an atom, the negative muon

undergoes multiple transitions to lower atomic orbitals, leaving it finally on
the lowest, K atomic orbit. Hence, the captured muon can be assumed to
be initially bound in the lowest state 0s1/2 corresponding to κ = −1 and
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µ = ±1
2 . In Ref. [29] the authors adopt the explicit form for the muon bound

on the 0s1/2 orbit given by Bethe and Salpeter [125], where point-like nucleus
is assumed. Using this approximation, the radial wave functions are

G−1 = (2Z/a0)
3
2

√
1 + γ

2Γ(2γ + 1)

(2Zr
a0

)γ−1
e−Zr/a0 ,

F−1 = −
√

1− γ
1 + γ

G−1 ,

(5.18)

where α is the fine structure constant, Z the atomic number of the initial
nucleus,

γ =
√

1− (αZ)2 ,

and
a0 = ~

m′µcα
= 1
m′µ

is the Bohr radius of the µ-mesonic atom [126], where

m′µ = mµ

1 + mµ
AM

(5.19)

is the reduced muon mass in the µ-mesonic atom. If we assume that αZ is
very small, γ ≈ 1, and therefore

G−1 = 2(αZm′µ)
3
2 e−αZm

′
µr ,

F−1 = 0 .
(5.20)

The muon wave function of Eq. (5.17) is normalized such that∫
ψ†µ(κ′, µ′; r)ψµ(κ, µ; r)dr = δκκ′δµµ′ . (5.21)

5.1.4 Nuclear Matrix Elements
Using the wave functions of Sec. 5.1.3 one can then evaluate the spherical
components of the interaction Hamiltonian introduced in Sec. 5.1.2 defined
by

(κµ|H|κ′µ′) ≡ (ψ(ν)
κµ ,Hψ

(µ)
κ′µ′) . (5.22)

The spherical components of each term in the Hamiltonian (5.12) are listed
in Ref. [29], and we will not list those in here.
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The reduced transition matrix elements were then defined by using the
Wigner-Eckart theorem as

∫
ΨJfMf

A∑
s=1

Ξs(i)
vu τ

s
−ΨJiMi

dr1...drA

= (Ji Mi u Mf −Mi|Jf Mf )M(i)
vu ,

(5.23)

where Ji Mi u Mf −Mi|Jf Mf ) is a Glebsch-Gordan coefficient, and C(i) and
Ξs(i)
vu are as defined in Table 5.1. The S-factors showing up in the operators

Ξs(i)
vu are defined as

Skνu(κ, κ′) =
√

2(2l + 1)(2l′ + 1)(2j + 1)(2j′ + 1)(l 0 l′ 0|ν 0)


l l′ ν
j j′ u
1
2

1
2 k


(5.24)

for k = 0 and 1. Here the 3 × 3 quantity inside the curly brackets is the
Wigner 9j-symbol. The (vector) spherical harmonics YMkwu in the equations
of Table 5.1 are defined as

YM0wu(r̂) ≡(4π)−1/2Yw,M(r̂) ,
YM1wu(r̂,σ) ≡

∑
m

(1 −m w m+M |uM)

× Yw,m+M(r̂)
√

3
4πσ−m ,

(5.25)

where σ is the Pauli spin vector, Yw,M(r̂) are the spherical harmonics and
r̂ is the unit coordinate vector for the angles in spherical coordinates. The
quantity jw(qrs) is the spherical Bessel function.

Finally, the matrix elements with the bound muon wave function obtained
form the Bethe-Salepeter formula of Eq. (5.20) are defined in the following
manner:

∫
ΨJfMf

A∑
s=1

e−αZm
′
µrsOsτ s−ΨJiMi

dr1...drA

=M[k w u
(
±
p

)
](Ji Mi u Mf −Mi|Jf Mf ) ,

(5.26)

where ΨJfMf
(ΨJiMi

) is the final (initial) nuclear wave function. The definition
for the operator Os can be found in Table 5.2.

In our calculations, we write the matrix elements of Eq. (5.26) in terms
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Table 5.1. C(i) and Ξs(i)vu in Eq. (5.23). The differential operators D± are given
by D+ = d

dr −
1
r and D− = d

dr + v+1
r . The fκ, gκ, Fκ′ and Gκ′ are the components

of the neutrino and muon wave functions of Eqs. (5.14) and (5.17). The factors
Skνu(κ, κ′) are defined in Eq. (5.24), and the spherical harmonics YMkνu in Eqs.
(5.25). In the last line, + and − signs refer to i = 7 and 8, respectively.

i C(i) Ξs(i)vu

1 gV YMf−Mi

0vu (r̂s)[gκGκ′S0vu(κ, κ′)− fκFκ′S0vu(−κ,−κ′)]δvu
2 gA YMf−Mi

1vu (r̂s,σs)[gκGκ′S1vu(κ, κ′)− fκFκ′S1vu(−κ,−κ′)]

3 −gV
M i[fκGκ′S1vu(−κ, κ′) + gκFκ′S1vu(κ,−κ′)]YMf−Mi

1vu (r̂s,ps)

4 −
√

3gV
2M

(√
v+1
2v+3Y

Mf−Mi

0v+1u (r̂s)δv+1uD+ −
√

v
2v−1Y

Mf−Mi

0v−1u (r̂s)δv−1uD−
)

×[fκGκ′S1vu(−κ, κ′) + gκFκ′S1vu(κ,−κ′)]

5 −
√

3
2
gV(1+µp−µn)

M (
√
v + 1W (11uv, 1v + 1)× YMf−Mi

1v+1u (r̂s,σs)D+

−
√
vW (11uv, 1v − 1)YMf−Mi

1v−1u (r̂s,σs)D−)

×[fκGκ′S1vu(−κ, κ′) + gκFκ′S1vu(κ,−κ′)]

6 −gA
M iYMf−Mi

0vu (r̂s)[fκGκ′S0vu(−κ, κ′) + gκFκ′S0vu(κ,−κ′)]σs · ps
7 gA

2
√

3M

− gP
2
√

3M


(√

v+1
2v+1Y

Mf−Mi

1v+1u (r̂s,σs)D+ −
√

v
2v+1Y

Mf−Mi

1v−1u (r̂s,σs)D−
)

8 ×[fκGκ′S0vu(−κ, κ′)± gκFκ′S0vu(κ,−κ′)]δvu

of reduced matrix elements as

M[kwu
(
±
p

)
] = Ĵ−1∑

pn

(n||O[kwu(±p)]||p)u
−1(Jf ||[c†nc̃p]||Ji)

= Ĵ−1∑
pn

(n||O[kwu(±p)]||p)OBTD ,
(5.27)

where OBTD is the reduced one-body transition density having the expres-
sions (2.6)-(2.7) in the case of the pnQRPA wave functions. The quantities
(n||O[kwu(±p)]||p) are the one-body matrix elements corresponding to the op-
erators defined in Table 5.2 and evaluated in the harmonic-oscillator basis.
Through the OBTDs it is straightforward to implement the initial and final
nuclear wave functions, computed in any nuclear model, in our calculations.
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Table 5.2. Definition of Os in Eq. (5.26) for different nuclear matrix elements
(NMEs).

NME Os

M[0w u] jw(qrs)Y
Mf−Mi

0wu (r̂s)δwu

M[1w u] jw(qrs)Y
Mf−Mi

1wu (r̂s,σs)

M[0w u±] [jw(qrs)± αZ(m′µ/pν)jw∓1(qrs)]Y
Mf−Mi

0wu (r̂s)δwu

M[1w u±] [jw(qrs)± αZ(m′µ/pν)jw∓1(qrs)]Y
Mf−Mi

1wu (r̂s,σs)

M[0w up] ijw(qrs)Y
Mf−Mi

0wu (r̂s)σs · psδwu

M[1w up] ijw(qrs)Y
Mf−Mi

1wu (r̂s,ps)

5.1.5 Capture Rate
The muon-capture transition rate from an initial state Ji to a final state Jf
can, following the formalism of Ref. [29], be written as

W = 2π〈|M.E.|2〉avq
2 dq
dEf

(5.28)

with the phase-space factor

dq
dEf

= 1− q

mµ + AM
, (5.29)

where A and M are the mass number of the nucleus and the average nucleon
mass, and the Q value of the OMC process is defined as

q = (mµ −W0)
(

1− mµ −W0

2(Mf +mµ)

)
, (5.30)

where W0 = Mf −Mi +me + EX . Here Mf and Mi are the nuclear masses
of the final and initial nuclei, me the rest mass of an electron and EX the
excitation energy of the final-state nucleus.

The 〈|M.E.|2〉av in Eq. (5.28) is the absolute square of the OMC matrix
element summed over all magnetic quantum numbers, integrated over q, and
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averaged over the initial substates resulting in

〈|M.E.|2〉av = 2Jf + 1
(2j′ + 1)(2Ji + 1) ×

∑
ij

∑
κu

[
C(i)∑

ν

M(i)
νu

]∗ [
C(j)∑

ν′
M(j)

ν′u

]
,

(5.31)
where j′ is the angular momentum of the captured muon (here j′ = 1/2, since
we assumed that the muon is bound on the 0s1/2 orbit) and C(i) andM(i)

νu

are defined in Table 5.1.

Using the above mentioned interaction Hamiltonian and bound muon
wave functions, the muon capture rate to a Jπ final state is written as

W = 8
(
Zeff

Z

)4
P (αZm′µ)3 2Jf + 1

2Ji + 1

(
1− q

mµ + AM

)
q2 , (5.32)

where A indicates the mass number of the initial and final nuclei, Z the
atomic number of the initial nucleus, Ji (Jf) the angular momentum of the
initial (final) nucleus, M the average nucleon rest mass, mµ the bound muon
mass, m′µ the reduced mass of the muon in the parent µ-mesonic atom, α the
fine-structure constant and q the exchanged momentum between the captured
muon and the nucleus [29], i.e. the Q value of the OMC.

For heavy nuclei the atomic orbit of the muon penetrates the nucleus and
therefore the capture rate has to be corrected for the muonic screening. Here
we followed the Primakoff method [112] correcting the capture rate by the
factor (Zeff/Z)4, where the effective atomic number Zeff for different nuclei is
obtained from the work of Ford and Wills [127].
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The term P in Eq. (5.32) can be written as

P =1
2
∑
κu

∣∣∣∣gVM[0 l u]S0u(κ)δlu

+ gAM[1 l u]S1u(κ)− gV

M
M[1 l̄ u p]S ′1u(−κ)

+
√

3gVq

2M

(√√√√ l̄ + 1
2l̄ + 3

M[0 l̄+1u+]δl̄+1,u

+

√√√√ l̄

2l̄ − 1
M[0 l̄−1u−]δl̄−1,u

)
S ′1u(−κ)

+
√

3
2

(
gVq

M

)
(1 + µp − µn)

×
(√

l̄ + 1W (1 1u l̄ ; 1 l̄ + 1)M[1 l̄+1u+]

+
√
l̄W (1 1u l̄ ; 1 l̄ − 1)M[1 l̄−1u−]

)
S ′1u(−κ)

−
(
gA

M

)
M[0 l̄ u p]S ′0u(−κ)δl̄u +

√
1
3(gP − gA)

(
q

2M

)

×
(√√√√ l̄ + 1

2l̄ + 1
M[1 l̄+1u+] +

√√√√ l̄

2l̄ + 1
M[1 l̄−1u−]

)

× S ′0u(−κ)δl̄u
∣∣∣∣2 ,

(5.33)

whereW (...) are the usual Racah coefficients andM[k w u
(
±
p

)
] nuclear matrix

elements of the OMC. Furthermore,

Sku(κ) =
√

2(2j + 1)W (1
21jl, 1

2u)δlν for k = 1,

=
√

(2j + 1)/(2l + 1)δlν for k = 0, and
S ′ku(−κ) = SκSku(−κ) ,

(5.34)

where Sκ is the sign of κ.
In Ref. [29] the authors give the explicit form for the P -term (5.33) for nth

forbidden transition. However, they have omitted all terms of the order 1/M2

from the explicit form. In the absence of the computational limitations of the
1960’s, we have derived the explicit form containing all the next-to-leading-
order terms of the order 1/M2 and included it into our formalism in order to
improve the accuracy of the results. The explicit next-to-leading-order form
for the P -term can be found in article [IV].
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In Ref. [29] beta decay was addressed as the inverse process of muon
capture, and information on the beta-decay transition rates was used to scale
down the values of the muon-capture rates. There are numerous reasons we
did not want to do that: First of all, we are interested in the muon capture
rate distributions in wide energy regions, where there are no data on the
corresponding beta decays. Secondly, beta decay and muon capture operate in
very different momentum exchange regions, and we have no reason to believe
that the correspondence between computed and measured muon capture rates
would be similar to that of the beta decay. Furthermore, using this kind of
scaling we would not access the gA quenching problem unambiguously.

Over the years the Morita-Fujii formalism introduced in this section has
been widely used, and several improvements to the theory have been suggested.
In Ref. [107] the authors included the higher-order terms in the P -term (5.33)
in the capture rate equation like we did. In Refs. [113, 114] the authors added
higher-order terms to the effective Hamiltonian of Eq. (5.9), and in Ref. [115]
the authors replaced the point-like-nucleus approximation of the muon wave
function by a more realistic one. While adding the higher-order terms into
the Hamiltonian resulted in a few-percent correction of the capture rate, the
effect of the realistic muon wave function is much less clear.

In the following subsection we will discuss replacing the approximate
bound-muon wave function by a more realistic wave function obtained by
solving the Dirac equations of the muon by taking into account the finite size
of the nucleus.

5.1.6 Improvements to the Theory: Realistic Bound-
Muon Wave Function

This part concerns the author’s future plans of extending and improving the
muon-capture calculations beyond the scope of the publications presented in
this thesis.

The Primakoff method introduced in Eq. (5.32) is of course not the most
sophisticated method to take into account the finite-size effects in the muon
capture. We also can take into account the relativistic effects and finite size
of the nucleus in the bound-muon wave function itself. This was already done
in Ref. [115], and more recently in Ref. [117].

If we express the bound-muon wave function in the same way as in Eq.
(5.17), and assume that the muon is in the lowest state 0s1/2 (κ = −1), we
can reconstruct a realistic bound-muon wave function by solving the large,
G−1, and small, F−1, parts of the wave function in the Coulomb field created
by the nucleus. The components satisfy the coupled differential equations

44



point like approx. 
point like exact 
finite size exact

12 C

0 50 100 150 200 250 300
0.000

0.002

0.004

0.006

0.008

r�fm�

G
�

1�
r�

(a)

point like approx. 
point like exact 
finite size exact

100 Mo

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

r�fm�
G
�

1�
r�

(b)

Figure 5.2. Large part of the realistic bound-muon wave function (red line)
compared with the point-like-nucleus approximation (blue line) in the cases of
(a)12C and (b)100Mo. Black line shows the numerical solution of the radial Dirac
functions when the nucleus was assumed point-like. Figures: Jenni Kotila.

(see, e.g., [128], but note that they use different notations for the large and
small parts)
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d
dr

G−1 + 1
r
G−1 = 1

�c
(mc2 − E + V (r))F−1 ,

d
dr

F−1 − 1
r
F−1 = 1

�c
(mc2 + E − V (r))G−1 .

(5.35)

If we assume finite nuclear size and uniform charge distribution of the
nuclear charge within the charge radius Rc = r0A

1/3, the potential energy
V (r) in Eqs. (5.35) can be written in the form

V (r) =

⎧⎪⎨
⎪⎩

(Z−1)e2

2Rc

[
3 −

(
r

Rc

)2
]

, if r ≤ Rc

(Z−1)e2

r
, if r > Rc

(5.36)

similarly as in Ref. [79] in the case of bound-electron wave functions in the
context of double-beta decay. Eqs. (5.35) can then be solved by means of
package Radial [129] by solving the radial equations by using a piecewise-
exact power-series expansion of the radial functions, which then are summed
up to the prescribed accuracy. In Fig. 5.2 we compare the large parts of the
bound-muon wave functions, computed using this method by our collaborator
Jenni Kotila, with the approximate wave function of Eq. (5.20).

To introduce the realistic wave function, we have to modify the muon
capture matrix elements and the capture rate equation correspondingly. Since
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Table 5.3. Definition of O′s in Eq. (5.37) for different nuclear matrix elements
(NMEs) assuming the realistic bound-muon wave function.

NME O′s

M[0w u] jw(qrs)G−1(rs)Y
Mf−Mi

0wu (r̂s)δwu

M[1w u] jw(qrs)G−1(rs)Y
Mf−Mi

1wu (r̂s,σs)

M[0w u±] [jw(qrs)G−1(rs)∓ 1
q
jw∓1(qrs) d

drs
G−1(rs)]Y

Mf−Mi

0wu (r̂s)δwu

M[1w u±] [jw(qrs)G−1(rs)∓ 1
q
jw∓1(qrs) d

drs
G−1(rs)]Y

Mf−Mi

1wu (r̂s,σs)

M[0w up] ijw(qrs)G−1(rs)Y
Mf−Mi

0wu (r̂s)σs · psδwu

M[1w up] ijw(qrs)G−1(rs)Y
Mf−Mi

1wu (r̂s,ps)

the wave functions are no more of exponential form, we have to replace the
∓αZm′µ terms by the derivative d

drG−1. In the Morita-Fujii formalism the
coefficient 2(αZm′µ)3/2 coming from the point-like approximation was taken
out of the definition of the matrix elements as a common factor, and hence
the square of it appears in the formula of the capture rate (5.32). For general
muon wave function we cannot do that, instead we have to keep the parts of
the muon wave function as they are in the definition of the matrix elements.
Accordingly, the matrix elements can be defined as∫

ΨJfMf
G−1(r)

A∑
s=1
O′sτ s−ΨJiMi

dr1...drA

=M[k w u
(
±
p

)
](Ji Mi u Mf −Mi|Jf Mf ) ,

(5.37)

where the operators O′s are now defined as in Table 5.3.
The ordinary muon capture rate of Eq. (5.32) can now be written as

W = 22Jf + 1
2Ji + 1

[
1− q

mµ + AM

]
q2P (5.38)

without the Primakoff term, which should not be needed when having access
to the realistic bound-muon wave functions. The capture rates obtained from
this equation could then be compared with the values obtained from Eq.
(5.32) with the pointlike-nucleus approximation.
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Here we assumed that F−1(r) = 0, which is a reasonable approximation,
since F−1(r) is an order of magnitude smaller than G−1(r). The next step
would then be adding also the non-zero F−1(r) into the computations. How-
ever, this is much less straightforward, since it activates all the terms in the
operators of Table 5.1 making the formulation of the matrix elements and
capture rate drastically more complex.

5.2 Results
Here we present the main results of different OMC studies we have performed
in articles [III, IV, V].

5.2.1 Muon Capture on 100Mo

Inspired by the first observation of the OMC giant resonance in 100Nb at
around 12 MeV [28, 130, 131], in article [III] we study both theoretically
and experimentally the OMC on 100Mo populating states in 100Nb in a wide
excitation region, up to some 50 MeV. The strength function consists of muon
capture rates to individual final states, resembling the Gamow-Teller strength
function in the case of (n,p) charge-exchange reactions to the final states. The
OMC strength function analogously to the Gamow-Teller strength function,
or the isovector spin-multipole strength functions introduced in Sec. 4.2,
contains giant resonances and in the article we studied the structure of these
resonances. The aim was to access the effective values of the weak couplings
gA and gP in wide energy and momentum regions by comparing the associated
OMC strength function against experimental data. 100Mo is a particularly
interesting case, since it is one of the ββ-decaying nuclei, and it is also used
for solar- and supernova-neutrino studies [9].

The muon capture reaction we studied can be written as

µ− + 100
42Mo(0+)→ νµ + 100

41Nb(Jπ) .

The excited states of 100
41Nb then de-excite either by emitting γ rays to the

ground state of 100
41Nb or by emitting a neutron to the neighboring isotope

99
41Nb, depending on whether the excitation energy is below or above the
first neutron-emission threshold energy. The residual nucleus 99

41Nb then
de-excites either to its ground state by emitting γ rays, or to the neighboring
isotope by emitting a second neutron, depending on whether the excitation
energy was above or below the second neutron-emission threshold energy,
and so on. One finally ends up with the residual isotope of 100−x

41 Nb with
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x = 0, 1, 2, 3, ..., depending on the excitation energy E and the number x of
the emitted neutrons.

The OMC strength distribution in 100Nb was studied at the MuSIC beam
channel at RCNP and the D2 beam channel in J-PARC MLF as reported in
Refs. [28, 132]. The delayed γ-ray characteristics of the residual radioactive
isotopes of 100−xNb were measured, and the number of the residual isotopes
produced by the OMC on 100Mo was then evaluated from the observed γ-
ray yields. Finally the strength distribution was derived from the OMC
residual-isotope distributions using the neutron equilibrium-emission and
pre-equilibrium-emission models [28].

The capture rates for the transitions µ− +100 Mo(0+
g.s.)→ νµ +100 Nb(Jπf )

were computed for all possible multipole states Jπf reachable with our choice
of single-particle basis, while the experimental data applies to multipole
states Jπf = 0+, 1±, 2±. We independently varied the values of the axial-vector
coupling gA(0) and the induced pseudoscalar coupling gP(0) in the ranges
of gA(0) = 0.6 − 1.27 (this is considered a sensible range as discussed in
the review [133]) and gP = 0− 10 in order to see how they affect the total
capture rate and the OMC strength function. For the vector coupling we
kept the well-established conserved-vector-current (CVC) value gV(0) = 1.0
throughout the calculations.

In Fig. 5.3a we present a multipole decomposition of the obtained the-
oretical OMC rate distribution (OMC strength function) of transitions to
the Jπf = 0+, 1±, 2± states, which presumably form the experimental strength
distribution. In Fig. 5.3b we decompose the total capture rate into parts
containing these lowest multipoles, and the rest of the multipoles, separately.
It quickly becomes clear that the theoretical distribution is mainly built of
the transitions to the lowest-multipole Jπf = 0+, 1±, 2± states, as we could
suppose. Furthermore, it is notable that transitions to Jπf = 1−, 2− states not
only form most of the strength but also are mainly responsible for the giant
resonance peak at around 12 MeV. Transitions to the Jπf = 1+, 2+ states, in
turn, form a satellite resonance at around 7 MeV. All in all, the OMC strength
distribution is quite broad, since OMC is an (n, p)-type of charge-exchange
reaction where for medium-heavy nucleus like 100Nb the 0~ω excitations are
hindered by the relative locations of the proton and neutron Fermi surfaces.

The Lorentzian foldings of the experimental relative OMC strength distri-
bution together with the theoretical relative OMC distribution obtained with
gA(0) = 0.8 and gP = 7.0 are shown in Fig. 5.4. The theoretical distribution
containing only the Jπ = 0+, 1±, 2± multipoles is shown separately. The
overall features of all the relative rate distributions are strikingly similar:
there is a strong peak around 10-12.5 MeV and tails on both sides. However,
the experimental distribution is slightly more spread to higher energies than
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Figure 5.3. Panel (a): Muon-capture-rate distribution including transitions to
Jπ = 0+, 1±, 2± states. Panel (b): The same but transitions to the rest of the
possible multipole final Jπf states added. The horizontal axes show the excitation
energy in the 100Nb nucleus. Here a 2.5 MeV binning in energy is used in order
to match the energy binning used in the experimental data analysis. Parameter
values gA(0) = 0.8 and gP(0) = 7.0 were adopted in the calculations. Figures:
[III].

the theoretical distributions, containing also a second giant-resonance-like
bump at around 30 MeV. This bump, however, contains some experimental
uncertainties and the confirmation of it needs further studies. There are no
notable differences between the two theoretical spectra, stemming from the
fact that multipoles Jπ = 0,1±, 2± are the main responsibles for the total
OMC strength function.

We list the total OMC rates obtained with different parameter values
in Table 5.4. The computed values are notably higher than the Primakoff
approximation WPr. = 7.7×106 1/s obtained from Eq. (5.2). We noticed that
increasing the value of gP(0) or decreasing the value of gA(0) decreases the
theoretical total capture rate. However, the total capture rate is relatively
insensitive to the value of gP(0), leaving gA(0) the main responsible for the
total capture rate. The differences between the computed and Primakoff
total OMC rates are presumably not only due to the possible quenching of
the effective weak couplings but also related to the higher average energy of
the experimental OMC strength function. Comparison of the computed and
Primakoff total capture rates suggests a strongly quenched effective value
of gA(0), in accordance with the results of many earlier β-decay studies [23,
134–137].
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Figure 5.4. Theoretical (black lines) and experimental (red line) relative OMC
rates on 100Mo in per cents. The theoretical distribution containing only the
Jπ = 0+, 1±, 2± multipoles is shown as the dashed line, and the distribution
containing all multipoles as the solid line. Parameters gV(0) = 1.0, gA(0) = 0.8
and gP(0) = 7.0 were adopted. Figure: [III].

Table 5.4. Total rates of muon capture by 100Mo for different values of the
pseudoscalar and axial-vector strengths gP(0) and gA(0). The rates are expressed
in units of 106/s. Table: [III].

gP(0) = 0 gP(0) = 7 gP(0) = 10
gA(0) W(0+,1±,2±) Wtot W(0+,1±,2±) Wtot W(0+,1±,2±) Wtot
0.6 11.8 13.8 10.8 12.4 10.7 12.2
0.8 17.0 20.2 15.7 18.3 15.3 17.7
1.0 23.9 28.4 28.0 31.9 21.2 24.8
1.27 34.8 41.7 32.2 38.2 31.3 37.0

There are two main conclusions arising from this study: our muon-capture
formalism is capable of reproducing the observed muon-capture giant reso-
nance in 100Mo at around 12 MeV, however, the obtained total capture rate
overestimates the Primakoff value suggesting a strongly quenched gA ≈ 0.5.

5.2.2 OMC on the Daughter Nuclei of the Key 0νββ
Triplets

Inspired by the findings in article [III], in article [IV] we extended the muon-
capture studies on the daughter nuclei of the key ββ-decay triplets. Extending
the calculations, and eventually the experiments, on these nuclei could help
theories better evaluate the β+ NMEs associated with the 0νββ decays and
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Figure 5.5. Multipole decompositions of the muon-capture-rate distributions in
the (a) 76As (b) 136I. Figures: [IV].

the NMEs related to astro-(anti)neutrino interactions.
We evaluated the OMC rates on the daughter nuclei of the key ββ triplets

listed in Sec. 4.2 leading to the excited states of the intermediate odd-odd
nuclei of the ββ triplets. The corresponding OMC (capture-rate) strength
functions were then analyzed in terms of multipole decompositions. In Fig.
5.5 we show a couple of examples of the multipole decompositions of the
distributions with 1-MeV energy binning. The energy-binning was chosen in
order to enable comparison against experimental data in the future. Also
from these figures, similarly as in the case of 100Nb, one can observe structures
of the OMC strength functions, which would correspond to an OMC giant
resonance. For some nuclei, like the example case 76As in 5.5a, the resonance-
bump around 12 MeV is relatively clear, but for a few cases, like the 136I
case in 5.5b there is no clear resonance peak, but rather a wide flat region of
strong captures below ≈ 20 MeV.

In Table 5.5 we compare the Primakoff estimates of Eq. 5.2 with the
obtained total muon-capture rates computed with couplings gA(0) = 0.8 and
gP(0) = 7.0 for different nuclei. From the table it is obvious that the computed
values are systematically higher than the corresponding Primakoff estimates.
This refers to the need of strongly quenched gA(0) ≈ 0.5, in keeping with
OMC computations on 100Mo and the earlier β-decay studies. However, we
cannot make any strong conclusions of the quenched value of gA, since the
Primakoff values are only estimates for the total capture rate. For further
conclusions we would need to have experimental data in order to compare
with the computed total capture rates.
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Table 5.5. pnQRPA-computed and Primakoff-formula based total rates for
OMC on different parent nuclei (Parent), as well as the effective Z values [127].
Couplings gA(0) = 0.8 and gP(0) = 7.0 were adopted in the calculations. Table:
[IV].

Parent Zeff WpnQRPA(106/s) WPr.(106/s)
76Se 24.47 16.4 8.3
82Kr 24.47 16.5 7.5
96Mo 26.37 20.4 10.0
100Ru 26.37 16.7 10.3
116Sn 28.64 15.7 12.7
128Xe 29.99 21.2 13.3
130Xe 29.99 23.6 11.9
136Ba 29.99 21.1 11.1

In Ref. [105] the lifetime of negative muon and partial OMC rates on a
few daughter isotopes of ββ-decay were deduced at µE4 and the µE1 beam
lines of the Paul Scherrer Institute (PSI) in Switzerland. The results serve as
possibility to compare our computed capture rates to the lowest states in 76As
against experimental data. We present the “most probable” experimental
multipole-by-multipole OMC strength distribution below 1.1 MeV deduced
from the results of Ref. [105] against the computed distribution in Table
5.6. The “most probable” here refers to the educated guesses that were
produced in order to determine the uncertain spin-parity assignments of the
experimental data. The details of the procedure can be found in article [IV].
The correspondence between the experimental and pnQRPA-computed OMC
strength distributions presented in the table is strikingly good. Only the
pnQRPA-computed rate to the 0+ states is an order of magnitude smaller
than the corresponding experimental rate, which might be due to the small
deformation of 76Se that is not taken into account in the spherical pnQRPA
formalism. These results point to reliability of the present calculations of the
OMC strength functions at low energies.

To summarize the results of article [IV]; the computed OMC strength
distributions in the intermediate nuclei of ββ-decay triplets contain giant-
resonance-like structures that could be further studied against experimental
data in the future. The computed low-energy transition rates are in line with
the data of Zinatulina et al. [105]. However, the comparison between the
total OMC rates and the Primakoff estimates points to a strongly quenched
gA, in keeping with the results of article [III].
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Table 5.6. Comparison of the “most probable” experimental multipole-by-
multipole OMC strength distribution to the excited states of 76As below 1.1
MeV obtained from Ref. [105] with the corresponding pnQRPA-computed dis-
tribution deduced from the results of article [IV]. The OMC strength to the
2− ground state has not been measured and this is indicated by ’+ g.s.’ in the
corresponding row. Table: [IV].

OMC rate (1/s)
Jπ Exp. pnQRPA
0+ 5120 414
1+ 218 240 236 595
1− 31 360 28 991
2+ 120 960 114 016
2− 145 920 + g.s. 177 802
3+ 60 160 55 355
3− 53 120 34 836
4+ - 2797
4− 30 080 23 897

5.2.3 Comparing OMC Rates with 0νββ Matrix Ele-
ments

Article [V] nicely concludes the main emphasis of this thesis. There we
compare the 0νββ-decay matrix elements with the corresponding average
muon-capture matrix elements. Earlier the OMC rates have been compared
against the 2νββ NMEs for light nuclei using the nuclear shell model by
Kortelainen et al. [77]. There was found a clear correlation between the energy
distributions of the OMC rates to 1+ states and the energy decomposition of
the 2νββ NMEs for the 2νββ decays of the sd-shell nuclei 36Ar, 46Ca, and
48Ca. In article [V] we extended these studies to 0νββ decays of medium-
heavy and heavy nuclei by computing the average OMC matrix elements in
the intermediate nuclei of 0νββ decays multipole by multipole up to some
50 MeV using the pnQRPA formalism and compared them with the energy-
multipole decompositions of the NMEs of 0νββ decays computed using the
same formalism and model spaces.

Using the notation of Eq. (5.32) we can write Eq. (5.31) in the form

〈|M.E.|2〉av = 8(2Jf + 1)
2Ji + 1 (αZm′µ)3P . (5.39)
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In article [V] we then defined an average OMC matrix element as

|M (µ)
av | =

√
〈|M.E.|2〉av =

√
8(2Jf + 1)

2Ji + 1 (αZm′µ)3P . (5.40)

We compared this quantity, instead of the OMC rate, with the 0νββ-decay
nuclear matrix element in order to reduce the phase-space effects in the
comparison.

In Fig. 5.6, we show an example of the comparison of relative OMC matrix-
element distribution with the corresponding multipole decompositions of the
0νββ-decay NME. The 0νββ-decay and OMC distributions correspond to
0νββ decay of 76Ge and OMC on the daughter nucleus 76Se, correspondingly.
We chose to plot the absolute values of the matrix elements, since they carry
the essential information needed in the comparison of the OMC and 0νββ
decay. We concentrated only on the positive Jπ = 0+, 1+, 2+, 3+, 4+ and
negative Jπ = 1−, 2−, 3−, 4− multipolarities of both the average OMC matrix-
element distributions and the 0νββ NME distributions. These multipoles are
by far the most important ones for the OMC rates, as was seen in article[IV],
and the leading ones for the 0νββ NMEs, which was noted in article[II] and
Ref. [78]. Here we chose the slightly quenched values of gA(0) = 0.8 and
gP(0) = 7.0 and keep the CVC value gV(0) = 1.00 for all the studied cases
similarly as in article [IV], but the (qualitative) results of the present study
are not very sensitive to the values of these couplings.

Fig. 5.6 shows that the correspondence between the relative OMC matrix-
element and 0νββ-NME distributions for the multipole Jπ = 0+ is weak.
However, for the rest of the multipoles one can see clear correspondences:
in the cases of Jπ = 1+ − 3+ there are two bumps at similar energies. The
Jπ = 1− distributions both are peaked at E ≈ 10 MeV, and the Jπ = 3−, 4−
distributions at E ≈ 15 MeV. On the other hand, in the case of Jπ = 2− the
0νββ transition through the 2− ground state of 76As seems to be enhanced
relative to the OMC. Among all the nuclei, the best overall correspondence
was found for the Jπ = 3± and 4± multipoles, while the correspondence
between the Jπ = 0+ 0νββ-NME and OMC-matrix-element distributions
was a bit vaque. The distributions and their correspondences varied quite
much between the different 0νββ triplets indicating variations in the nuclear
structure of the different nuclei.

In article [V], we discuss also the cumulative average OMC matrix elements
and 0νββ NMEs that nicely illustrate the build-up of the quantities as
functions of the excitation energy of the intermediate nuclei of 0νββ decay.
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Table 5.7. Contributions (in percentages) from different multipoles to 0νββ-
decay NMEs and average OMC matrix elements for different 0νββ-decay
triplets. The presented values are normalized ratios abbreviated as Rν =
|M (0ν)|(Jπ)/|M (0ν)| and Rµ = |M (µ)|av(Jπ)/|M (µ)|av. Table: [V].

A = 76 A = 82 A = 96 A = 100 A = 116 A = 128 A = 130 A = 136
Jπ Rν Rµ Rν Rµ Rν Rµ Rν Rµ Rν Rµ Rν Rµ Rν Rµ Rν Rµ
0+ 2 3 2 2 0 3 1 2 1 2 1 3 1 2 1 2
1+ 7 18 6 17 6 17 6 17 9 16 2 16 2 14 7 14
1− 16 21 16 21 18 18 20 19 23 18 13 17 13 17 9 17
2+ 13 16 14 17 13 16 12 16 9 16 12 17 12 15 14 15
2− 10 18 9 17 7 17 3 17 7 17 5 16 5 17 6 16
3+ 5 11 5 11 6 12 5 12 6 11 6 12 6 12 7 12
3− 11 6 11 6 10 7 9 8 9 8 10 8 10 9 9 9
4+ 7 2 7 2 8 2 8 2 7 3 9 3 9 4 9 4
4− 5 5 5 5 4 5 4 5 4 5 5 5 5 6 5 6∑

76 100 75 98 72 97 68 98 75 96 63 97 63 96 67 95

In Fig. 5.7 we show the normalized cumulative matrix elements

∑
Jπ
|M (0ν)(Jπ)|(E)

/∑
Jπ ,E

|M (0ν)(Jπ)|(E)

and ∑
Jπ
|M (µ)|av(Jπ)(E)

/∑
Jπ ,E

|M (µ)|av(Jπ)(E)

as functions of energy in the intermediate nuclei 76As and 136Cs of the A = 76
and A = 136 0νββ triplets. It was demonstrated that the running sums of
the quantities are quite similar, but both cases show that 0νββ decay NME is
a little bit more concentrated in lower energies than the corresponding OMC
matrix element.

The relative multipole contributions to the 0νββ NMEs and average OMC
matrix elements for the discussed 0νββ-decay triplets are presented in Table
5.7. The multipole Jπ = 0− is omitted from the table, since its contribution
to both 0νββ NME and OMC matrix element is negligible. It is worth
noticing that basically all the OMC strength is coming from the multipoles
with J ≤ 4, while the 0νββ NME is more distributed to higher multipoles,
only about 60− 75 % coming the from multipoles with J ≤ 4. However, the
Jπ = 1+, 1−, 2+ and 2− multipoles are among the leading multipoles for both
the 0νββ decay and OMC for all the nuclei, and the contributions coming
from Jπ = 1− and 2+ are practically the same for both processes.

We can summarize the results of article [V] by concluding that the overall
behavior of the OMC and 0νββ matrix elements in the ββ-decay triplets is
pretty similar. Therefore, we are hopeful that future measurements of the
OMC strength functions in the intermediate nuclei of ββ triplets could help
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improve the accuracy of evaluating the 0νββ NMEs by serving information
on the effective values of the weak couplings.
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Figure 5.6. Multipole decompositions in terms of relative 0νββ-decay matrix
elements (positive y axes) and average matrix elements of the OMC on 76Se
(negative y axes) as functions of the excitation energy E in the intermediate
nucleus 76As of the 0νββ decay of 76Ge. Here Jπ refer to the angular momenta
and parities of the virtual states in 76As and all quantities have been summed
within 1 MeV energy bins. Figures: [V].
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Figure 5.7. Normalized cumulative average OMC matrix elements and normal-
ized 0νββ NMEs as functions of energy in the intermediate nuclei 76As [panel
(a)] and 136Cs [panel (b)] of the A = 76 and A = 136 0νββ triplets. Figures: [V].
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Chapter 6

Conclusions and outlook

The main emphasis of this thesis is probing the yet hypothetical nuclear process
called neutrinoless double-beta decay by charge-exchange reactions and nuclear
muon capture. These reactions could help analyze the intermediate virtual
states of the double-beta decay and shed light on the highly debated value
of weak couplings, most importantly the axial-vector coupling constant gA
entering the double-beta-decay matrix elements in the fourth power.

In article [I], we examine the energetics and strength distributions of the
isovector spin-dipole (L = 1) and spin-quadrupole (L = 2) excitations in
odd-odd nuclei belonging to double-β-decay triplets with A = 76, A = 82,
A = 96, A = 100, A = 116, A = 128, A = 130, and A = 136 in the pnQRPA
framework. We noticed that there is a considerable difference in the giant-
resonance energy centroids of the various Jπ states corresponding to a given
L. We also found correlation between angular momenta and the transition
strengths of L = 1 transitions: the strengths were highest for the lowest-J
transitions and lowest for the highest-J transitions. These findings suggest
that in the future, having access to experimental data, one could fine-tune
the model Hamiltonian by comparing the computed isovector spin-multipole
distributions against the data.

In article [II], we extend the studies of article [I] by computing the 0νββ
nuclear matrix elements exploiting the newly available data on isovector spin-
dipole (IVSD) Jπ = 2− giant resonances. We computed the IVSD transition
strength spectra in the intermediate nuclei of the key 0νββ-decay triplets
using the pnQRPA formalism. We adjusted the particle-hole parameter gph
to the available data on the locations of the IVSD Jπ = 2− giant resonances
measured at RCNP, Osaka. Traditionally the particle-hole parameter has
been adjusted to the location of Gamow-Teller (Jπ = 1+) giant resonances.
We studied the effects of different parameter-adjusting schemes on the values
of 0νββ NMEs, and found that most of the deviations from earlier results are
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due to the extension of the single-particle space of pnQRPA, while the effect
of adjusting the particle-hole interaction to data on spin-dipole resonances is
relatively smaller.

In article [III], we study the ordinary muon capture (OMC) on 100Mo
both experimentally and theoretically in order to access the weak responses
in wide energy and momentum regions. For the first time, the associated
OMC strength function was computed and compared with the obtained data.
The computations were performed in the no-core pnQRPA framework using
the Morita-Fujii formalism of OMC by extending the original formalism
beyond the leading order. The computed and experimental OMC strength
distributions consistently showed a giant resonance at around 12 MeV, while
comparing the computed total capture rate with the Primakoff estimate
suggested a strongly quenched gA in keeping with earlier β-decay studies.

In article [IV], we extend the studies of article [III] to the daughter nuclei
of ββ-decay triplets in order to access the OMC strength functions in the
intermediate nuclei of ββ decay. We analyzed the strength functions in terms
of energy and multipole decompositions. We also compared the OMC rates
to the low-energy states in 76As with the available data and found that the
correspondence is pretty good. The comparison of the total capture rates with
the Primakoff estimates, however, suggested a quenched gA in accordance
with the 100Mo case.

In article [V], we compare the average matrix elements of OMC with the
corresponding 0νββ decay matrix elements in terms of energy and multipole
decompositions in the intermediate nuclei of ββ-decay triplets. We found
that there are correspondences especially between the Jπ = 3+ and 4+ 0νββ
NMEs and average OMC matrix elements, and also for other multipoles there
can be seen similarities for all the studied ββ-decay triplets. It was also noted
that 0νββ strength is distributed to higher multipoles than OMC, while the
cumulative behavior of these two quantities is almost identical. These findings
support the idea of using OMC as a probe of 0νββ decay.

Further experimental and theoretical studies on the muon-capture strengths
are called for in order to access the effective values of the weak couplings
gA and gP. There are experimental studies in progress e.g. at RCNP Osaka
and PSI Villigen for the nuclei of interest in studies of nuclear double beta
decay and astro-neutrino interactions. From the theory side, to enhance the
reliability of the capture-rate values, some improvements to the theoretical
formalism are in order.
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In this work the energetics and strength distributions of isovector spin-dipole and spin-quadrupole transitions
from the ground states of the pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo, 100Ru), (116Cd, 116Sn), (128Te,
128Xe), (130Te, 130Xe), and (136Xe, 136Ba), of double-β-decay initial and final nuclei, to the J π = 0−,1−,2−,1+,2+,
and 3+ excited states of the intermediate odd-odd nuclei 76As, 82Br, 96Nb, 100Tc, 116In, 128,130I, and 136Cs are
investigated. The calculations are performed using a proton-neutron quasiparticle random-phase approximation
(pnQRPA) theory framework with the Bonn-A two-body interaction in no-core single-particle valence spaces.

DOI: 10.1103/PhysRevC.96.034308

I. INTRODUCTION

At present, the properties of neutrinos attract a lot of
interest in the particle-physics and nuclear-physics commu-
nities. These properties can be studied in many ways, among
others by the neutrino-oscillation experiments, the neutrino-
nucleus scattering, and the neutrinoless double-β (0νββ)
decay [1–5]. The latter two processes require knowledge
about nuclear properties in the form of the nuclear matrix
elements (NMEs). The NMEs of these processes are built
from real or virtual transitions between the ground state
of an initial nucleus and the ground and excited states
of a daughter nucleus. In particular, the transitions in the
charged-current neutrino-nucleus scattering [6–8] and 0νββ
share many common features, like the possibility to feed
(highly) excited Jπ = 0+,0−,1+,1−,2+,2−,3+, . . . states of
an odd-odd nucleus starting from the 0+ ground state of
the neighboring even-even isobar. A suitable framework for
studying these real or virtual transitions is the proton-neutron
random-phase approximation (pnRPA) at closed nuclear major
shells [9] and the corresponding theory for quasiparticles
(pnQRPA) in the case of superfluid open-shell systems [10,11].

In the case of two-neutrino double-β (2νββ) decay the
NME consists of virtual Gamow-Teller (GT) transitions from
the 0+ ground states of the initial and final even-even
nuclei to the 1+ states of the intermediate nucleus. These
transitions have typically been probed by the partial-wave
L = 0 charge-exchange reactions (CXRs) by using the β−
type of (p,n) or (3He,t) reactions and β+ type of (n,p),
(d,2He), or (t,3He) reactions [12–14]. Results of these reac-
tion studies can be compared with theoretical calculations
of the Gamow-Teller and isovector spin-monopole (IVSM)
strength distributions [15–17]. Lately, the partial-wave L = 1
CXRs to 2− states have gained momentum by the improved
experimental methods and facilities, e.g., the RCNP in Osaka,
Japan [18]. These studies could be relevant for the 0νββ decays
because a considerable portion of the corresponding NME can
be built from virtual transitions via the Jπ = 2− multipole
states [19,20]. The experimental considerations can also be
extended to the other L = 1 CXRs by studying the β− and

*lotta.m.jokiniemi@student.jyu.fi
†jouni.suhonen@phys.jyu.fi

β+ types of feedings of the 0− and 1− states involved in the
NMEs of the 0νββ decays.

In the present work we extend the study of [9] to open-shell
superfluid nuclei relevant for the 0νββ decays. In [9] the
pnRPA model was used for closed-shell nuclei to study the
isovector spin-dipole (IVSD, L = 1) and spin-quadrupole
(IVSQ, L = 2) β− and β+ types of feeding of the Jπ =
0−,1−,2− (L = 1) and Jπ = 1+,2+,3+ (L = 2) nuclear states
in a few cases of odd-odd nuclei. Instead of the pnRPA,
we adopt the pnQRPA (proton-neutron quasiparticle random-
phase approximation) with partial restoration of the isospin
symmetry [21] for our studies of the isovector spin-multipole
L = 1,2 feeding of the nuclei 76As, 82Br, 96Nb, 100Tc, 116In,
128,130I, and 136Cs from the 0+ ground states of 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 128,130Te, and 136Xe (β− type of feeding) and
from the 0+ ground states of 76Se, 82Kr, 96Mo, 100Ru, 116Sn,
128,130Xe, and 136Ba (β+ type of feeding). The feasibility of
probing experimentally the IVSD L = 1 strength distributions
to Jπ = 1−,2− states was demonstrated and experimental
results are to be expected in the near future [18]. The feasibility
of probing the IVSQ L = 2 strengths to Jπ = 1+,2+,3+ states
is still an open question but could probably be done in the
not so distant future. When and if available, the measured
L = 1 and L = 2 strength distributions can be compared to
the presently computed ones to learn more about the ability
of the pnQRPA to describe the feeding of the important
intermediate Jπ = 0+,0−,1+,1−,2+,2−,3+ multipole states
in 0νββ processes.

The outline of this article is as follows: In Sec. II
we introduce the used formalism, including the pnQRPA
framework and transition amplitudes, in Sec. III we present
and discuss the obtained results, and finally in Sec. IV we
draw the final conclusions of the study.

II. SHORT REVIEW OF THE FORMALISM

The formalism developed in [16], for the GT and isovector
spin-monopole (IVSM) excitation modes, is now extended to
the IVSD and IVSQ modes. At the same time we extend the
corresponding studies of [9] to open-shell superfluid nuclei.
The calculations start from the ground states of a number of
selected even-even nuclei. In the present study we investigate
the double-beta emitters in the triplets of isobars with A =
76, A = 82, A = 96, A = 100, A = 116, A = 128, A = 130,

2469-9985/2017/96(3)/034308(7) 034308-1 ©2017 American Physical Society
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and A = 136. In the following subsections the stages of this
step-by-step study are explained briefly.

A. Single-particle bases

The single-particle energies for both protons and neutrons,
for each even-even nucleus involved, are obtained by solving
the radial Schrödinger equation for a Coulomb-corrected
Woods-Saxon potential. The Woods-Saxon parameters are
obtained from [22]. We include in our calculations only the
bound and quasibound single-particle states.

In this work, the calculations are performed in large no-core
single-particle bases, which means that all the states starting
from nlj = 0s1/2 up to two oscillator major shells above the
proton Fermi surface of each nucleus are taken into account.
The same single-particle space is adopted also for neutrons.

B. Quasiparticle spectra

The two-body interaction used in the BCS calculations
is derived from the Bonn-A one-boson-exchange potential
introduced in [23]. The BCS pairing gaps are fitted to the
observed ones [24–26] using the three-point formulas,

�n(A,Z) = 1
4 (−1)A−Z+1[Sn(A + 1,Z) − 2Sn(A,Z)

+ Sn(A − 1,Z)],

�p(A,Z) = 1
4 (−1)Z+1[Sp(A + 1,Z + 1) − 2Sp(A,Z)

+ Sp(A − 1,Z − 1)],

(1)

where Sp and Sn are the separation energies for protons
and neutrons, respectively. This is achieved by adjusting the
pairing strength parameters g(n)

pair and g
(p)
pair which multiply the

monopole G-matrix elements. The resulting pairing strength
constants and pairing gaps are discussed in the next section.

C. Spectra of the Jπ excitations in odd-odd nuclei

The wave functions and excitation energies for the complete
set of Jπ excitations in the odd-odd nuclei are obtained
by performing a pnQRPA diagonalization in the basis of
unperturbed quasiproton-quasineutron pairs coupled to Jπ .
The pnQRPA states in odd-odd nuclei are then of the form,

|ω〉 = Q†
ω|pnQRPA〉

=
∑
pn

[
Xω

pnA
†
pn(JM) − Yω

pnÃpn(JM)
]|pnQRPA〉, (2)

where ω = nJπM , X and Y are the forward- and backward-
going amplitudes, A† and Ã the quasiproton-quasineutron
creation and annihilation operators, and |pnQRPA〉 is the
pnQRPA vacuum. M denotes the z projection of J . The
formalism is explained in detail in, e.g., [24,26].

The X and Y amplitudes of (2) are calculated by diag-
onalizing the pnQRPA matrix separately for each multipole
Jπ . The isoscalar (T = 0) and isovector (T = 1) parts of the
particle-particle G-matrix elements are multiplied by common
factors gT =0

pp and gT =1
pp , respectively, for all the multipoles

according to a method proposed in [21]. In addition, the
particle-hole part was scaled by a common factor gph for all

the multipoles. These renormalization factors are listed in the
following section for each mass number separately.

D. Transition operators and strength distributions

The transition operators for the spin-dipole (L = 1) and
spin-quadrupole (L = 2) transitions are of the form,

Q±
L,J = rL[YLσ ]J iLt±, (3)

where YL is the spherical harmonic of rank L, σ the Pauli
spin tensor operator, and t+ and t− are the isospin raising and
lowering operators. The reduced single-particle NMEs of this
operator are of the form [22,24],

(jf ||O±
L,J ||ji) = (

nf lf
1
2jf ||rL[YLσ ]J iL||nili

1
2ji

)
=

√
6ĵf Ĵ ĵi

(−1)lf√
4π

ˆlf L̂l̂i

(
lf L li
0 0 0

)

×

⎧⎪⎨
⎪⎩

lf
1
2 jf

li
1
2 ji

L 1 J

⎫⎪⎬
⎪⎭R(L)

f i (−1)
1
2 (li−lf +L)

, (4)

where R(L)
f i is a radial integral [24] and the effect of the isospin

ladder operators is taken into account by the fact that the
initial ji = (nili

1
2ji) and final jf = (nf lf

1
2jf ) single-particle

states have different isospin projections. Here n denotes the
principal quantum number, l the orbital angular momentum,
and j the total angular momentum. Now the reduced NMEs
can be calculated from [24]

(Jπ ||O±
L,J ||0+) =

∑
ab

(a||O±
L,J ||b)√

2J + 1
(Jπ ||[c†ac̃b]J ||0+), (5)

where b and a denote the initial and final single-particle
quantum numbers.

The transition strength for a transition from a 0+ ground
state to the ith Jπ state can be calculated from

S±
LJ (i) = |(Jπ

i ||O±
L,J ||0+)|2. (6)

III. RESULTS AND DISCUSSION

In this chapter we present and discuss the results and the
methods used in the calculations.

A. Single-particle bases and energies

We created the single-particle bases by solving the eigen-
states of the Woods-Saxon potential for protons and neutrons,
separately (for protons we corrected the potential with the
Coulomb force). The values for the central, orbital, and
spin-orbit parameters, and the radius and the surface thickness
parameters needed in the calculations were taken from [22].
Small adjustments to the proton and neutron single-particle
energies were done for the orbitals close to the Fermi
surfaces to better reproduce the low-lying spectra of the
neighboring odd-mass nuclei. Because we are dealing with
no-core calculations, we take all the orbits from the N = 0
oscillator major shell up to about two oscillator major shells
above the respective Fermi surfaces for protons and neutrons.
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TABLE I. Pairing scaling factors and the resulting pairing gaps
for the nuclei relevant for this work.

Nucleus g(n)
pair g

(p)
pair �n(MeV) �p(MeV)

76Ge 0.97 0.89 1.57 1.52
76Se 1.01 0.91 1.72 1.71
82Se 0.94 0.84 1.51 1.43
82Kr 1.01 0.86 1.65 1.63
96Zr 0.77 0.85 0.92 1.48
96Mo 0.90 0.93 1.03 1.52
100Mo 0.88 0.96 1.31 1.63
100Ru 0.85 0.93 1.27 1.60
116Cd 0.89 0.93 1.37 1.43
116Sn 0.82 0.89 1.16 1.84
128Te 0.86 0.81 1.30 1.09
128Xe 0.86 0.88 1.27 1.30
130Te 0.86 0.78 1.21 1.02
130Xe 0.85 0.86 1.25 1.26
136Xe 0.84 0.76 1.44 0.98
136Ba 0.87 0.83 1.08 1.22

An example of the single-particle orbitals and energies for the
A = 76 system is shown in Table I in [17].

B. Pairing gaps, quasiparticle spectra,
and BCS occupation factors

The two-body matrix elements obtained from the Bonn-A
interaction were applied to the “left-hand-side” and “right-
hand-side” even-even nuclei by renormalizing the monopole
neutron and proton channels, separately. The scaling factors
g(n)

pair and g
(p)
pair were adjusted to reproduce the phenomenologi-

cal pairing gaps given in Eq. (1). The needed neutron (proton)
separation energies Sn (Sp) were taken from [27] and [28].
The scaling factors and the resulting pairing gaps for the
nuclei of interest are listed in Table I. Using these scaling
factors we performed the BCS calculations and obtained the
one-quasiparticle spectra and occupation factors v and vacancy
factors u needed in the subsequent pnQRPA calculations of
the energies and wave functions. These factors, along with the
pnQRPA amplitudes of (2), are used to construct the one-body
transition densities of (5) in the form [24],

(Jπ ||[c†pc̃n]J ||0+) = Ĵ
(
upvnX

ω
pn + vpunY

ω
pn

)
, (7)

(Jπ ||[c†nc̃p]J ||0+) = Ĵ (−1)J
(
vpunX

ω
pn + upvnY

ω
pn

)
. (8)

C. Energy spectra and IVSD and IVSQ strength distributions

We decompose each isobaric triplet with mass number
A to “left-hand-side” even-even (A,N,Z), “right-hand-side”
even-even (A,N − 2,Z + 2), and “intermediate” odd-odd
(A,N − 1,Z + 1) nuclei. We construct the spectra of Jπ

excitations in the intermediate odd-odd nuclei applying the
pnQRPA formalism [25,26,29], including particle-hole and
particle-particle channels, to the left- and right-hand-side
even-even nuclei. In this way we obtain two sets of energies
and wave functions for each Jπ state.

TABLE II. Renormalization factors for the particle-hole and
particle-particle interactions in different nuclei.

A gph gT =0
pp gT =1

pp

76 1.156 0.83 0.96
82 0.997 0.82 0.95
96 1.415 0.89 0.94
100 1.224 0.875 0.91
116 1.518 0.82 0.81
128 1.267 0.745 0.87
130 1.228 0.73 0.86
136 1.262 0.67 0.87

The values of the particle-hole (particle-particle) renormal-
ization factors gph (gT =0,1

pp ) are listed in Table II. The gph values
were fitted to reproduce the energetics of the “left-hand-side”
GT− giant resonance (GTGR). The gpp values have usually
been fixed by the half-lives of 2νββ decays [30–34], by the
logf t values of β decays [35,36], or by both β and 2νββ
decays [37,38]. In this work, we adopt an improved method,
quasiparticle random phase approximation with partial restora-
tion of the isospin symmetry, introduced in [19], and first
proposed in [21]: We decompose the pnQRPA NMEs into
isoscalar (T = 0) and isovector (T = 1) parts and then adjust
the parameters gT =0

pp and gT =1
pp independently. The isovector

parameter gT =1
pp is adjusted so that the Fermi NME of 2νββ

matrix element vanishes, and thus the isospin symmetry is
restored. Then we independently vary the isoscalar parameter
gT =0

pp such that it reproduces the calculated matrix element
corresponding to the measured 2νββ half-life and a slightly
quenched value gA = 1.0 of the axial vector coupling constant.
These values are determined for each mass number separately,
and the obtained parameters are adopted for all the multipoles
in both left- and right-hand-side even-even nuclei. The bare
value gA = 1.27 was also tested in the determination of the
gT =0

pp parameters, but the parameter values obtained this way
differed only by 0.01–0.03 from those obtained with gA = 1.0,
resulting in less than 0.3-MeV differences in the obtained
energy centroids of the spin-multipole giant resonances.
Because the changes in the energy centroids were so minor,
we do not list separately the results for gA = 1.27.

D. Energy centroids and strength functions for the spin-dipole
and spin-quadrupole excitations

In this section we discuss the strength distributions of the
IVSD and IVSQ excitations for the left-hand-side (IVSD−

and IVSQ−) and right-hand-side (IVSD+ and IVSQ+) initial
ground states. The corresponding strength functions are

S(IVSD−)(i) = |(Jπ
i ||O−

1,J ||0+
L )|2, (9)

S(IVSD+)(i) = |(Jπ
i ||O+

1,J ||0+
R )|2, (10)

S(IVSQ−)(i) = |(Jπ
i ||O−

2,J ||0+
L )|2, (11)

S(IVSQ+)(i) = |(Jπ
i ||O+

2,J ||0+
R )|2, (12)
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FIG. 1. Strength distributions for A = 76. (a) L = 1, β−, (b) L =
1, β+, (c) L = 2, β−, (d) L = 2, β+. The solid line denotes the sum of
the dashed, dotted, and dash-dotted individual contributions. Energies
are measured relative to the ground state of the odd-odd final nucleus.
The strengths are given in units of fm2 for J π = 0−,1−,2− and in fm4

for J π = 1+,2+,3+.

where the transition operator is given in (3), 0+
L (0+

R ) is the
ground state of the left-hand-side (right-hand-side) even-even
nucleus, and Jπ

i is the ith Jπ state in the intermediate odd-odd
nucleus.

The resulting strength distribution is discrete because of
the discrete basis used in the calculation. To make it better
comparable with the experimental distribution we fold it with
the Lorentzian folding function [39],

FL(E − E0) = W

π

1

W 2 + (E − E0)2
, (13)

where E is the excitation energy in the odd-odd final nucleus,
E0 the energy of the pnQRPA phonon corresponding to
a peak, and W the width of this Lorentz peak. For the
width we have chosen the value W = 0.5 MeV. The folded
strength distributions are shown in Figs. 1–8 for different
mass numbers. In the (a) panels the strength distributions of
IVSD− transitions to different multipoles are shown, in the
(b) panels the corresponding strength distributions of IVSD+

transitions are shown, and in the (c) and (d) panels the IVSQ−

and IVSQ+ transitions to different multipoles are shown. The
energies are given in MeV with respect to the ground state of
the odd-odd final nucleus and the solid line gives the sum
distribution by adding the dashed, dotted, and dash-dotted
individual contributions. The strengths are given in units of
fm2 for the L = 1 (Jπ = 0−,1−,2−) transitions and in fm4 for
the L = 2 (Jπ = 1+,2+,3+) transitions.

We note that for L = 1 β− transitions the average energy is
highest for 0− excitations, except for a few exceptions, lowest
for 2− excitations. This effect was also noted in the earlier
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FIG. 2. The same as in Fig. 1 for A = 82.

calculations [9,40,41]. It can also be noted that the strength
for Jπ = 0−,1− is concentrated in a few peaks, whereas the
strength for Jπ = 2− is more spread. This was noted also in [9].

Similar effects can be seen in the case of L = 2 β−
transitions: The 1+ excitations are the highest in energy,
whereas the 3+ excitations are the lowest. As noted in [9],
most of the strength of Jπ = 1+ resonances is carried by a few
peaks, whereas for the Jπ = 2+,3+ excitations the strength
distributions are much more fragmented. This effect becomes
more visible for the heavier masses.
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FIG. 3. The same as in Fig. 1 for A = 96.
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FIG. 4. The same as in Fig. 1 for A = 100.

In Table III we present the calculated energy centroids for
IVSD± and IVSQ± transitions for different multipoles and
mass numbers. The energies are again given with respect to
the odd-odd final nucleus. For the β− type of strength the spin-
multipole giant resonance (SMGR) region forms a more or less
isolated island so that the total strength of the GR region can be
separated from the low-energy one. This is why in Table III the
spin-multipole strength of the SMGR is only part of the total
β− strength S−

tot. For the β+ type of transitions such a separa-
tion is not easy and hence only the total strength S+

tot is given.
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FIG. 5. The same as in Fig. 1 for A = 116.
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FIG. 6. The same as in Fig. 1 for A = 128.

From Table III we see that for L = 1 transitions the
strengths S−

tot and S+
tot are largest for 0− transitions and smallest

for 2− transitions, except for the A = 82 system. This kind of
trend was also noted in [9] for closed-shell nuclei. In [9] it
was seen that for L = 2 transitions the strengths S−

tot and S+
tot

are largest for 1+ transitions and smallest for 3+ transitions.
Our results for S−

tot and S+
tot differ from [9] for mass numbers

A = 76 and 82, and S−
tot for mass numbers A = 96,128,130,

and 136. Only for A = 116 and 100 our results agree with [9].
The deviations from the IVSD results of [9] are most likely
related to the fact that in the present work we discuss open-shell
nuclei, not magic nuclei as in [9].
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FIG. 7. The same as in Fig. 1 for A = 130.
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FIG. 8. The same as in Fig. 1 for A = 136.

IV. CONCLUSIONS

In this work we have performed realistic pnQRPA calcula-
tions of the isovector spin-dipole and spin-quadrupole excita-
tions in odd-odd nuclei belonging to double-β-decay triplets
with A = 76, A = 82, A = 96, A = 100, A = 116, A = 128,
A = 130, and A = 136. The calculations were performed in
large no-core single-particle bases with realistic Bonn-A-type
two-body interactions. The couplings of the pairing monopole
channels were adjusted to reproduce the experimental odd-
even mass differences separately for protons and neutrons.
Furthermore, the proton-neutron particle-hole renormalization
factor was fitted to the energy of the GTGR centroids of the
left-hand-side even-even nuclei. The isovector and isoscalar
particle-particle strengths were fitted to reproduce the observed
2νββ half-lives and to restore the isospin symmetry of the
2νββ transitions, as proposed in [21].

The resulting strength distributions of orbital angular
momentum L = 1,2 transitions were computed and plotted for
the multipole Jπ = 0−,1+,1−,2+,2−,3+ states in the odd-odd
intermediate nuclei. From these distributions we can see that
there is a considerable difference in the giant-resonance energy
centroids of the various J states corresponding to a given L.
For L = 1 transitions the transition strengths were highest
for the lowest-J transitions and lowest for the highest-J
transitions, except for A = 82. For L = 2 transitions there
was no clear ordering for the transition strengths.

In the future, having access to experimental data on the
L = 1 (and possibly L = 2) strength functions, one could
make comparisons with the present and future theoretical
calculations and access the validity of, e.g., the model
Hamiltonians and their predicted isovector spin-multipole
distributions and giant resonance properties.

TABLE III. Energy centroids of SMGRs and transition strengths
S±(GR) of the corresponding β− and β+ transitions for different
mass numbers. Also the total strengths S±

tot are given. The strengths
are given in units of fm2 for J π = 0−,1−,2− and in fm4 for J π =
1+,2+,3+.

A J π E(GR)− S−(GR) S−
tot E(GR)+ S+

tot = S+(GR)
(MeV) (MeV)

76 0− 18.752 48.168 50.360 11.623 30.945
1− 14.751 47.910 48.785 6.871 21.143
2− 16.639 39.080 45.333 10.225 12.391
1+ 26.502 529.73 834.15 20.199 370.39
2+ 22.406 1017.3 1220.3 16.455 485.92
3+ 19.285 1295.8 1496.2 13.101 550.41

82 0− 17.339 47.873 50.305 10.388 32.835
1− 14.300 52.503 53.505 7.197 22.323
2− 15.798 47.021 52.472 10.218 12.758
1+ 25.493 512.94 847.96 19.542 383.65
2+ 23.201 1080.6 1441.6 19.395 511.23
3+ 19.387 1385.8 1815.7 18.018 604.18

96 0− 31.703 99.535 99.695 11.914 41.175
1− 24.954 82.338 82.990 7.810 23.343
2− 22.720 66.923 71.897 8.325 12.496
1+ 33.900 1485.8 1987.0 19.959 1128.7
2+ 27.214 2137.8 2306.3 14.967 963.80
3+ 24.002 2108.2 2440.8 10.803 816.56

100 0− 25.639 104.54 105.21 11.532 46.076
1− 19.847 86.159 87.810 7.356 27.033
2− 18.487 69.902 74.454 8.673 13.785
1+ 31.196 2946.2 3447.2 20.938 1629.2
2+ 24.227 2644.2 3088.6 15.122 1212.2
3+ 21.248 2405.9 2842.4 11.063 925.65

116 0− 29.069 123.49 124.29 11.537 42.862
1− 22.780 107.91 108.56 7.215 24.937
2− 21.002 89.649 100.83 9.278 15.684
1+ 34.214 3541.6 4450.9 22.103 1920.6
2+ 27.367 3559.4 4084.1 16.253 1411.7
3+ 24.327 3567.6 4021.4 12.840 1140.8

128 0− 22.888 156.98 160.33 10.189 47.981
1− 16.943 135.86 138.30 6.841 26.435
2− 17.069 108.12 121.01 9.774 14.658
1+ 28.038 3733.4 4771.9 21.330 2204.5
2+ 22.628 3749.4 4613.8 16.018 1595.0
3+ 19.087 4166.9 4861.7 12.939 1153.4

130 0− 25.108 165.89 169.18 11.614 46.475
1− 19.342 143.27 147.54 8.517 25.007
2− 17.058 116.69 130.18 9.369 13.620
1+ 27.796 3842.5 4973.5 20.950 2201.8
2+ 22.648 3918.9 4870.3 16.058 1574.0
3+ 19.252 4443.6 5207.7 12.798 1103.3

136 0− 29.610 180.57 180.63 9.858 44.987
1− 23.886 158.95 159.29 6.812 23.770
2− 21.631 132.88 149.85 9.146 13.265
1+ 28.709 3897.1 5163.8 20.268 2220.1
2+ 23.065 4627.8 5112.8 15.707 1584.7
3+ 20.234 5004.4 5498.7 12.231 1094.8
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Ground-state-to-ground-state neutrinoless double-beta (0νββ) decays in nuclei of current experimental interest
are revisited. In order to improve the reliability of the nuclear matrix element (NME) calculations for the light
Majorana-neutrino mode, the NMEs are calculated by exploiting the newly available data on isovector spin-
dipole (IVSD) J π = 2− giant resonances. In order to correctly describe the IVSD up to and beyond the giant-
resonance region, the present computations are performed in extended no-core single-particle model spaces using
the spherical version of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with two-
nucleon interactions based on the Bonn one-boson-exchange G matrix. The appropriate short-range correlations,
nucleon form factors, higher-order nucleonic weak currents, and partial restoration of the isospin symmetry
are included in the calculations. The results are compared with earlier calculations of Hyvärinen and Suhonen
[Phys. Rev. C 91, 024613 (2015)] performed in much smaller single-particle bases without access to the IVSD
J π = 2− giant-resonance data reported here.

DOI: 10.1103/PhysRevC.98.024608

I. INTRODUCTION

The neutrinoless double-beta (0νββ) decay of atomic nuclei
is a promising way to access the physics beyond the standard
model [1–5], as witnessed by the ever growing experimental
interest in this decay mode. At the same time half-lives of the
two-neutrino ββ (2νββ) decays of several nuclei have been
measured with increased precision [6,7]. Important nuclei for
the present 0νββ experiments are 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 130Te, and 136Xe [8].

There are many models which have recently been used
to compute the 0νββ nuclear matrix elements (NMEs): the
quasiparticle random-phase approximation (QRPA), as well
as its proton-neutron version (pnQRPA) (see, e.g., [9]) and its
renormalized extensions [10,11], the interacting shell model
(ISM) [12,13], the microscopic interacting boson model (IBA-
2) [14], the Gogny-based energy-density functional (EDF)
[15] and its variation [16], and the projected Hartree-Fock-
Bogoliubov mean-field scheme (PHFB) [17]. Very recently
also the beyond-mean-field covariant density functional theory
[18,19] and advanced shell-model frameworks [20–23] have
been used to describe the 0νββ NMEs of nuclei. For more
details see the reviews [5,24].

The pnQRPA has several advantages in calculating the 2νββ
and 0νββ NMEs:

(i) In the pnQRPA calculations one avoids the use of the
closure approximation,

(ii) pnQRPA can accommodate large single-particle bases,
including all the relevant spin-orbit-partner orbitals
[25,26], and

(iii) the gross features of the distribution of nuclear states
can be reliably accounted for by the pnQRPA [27]

although the model may fail to predict properties of
individual states.

The features (i)–(iii) of the pnQRPA make it an ideal
nuclear model to combine the 2νββ and 0νββ calculations in a
consistent way. The relation of the pnQRPA Hamiltonian and
the 2νββ decay was further deepened in the work of Ref. [28]
where a partial isospin-restoration scheme for the pnQRPA
was proposed. This same method was later used by Hyvärinen
et al. [29] for pnQRPA-based and in Barea et al. [30] for IBM-2
based 0νββ-decay calculations.

A key parameter of the pnQRPA is the particle-hole param-
eter gph associated with the spin-isospin correlations and the
location [31] of the giant resonances. So far in the calculations
the value of this parameter has been fixed by fitting the loca-
tion of the Gamow-Teller giant resonance (GTR). The fitted
value, gph(1+), together with the value of the particle-particle
parameter gpp of the pnQRPA, fixes the contribution of the
1+ channel to the 0νββ NME. However, the 1+ contributions
to the 0νββ NME are in many cases (much) smaller than the
contributions from the 2− isovector spin-dipole (IVSD) states
which play an important role in this NME, in particular for
the medium-heavy nuclei (see Fig. 7). Recently data on the
location of the IVSD giant resonances became available from
charge-exchange reactions performed at the Research Center
for Nuclear Physics (RCNP), Osaka, Japan. Here we report
for the first time on the values of the 0νββ NMEs based on
gph values gph(2−), fixed by the observed location of the IVSD
giant resonances.

In the present work we compute the 0νββ NMEs using
the spherical version of pnQRPA framework and the partial
isospin-restoration scheme of Ref. [28]. The value of gph
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is determined by the empirical locations of the Jπ = 1+
GTR and the Jπ = 2− IVSD giant resonance. The isoscalar
part of the particle-particle parameter, gT =0

pp , is fitted to the
values of the 2νββ matrix elements. The value of the isovector
part of the particle-particle parameter, gT =1

pp , on the other
hand, is determined by the isospin-restoration scheme. We
extend the studies of [29,32–34] by using large no-core single-
particle bases in order to reliably describe the IVSD Jπ = 2−
giant-resonance region and to see how the extension of the
valence space affects the magnitudes of the 0νββ NMEs for
the nuclei of interest. We also extend our previous work [35] by
studying the impact of the value of the parameter gph(2−) on
the magnitude of the 0νββ NME, when adjusted to describe
the energy of the measured IVSD Jπ = 2− giant resonance
separately. All this is done to test the reliability of the 0νββ
NMEs computed in Ref. [29] and to produce an improved
set of NMEs for further use in, e.g., analyses related to the
experimental 0νββ data.

This article is organized as follows: In Sec. II we briefly
introduce the underlying formalism of the 2νββ and 0νββ
decays as well as the IVSD Jπ = 2− strength. In Sec. III we
discuss the determination of the model parameters, and display
and discuss the obtained results for the 0νββ NMEs calculated
using different single-particle bases and model parameters. The
final conclusions are drawn in Sec. IV.

II. COMPUTATIONAL SCHEME

In this section we introduce a brief theoretical outline
of our computational scheme. Both the IVSD Jπ = 2− and
0νββ calculations are based on the spherical version of
pnQRPA theory, which is reviewed briefly in the first sub-
section. In the following subsections we introduce the theo-
retical aspects of the IVSD Jπ = 2− strength, two-neutrino
double-beta decay, and neutrinoless double-beta decay,
correspondingly.

A. pnQRPA and the Hamiltonian parameters

In this section we explain the spherical version of the pn-
QRPA procedure briefly, starting from the single-particle bases
for protons and neutrons: The single-particle energies for both
protons and neutrons, for each even-even nucleus involved,
are obtained by solving the radial Schrödinger equation for a
Coulomb-corrected Woods-Saxon (WS) potential optimized
for nuclei close to the β stability line [36]. This choice is
justified since the ββ-decaying nuclei lie always rather close to
the bottom of the valley of beta stability. We adopt the single-
particle bases used in the isovector spin-multipole calculations
of [35], i.e., no-core bases with all the orbits from the N = 0
oscillator major shell up to at least two oscillator major shells
above the respective Fermi surfaces for protons and neutrons.
We include in our calculations both the bound and quasibound
single-particle states. The same orbitals are used for both
neutrons and protons. We perform our calculations, whenever
possible, in both the bare Woods-Saxon bases, abbreviated
as “WS”, and in the slightly modified bases that we used in
[35], where the proton/neutron single-particle energies of the
orbitals close to the Fermi surfaces were adjusted to better

TABLE I. Pairing scaling factors and the resulting pairing gaps
for the nuclei relevant for this work. “WS” denotes the Woods-Saxon
and “sp” the modified basis.

Nucleus Basis g
(n)
pair g

(p)
pair �n (MeV) �p (MeV)

76Ge WS 1.05 0.89 1.57 1.52
sp 0.97 0.89

76Se WS 1.06 0.91 1.72 1.71
sp 1.01 0.91

96Zr sp 0.73 0.86 0.92 1.48
96Mo sp 0.90 0.91 1.03 1.52
100Mo WS 0.85 0.95 1.31 1.63

sp 0.88 0.96
100Ru WS 0.89 0.96 1.27 1.60

sp 0.85 0.93
116Cd WS 0.89 0.93 1.37 1.43
116Sn WS 0.82 0.89 1.16 1.84
128Te WS 0.96 0.81 1.30 1.09

sp 0.86 0.81
128Xe WS 0.94 0.88 1.27 1.30

sp 0.86 0.88
130Te WS 0.94 0.78 1.21 1.02

sp 0.86 0.78
130Xe WS 0.95 0.86 1.25 1.26

sp 0.85 0.86
136Xe WS 0.85 0.76 1.44 0.98

sp 0.84 0.76
136Ba WS 0.90 0.83 1.08 1.22

sp 0.87 0.83

reproduce the low-lying spectra of the neighboring odd-mass
nuclei. These bases are abbreviated as “sp” (see Table I). In
the cases of mass numbers A = 96, 100 the use of the bare
Woods-Saxon bases results in a nonphysical gpp behavior of
the 2νββ results, and we use therefore only the sp bases. On the
other hand, for A = 116 the use of the bare Woods-Saxon bases
results in a good correspondence between the calculated and
experimental spectra, so no modifications in the single-particle
energies were necessary.

The quasiparticle spectra for protons and neutrons, needed
in the pnQRPA diagonalization, are obtained by solving the
BCS equations for protons and neutrons, separately. In our
calculations the two-body interaction is derived from the
Bonn-A one-boson-exchange potential introduced in [37].
The calculated BCS pairing gaps are fitted (see [31,38–40])
to the phenomenological ones, �n for neutrons and �p for
protons, by using adjustable pairing strengths,g(n)

pair for neutrons

and g
(p)
pair for protons, in a way described in detail in Ref. [35].

The needed separation energies were taken from [41]. The
values of the resulting pairing scaling factors are presented in
Table I.

The wave functions and excitation energies for the complete
set of Jπ excitations in an odd-odd nucleus are obtained
by performing a pnQRPA diagonalization in the basis of
unperturbed quasiproton-quasineutron pairs coupled to Jπ .
The spherical pnQRPA states in odd-odd nuclei are then of
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the form∣∣Jπ
k M

〉 =
∑
pn

[
X

Jπ
k

pnA†
pn(JM ) − Y

Jπ
k

pn Ãpn(JM )
]|pnQRPA〉,

(1)

where k numbers the states of the same spin-parity Jπ , the
amplitudes X and Y are the forward- and backward-going
amplitudes, A† and Ã the quasiproton-quasineutron creation
and annihilation operators, and |pnQRPA〉 is the pnQRPA
vacuum. M denotes the z projection of J . The formalism is
explained in detail in Refs. [31,38].

The X and Y amplitudes in Eq. (1) are calculated by di-
agonalizing the pnQRPA matrix separately for each multipole
Jπ . The isoscalar (T = 0) and isovector (T = 1) parts of the
particle-particle G-matrix elements are multiplied by common
factors gT =0

pp and gT =1
pp , respectively, for all the multipoles. In

addition, the particle-hole part was scaled by a common factor
gph for each multipole. These renormalization factors are listed
in the following section for each mass number A separately.

B. Isovector spin-dipole Jπ = 2− strength

The transition operator for the IVSD (L = 1) Jπ = 2−
transitions is of the form

O±
1,2 = ir[Y 1σ ]2t±, (2)

where Y 1 is the spherical harmonic of rank 1, σ the Pauli
spin operator, r the radial coordinate, and t+ and t− are the
isospin raising and lowering operators. The reduced single-
particle NMEs of this operator are of the form [31,36]

(jf ‖O±
1,2‖ji ) =

(
nf lf

1

2
jf

∥∥∥∥ir[Y 1σ ]2

∥∥∥∥nili
1

2
ji

)

=
√

6ĵf

√
5ĵi

(−1)lf√
4π

l̂f
√

3l̂i

(
lf 1 li
0 0 0

)

×

⎧⎪⎨
⎪⎩

lf
1
2 jf

li
1
2 ji

1 1 2

⎫⎪⎬
⎪⎭R(1)

f i (−1)
1
2 (li−lf +1)

, (3)

where ĵ = √
2j + 1, R(1)

f i is a radial integral [31] and n
denotes the principal quantum number, l the orbital angular
momentum, and j the total angular momentum. The reduced
NMEs of (2) can now be calculated from [31]

(2−
f ‖O±

1,2‖0+
i ) =

∑
ab

(a‖O±
1,2‖b)√
5

(2−
f ‖[c†ac̃b]2‖0+

i ), (4)

where b and a denote the initial and final single-particle
quantum numbers, 0+

i is the initial ground state in an even-even
nucleus, and 2−

f is a final 2− state in an odd-odd nucleus.
The transition strength for a transition from the initial 0+

i

ground state to the 2−
f final state can be calculated from

S±
1,2(f ) = |(2−

f ‖O±
1,2‖0+

i )|2. (5)

In the present work 0+
i corresponds to the ground state of a

mother nucleus of 0νββ decay, and we need the (p, n) type
strength S−

1,2(f ) for the whole range of final states f , up to and

beyond the IVSD Jπ = 2− giant-resonance region, in order to
be able to compare with the corresponding experimental data.

C. Two-neutrino double-beta decays

The half-life of the 2νββ decay can be written in the form[
t

(2ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G2ν |M (2ν)|2, (6)

where geff
A is the effective value of the weak axial-vector

coupling strength and G2ν is a leptonic phase-space factor
(in units of inverse years) as defined in Ref. [42] without
the axial-vector coupling strength gA. The initial and final
ground states are denoted by 0+

i and 0+
f , correspondingly. The

Gamow-Teller NME involved in the equation is written in the
pnQRPA formalism as

M (2ν) =
∑
m,n

(0+
f ‖∑

k t−k σ k‖1+
m)〈1+

m|1+
n 〉(1+

n ‖∑
k t−k σ k‖0+

i )

Dm + 1

(7)
for the 2νβ−β− decays, with Dm being the energy denominator

Dm = (
1
2� + 1

2 [E(1+
m) + Ẽ(1+

m)] − Mi

)
/me, (8)

where � is the nuclear mass difference between the initial and
final 0+ ground states, Mi the mass of the initial nucleus, me

the electron rest mass, Ẽ(1+
m) is the (absolute) energy of the

mth 1+ state in a pnQRPA calculation based on the left-side
ground state, and E(1+

m) the same for a calculation based on the
right-side ground state. To do the calculations as accurately as
possible, the difference [E(1+

m) + Ẽ(1+
m)]/2 − Mi is adjusted

to the experimental energy difference between the first 1+ state
in the intermediate nucleus and the ground state of the initial
nucleus. The same is done in the calculations of the 0νββ
NMEs. The quantity 〈1+

m|1+
n 〉 is the overlap between the two

sets of 1+ states and it can be written as

〈1+
m|1+

n 〉 =
∑
pn

[
X

1+
m

pnX̄
1+

n
pn − Y

1+
m

pn Ȳ
1+

n
pn

]
. (9)

The overlap factor matches the corresponding states in the
two sets of states based on the left- and right-side even-even
reference nuclei and makes the computed NMEs more stable.
For deformed nuclei, and especially when the deformations of
the mother and daughter nuclei are considerably different, the
role of the overlap factor is important [43,44]. The quantities X
and Y (X̄ and Ȳ ) denote the pnQRPA amplitudes which stem
from the calculation based on the left-side (right-side) nucleus.

In principle, the expression in Eq. (7) should also contain
a Fermi part, but our choice for the gT =1

pp parameter forces
this contribution to zero, as will be explained in Sec. III A.
This is justified since in the case of isospin symmetry, which is
obeyed by the nuclear forces to a high degree, the ground states
of the mother and daughter nuclei belong to different isospin
multiplets and the Fermi contribution to the 2νββ NME should
vanish, leaving the Gamow-Teller NME in Eq. (7) as the sole
contributor to the 2νββ decay rate.

D. Neutrinoless double-beta decays

Assuming that the exchange of light Majorana neu-
trino dominates the 0νββ mechanisms, the half-life for a
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ground-state-to-ground-state 0νββ transition can be written as

[
t

(0ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G0ν |M (0ν)|2

∣∣∣∣ 〈mν〉
me

∣∣∣∣2

, (10)

where G0ν is a phase-space factor, cited in Ref. [42] in units of
inverse years, for the final-state leptons defined here without
the axial-vector coupling strength gA [42] and 〈mν〉 is the
effective light-neutrino mass

〈mν〉 =
∑

j=light

(
Ul

ej

)2
mj (11)

with mj being the individual light-neutrino masses. Here the
amplitudes Ul

ej are the components of the electron row of the
neutrino-mixing matrix corresponding to the light sector.

The nuclear matrix element M (0ν) in Eq. (10) is defined as

M (0ν) = M
(0ν)
GT −

(
gV

geff
A

)2

M
(0ν)
F + M

(0ν)
T , (12)

where we adopt the CVC value gV = 1.0 for the weak vector
coupling strength and the double Fermi, Gamow-Teller, and
tensor nuclear matrix elements are defined for the 0νβ−β−
decays as

M
(0ν)
F =

∑
k

(0+
f ‖

∑
mn

hF(rmn, Ek )t−m t−n ‖0+
i ), (13)

M
(0ν)
GT =

∑
k

(0+
f ‖

∑
mn

hGT(rmn, Ek )( σm · σn)t−m t−n ‖0+
i ),

(14)

M
(0ν)
T =

∑
k

(0+
f ‖

∑
mn

hT(rmn, Ek )ST
mnt

−
m t−n ‖0+

i ), (15)

where the operator t−m is the isospin lowering operator (neutron
to proton) for the nucleon m and the spin tensor operator is
defined as

ST
mn = 3[( σm · r̂mn)( σn · r̂mn)] − σm · σn. (16)

The summation over k in Eqs. (13)–(15) runs over all the states
of the intermediate odd-odd nucleus, rmn = |rm − rn| is the
relative distance between the two decaying neutrons, labeled m
and n, and r̂mn = (rm − rn)/rmn. As in the two-neutrino case
the ground state of the initial even-even nucleus is denoted
by 0+

i and the ground state of the final even-even nucleus
is denoted by 0+

f . Expressions for the neutrino potentials
hK (rmn, Ek ), K = F, GT, T are given in Ref. [29].

The nuclear matrix elements can be written in the pnQRPA
framework as

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′ +J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′ : J ′‖OK‖nn′ : J ′)

× (0+
f ‖[c†p′ c̃n′ ]J

∥∥Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2

∥∥[c†pc̃n]J ‖0+
i ),

(17)

where k1 and k2 label the different pnQRPA solutions for a
given multipole Jπ . The operators OK inside the two-particle

matrix element correspond to the ones of Eqs. (13), (14), and
(15), and they can be written as

OF = hF(r, Ek )[fCD(r )]2, (18)

OGT = hGT(r, Ek )[fCD(r )]2 σ 1 · σ 2, (19)

OT = hT(r, Ek )[fCD(r )]2ST
12, (20)

where ST
12 is the tensor operator of Eq. (16) and r = |r1 − r2|

is the distance between the participating nucleons. The energy
Ek is the average of the kth eigenvalues of the pnQRPA
calculations based on the initial and final nuclei of the decay,
and the overlap factor 〈Jπ

k1
|Jπ

k2
〉 in Eq. (17) is the one of

Eq. (9). It has an important role for deformed nuclei, especially
when the deformations of the mother and daughter nuclei are
considerably different. The factor fCD(r ) takes into account the
nucleon-nucleon short-range correlations (SRC) [32,45] and
here we use the CD-Bonn form [46] with the parametrization

fCD(r ) = 1 − 0.46e−(1.52/fm2 )r2
[1 − (1.88/fm2)r2]. (21)

In the pnQRPA the state of Eq. (1) leads to the transition
densities

(0+
f ‖[c†p′ c̃n′ ]J

∥∥Jπ
k1

) = Ĵ
[
v̄p′ ūn′X̄

Jπ k1
p′n′ + ūp′ v̄n′ Ȳ

J π k1
p′n′

]
, (22)(

Jπ
k2

∥∥[c†pc̃n]J ‖0+
i ) = Ĵ

[
upvnX

Jπ k2
pn + vpunY

Jπ k2
pn

]
, (23)

where v (v̄) and u (ū) correspond to the BCS occupation and
vacancy amplitudes of the initial (final) even-even nucleus.
The amplitudes X and Y (X̄ and Ȳ ) emerge from the pnQRPA
calculation based on the initial (final) nucleus of the double-
beta decay. Equation (17) does not include the overlap between
the initial and final BCS states that can be rather important,
according to the recent study by Fang et al. based on the
deformed QRPA formalism [47]. In this work it was found
that the 0νββ NMEs were reduced by as much as 30–60%
in comparison with the spherical formalism, mainly due to
the BCS overlap factors and partly due to the deformation.
According to the discussion in Ref. [47], the BCS factors could
cause a large (as large as 60%) decrease to the calculated
NMEs, if the neutron or proton number is close to a magic
number (as for 116Cd and 136Xe), and a milder (≈20–30%)
decrease in the other cases. In a purely spherical pnQRPA
approach it is expected that these changes in the NMEs
constitute an upper limit. In particular one has to be careful
in using the BCS overlap for the semimagic nuclei where
the BCS approach does not produce a pairing gap, and some
higher-order approach, like the Lipkin-Nogami approach [31],
would be better.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of our
studies. In the calculations we use two slightly different sets of
single-particle bases, and we also compare our results with the
numbers obtained in an earlier study of Hyvärinen et al. [29]
of the same 0νββ transitions.

A. Determination of model parameters

Here we adopt the single-particle bases used in the isovec-
tor spin-multipole calculations of [35] discussed already in
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Sec. II A. We decompose each isobaric triplet with mass
number A to “left-side” even-even (A,N,Z), “right-side”
even-even (A, N − 2, Z + 2) and “intermediate” odd-odd
(A, N − 1, Z + 1) nuclei and construct the spectra of Jπ

excitations in the intermediate odd-odd nuclei, applying the
pnQRPA formalism [31,38,39] to the left- and right-side even-
even nuclei. In this way one obtains two sets of energies and
wave functions for each Jπ state. The residual Hamiltonian for
the pnQRPA includes particle-hole and particle-particle com-
ponents. The particle-hole contribution is proportional to the
particle-hole matrix elements gph〈pn−1; Jπ |V |p′n′−1; Jπ 〉,
where Jπ is the multipole of the states in the inter-
mediate odd-odd nucleus, and the particle-particle contri-
bution is proportional to the two-body matrix elements
gpp〈pn; Jπ |V |p′n′; Jπ 〉. Here gph and gpp are the particle-hole
and particle-particle renormalization factors correspondingly.

Traditionally the gph parameter is fixed by fitting the
centroid of the Gamow-Teller resonance (GTR) in the 1+
channel of the calculations [1,38,39,48,49]. This same gph

is then used for all multipoles Jπ . We use this method as
a starting point (we call this Model 1), but explore how the
particle-hole parameter gph(2−) changes the values of the 0νββ
NMEs by fitting the Jπ = 2− channel separately (Model 2)
and by using the gph(2−) parameter for all channels excluding
the 1+ channel (Model 3). We adjust the gph(1+) and gph(2−)
parameters to the available data on Gamow-Teller [50–53] and
isovector spin-dipole giant-resonance energies [53–58].

The GT and IVSD strength distributions were studied
at RCNP, Osaka University, through high-resolution (3He,t)
charge-exchange reactions. Significant GT and IVSD strengths
are found as broad giant resonances around 12 and 20 MeV,
and the widths are around 5 and 10 MeV, respectively. In fact,
the IVSD resonance was first discussed in Ref. [59] to account
for the reduction of the low-lying SD β NMEs. We adjust the
gph(2−) parameter to the available data on the giant resonance
energies. The data for different nuclei are: 76Ge [53], 96Zr [54],
100Mo [55], 116Cd [56], 128Te [57], 130Te [57], and 136Xe [58].
The GTR and IVSD energies for the DBD nuclei of current
interest are expressed approximately as

E(GT) ≈ 9 + 0.4TZ MeV,

E(SD) ≈ 16.5 + 0.4TZ MeV,
(24)

where TZ = 1
2 (N − Z). The uncertainties of the GT and

IVSD energies are around ±0.5 and 1 MeV, respectively. The
gph values adjusted in this way are presented in Table II,
together with the values of the GTR and IVSD giant-resonance
centroids obtained from Eq. (24). For A = 96 we use the
measured centroid, as the linear fits of (24) do not reproduce
the measured values well. It is seen in Table II that the gph

values vary by 20–30% depending on the basis (WS/sp) and
the type of GR (GT/SD).

The gpp parameter has usually been adjusted by fitting this
value to the measured 2νββ-decay half-life [32–34,60,61], to
the log f t values of β decays [62,63], or to both β and 2νββ
decays [64,65]. In this work, we adopt an improved method
introduced in Ref. [28] and later used in Ref. [29], where
we decompose the pnQRPA NMEs into isoscalar (T = 0)
and isovector (T = 1) parts and then adjust the parameters

TABLE II. Parameters of the pnQRPA calculations for various
0νββ decaying nuclei. Column 2 indicates the basis that was used
in the calculations. Columns 3 and 4 list the experimental centroid
energies of the IVSDJ π = 2− and GTRJ π = 1+ resonances. The last
two columns list the values of the particle-hole parameters adjusted
to the locations of the IVSD resonance and the GTR.

Nucleus Basis E(SD2−) E(GT) gph(2−) gph(1+)
(MeV) (MeV)

76Ge WS 18.9 ± 1.0 11.4 ± 0.5 0.9 ± 0.2 1.24 ± 0.13
sp 1.2 ± 0.3 1.03 ± 0.13

96Zr sp 22 ± 1.0 12.7 ± 0.5 0.8 ± 0.2 0.84 ± 0.09
100Mo sp 19.7 ± 1.0 12.2 ± 0.5 1.0 ± 0.2 1.19 ± 0.08
116Cd WS 20.5 ± 1.0 13.0 ± 0.5 1.07 ± 0.09 0.85 ± 0.13
128Te WS 21.3 ± 1.0 13.8 ± 0.5 1.7 ± 0.2 1.64 ± 0.08

sp 1.9 ± 0.2 1.40 ± 0.09
130Te WS 21.7 ± 1.0 14.2 ± 0.5 1.7 ± 0.2 1.58 ± 0.08

sp 1.9 ± 0.2 1.36 ± 0.09
136Xe WS 22.1 ± 1.0 14.6 ± 0.5 1.0 ± 0.2 1.36 ± 0.07

sp 0.9 ± 0.2 1.18 ± 0.08

gT =0
pp and gT =1

pp independently. The particle-particle parts of
the pnQRPA matrices are divided into isoscalar (T = 0) and
isovector (T = 1) parts by the decomposition

gpp〈pn; Jπ |V |p′n′; Jπ 〉
→ gT =1

pp 〈pn; Jπ ; T = 1|V |p′n′; Jπ ; T = 1〉
+ gT =0

pp 〈pn; Jπ ; T = 0|V |p′n′; Jπ ; T = 0〉. (25)

The isovector parameter gT =1
pp is adjusted so that the Fermi

2νββ NME vanishes, and thus the isospin symmetry is partially
restored. Then we independently vary the isoscalar parameter
gT =0

pp such that it reproduces the calculated matrix element
corresponding to the measured 2νββ half-life and a (moder-
ately) quenched effective value geff

A = 1.0 of the axial-vector
coupling strength. These values are determined for each mass
number separately, and the obtained parameters are adopted
for all multipoles in both the left- and right-side even-even
nuclei. We list the obtained values in Table III. The gT =0,1

pp
values depend on the gph value only weakly: The variation in

TABLE III. The gpp parameters used in the present calculations
for the isoscalar (column 3) and the isovector (column 4) interaction.

Nucleus Basis gT =0
pp (gA ≈ 1.00–1.27) gT =1

pp

76Ge WS 0.80 0.99
sp 0.83 0.96

96Zr sp 0.83 0.93
100Mo sp 0.87 0.91
116Cd WS 0.82 0.82
128Te WS 0.73 0.94

sp 0.745 0.87
130Te WS 0.74 0.95

sp 0.73 0.86
136Xe WS 0.64 0.98

sp 0.67 0.87
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FIG. 1. Values of the particle-particle parameter gT =0
pp as functions

of gA for a representative set of bases and different nuclei.

the range of the gph values of Table II is only about 1–5% for
each nucleus. Since the impact of the variation on the NME
values in negligible, the gpp values obtained with gph(1+) were
adopted. The bare value gbare

A = 1.27 was also tested in the
determination of the gT =0

pp parameters, but the parameter values
obtained this way differed only by 1–3% from those obtained
with geff

A = 1.0 (see Fig. 1) so we do not list them separately for
gbare

A = 1.27. It seems that in the considered large basis sets the
behavior of gpp as a function of gA is rather flat for values larger
than 1, and only for the smaller gA values do the variations in
the gpp values set in. Hence, the 2νββ nuclear matrix element
M (2ν) is strongly dependent on the gT =0

pp value (see Fig. 2).

As a result, the values of the NMEs M
(0ν)
GT , M

(0ν)
F , and M

(0ν)
T

are altered mildly in the range gA ≈ 1.00–1.27, resulting in
about 10–20% changes in the total NMEs M (0ν) as in Ref.
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pp

M
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ν
)

A=76,sp

A=100,sp
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A=136,sp

FIG. 2. Values of the 2νββ nuclear matrix element as functions
of gT =0

pp for a representative set of bases and different nuclei.

TABLE IV. IAS energies calculated using gph(1+) of Table II and
gT =0,1

pp of Table III. The corresponding experimental IAS energies are
listed in the last column.

Nucleus E(IAS)sp E(IAS)WS Efit (IAS)
(MeV) (MeV) (MeV)

76Ge 6.5 7.0 8.6
96Zr 5.8 9.8
100Mo 9.5 9.8
116Cd 9.8 11.0
128Te 11.0 11.9 12.2
130Te 10.6 11.4 12.8
136Xe 10.1 10.5 13.4

[29], and we adopt the effective value geff
A = 1.0 in the present

calculations.
The IAS (isobaric analog state) energies calculated using

the gph(1+) values of Table II and gT =0,1
pp values of Table III

are presented in Table IV. From the results of [53–59] we
can derive the following expression for the experimental IAS
locations for the DBD nuclei of current interest:

Efit (IAS) = 5 + 0.6TZ MeV, (26)

where TZ = 1
2 (N − Z). These values are presented in Table IV

for comparison. As can be seen in the table the computed
locations of the IAS are too low in comparison with the
experimental locations. The difference between the computed
and the experimental locations varies between 1.2 and 4
MeV, except for the cases A = 100 and 128 (sp basis), for
which the differences are less than 0.5 MeV. The sum rule
S− − S+ = N − Z, S− [S+] being the total Fermi strength
in the (p, n) [(n, p)] direction, is exactly fulfilled in our
calculations. The discrepancy in the computed IAS energies is
typical of pnQRPA calculations which are not self-consistent,
i.e., the mean field is not determined by the same Hamiltonian
as the excited states. In self-consistent calculations the situation
is improved and the discrepancies reach typically a level below
1 MeV, the computed energies of the IAS being still below the
measured ones (see, e.g., [66]).

B. IVSD Jπ = 2− strength functions

The Jπ = 2− strength functions were calculated in the
bare Woods-Saxon (WS) bases, as well as in the slightly
modified single-particle (sp) bases. Two different gph values
were adopted: one was obtained by adjusting it to the measured
location of the Gamow-Teller (GT) giant resonance, and the
other was obtained by adjusting it to the measured location
of the IVSD Jπ = 2− giant resonance (see Sec. III A). The
resulting strength functions for mass numbers A = 76, 100,
116, and 128 are presented in Figs. 3–6. In the figures we use
Lorentzian folding with a peak width of 0.5 MeV [35].

As we can see in Fig. 3, for A = 76 the large, about
30%, deviation between the values of gph(1+) and gph(2−)
(see Table II) results in large deviations between the strength
functions calculated using the WS basis. On the other hand, for
the sp basis the difference between the different gph values is
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FIG. 3. Isovector spin-dipole J π = 2− strength functions for A =
76 calculated using either a Woods-Saxon (WS) or a modified Woods-
Saxon (sp) single-particle basis, and gph values obtained by fitting to
the location of either the Gamow-Teller (GT) or the IVSD J π = 2−

giant resonance.

smaller, which leads to smaller deviations between the strength
functions.

From Fig. 4 we see that for A = 100 the moderate, about
15%, deviation between the gphvalues (see Table II) leads to
moderate differences between the calculated strength func-
tions. From Fig. 5, in turn, we see that large deviations between
the gph values lead to large deviations between the strength
functions.

As can be seen in Fig. 6, for A = 128 the large, about 30%,
deviations in gph values lead to large deviations in the strength
functions calculated using the sp basis. The small, about 4%,
difference between the gph values, on the other hand, leads to
small differences in the strength functions calculated using the
WS basis.
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FIG. 4. The same as Fig. 3 for A = 100.
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FIG. 5. The same as Fig. 3 for A = 116.

For A = 96 the strength functions were almost identical,
so the corresponding spectra are not presented here. The
cases A = 130 and 136 were almost identical with A = 128,
with slightly more moderate deviations between the different
spectra, so the figures are omitted here.

C. Matrix elements for neutrinoless ββ decay

We present our final results for the nuclear matrix elements
(M (0ν)) of the light-Majorana-mediated neutrinoless ββ decay
using the two sets of single-particle bases discussed in Sec. II A.
Furthermore, we investigate the impact of using the gph(2−)
value in the evaluation of the 0νββ NME by using three
different methods. That is, for both sets of bases we compute
M (0ν) [Eq. (12)] first by using the common parameter gph =
gph(1+) for each multipole (Model 1), then change the gph

value into gph(2−) for the multipole Jπ = 2−, and keep gph =
gph(1+) for the other multipoles (Model 2). Furthermore, we
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FIG. 6. The same as Fig. 3 for A = 128.
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FIG. 7. Multipole decomposition of the total 0νββ matrix element
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perform the calculations using gph(1+) for the 1+ channel
and gph(Jπ ) = gph(2−) for Jπ 	= 1+ (Model 3). The gT =0,1

pp
values of Table III are used for each multipole. We adopt the
effective axial-vector coupling geff

A = 1.00 for our 0νββ NME
calculations. We use the effective gA to incorporate the nuclear
medium and non-nucleonic correlations, but we use gV = 1.0
on the basis of the CVC.

The relative importance of the 2− contributions in the 0νββ
NMEs has been illustrated in Fig. 7. For a medium-heavy
nucleus, like 76Ge [panel (a) of Fig. 7)], the contributions
from the 2− states can be considerable. For a heavier nucleus,
like 128Te [panel (b) of Fig. 7], the contribution is not that
conspicuous. Nevertheless, it is worth studying the effect of
the spin-dipole states on the values of the 0νββ NMEs.

We present our final NMEs of Eq. (12) in Ta-
bles V and VI, and compare them with the results
of Hyvärinen et al. [29] for geff

A = 1.00. In Ref. [29]
smaller single-particle bases were used, i.e., the orbitals
1p–0f –2s–1d–0g–0h11/2 for the A = 76, 82 systems, the

orbitals 1p–0f –2s–1d–0g–0h for the A = 96, 100 systems,
and the orbitals 1p–0f –2s–1d–0g–2p–1f –0h for the A =
116, 128, 130, 136 systems. The same orbitals were used
for both neutrons and protons. The gT =0,1

pp parameters were
determined in the same manner as in the present study, and the
gph parameter was adjusted to the GTR in the traditional way.

If we compare the content of Tables II and V with the
differences shown in Fig. 8 and with the IVSD Jπ = 2−
strength functions in Figs. 3–6, we can draw the following
conclusions.

A = 76: There is a large, about 30%, difference between the
IVSD- and GT-determined gph values for the WS basis. This
is reflected as a large difference in both the strength functions,
Fig. 3, and 0νββ NMEs, Table V. Increasing the impact of
gph(2−) on the NMEs (Model 3) increases the difference
even more. For the sp basis the differences are smaller for
all quantities and, in particular, the deviations from the NME
computed in the smaller single-particle space [29] are on the
percent level.

A = 96: The deviations in the gph values, and 0νββ NMEs
are small, at the few-percent level. However, there is a notable
deviation from the small-basis 0νββ NME [29].

A = 100: The adjusted gph values differ by some 20%, and
also the strength functions (cf. Fig. 4) change correspondingly.
There is a negligible difference in the values of the 0νββ NMEs
between Model 1 and Model 2, but a notable difference when
going to Model 3. There is also a notable deviation from the
NME value obtained in the smaller basis [29].

A = 116: The determined gph values deviate by some 20%,
producing slight differences in the strength functions, as seen
in Fig. 5. As a result, the values of the 0νββ NMEs do not
differ from each other between Model 1 and Model 2, and only
slightly when going to Model 3. However, there is a notable
deviation from the one computed in the smaller basis [29].

A = 128: There are notable, about 30%, deviations in
the gph values for the sp basis and this is reflected in the
deviations in the strength functions, Fig. 6, for the sp-basis
based calculations. Deviations in the values of the 0νββ NMEs
between Model 1 and Model 2 are moderate, less than a percent
within a given basis, but there are few-percent deviations when
going from the WS-computed to the sp-computed NMEs. The
sp-computed NMEs of Model 1 and Model 2 are consistent
with the one produced in the smaller basis [29]. However,
using Model 3 causes again some 10% deviations from the
small-basis NME when using the sp basis.

A = 130: The situation is similar to the A = 128 case,
except that all the sp-computed 0νββ NMEs deviate by
10–20% from that computed in the smaller basis [29].

A = 136: There are 20–30% differences in the gph values
for both bases but the differences in the strength functions are
moderate. Except for the NME computed in Model 3 in the
sp basis, there are only some 10% differences in the values
of the WS-computed and the sp-computed 0νββ NMEs, and
less than 7% deviations from the NME obtained in the smaller
basis [29].

Table V shows that the adoption of the IVSD Jπ = 2−-fitted
value of gph for the 2− channel of the 0νββ NMEs (Model 2)
affects the NMEs negligibly for all of the cases (blue dots
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TABLE V. Values of the 0νββ NMEs for geff
A = 1.00. The first column indicates the transition, the second column the basis used in the

calculation, and the third one the model adopted for the gph values. Model 1: gph(1+) used for all J π ; Model 2: gph(2−) used for J π = 2−, for
the rest gph(1+) is used; Model 3: gph(1+) used for J π = 1+, for the rest gph(2−) is used. The columns 4 to 6 show the decomposition of the total
NMEs (column 7) in terms of the Fermi, Gamow-Teller, and tensor contributions. The last row for each transition corresponds to the earlier
calculations performed in Ref. [29]. The quoted errors only take into account uncertainties due to the strength of the particle-hole interaction.

Nuclear transition Basis Model M
(0ν )
F M

(0ν )
GT M

(0ν )
T M (0ν )

76Ge −→ 76Se WS 1 −1.76 ± 0.06 5.4 ± 0.2 −0.356 ± 0.013 6.8 ± 0.3
WS 2 −1.76 ± 0.05 5.5 ± 0.2 −0.357 ± 0.012 6.9 ± 0.3
WS 3 −1.95 ± 0.11 5.8 ± 0.3 −0.31 ± 0.03 7.4 ± 0.4
sp 1 −1.99 ± 0.08 5.3 ± 0.2 −0.390 ± 0.015 6.9 ± 0.3
sp 2 −1.99 ± 0.08 5.2 ± 0.2 −0.389 ± 0.014 6.8 ± 0.3
sp 3 −1.90 ± 0.13 5.1 ± 0.3 −0.41 ± 0.03 6.6 ± 0.4

sp, small [29] 1 −1.74 5.07 −0.28 6.54
96Zr −→ 96Mo sp 1 −1.64 ± 0.06 3.95 ± 0.12 −0.254 ± 0.014 5.3 ± 0.2

sp 2 −1.64 ± 0.06 3.97 ± 0.14 −0.255 ± 0.013 5.3 ± 0.2
sp 3 −1.68 ± 0.13 4.0 ± 0.3 −0.24 ± 0.04 5.5 ± 0.4

sp, small [29] 1 −1.44 3.26 −0.23 4.47
100Mo −→ 100Ru sp 1 −2.30 ± 0.05 3.74 ± 0.04 −0.500 ± 0.010 5.54 ± 0.10

sp 2 −2.30 ± 0.05 3.76 ± 0.05 −0.503 ± 0.009 5.55 ± 0.11
sp 3 −2.43 ± 0.15 3.9 ± 0.2 −0.47 ± 0.03 5.9 ± 0.4

sp, small [29] 1 −1.63 3.62 −0.27 4.98
116Cd −→ 116Sn WS 1 −1.76 ± 0.07 4.11 ± 0.12 −0.171 ± 0.012 5.7 ± 0.2

WS 2 −1.76 ± 0.07 4.08 ± 0.11 −0.168 ± 0.013 5.7 ± 0.2
WS 3 −1.64 ± 0.05 3.94 ± 0.08 −0.191 ± 0.008 5.39 ± 0.13

WS, small [29] 1 −1.50 3.61 −0.17 4.93
128Te −→ 128Xe WS 1 −1.65 ± 0.04 4.68 ± 0.08 −0.523 ± 0.010 5.81 ± 0.12

WS 2 −1.65 ± 0.04 4.67 ± 0.10 −0.523 ± 0.009 5.81 ± 0.14
WS 3 −1.64 ± 0.08 4.7 ± 0.2 −0.53 ± 0.03 5.8 ± 0.3
sp 1 −1.77 ± 0.05 4.27 ± 0.09 −0.523 ± 0.011 5.52 ± 0.15
sp 2 −1.77 ± 0.05 4.22 ± 0.09 −0.519 ± 0.011 5.47 ± 0.15
sp 3 −1.55 ± 0.08 3.89 ± 0.13 −0.59 ± 0.03 4.9 ± 0.3

sp, small [29] 1 −1.78 4.40 −0.43 5.74
130Te −→ 130Xe WS 1 −1.46 ± 0.03 4.04 ± 0.07 −0.468 ± 0.008 5.03 ± 0.10

WS 2 −1.46 ± 0.03 4.03 ± 0.08 −0.468 ± 0.007 5.02 ± 0.12
WS 3 −1.42 ± 0.07 3.97 ± 0.15 −0.48 ± 0.03 4.9 ± 0.3
sp 1 −1.53 ± 0.04 3.70 ± 0.08 −0.460 ± 0.009 4.77 ± 0.12
sp 2 −1.53 ± 0.04 3.65 ± 0.08 −0.456 ± 0.009 4.72 ± 0.12
sp 3 −1.30 ± 0.06 3.31 ± 0.09 −0.53 ± 0.02 4.1 ± 0.2

sp, small [29] 1 −1.52 4.12 −0.38 5.27
136Xe −→ 136Ba WS 1 −0.683 ± 0.010 2.83 ± 0.06 −0.227 ± 0.004 3.28 ± 0.07

WS 2 −0.683 ± 0.010 2.90 ± 0.09 −0.229 ± 0.003 3.35 ± 0.10
WS 3 −0.683 ± 0.010 2.93 ± 0.10 −0.231 ± 0.003 3.38 ± 0.12
sp 1 −1.01 ± 0.03 2.96 ± 0.06 −0.249 ± 0.005 3.72 ± 0.09
sp 2 −1.01 ± 0.03 3.01 ± 0.08 −0.251 ± 0.005 3.76 ± 0.10
sp 3 −1.12 ± 0.06 3.21 ± 0.15 −0.220 ± 0.014 4.1 ± 0.3

sp, small [29] 1 −0.89 2.82 −0.22 3.50

in Fig. 8). Adoption of gph(2−) for all multipoles Jπ 	= 1+
(Model 3), however, causes larger deviations in all cases (red
squares and open triangles in Fig. 8).

The results obtained in the WS bases deviate from those
obtained in the sp bases by about 12% in the case of A = 136,
and by less than 10% in the other cases for Model 1 and Model
2, as seen in Fig. 9, blue dots and red squares. However, for
Model 3 the differences between the different single-particle
bases are 15–21% for A = 128, 130, 136 and about 11% for
A = 76. Hence, the features of the single-particle valence
spaces affect notably the values of the NMEs.

The present results are summarized in Table VI where we
quote the combined no-core 0νββ NMEs of Model 2 and
Model 3. Comparing the NME values of Table VI with the
NMEs of [29] shows that the present results deviate from
those obtained in the smaller basis [29] by less than 4% for
A = 76, 136, and about 10–18% for the rest (see also the black
asterisks in Fig. 8). Hence, the numbers of Table VI indicate
that the NME results of Hyvärinen et al. [29] deviate by at most
18% from the present results, the differences emerging from
variations in the nuclear mean field, size of the single-particle
valence space, and variations in the value of gph.
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TABLE VI. Computed no-core nuclear matrix elements for geff
A =

1.00 (column 2); combined results of Model 2 and Model 3 are
adopted. Given are also the single-particle bases (column 3) and the
nuclear-structure coefficients of Eq. (27) (column 4). The phase-space
factors are taken from [42].

Nuclear transition 0νββ NME Basis C (0ν )

76Ge −→ 76Se 6.7 ± 0.3 sp 0.25 ± 0.03
96Zr −→ 96Mo 5.4 ± 0.3 sp 0.044 ± 0.005
100Mo −→ 100Ru 5.7 ± 0.3 sp 0.050 ± 0.006
116Cd −→ 116Sn 5.55 ± 0.12 WS 0.051 ± 0.003
128Te −→ 128Xe 5.2 ± 0.2 sp 1.64 ± 0.13
130Te −→ 130Xe 4.41 ± 0.12 sp 0.094 ± 0.006
136Xe −→ 136Ba 3.9 ± 0.2 sp 0.118 ± 0.013

The expression for the half-life, Eq. (10), can be written in
an easily usable form,

t
(0ν)
1/2 (0+

i −→ 0+
f ) = C (0ν)

(|〈mν〉|[eV])2
× 1025 yr, (27)

where the effective electron neutrino mass is given in eV. From
this expression it is easy to derive the values of the half-lives
once the value of the neutrino mass is known. We list the
nuclear-structure coefficients C (0ν), together with the adopted
NMEs, in Table VI.
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in the second column of Table VI.
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IV. CONCLUSIONS

In this work we calculated the nuclear matrix elements of the
neutrinoless ββ decays mediated by the light Majorana neu-
trino. The matrix elements were computed for seven key decays
of immediate experimental interest, and for which experimen-
tal data on isovector spin-dipole Jπ = 2− giant resonances
have become available. The calculations were performed using
realistic two-body interactions and two different sets of no-core
single-particle bases, the bare Woods-Saxon bases and their
slightly modified versions, to better reproduce the experimental
quasiparticle spectra of relevance to this study. In addition, we
include up-to-date nucleon-nucleon short-range correlations,
nucleon form factors, induced weak nucleonic currents, and
partial restoration of isospin. We adjusted the gph parameter
of the pnQRPA in two different ways: by fitting it to the
location of the GT giant resonance (GTR) in the traditional
way, and by fitting it to the location of the IVSD Jπ = 2− giant
resonance as a new method which has become possible because
of new experimental data. We calculated the 0νββ NMEs
using three methods: adopting the gph adjusted to GTR for
each multipole, adjusting the gph(2−) separately to the IVSD
Jπ = 2− giant resonance, and adopting the gph(2−) for each
multipole Jπ 	= 1+. Finally we compared the obtained results
against each other and against a previous study of Hyvärinen
et al. in which smaller single-particle model spaces were used.

The 0νββ NMEs computed in the present no-core modified-
WS single-particle bases, using the IVSD Jπ = 2− fitted
gph values, deviate from the previously computed NMEs of
Hyvärinen et al. [29], based on the gph adjusted by the empirical
GT resonance energies, by less than 4% for the decays of
76Ge and 136Xe, and by some 10–18% for the rest of the
cases. Most of the deviations are due to the extension of the
single-particle space of pnQRPA, while the effect of adjusting
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the particle-hole interaction to data on spin-dipole resonances
is relatively smaller. Table VI summarizes our results for the
nuclear-structure coefficients that reflect the improvements of

the 0νββ NMEs achieved in the present work. The quoted
errors only take into account the uncertainties due to the
strength of the particle-hole interaction.
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Ordinary muon capture (OMC) on 100Mo is studied both experimentally and theoretically in order to 
access the weak responses in wide energy and momentum regions. The OMC populates states in 100Nb 
up to some 50 MeV in excitation energy. For the first time the associated OMC strength function has 
been computed and compared with the obtained data. The present computations are performed using 
the Morita-Fujii formalism of OMC by extending the original formalism beyond the leading order. The 
participant nuclear wave functions are obtained in extended no-core single-particle model space using 
the spherical version of proton-neutron quasiparticle random-phase approximation (pnQRPA) with two-
nucleon interactions based on the Bonn one-boson-exchange G matrix. Partial restoration of the isospin 
symmetry is implemented in the calculations by separately fitting the isoscalar and isovector parts of 
the particle-particle interaction strength of pnQRPA. Both the computed and experimental OMC strength 
distributions show a giant resonance at around 12 MeV. Further measurements and calculations of 
the OMC strength functions for double-beta-decay daughter nuclei could enable access to in-medium 
renormalization of the weak axial couplings and pave the way to improved accuracy of the double-beta-
decay nuclear matrix elements.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

In the ordinary muon capture (OMC) a negative muon on an 
atomic orbit is captured by the atomic nucleus quite like in the 
ordinary electron capture of a nucleus, except that the rest mass 
of the muon is some 200 times the rest mass of an electron. Due 
to the large momentum exchange, q ∼ 50–100 MeV/c, in the pro-
cess, the OMC can lead to final states that are both highly excited 
and of high multipolarity Jπ , quite like in the analogous process 
of the neutrinoless double beta (0νββ) decay where the Majorana-
neutrino exchange with q ∼ 100 MeV induces high-excitation and 
high-multipolarity transitions through the virtual states of the in-
termediate nucleus. This analogue leads immediately to the idea 
of using the OMC as probe of the nuclear matrix elements (NMEs) 
involved in the 0νββ decays. This probe corresponds to the right 
branch (β+ type of transitions) of the 0νββ virtual transitions.

As mentioned above, one of the incentives of the OMC studies 
is related to the 0νββ decays [1,2] and to neutrino-nucleus inter-
actions in general (see the recent review [3]). General aspects of 

* Corresponding author.
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these relations have been treated also in the reviews [4–9] and the 
associated 0νββ NMEs have been discussed e.g. in [1,10,11]. The 
muon-capture processes concern β+ type of transitions from a nu-
cleus A

Z X to the states of the residual nucleus A
Z−1 Y (see the review 

[12]). Nuclear-structure calculations for the OMC transitions have 
been performed in a wide range of nuclear masses along the years. 
In these calculations the muon-capture transitions have been used 
to probe the right-leg (the β+ side) virtual transitions of 0νββ de-
cays and the value of the particle-particle interaction parameter 
gpp of the pnQRPA, as discussed in [13–15]. The OMC calculations 
can also be used to yield information on the in-medium renor-
malization of the axial current in the form of an effective strength 
of the weak axial-vector coupling gA [16–21]. For the experimen-
tal aspects of the axial-vector coupling see the reviews [3,4,22,23]. 
The involved large momentum exchange in the OMC activates the 
induced weak currents quite like in the case of the 0νββ decay 
[24]. These induced terms include the weak magnetism and pseu-
doscalar contributions, the magnitude of the induced pseudoscalar 
term being a very interesting unknown in finite atomic nuclei [16,
17,25–31]. A recent review on the renormalization of gP is given 
in [32].

https://doi.org/10.1016/j.physletb.2019.05.037
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Experimentally, it has been shown that mass distributions of 
residual isotopes from the OMC can be used to study astro-
(anti)neutrino β+ type of strength distribution and the associated 
giant resonances in the high-excitation regions [3,33,34]. The OMC 
probe is also used to study nuclear responses for medium-energy 
astro-(anti)neutrinos (μ and τ (anti)neutrinos from supernovae) 
[3,4]. Weak β± responses and giant resonances have been dis-
cussed before in [4,22,23].

In the present work we study both theoretically and experi-
mentally the OMC on 100Mo populating states in 100Nb in a wide 
excitation region, up to some 50 MeV. The rate of OMC to indi-
vidual final states forms a strength function quite like in the case 
of (n,p) charge-exchange reactions for 1+ final states (the Gamow-
Teller strength function). The OMC strength function contains gi-
ant resonances analogously to the Gamow-Teller giant resonance 
[35] or isovector spin-monopole [36,37] and higher isovector spin-
multipole resonances [3,4,22,38], and here we study the structure 
of these resonances. This is the first time such resonances are be-
ing studied both theoretically and experimentally, inspired by the 
first observation of the OMC giant resonance at around 12 MeV 
[3,39,40]. Eventual extension of the experiments and calculations 
to other nuclei, involved in 0νββ decays, helps theories better 
evaluate the β+ NMEs associated with the 0νββ decays and the 
NMEs related to astro-(anti)neutrino interactions. In addition, the 
effective values of the axial-vector coupling gA and induced pseu-
doscalar coupling gP play essential roles both in 0νββ decays and 
OMC [41].

The OMC process we are interested in here can be written as

μ− + A
Z X(0+) → νμ + A

Z−1Y( Jπ ) , (1)

where the muon (μ−) is captured by the 0+ ground state of the 
even-even nucleus X of mass number A and atomic number Z
leading to the Jπ states of its odd-odd isobar Y of atomic number 
Z − 1; here J is the angular momentum and π the parity of the 
final state. At the same time a muon neutrino νμ is emitted. The 
OMC on a nucleus A

Z X populates excited states in a wide excitation 
region of the residual nucleus A

Z−1 Y. They de-excite by emitting 
γ rays to the ground state of A

Z−1 Y or by emitting mostly the 
first neutron to a state in a nucleus A−1

Z−1Y’, depending on whether 
the excitation energy is below or above the first neutron-emission 
threshold energy. The residual nucleus A−1

Z−1Y’, after the first neu-
tron emission, de-excites by emitting γ rays to the ground state of 
A−1
Z−1Y’ or by emitting a second neutron, depending on whether the 
excitation energy is below or above the second neutron-emission 
threshold energy, and so on. Then, one finally ends up with the 
residual isotopes of A−x

Z−1Y’ with x = 0, 1, 2, 3,..., depending on the 
excitation energy E and the number x of the emitted neutrons. 
Here proton emissions are suppressed by the Coulomb barrier in 
medium-heavy and heavy nuclei.

The OMC on 100Mo was studied at the MuSIC beam channel at 
RCNP and the D2 beam channel in J-PARC MLF [40,42]. The nu-
cleus 100Mo is one of DBD nuclei, and is used also for solar- and 
supernova-neutrino studies [6,34,43,44]. The delayed γ -ray char-
acteristics of the residual radioactive isotopes of 100−xNb were 
measured, and the number of the Nb residual isotopes 100−xNb 
produced by the OMC on 100Mo was evaluated from the ob-
served γ -ray yields. The 1+ strength can produce the Gamow-
Teller component of the OMC giant resonance. The vector 1− and 
axial-vector 2− spin-dipole strengths with 1h̄ω jump show broad 
giant-resonance-like distributions similarly to the isovector spin-
dipole (p,n)-type of charge-exchange resonance [38]. The Gamow-
Teller and spin-dipole resonances have also been discussed in [22,
45]. The corresponding OMC distributions, being of (n,p) charge-
exchange type [22], are shown later in this article.

A powerful formalism for the calculation of the OMC rates in 
muonic atoms was developed by Morita and Fujii in [46]. In the 
present calculations we use a similar formalism by writing the par-
tial muon capture rate to a Jπ final state as

W = 8

(
Zeff

Z

)4

P (αZm′
μ)3 2 J f + 1

2 J i + 1

(
1 − q

mμ + AM

)
q2 , (2)

where A denotes the mass number of the initial and final nuclei, 
J i ( J f ) the angular momentum of the initial (final) nucleus, M the 
average nucleon rest mass, mμ the bound muon mass (the rest 
mass minus the binding energy of the muon in the K orbital of 
the μ-mesonic atom), m′

μ the muon reduced mass in the parent 
μ-mesonic atom, Z the atomic number of the initial nucleus, α the 
fine-structure constant and q the magnitude of the exchanged mo-
mentum between the captured muon and the nucleus [46], i.e. the 
Q value of the OMC (momentum of the emitted muon neutrino). 
The Q value can be obtained from

q = (mμ − W0)

(
1 − mμ − W0

2(M f + mμ)

)
, (3)

where W0 = M f − Mi + me + E X [46]. Here M f and Mi are the 
nuclear masses of the final and initial nuclei, me the electron rest 
mass and E X is the excitation energy of the final-state nucleus. 
For the heavy nuclei the atomic orbit of the muon penetrates the 
nucleus and the capture rate has to be corrected for the muonic 
screening. Here we follow the Primakoff procedure [47] where the 
capture rate has been corrected by the factor (Zeff/Z)4, where the 
effective atomic number is obtained from the work of Ford and 
Wills [48], giving Zeff = 26.37 in the present case. The term P in 
Eq. (2) has a complex structure, containing all the nuclear matrix 
elements, as well as weak couplings, Racah coefficients and some 
geometric factors. For the exact form see Eq. (45) in the paper of 
Morita and Fujii [46].

For nth forbidden OMC transitions the P term in (2) can be 
expanded in powers of the small quantity 1/M2. In this way one 
ends up with the explicit formula P = P0 + P1, where P0 is the 
part which one obtains by neglecting all terms of order 1/M2 (ex-
cept for terms containing g2

P , which is large compared with the 
other coupling constants) and P1 contains the rest of the 1/M2

terms. The P0 part is the explicit form that can be found in [46], 
Eq. (58). The next-to-leading-order term P1 in the expansion is 
sometimes needed for OMC transitions which are quite weak, usu-
ally for captures to high-lying states of high multipolarity Jπf , 
where π is the parity of the final state. We derived this part from 
Eq. (46) of [46] and introduced it into our capture-rate calculations 
[49].

The P term contains coefficients gV ≡ gV(q) and gA ≡ gA(q)

that are the usual weak vector and axial-vector couplings at fi-
nite momentum transfer q > 0. The conserved vector current (CVC) 
and partially conserved axial-vector current (PCAC) hypotheses dic-
tate for a free nucleon the values gV(0) = 1.00 and gA(0) = 1.27
at zero momentum transfer and the dipole approximation can be 
used for finite momentum transfer [3]. For these couplings devi-
ations from the CVC and PCAC values have been recorded at zero 
momentum transfer (the situation with the renormalization of the 
weak couplings has been charted in the recent reviews [23,41]). 
Then one refers to effective values of these couplings. For the in-
duced pseudoscalar coupling gP the Goldberger-Treiman PCAC re-
lation [50] gives gP/gA = 7.0. In order to see how the values of 
these coupling strengths affect the OMC strength function and the 
total OMC rate, we vary in this work independently the values of 
gA(0) and gP(0) and keep the CVC value gV(0) = 1.00. Such a pro-
cedure is justified by the earlier results from the OMC studies in 
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Fig. 1. Muon-capture-rate distribution (OMC strength function) including transitions 
to Jπf = 0+, 1±, 2± states. The horizontal axis shows the excitation energy in the 
100Nb nucleus. Here a 2.5 MeV binning in energy is used in order to match the 
energy binning used in the experimental data analysis. Parameter values gA(0) = 0.8
and gP(0) = 7.0 were adopted in the calculations.

light, medium-heavy and heavy nuclei (see e.g. [19,20,31] and the 
review [32]) where renormalized values of gA and gP, breaking the 
Goldberger-Treiman PCAC relation, were recorded.

In the numerical computations we used no-core single-particle 
bases for both protons and neutrons. The bases contained all or-
bitals up to the 0i − 1g oscillator shell, i.e. 7 full oscillator shells 
(see [38]). This single-particle basis is thus able to catch nh̄ω
excitations for n ≤ 6. The corresponding single-particle energies 
were obtained using the Woods-Saxon (WS) potential with the 
parametrization of [51], suitable for nuclei which lie close to the 
β-decay stability line, like 100Mo. Some adjustments of the WS 
single-particle energies were made near the corresponding Fermi 
surfaces in order to improve the quality of the one-quasiparticle 
spectra. These details were addressed in our paper [52] and the 
reader is referred to it for further information.

The nuclear Hamiltonian was obtained from the Bonn-A one-
boson-exchange potential introduced in [53]. The BCS pairing gaps 
are adjusted to the phenomenological pairing gaps by adjustable 
pairing strengths for protons and neutrons in a way described in 
[38] where isovector spin-multipole giant resonances were treated 
in the same formalism.

The wave functions and energies of the complete set of Jπf
multipole states are obtained by performing a pnQRPA diagonal-
ization in the unperturbed basis of quasiproton-quasineutron pairs 
coupled to Jπf (see, e.g., [1,54–56]. All the particle-hole G-matrix 
elements are multiplied by a factor gph the value of which is ad-
justed to the centroid of the Gamow-Teller giant resonance in the 
nucleus 100Tc. The isoscalar (T = 0) and isovector (T = 1) parts of 
the particle-particle G-matrix elements are multiplied by factors 
gT =0

pp and gT =1
pp that are adjusted according to isospin-symmetry 

restoration scheme introduced in [57] as explained in detail in the 
double-β-decay paper [52].

The capture rates for the transitions μ− + 100Mo(0+
gs) → νμ +

100Nb( Jπf ) were computed for all multipole states Jπf and the data 
applies to multipole states Jπf = 0+, 1±, 2± . In the present calcula-
tions we have varied independently the values of the axial-vector 
coupling gA(0) and the induced pseudoscalar coupling gP(0) and 
keep the CVC value gV(0) = 1.00 of the vector coupling. Further-
more, we have varied these parameters in the ranges of gA(0) =
0.6 − 1.27 (this is a reasonable range as discussed in the review 
[41]) and gP(0) = 0 − 10 in order to see how they affect the total 
capture rate and the structure of the OMC strength function.

In Fig. 1 we present the OMC rate distribution (OMC strength 
function) of transitions to the lowest multipole states Jπf =

Fig. 2. The same as in Fig. 1 but with the transitions to the rest of the possible 
multipole final states Jπf added.

Fig. 3. The same as in Fig. 1 but for multipole states Jπf = 3±,4± .

0+, 1+, 2+, 1− and 2− . We notice that transitions to Jπf = 1−, 2− , 
which are 1h̄ω excitations, have the highest capture rates and that 
these multipoles are the ones that are primarily responsible of the 
OMC giant resonance at around 12 MeV of excitation. The OMC to 
multipole states 1+ and 2+ forms a satellite resonance at around 
7 MeV. These are 0h̄ω excitations, together with the low-lying 0+
strength. The higher-lying 0+ , 1+ and 2+ strength, beyond some 
20 MeV, stems from 2h̄ω excitations and the 1− and 2− strength 
in this high-excitation region stems from 3h̄ω excitations. It should 
be noted that the (p,n)-type charge-exchange 1+ Gamow-Teller gi-
ant resonance is quite strong and peaked but here this resonance is 
diluted since OMC is an (n,p) type of charge-exchange mechanism 
where for medium-heavy and heavy nuclei the relative locations 
of the proton and neutron Fermi surfaces hinder 0h̄ω excitations.

In Fig. 2 we present the total OMC rate to all multipoles. We 
separate the total capture rates to two parts: strength contain-
ing either the lowest-multipole ( Jπf = 0+, 1±, 2±) states or the 
higher-multipole states. We notice that approximately 80 − 90% of 
the total capture rate consists of transitions to the lowest multi-
poles, and the rest 10 − 20% comes from the transitions to higher 
multipoles. The contributions of some of the leading higher mul-
tipoles ( Jπf = 3±, 4±) are presented in Fig. 3. It can be seen that 
the overwhelming contribution comes from the 0h̄ω and 2h̄ω 3+
multipole, the 1h̄ω 3− and 4− contributions being the sub-leading 
ones. The 4+ contribution is negligible.

In Table 1 we show the ratio WA( Jπf )/W ( Jπf ), where WA( Jπf )

contains only the axial part of the total capture rate W ( Jπf ) to the 
multipole states Jπf . The OMC rate to 0+ states is purely vector 
and is not displayed in the table. From the table one sees that 
the axial contribution increases with increasing value of gA(0) and 
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Table 1
Axial-vector contribution to the total capture rate (WA( Jπf )/W ( Jπf )) to final states 
Jπf = 1±, 2± for different values of gA(0). The values are calculated using pseu-
doscalar strength gP(0) = 7.0.

gA(0) Final-state multipole Jπf

1+ 2+ 1− 2−

0.6 0.65 0.22 0.26 0.66
0.8 0.72 0.32 0.36 0.74
1.0 0.77 0.40 0.45 0.79
1.27 0.82 0.49 0.54 0.83

Fig. 4. Comparison of different relative (in per cents) muon-capture-rate distribu-
tions: theoretical capture rates to Jπf = 0+, 1±, 2± states, and to all possible states, 
compared with the experimental strength distribution. The theoretical rates were 
computed with parameter values gA(0) = 0.8 and gP(0) = 7.0. The original energy-
binned distributions are smeared by a Lorentzian folding function for clearer pre-
sentation.

that the OMC to 1+ and 2− states is mostly axial and very similar 
for both multipoles. The capture rate for the 1− and 2+ states is 
mostly vector with a similar ratio for both multipoles.

In Fig. 4 we plot the theoretical and experimental relative 
capture-rate distributions against each other. The distributions are 
smeared by a Lorentzian folding function for easier comparison 
of the different distributions. Here the experimental giant reso-
nances GR1 at around 12 MeV and GR2 at around 30 MeV were 
derived from the OMC residual-isotope distributions using the neu-
tron equilibrium-emission and pre-equilibrium-emission models as 
given in [33,40]. There are two different theoretical capture-rate 
distributions, one including the transitions to the lowest multipole 
( Jπf = 0+, 1±, 2±) states and the other containing transitions to 
all multipole states. We notice that the overall features of all the 
relative rate distributions are similar: there is a strong peak, GR1, 
around 10 − 12.5 MeV and tails on both sides. However, the ex-
perimental distribution is a bit more spread to higher energies as 
compared to the theoretical distributions, containing also the GR2 
bump. Here it should be noted that the strength at around 30 MeV, 
which is analyzed in terms of the second giant resonance GR2, 
includes some experimental and analysis uncertainties, and thus 
requires further studies to confirm the amount of the high-energy 
strength. It is interesting to note that the experimental rates are 
spread beyond 30 MeV, suggesting some spread of GR strengths 
with higher multipoles of J± with J ≥ 3 and n (radial node) ≥ 2. 
Similar effect was observed beyond the SD GR region (30 MeV) 
in case of (3He,t) charge exchange reactions [3]. Also, in the theo-
retical distributions, there is a satellite (consisting mainly of tran-
sitions to Jπf = 1+, 2+ states) that is absent in the experimental 
distribution or shifted to higher energy. There are no notable dif-
ferences between the two theoretical distributions.

In Table 2 we present the total OMC rates obtained by using 
different values for gA(0) and gP(0). If we compare the computed 
values with the total capture rate W = 7.7 × 106 1/s evaluated 

Table 2
Total rates of muon capture by 100Mo for different values of the pseudoscalar and 
axial-vector strengths gP(0) and gA(0). The rates are expressed in units of 106/s.

gA(0) gP(0) = 0 gP(0) = 7 gP(0) = 10

W (0+,1±,2±) W tot W (0+,1±,2±) W tot W (0+,1±,2±) W tot

0.6 11.8 13.8 10.8 12.4 10.7 12.2
0.8 17.0 20.2 15.7 18.3 15.3 17.7
1.0 23.9 28.4 28.0 31.9 21.2 24.8
1.27 34.8 41.7 32.2 38.2 31.3 37.0

Fig. 5. The relative OMC-rate distributions using two different parameter sets: 
gA(0) = 0.6 and gP(0) = 10, and gA(0) = 1.27 and gP(0) = 0. The distributions are 
smeared by a Lorentzian folding function.

by using the Primakoff approximation (see Eq. (4.53) of the re-
view article [12]), we notice that the Primakoff value is smaller 
than the theoretical rates. Increasing the value of gP(0) or de-
creasing the value of gA(0) decreases the theoretical total capture 
rate, and the closest value to the Primakoff value is achieved by 
using gA(0) = 0.6 and gP(0) = 10, leading to gP(0)/gA(0) = 16.7, 
much larger than the PCAC value of 7.0. It is evident from the ta-
ble that the total rate is quite insensitive to the value of gP(0) and 
not too much can be said about the value of gP(0) based on the 
total OMC rates. The differences between the computed and Pri-
makoff total OMC rates are partly related to the higher average 
energy (smaller phase space) of the experimental OMC strength 
function and partly to the possible quenching of the effective weak 
couplings gA(0) and gP(0). Comparison of the computed and Pri-
makoff total capture rates suggests a strongly quenched effective 
value of gA(0) ≈ 0.5, which is in accord with the results of many 
earlier β-decay studies (see e.g. [58–62]). From Table 2 one can 
also see that a decrease of gA(0) by a factor of 2 results in re-
duction of the rate by a factor of 3, not by a factor of 4, due to 
the vector components, as in the case of 0νββ NMEs [3,23,63]. It 
should also be noted that the considered variation in the values of 
gA(0) and gP(0) does not affect noticeably the shape of the com-
puted capture-rate distribution as visible in Fig. 5 where we plot 
the Lorentzian folding of the total rate distributions computed for 
parameter-value pairs of gA = 0.6 and gP = 10, and gA = 1.27 and 
gP = 0.

In this Letter we show for the first time a direct comparison 
between the experimental and computed distributions of muon-
capture rates to low-multipole Jπf states in a daughter nucleus. 
The presently discussed case is the ordinary muon capture (OMC) 
on the 0+ ground state of 100Mo leading to Jπf = 0+, 1±, 2± states 
in 100Nb. The experimental distribution and the OMC giant reso-
nance are based on the recent measurement of the γ rays in the 
residual ions produced by the OMC. The computations were per-
formed using the Morita-Fujii formalism of the OMC and treating 
the involved nuclear matrix elements by using the proton-neutron 
quasiparticle random-phase approximation with two-nucleon in-
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teractions based on the Bonn one-boson-exchange G matrix. The 
nuclear Hamiltonian was taken from our earlier calculations of the 
locations of the isovector spin-multipole giant resonances in nuclei 
involved in double beta decays. Partial restoration of the isospin 
symmetry was achieved by the method used earlier in the context 
of double-beta-decay calculations.

The computed OMC strength predicts a giant resonance at 
around 12 MeV and thus is consistent with the recent experi-
mental observation of the OMC giant resonance GR1 for 100Mo. 
Calculated decomposition of the OMC strength function in terms of 
the involved multipoles is shown and the low-multipole strength 
function is compared with the one containing all multipoles. In-
tegral over the computed complete strength function yields the 
total OMC rate which can be compared with the Primakoff ap-
proximation. Since the axial-vector component dominates the OMC 
rate, the rate is quite sensitive to the value of the weak axial cou-
pling gA and thus OMC can be used to study the effective value 
of weak axial coupling. On the other hand, the rate does not de-
pend much on the value of the pseudoscalar coupling gP. In our 
calculations we assumed the CVC value gV(0) = 1.00 for the vector 
coupling at zero-momentum transfer. Comparison of the computed 
and Primakoff capture rates suggests a strongly quenched effective 
value of gA(0) in keeping with the results of many earlier β-decay 
studies. The shape of the OMC strength function is practically in-
dependent of the values of the weak axial couplings.

Further measurements and computations of the OMC strength 
functions for final nuclei of double beta decays would enable a 
systematic scan of the sensitivity of the OMC strength function to 
the effective in-medium values of the weak axial couplings. This, 
in turn, could help in improving the accuracy of calculations of 
the nuclear matrix elements of the neutrinoless double beta de-
cay. Furthermore, the OMC with its large excitation energy and 
momentum transfer provides a unique opportunity for studying 
the (anti)neutrino responses for medium-energy astro-neutrino in-
teractions. Further experimental studies are in progress at RCNP 
Osaka for nuclei of interest in studies of nuclear double beta decay 
and asto-neutrino interactions.
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Capture rates of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ)
decays of current experimental interest are computed. The corresponding OMC (capture-rate) strength functions
have been analyzed in terms of multipole decompositions. The computed low-energy OMC-rate distribution to
76As is compared with the available data of Zinatulina et al. [Phys. Rev. C 99, 024327 (2019)]. The present OMC
computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the
leading order. The participant nuclear wave functions are obtained in extended no-core single-particle model
spaces using the spherical version of proton-neutron quasiparticle random-phase approximation (pnQRPA) with
two-nucleon interactions based on the Bonn one-boson-exchange G matrix. The Hamiltonian parameters are
taken from our earlier work [Jokiniemi et al., Phys. Rev. C 98, 024608 (2018)], except for A = 82 nuclei for
which the parameters were determined in this work. Both the OMC and 0νββ decays involve momentum
exchanges of the order of 100 MeV and thus future measurements of the OMC strength functions for 0νββ

daughter nuclei help trace the in-medium renormalization of the weak axial couplings with the aim to improve
the accuracy of the 0νββ-decay nuclear matrix elements.

DOI: 10.1103/PhysRevC.100.014619

I. INTRODUCTION

Ordinary muon capture (OMC) is a process in which a neg-
ative muon implanted in an atomic K orbit is captured by the
nucleus of the atom. The large momentum, q ≈ 50–100 MeV,
exchanged in the process leads to final states that are both
highly excited and of high multipolarity, quite like in the case
of the neutrinoless double beta (0νββ) decay. In this way the
OMC corresponds to the right branch (β+ type of transitions)
of the 0νββ virtual transitions, which makes it a promising
tool to study the nuclear matrix elements (NMEs) of the 0νββ

decay [1,2], as also the neutrino-nucleus interactions in gen-
eral [3]. In particular, the OMC probes nuclear responses for
medium-energy astro-(anti)neutrinos (μ and τ (anti)neutrinos
from supernovae) [3,4].

The muon-capture processes concern β+ type of transitions
from a mother nucleus A

ZX to the states of the residual nucleus
A

Z−1Y (see the review [5]). Over years nuclear-structure calcu-
lations for the OMC transitions have been performed in a wide
range of nuclear masses in order to probe the right-leg (the β+
side) virtual transitions of 0νββ decays and the value of the
particle-particle parameter gpp of the proton-neutron quasipar-
ticle random-phase approximation (pnQRPA), as discussed in
Refs. [6–8], or the in-medium renormalization of the axial-
vector coupling constant gA [9–14]. The large momentum
exchange involved in the OMC activates the induced weak
currents, including the weak magnetism and pseudoscalar
contributions, quite like in the case of the 0νββ decay [15].
The magnitude of the induced pseudoscalar term is largely
unknown in finite atomic nuclei [9,10,16–23].

The OMC process we are interested in here can be written
as

μ− + A
ZX(0+) → νμ + A

Z−1Y(Jπ ), (1)

where the muon (μ−) is captured by the 0+ ground state of the
even-even nucleus X of mass number A and atomic number Z
leading to the Jπ multipole states of its odd-odd isobar Y of
atomic number Z − 1; here J is the angular momentum and π

the parity of the final state. At the same time a muon neutrino
νμ is emitted. The capture rates to the full set of final states
constitutes the OMC strength function.

In this study we compute the OMC strength functions in the
intermediate nuclei of 0νββ decays up to some 50 MeV using
the pnQRPA formalism. The strength function is composed
of OMC rates to individual final states of multipolarities Jπ ,
extending the idea of (n,p) charge-exchange reactions, which
populate the 1+ final states, thus producing the Gamow-
Teller strength function. The OMC strength function can
contain giant resonances analogously to the Gamow-Teller
giant resonance [24] or the isovector spin-monopole [25,26]
and higher isovector spin-multipole resonances [3,4,27,28].
Here we study the possible existence and structure of these
resonances. In our earlier study [29] we computed the strength
function for the OMC on 100Mo and compared it with the
available data [30]. In this study we extend those calculations
by computing the strength functions for the OMCs on 76Se,
82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe, and 136Ba, leading to
states in 0νββ intermediate nuclei 76As, 82Br, 96Nb, 100Tc,
116In, 128I, 130I, and 136Cs. In the case of the OMCs on 76Se we
compare the low-energy part of our results with the recently
available data from Zinatulina et al. [2].

Since the nuclei of interest are medium-heavy or heavy
open-shell nuclei, the shell-model framework is unfeasible for
the calculation of the strength functions due to the excessive
computational burden and the very restricted single-particle
model spaces allowed by the shell-model treatment. The
pnQRPA formalism allows us to study the OMC strength

2469-9985/2019/100(1)/014619(12) 014619-1 ©2019 American Physical Society
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functions at high energies, since it allows the use of large
no-core single-particle bases. Even though the pnQRPA often
fails to predict the properties of individual states accurately, it
can reproduce the gross features of a distribution of nuclear
states quite reasonably. It has been shown that the pnQRPA
reproduces the locations of the isovector spin-dipole giant
resonances reliably [31], and in our earlier OMC study it
was shown that it also reproduces the location of the newly
discovered OMC giant resonance correctly in the case of
100Mo [29,30].

Additional OMC experiments and calculations concerning
nuclei involved in 0νββ decays could help theories better
evaluate the NMEs associated with the 0νββ decays and
also the NMEs related to astro-(anti)neutrino interactions.
Furthermore, the effective values of the axial-vector coupling
gA and induced pseudoscalar coupling gP are involved both in
0νββ decays and in the OMC [32].

This paper is organized as follows. In Sec. II we briefly
introduce the underlying formalism of the ordinary muon
capture. In Sec. III we briefly discuss the determination of the
model parameters. There we display and discuss the obtained
results for the OMC rates and compare them with the available
experimental data. The final conclusions are drawn in Sec. IV.

II. COMPUTATIONAL SCHEME

In this section we introduce briefly our computational
scheme. The calculations are based on the pnQRPA theory.
In Sec. II A we introduce the theoretical aspects of the OMC
rate. The pnQRPA theory is explained briefly in Sec. II B.

A. Formalism of the ordinary muon capture

For the calculation of the OMC rates we use the robust
formalism that was developed by Morita and Fujii in Ref. [33].

The muon capture rate to a Jπ final state is written as

W = 8

(
Zeff

Z

)4

P(αZm′
μ)3 2Jf + 1

2Ji + 1

(
1 − q

mμ + AM

)
q2,

(2)

where A indicates the mass number of the initial and final
nuclei, Ji (Jf ) the angular momentum of the initial (final)
nucleus, M the average nucleon rest mass, mμ the bound
muon mass (the rest mass of a muon minus the binding
energy of the muon in the K orbital of the μ-mesonic atom),
m′

μ the reduced mass of the muon in the parent μ-mesonic
atom, Z the atomic number of the initial nucleus, α the fine-
structure constant and q the exchanged momentum between
the captured muon and the nucleus [33], i.e. the Q value of the
OMC.

For heavy nuclei the capture rate has to be corrected for
the muonic screening since the atomic orbit of the muon
penetrates the nucleus. We follow the Primakoff method [34]
correcting the capture rate by the factor (Zeff/Z )4, where the
effective atomic number Zeff is obtained from the work of Ford
and Wills [35]. The effective atomic numbers for the nuclei of
interest are listed in the following section.

The Q value of the OMC process can be obtained from

q = (mμ − W0)

(
1 − mμ − W0

2(M f + mμ)

)
, (3)

where W0 = M f − Mi + me + EX [33]. Here M f and Mi are
the nuclear masses of the final and initial nuclei, me the rest
mass of an electron and EX the excitation energy of the final-
state nucleus.

The term P in Eq. (2) can be written as

P = 1

2

∑
κu

∣∣∣∣gVM[0 l u]S0u(κ )δlu + gAM[1 l u]S1u(κ ) − gV

M
M[1 l̄ u p]S′

1u(−κ )

+
√

3
gVq

2M

(√
l̄ + 1

2l̄ + 3
M[0 l̄ + 1 u +]δl̄+1,u +

√
l̄

2l̄ − 1
M[0 l̄ − 1 u −]δl̄−1,u

)
S′

1u(−κ )

+
√

3

2

(
gVq

M

)
(1 + μp − μn)(

√
l̄ + 1W (1 1 u l̄ ; 1 l̄ + 1)M[1 l̄ + 1 u +]

+
√

l̄W (1 1 u l̄ ; 1 l̄ − 1)M[1 l̄ − 1 u −])S′
1u(−κ ) −

(
gA

M

)
M[0 l̄ u p]S′

0u(−κ )δl̄u

+
√

1

3
(gP − gA)

(
q

2M

)(√
l̄ + 1

2l̄ + 1
M[1 l̄ + 1 u +] +

√
l̄

2l̄ + 1
M[1 l̄ − 1 u −]

)
S′

0u(−κ )δl̄u

∣∣∣∣
2

, (4)

where W (. . .) are the usual Racah coefficients and M[k w u ( ±
p )] nuclear matrix elements of the OMC. The NMEs M[k w u (±)]

are dimensionless numbers while the NMEs M[k w u p] are related to the nucleon momentum and hence are in energy units.
The matrix elements are defined in the following manner:∫

	Jf M f

A∑
s=1

e−αZm′
μrs Osτ

s
−	JiMi dr1 . . . drA = M

[
k w u

(±
p

)]
(Ji Mi u M f − Mi|Jf M f ), (5)

where 	Jf M f (	JiMi ) is the final (initial) nuclear wave function. The definition for the operator Os can be found in Table I.
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TABLE I. Definition of Os in Eq. (5) for different nuclear matrix
elements (NMEs).

NME Os

M[0 w u] jw (qrs )YM f −Mi
0wu (r̂s )δwu

M[1 w u] jw (qrs )YM f −Mi
1wu (r̂s, σs )

M[0 w u ±] [ jw (qrs ) ± αZ (m′
μ/pν ) jw∓1(qrs)]YM f −Mi

0wu (r̂s )δwu

M[1 w u ±] [ jw (qrs) ± αZ (m′
μ/pν ) jw∓1(qrs )]YM f −Mi

1wu (r̂s, σs )

M[0 w u p] i jw (qrs)YM f −Mi
0wu (r̂s )σs · psδwu

M[1 w u p] i jw (qrs )YM f −Mi
1wu (r̂s, ps )

The (vector) spherical harmonics YM
kwu in the equations of

Table I are defined as

YM
0wu(r̂)≡ (4π )−1/2Yw,M (r̂), (6)

YM
1wu(r̂, σ )≡

∑
m

(1 − m w m + M|u M )Yw,m+M (r̂)

√
3

4π
σ−m,

(7)

where σ is the Pauli spin vector, Yw,M (r̂) are the spherical
harmonics and r̂ is the unit coordinate vector for the angles
in spherical coordinates. The quantity jw(qrs) is the spherical
Bessel function.

The geometric factors in Eq. (4) are defined as

Sku(κ ) =
{√

2(2 j + 1)W
(

1
2 1 j l ; 1

2 u
)
δlw, for k = 1√

2 j+1
2l+1 δlw, for k = 0

(8)

and

S′
ku(−κ ) = SκSku(−κ ), (9)

where Sκ is the sign of κ . Here κ > 0 corresponds to l = κ

and j = l − 1/2 and κ < 0 to l = −κ − 1 and j = l + 1/2.
The angular momenta l and l̄ correspond to κ and −κ ,
respectively.

The coefficients gV ≡ gV(q) and gA ≡ gA(q) in Eq. (4)
are the usual weak vector and axial-vector couplings at fi-
nite momentum transfer q > 0. The conserved vector current
(CVC) and partially conserved axial-vector current (PCAC)
hypotheses give the values gV(0) = 1.00 and gA(0) = 1.27
for a free nucleon at zero momentum transfer, and for fi-
nite momentum transfer we can use the dipole approxi-
mation [3]. For these couplings deviations from the CVC
and PCAC values have been recorded at zero momentum
transfer [32,36]). For the induced pseudoscalar coupling gP

the Goldberger-Treiman PCAC relation [37] gives gP/gA =
7.0. In this work we choose the slightly quenched values
of gA(0) = 0.8 and gP(0) = 7.0 and keep the CVC value
gV(0) = 1.00.

The expression (4) can be expanded in powers of the
small quantity 1/M2. In this way one ends up with the
explicit formula P = P0 + P1, where P0 is the part that one
obtains by neglecting all terms of order 1/M2 (except for
terms containing g2

P, which is large compared with the other
coupling constants) and P1 contains the rest of the 1/M2

terms. For nth forbidden OMC transitions the P0 term can be
written as

P0 = g2
V[0 n n]2 + 1

3
g2

A([1 n n]2 + [1 n n + 1]2 + [1 n + 2 n + 1]2) + 1

2n + 1
g2

V
q

M
[0 n n](n[0 n n +] + (n + 1)[0 n n −])

+
√

n(n + 1)

3

1

2n + 1
g2

V
q

M
(1 + μp − μn)[0 n n](−[1 n n −] + [1 n n +]) −

√
n(n + 1)

3

1

2n + 1
gAgV

q

M
[1 n n]([0 n n −]

− [0 n n +]) + 1

3
gAgV

q

M
(1 + μp − μn)

{
1

2n + 1
[1 n n](n[1 n n −] + (n + 1)[1 n n +])

+ 1

2n + 3
(
√

n + 2[1 n n + 1] − √
n + 1[1 n + 2 n + 1])(

√
n + 2[1 n n + 1 −] − √

n + 1[1 n + 2 n + 1 +])

}

+ 1

3(2n + 3)
gA(gA − gP)

q

M
(
√

n + 1[1 n n + 1] + √
n + 2[1 n + 2 n + 1])(

√
n + 1[1 n n + 1 −]

+ √
n + 2[1 n + 2 n + 1 +]) − 2√

3(2n + 1)
g2

V
1

M
[0 n n](

√
n[1 n − 1 n p] + √

n + 1[1 n + 1 n p])

− 2

3
gAgV

1

M

{
1√

2n + 3
(−√

n + 2[1 n n + 1] + √
n + 1[1 n + 2 n + 1])[1 n + 1 n + 1 p]

+ 1√
2n + 1

[1 n n](
√

n + 1[1 n − 1 n p] − √
n[1 n + 1 n p])

}
+ 2√

3(2n + 3)
g2

A
1

M
(
√

n + 1[1 n n + 1]

+ √
n + 2[1 n + 2 n + 1])[0 n + 1 n + 1 p] + 1

12(2n + 3)

(
gPq

M

)2

(
√

n + 1[1 n n + 1 −] + √
n + 2[1 n + 2 n + 1 +])2,

(10)

which is the explicit form that can be found in Ref. [33]. Here we use the abbreviation [k w u ( ±
p )] := M[k w u ( ±

p )].
We introduce in our calculations also the next-to-leading-order term P1 in the expansion P = P0 + P1, which can be derived

from Eq. (4). It is needed for OMC transitions, which are quite weak, usually for captures to high-lying states of high
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multipolarity, in order to avoid nonphysical negative OMC rates. The term P1 for nth forbidden transitions reads as

P1 =
(

gA

M

)2

[0 n + 1 n + 1]2 + g2
V

(
q

2M

)2 1

2n + 1
(n[0 n n +]2 + (n + 1)[0 n n −]2) + 1

3

(
gV

M

)2

([1 n − 1 n p]2

+ [1 n + 1 n p]2 + [1 n + 1 n + 1 p]2) + 1

12

(
g2

A − 2gAgP
)( q

M

)2 1

2n + 3
(
√

n + 2[1 n + 2 n + 1 +]

+ √
n + 1[1 n n + 1 −])2 + 1

12

(
gVq

2M

)2

(1 + μp − μn)

{
1

2n + 1
((n + 1)[1 n n +]2

+ n[1 n n −]2) + 1

2n + 3
(
√

n + 1[1 n + 2 n + 1 +] − √
n + 2[1 n n + 1 −])2

}

− 1√
3(2n + 1)

(
gV

M

)2

q(
√

n[1 n − 1 n p][0 n n +] + √
n + 1[1 n + 1 n p][0 n n −])

+ 1

3

(
gV

M

)2

q(1 + μp − μn)

{
1√

2n + 1
(
√

n[1 n + 1 n p][1 n n −] − √
n + 1[1 n − 1 n p][1 n n +])

+ 1√
2n + 3

(
√

n + 2[1 n + 1 n + 1 p][1 n n + 1 −] − √
n + 1[1 n + 1 n + 1 p][1 n + 2 n + 1 +])

}

+ 1

2
√

3

(
gVq

M

)2

(1 + μp − μn)

√
n(n + 1)

2n + 1
([0 n n +][1 n n +] − [0 n n −][1 n n −])

+ 1√
3

gA(gA − gP)
q

M2

1√
2n + 3

[0 n + 1 n + 1 p](
√

n + 2[1 n + 2 n + 1 +] + √
n + 1[1 n n + 1 −]). (11)

B. pnQRPA and the Hamiltonian parameters

In this section we introduce the spherical version of the
pnQRPA and discuss briefly the determination of the pa-
rameter values of its Hamiltonian. The wave functions and
excitation energies for the complete set of Jπ excitations
in the odd-odd daughter nuclei are obtained by perform-
ing a pnQRPA diagonalization in the unperturbed basis of
quasiproton-quasineutron pairs coupled to Jπ . The resulting
pnQRPA states in odd-odd nuclei are then of the form∣∣Jπ

k M
〉 =

∑
pn

[
X

Jπ
k

pn A†
pn(JM ) − Y

Jπ
k

pn Ãpn(JM )
]|pnQRPA〉, (12)

where k numbers the states of spin-parity Jπ , the amplitudes
X and Y are the forward- and backward-going pnQRPA am-
plitudes, A† and Ã the quasiproton-quasineutron creation and
annihilation operators, M the z projection of J and |pnQRPA〉
the pnQRPA vacuum. The transition density corresponding to
a transition from a 0+

gs initial state to a Jπ
k final state can then

be written as(
Jπ

k ||[c†
pc̃n]J ||0+

gs

) = √
2J + 1

[
upvnX

Jπ
k

pn + vpunY
Jπ

k
pn

]
. (13)

The formalism is explained in detail in Refs. [24,38].
The X and Y amplitudes in Eq. (12) are calculated by diag-

onalizing the pnQRPA matrix separately for each multipole
Jπ . We follow the partial isospin-restoration scheme intro-
duced in Ref. [39], in which the isoscalar (T = 0) and isovec-
tor (T = 1) parts of the particle-particle G-matrix elements
are multiplied by factors gT =0

pp and gT =1
pp , respectively, for all

the multipoles. The isovector parameter gT =1
pp is adjusted such

that the Fermi part of the corresponding two-neutrino double

β (2νββ) NME vanishes. The isoscalar parameter gT =0
pp is then

independently varied to reproduce the 2νββ-decay half-life.
In addition, the particle-hole part was scaled by a common
factor gph, fixed by fitting the centroid of the Gamow-Teller
giant resonance (GTGR) in the 1+ channel of the calculations
in the usual way. These renormalization factors are adopted
from Ref. [31] except for the case A = 82, which was not
included in there. For A = 82 the corresponding parameter
values are gT =0

pp = 0.82, gT =1
pp = 0.95, and gph = 0.997.

We adopt for each even-even nucleus involved in the com-
putations the single-particle bases used in the isovector spin-
multipole calculations of Refs. [28,31], i.e., no-core bases
with all the orbitals from the N = 0 oscillator major shell up to
at least two oscillator major shells above the respective Fermi
surfaces for both protons and neutrons. The single-particle
energies were obtained by solving the radial Schrödinger
equation for a Coulomb-corrected Woods-Saxon (WS) poten-
tial, optimized for nuclei close to the β-stability line [40]. This
choice is justified since the ββ-decaying nuclei lie always
rather close to the bottom of the valley of β stability. Both the
bound and quasibound single-particle states are active in the
calculations. The single-particle energies close to the proton
and neutron Fermi surfaces were slightly modified in order
to better reproduce the low-lying spectra of the neighboring
odd-mass nuclei at the BCS quasiparticle level.

The quasiparticle spectra for protons and neutrons, needed
in the pnQRPA diagonalization, are obtained by solving
the BCS equations for protons and neutrons, separately. In
our calculations the two-body interaction is derived from
the Bonn-A one-boson-exchange potential introduced in
Ref. [41]. The calculated BCS pairing gaps are fitted (see
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TABLE II. pnQRPA-computed and Primakoff-formula based to-
tal rates for OMC on different parent nuclei (Parent), as well as
the effective Z values. Axial couplings gA(0) = 0.8 and gP(0) = 7.0
were adopted in the calculations.

Parent Zeff WpnQRPA(106/s) WPr.(106/s)

76Se 24.47 (for Z = 37) 16.4 8.3
82Kr 24.47 (for Z = 37) 16.5 7.5
96Mo 26.37 20.4 10.0
100Ru 26.37 (for Z = 42) 16.7 10.3
116Sn 28.64 15.7 12.7
128Xe 29.99 (for Z = 56) 21.2 13.3
130Xe 29.99 (for Z = 56) 23.6 11.9
136Ba 29.99 21.1 11.1

Refs. [24,38,42,43]) to the phenomenological proton and neu-
tron pairing gaps in a way described in detail in Ref. [28].
The values of the resulting pairing scaling factors are listed in
Refs. [28,31].

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of our
studies. The style of presentation of the results serves the
purpose of easy comparison with future experimental data.

A. OMC strength functions in intermediate
nuclei of 0νββ decays

An approximation for the total OMC rate on nucleus A
ZX

can be computed using the Primakoff formula [34]

WPr.(A, Z ) = Z4
effX1

[
1 − X2

(
A − Z

2A

)]
, (14)
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FIG. 1. OMC on 76Se: muon-capture-rate distribution (OMC
strength function) in 76As. Transition strengths to Jπ

f = 0+, 1±, 2±

states and to states of higher multipolarity are separated. The y axis
gives the capture rate in millions of captures per second and per MeV.
The horizontal axis shows the excitation energy in the 76As nucleus.
Here a 1.0 MeV binning in energy is used and coupling strengths
gA(0) = 0.8 and gP(0) = 7.0 were adopted in the calculations.
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FIG. 2. The same as in Fig. 1 but for captures on 82Kr to states
in 82Br.

where A, Z , and Zeff are the mass number, atomic number,
and effective atomic number of the nucleus, X1 the reduced
muon-capture rate for OMC on hydrogen, and X2 a parameter
that takes into account the Pauli exclusion principle. We adopt
the typical values

X1 = 170 1/s and X2 = 3.125.

for the X factors.
In Table II we list for each nucleus of interest the effective

Z values Zeff obtained from the work of Ford and Wills [35],
and the total muon capture rates obtained from the Primakoff
formula (14) as well as the total capture rate of Eq. (2) ob-
tained from the pnQRPA calculations. The pnQRPA results in-
clude transition rates to all possible multipole states summed
over an energy region of 0–55 MeV. The moderately quenched
parameter values gA(0) = 0.8 and gP(0) = 7.0 were adopted
in the calculations.

We notice that using the parameter values gA(0) = 0.8 and
gP(0) = 7.0 the pnQRPA formalism gives larger capture rates
than the corresponding Primakoff estimates. However, it was
noticed in Ref. [29] that decreasing the value of gA or increas-
ing the value of gP decreases the total capture rate. In terms of
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FIG. 3. The same as in Fig. 1 but for captures on 96Mo to states
in 96Nb.
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FIG. 4. The same as in Fig. 1 but for captures on 100Ru to states
in 100Tc.

the axial coupling, the Primakoff rates can be reproduced by
a strongly quenched effective value of gA(0) ≈ 0.5.

In Figs. 1–8 we present the OMC strength functions for
the captures on 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe,
and 136Ba obtained from Eq. (2) with the parameter val-
ues gA(0) = 0.8 and gP(0) = 7.0. We separately indicate the
OMC rates to Jπ = 0+, 1±, 2± states of the daughter nuclei
(the intermediate nuclei of 0νββ decays) and also give the
total capture rate, which includes transitions to states of all
possible multipolarities. The results are presented using a
1.0 MeV binning in energy. One can see that transitions to
Jπ = 0+, 1±, 2± states form the majority of the total capture
rates, transitions to states of higher multipolarity forming only
some 10–20% of the total capture rate.

In Tables VI–XIII (see the Appendix) we present the
relative capture rates W (Jπ )/Wtot (%) to states of different
multipolarities corresponding to Figs. 1–8. Here the numbers
of the bins refer to the different energy bins in the figures:
Bin No. 1 refers to the 0–1 MeV energy bin and so on.
These tables are handy when one wants to compare the OMC
distributions obtained in future muon experiments with the
presently calculated ones.
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FIG. 5. The same as in Fig. 1 but for captures on 116Sn to states
in 116In.
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FIG. 6. The same as in Fig. 1 but for captures on 128Xe to states
in 128I.

In Ref. [29] the first theoretical evidence of an OMC
giant resonance was produced for the OMC on 100Mo. In
that work it was seen that the computed location of the
resonance agreed well with the experimentally determined
one. Also from Figs. 1–8 one can observe structures of the
OMC strength functions, which would correspond to an OMC
giant resonance. In Figs. 1 (OMC on 76Se) and 3 (OMC
on 96Mo) the centroid of a resonancelike structure can be
observed at around 12 MeV, in Fig. 2 (OMC on 82Kr) the
resonance is around 14 MeV, in Fig. 4 (OMC on 100Ru) the
resonance is around 10 MeV, and in Fig. 6 (OMC on 128Xe) a
broad resonancelike structure is found around 14 MeV. For
the OMC on the heaviest two nuclei, 130Xe and 136Ba, no
clear resonance can be identified, but rather a wide flat region
of strong captures to states below about 18 MeV. Also for
the OMC on 116Sn, Fig. 5, no clear giant resonance can be
identified.

The resonancelike structures are dominated by the 1h̄ω

excitations of multipolarities Jπ = 1−, 2−. For the OMC
on 76Se and 82Kr there is a visible low-energy satellite of
the OMC resonance consisting mainly of 0h̄ω excitations
of multipolarities Jπ = 1+, 2+. In general, these excitations
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FIG. 7. The same as in Fig. 1 but for captures on 130Xe to states
in 130I.
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FIG. 8. The same as in Fig. 1 but for captures on 136Ba to states
in 136Cs.

play a major role at low energies for all cases. At high
energies, 15–28 MeV, the 2h̄ω excitations of multipolarities
Jπ = 1+, 2+ dominate forming even a high-energy satellite
resonance in the cases of OMC on 100Ru, 116Sn, and 128Xe. At
energies of about 28–32 MeV one can see traces of 2h̄ω Jπ =
0+ excitations. For the heaviest nuclei these 0+ contributions
can reach up to 40 MeV of excitation. The high-energy tail of
the Jπ = 1−, 2− excitations, beyond 24–28 MeV, stems from
3h̄ω excitations.

B. OMC rates in 76As compared with available data

There is a possibility to compare our pnQRPA-computed
rates with data for the OMC on 76Se. In Ref. [2] the OMC

rates to states of low excitation in 76As were measured. In the
present calculations we use the coupling strengths gA(0) =
0.8 and gP(0) = 7.0.

The experimental OMC rates to different low-energy states
of 76As, deduced from the results of Ref. [2], are presented in
Table III. The table has been divided in two, and the excitation
energies of the states are listed in the first columns, the Jπ

assignments in the second columns and the capture rates in
the third columns. The corresponding pnQRPA results are
presented in Table IV.

Let us first compare Tables III and IV. Direct comparison
of the tables is hampered by the unknown spin-parities in
the experimental energy spectrum. Overall, similar spin-parity
assignments Jπ and OMC rates of the same order of magni-
tude are recorded by comparing the numbers of the tables.
However, there are much fewer states in the low-energy spec-
trum computed with the pnQRPA. This is a typical feature of
the pnQRPA calculations: The pnQRPA calculations predict
less states in odd-odd nuclei than is detected experimentally.
However, the corresponding transition strength (in this case
OMC rates) is there, but concentrated in few strong states.
Usually the centroid of the experimental strength is well
reproduced but the fine structure is not due to the too small a
configuration space of the pnQRPA approach. In many cases,
in low momentum-exchange processes, the pnQRPA strength
is concentrated in the lowest collective states, usually of the
multipolarities Jπ = 1+, 2− (Gamow-Teller and spin-dipole
strength). For high momentum-exchange processes, such as
the 0νββ decay and the OMC, the strength is gathered by
the lowest states with multipolarities Jπ = 1+, 2±, 3±. The
realistic nature of the summed OMC strength of pnQRPA
is visible in the obtained total capture rate 6.7 × 105 1/s
below 1.1 MeV, which is quite close to the corresponding

TABLE III. OMC on 76Se: measured OMC rates (column 3) to low-energy states of 76As as deduced from Ref. [2]. The table has been cut
in two and appears as left and right halves. The excitation energies are displayed in columns 1 and the Jπ values in column 2. The OMC rate
to the ground state of 76As cannot be measured.

E (MeV) Jπ Rate (1/s) E (MeV) Jπ Rate (1/s)

0.0000 2− g.s. 0.6401 (1−, 2−) 11 520
0.1203 1+ 20 480 0.6691 (1+, 2+) 40 960
0.1222 (1)− 13 440 0.6811 (1−,4) 21 120
0.165 (3)− 34 560 0.7344 (�4)− 5 120
0.2035 (0,1)+ 5 120 0.7518 (0−,1,2) 23 680
0.2803 (1,2)+ 7 040 0.7566 (0+, 3+) 16 640
0.2926 (2,3,4)− 3 200 0.7744 (1+, 3+) 14 720
0.3285 (3,4)− 5 760 0.7936 (1,2,3)+ 12 800
0.3524 (3)− 3 200 0.8024 (1−, 2−, 3+) 10 880
0.4018 (1,2)+ 26 240 0.8633 1+ 17 280
0.4368 (1,2,3)− 17 920 0.8932 (1−, 2−, 3+) 14 720
0.4472 (1,2)+ 29 440 0.9247 (�3)− 15 360
0.471 (2)− 3 200 0.9397 (1,2,3) 21 120
0.4996 (1+, 2−) 63 360 0.9584 �3 8 320
0.5052 (2,3)+ 16 000 0.9855 (1,2,3)+ 13 440
0.5176 (1,2+) 15 360 1.0262 (1+, 3+) 61 440
0.544 (2,3)− 24 960 1.0342 (1,2,3)+ 8 320
0.61 (1,2,3−) 43 520 1.0645 1+ 14 720

Tot. 664 960
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TABLE IV. OMC on 76Se: pnQRPA-computed OMC rates (col-
umn 3) to low-energy states of 76As. Coupling strengths gA(0) = 0.8
and gP(0) = 7.0 were adopted in the calculations.

E (MeV) Jπ Rate (1/s)

0.0 2− 177 802
0.044 1+ 236 595
0.122 1− 28 991
0.165 3− 23 568
0.204 0+ 414.27
0.211 4− 19 911
0.265 2+ 83 516
0.505 3+ 55 355
0.854 3− 9 647
1.0 4+ 2 797
1.004 2+ 30 500
1.007 4− 3 986
1.075 3− 1 621

Tot. 670 716

experimental value 6.6 × 105 1/s despite the differences in
the rates to the individual states.

The uncertain spin-parity assignments of Table III allow
for speculations about the division of the OMC strength
between different multipole states. In fact, one can play with
the spin-parity assignments of Table III within the limits
allowed by the uncertainties. In this way one could try to
produce an educated guess of the most probable spin-parity
assignments and then sum up the OMC strength multipole by
multipole. In this way one creates a kind of most probable ex-
perimental OMC strength distribution below about 1.1 MeV.
This probable distribution can then be compared with the
multipole-by-multipole-summed OMC strength of Table IV
for pnQRPA. These two distributions have been gathered
into Table V. From the table one immediately sees that

TABLE V. Comparison of the most probable experimental
multipole-by-multipole OMC strength distribution obtained from
Table III with the corresponding pnQRPA-computed distribution
deduced from Table IV. The OMC strength to the 2− ground state
has not been measured and this is indicated by + g.s. in the corre-
sponding row.

Jπ OMC rate (1/s)

Expt. pnQRPA

0+ 5120 414
1+ 218 240 236 595
1− 31 360 28 991
2+ 120 960 114 016
2− 145 920 + g.s. 177 802
3+ 60 160 55 355
3− 53 120 34 836
4+ – 2797
4− 30 080 23 897

the correspondence between the experimental and pnQRPA-
computed OMC strength distributions is strikingly good. Only
the pnQRPA-computed rate to the 0+ states is an order of mag-
nitude smaller than the corresponding experimental rate. The
deviation might be due to the small deformation of 76Se [44].
It has to be borne in mind that the OMC strength to the 2−
ground state has not been measured since the corresponding
γ rays could not be extracted. This experimental deficit in
OMC has been indicated by + g.s. in the corresponding row of
Table V. Future spin-assignment sensitive measurements will
shed light on the reliability of the presently introduced most
probable experimental OMC strength distribution.

IV. CONCLUSIONS

In this work we have calculated the rates of ordinary muon
capture on the 0+ ground states of the daughter nuclei of eight
0νββ-decaying parent nuclei in the Morita-Fujii formalism
of the OMC. The calculations have been performed using the
proton-neutron quasiparticle RPA with realistic two-body in-
teractions and slightly modified no-core Woods-Saxon bases.
The computed OMC strength functions are presented for the
OMC on 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe, and
136Ba. The computed total OMC capture rates are compared
with the corresponding Primakoff estimates. The computed
total rates are somewhat larger than the Primakoff values,
which suggests a rather strongly quenched effective value of
gA(0) ≈ 0.5.

The pnQRPA-computed rates of OMC on 76Se to the states
below 1.1 MeV in 76As were compared with the available
data of Ref. [2]. It was found that the correspondence of the
experimental and pnQRPA-computed strength, decomposed
in multipoles, is quite good. This, in turn, points to reliability
of the present calculations of the OMC strength functions.

Further measurements and computations of the OMC
strength functions for final nuclei of double β decays could
enable a systematic study of the sensitivity of the OMC
strength function to the effective values of the weak axial
couplings. This could help improve the accuracy of calcula-
tions of the nuclear matrix elements of the neutrinoless double
β decay. On the other hand, the OMC provides a promis-
ing opportunity for studying the (anti)neutrino responses
for medium-energy astroneutrino interactions. Further exper-
imental studies are in progress at RCNP Osaka for nuclei of
interest in studies of nuclear double β decay and astroneutrino
interactions.

APPENDIX: TABLES FOR RELATIVE OMC RATES

Our pnQRPA-computed relative OMC rates for gA(0) =
0.8 and gP(0) = 7.0 are summarized in Tables VI–XIII. Here
the quantities W (Jπ )/Wtot are given in per cents for multipoles
Jπ = 0+, 1±, 2± separately, and the rest as a lump sum. The
energy bins are numbered such that bin No. n corresponds to
the energy interval [n − 1, n] MeV. These tables enable easy
comparison with the strength functions extracted from future
OMC experiments.
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TABLE VI. Relative pnQRPA-computed rates to states in 76As for the OMC on 76Se. The rates are given in 1 MeV energy bins as percents
of the total OMC rate. There are three separate tables side by side listing the bin numbers (columns 1) and the different multipolarities (columns
2–7). The values gA(0) = 0.8 and gP(0) = 7.0 for the weak couplings were adopted in the calculations.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 1.44 0.51 0.18 1.08 0.63 16 0.00 0.00 0.01 1.45 1.77 3.05 31 0.00 0.08 0.00 0.14 0.02 0.08
2 0.03 0.61 1.15 0.03 0.00 0.10 17 0.00 0.03 0.01 0.00 0.07 0.51 32 0.00 0.00 0.00 0.08 0.15 0.01
3 0.00 4.17 3.14 0.10 0.65 0.69 18 0.00 0.05 0.53 1.70 1.28 0.22 33 0.00 0.00 0.00 0.02 0.28 0.00
4 1.89 2.99 0.45 0.04 0.30 0.01 19 0.00 0.98 0.31 0.10 0.26 0.08 34 0.00 0.00 0.00 0.00 0.00 0.03
5 0.00 0.00 0.49 0.06 0.03 0.49 20 0.00 0.15 0.31 1.45 0.10 0.53 35 0.00 0.01 0.00 0.34 0.01 0.00
6 0.00 5.11 0.75 0.04 0.01 1.37 21 0.03 1.93 0.81 0.07 0.01 0.53 36 0.00 0.00 0.00 0.01 0.03 0.02
7 0.00 0.49 0.57 0.09 0.00 0.16 22 0.00 0.13 1.50 0.06 0.66 0.12 37 0.00 0.00 0.00 0.00 0.00 0.01
8 0.00 0.00 0.10 0.07 0.10 0.47 23 0.02 0.20 0.52 0.11 0.10 0.06 38 0.00 0.01 0.00 0.00 0.01 0.00
9 0.00 1.50 0.01 0.04 0.19 1.06 24 0.00 0.44 0.07 0.18 0.01 0.05 39 0.00 0.01 0.00 0.00 0.00 0.00
10 0.00 0.29 0.04 4.17 9.16 0.37 25 0.00 1.34 0.74 0.05 0.02 0.07 40 0.01 0.00 0.01 0.00 0.00 0.00
11 0.00 0.51 0.09 2.01 0.36 0.24 26 0.00 0.02 0.23 0.03 0.02 0.12 41 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.02 0.04 1.94 0.01 0.00 27 0.00 0.09 0.06 0.06 0.00 0.16 42 0.00 0.02 0.00 0.00 0.00 0.00
13 0.00 0.08 0.06 3.18 2.82 0.31 28 0.00 0.44 0.01 0.02 0.05 0.02 43 0.00 0.01 0.00 0.00 0.00 0.00
14 0.00 0.02 0.03 5.02 2.89 0.43 29 0.54 0.07 0.00 0.00 0.01 0.05
15 0.00 0.00 0.01 2.59 1.17 0.29 30 0.00 0.00 0.00 0.03 0.16 0.01

TABLE VII. The same as in Table VI but for OMC on 82Kr to states in 82Br.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.01 0.38 1.36 0.12 1.43 0.50 16 0.00 0.00 0.05 0.17 0.16 0.49 31 0.00 0.00 0.00 0.07 0.01 0.01
2 0.00 2.67 2.85 0.40 0.00 1.87 17 0.00 0.00 0.05 3.02 0.30 0.05 32 0.00 0.00 0.00 0.04 0.18 0.09
3 0.00 2.19 0.78 0.12 0.35 0.42 18 0.00 0.39 0.63 1.10 0.78 0.17 33 0.00 0.00 0.00 0.16 0.14 0.00
4 0.00 5.13 0.17 0.01 1.16 0.13 19 0.00 0.37 0.89 0.70 0.61 0.94 34 0.00 0.00 0.00 0.00 0.14 0.03
5 1.60 0.00 0.13 0.00 0.01 0.01 20 0.00 1.78 0.53 1.62 0.09 0.55 35 0.00 0.00 0.00 0.00 0.03 0.01
6 0.19 0.02 1.26 0.08 0.00 1.09 21 0.00 0.29 1.75 1.41 1.31 0.35 36 0.00 0.00 0.00 0.30 0.02 0.01
7 0.00 1.32 1.17 0.00 0.02 1.58 22 0.01 0.52 0.34 0.31 0.15 0.07 37 0.00 0.00 0.00 0.01 0.00 0.00
8 0.00 1.29 0.17 0.00 0.37 0.49 23 0.04 0.04 0.91 0.08 0.00 0.04 38 0.00 0.01 0.02 0.00 0.00 0.00
9 0.00 2.32 0.03 0.18 0.00 0.31 24 0.02 1.91 0.13 0.13 0.01 0.02 39 0.00 0.01 0.00 0.00 0.00 0.00
10 0.00 0.01 0.01 0.28 0.00 0.52 25 0.00 0.01 0.04 0.01 0.05 0.14 40 0.01 0.01 0.00 0.00 0.00 0.00
11 0.00 0.03 0.00 2.04 8.45 0.01 26 0.00 0.46 0.06 0.00 0.00 0.01 41 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.04 1.85 0.17 0.15 27 0.00 0.02 0.01 0.00 0.00 0.14 42 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.24 0.00 2.13 0.16 0.43 28 0.00 0.04 0.00 0.00 0.00 0.02 43 0.00 0.01 0.00 0.00 0.00 0.00
14 0.00 0.01 0.02 4.01 0.45 0.36 29 0.51 0.00 0.02 0.01 0.00 0.05
15 0.00 0.01 0.00 4.11 7.18 3.15 30 0.00 0.04 0.00 0.01 0.17 0.03
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TABLE VIII. The same as in Table VI but for OMC on 96Mo to states in 96Nb.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 1.99 1.02 0.12 0.12 0.33 17 0.01 0.27 0.01 1.72 0.25 0.96 33 0.00 0.04 0.00 0.19 0.36 0.04
2 0.01 0.00 0.49 0.11 0.00 1.27 18 0.00 0.01 0.01 1.97 0.13 0.17 34 0.00 0.01 0.00 0.33 0.01 0.00
3 0.00 0.00 0.00 0.08 0.10 0.02 19 0.00 0.00 0.01 2.29 1.00 0.92 35 0.00 0.01 0.00 0.03 0.01 0.09
4 0.00 0.00 0.00 0.25 0.22 0.06 20 0.00 0.03 0.13 0.14 0.38 2.39 36 0.00 0.00 0.00 0.05 0.04 0.05
5 0.02 0.62 0.89 0.01 0.17 0.51 21 0.03 0.45 0.42 1.12 0.15 0.45 37 0.00 0.00 0.00 0.00 0.10 0.00
6 0.01 1.67 2.62 0.03 0.00 0.49 22 0.02 1.12 0.76 1.73 0.22 0.26 38 0.00 0.02 0.01 0.01 0.00 0.02
7 0.01 0.14 0.81 0.00 0.01 0.10 23 0.02 1.14 0.13 0.13 0.07 0.34 39 0.00 0.01 0.01 0.47 0.00 0.02
8 0.03 5.41 0.73 0.00 0.03 1.30 24 0.02 0.52 1.10 0.26 0.04 0.06 40 0.00 0.02 0.01 0.00 0.00 0.00
9 0.12 0.66 0.26 0.21 0.45 0.51 25 0.01 0.74 0.61 0.06 0.09 0.29 41 0.00 0.05 0.03 0.03 0.00 0.00
10 1.50 1.07 1.09 0.00 0.18 1.45 26 0.02 0.09 0.62 0.12 0.01 0.16 42 0.00 0.01 0.01 0.00 0.00 0.00
11 0.00 0.28 0.08 0.09 10.27 0.74 27 0.00 0.77 0.54 0.01 0.28 0.08 43 0.03 0.00 0.00 0.00 0.00 0.00
12 0.00 1.08 0.56 0.39 0.68 0.30 28 0.00 1.55 0.26 0.01 0.02 0.07 44 0.00 0.00 0.02 0.00 0.00 0.00
13 0.01 0.38 0.12 5.44 2.66 0.77 29 0.00 0.02 0.41 0.02 0.00 0.02 45 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.17 0.12 1.52 0.17 0.54 30 0.00 0.18 0.31 0.06 0.55 0.18 46 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.32 0.01 0.97 2.36 0.63 31 0.00 0.07 0.07 0.06 0.09 0.12 47 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.27 0.05 1.93 1.71 0.25 32 0.63 0.53 0.01 0.40 0.06 0.07 48 0.00 0.00 0.00 0.01 0.00 0.00

TABLE IX. The same as in Table VI but for OMC on 100Ru to states in 100Tc.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 1.23 0.73 0.11 0.16 0.88 16 0.00 0.02 0.00 0.11 0.03 1.19 31 0.00 0.02 0.01 0.18 0.41 0.01
2 0.00 0.00 0.13 0.05 0.02 0.00 17 0.00 0.23 0.03 0.78 1.62 2.47 32 0.00 0.71 0.00 0.00 0.04 0.13
3 0.03 0.00 0.00 0.16 0.09 0.05 18 0.01 0.02 0.03 1.77 0.08 1.07 33 0.00 0.12 0.01 0.08 0.00 0.03
4 0.00 0.00 0.00 0.02 0.06 0.10 19 0.01 0.01 0.08 0.51 0.23 0.03 34 0.00 0.00 0.00 0.00 0.09 0.01
5 0.44 0.00 2.93 0.02 0.02 1.31 20 0.03 0.31 0.13 0.25 0.06 0.39 35 0.00 0.07 0.00 0.00 0.12 0.00
6 0.00 1.40 1.53 0.00 0.01 1.60 21 0.01 0.02 1.22 0.01 0.03 0.57 36 0.00 0.00 0.00 0.62 0.00 0.01
7 0.87 0.13 0.00 0.28 2.95 0.79 22 0.03 0.41 0.34 0.11 0.11 0.09 37 0.01 0.00 0.00 0.01 0.00 0.00
8 0.00 0.65 1.15 0.01 6.99 0.56 23 0.02 1.60 1.01 0.12 0.04 0.40 38 0.00 0.00 0.00 0.05 0.00 0.04
9 0.00 5.19 0.16 5.10 0.89 0.70 24 0.00 1.07 0.79 0.00 0.05 0.14 39 0.00 0.02 0.02 0.00 0.00 0.02
10 0.00 0.19 0.02 1.83 0.02 0.81 25 0.00 0.21 0.73 0.01 0.01 0.08 40 0.00 0.04 0.00 0.00 0.00 0.00
11 0.01 0.00 0.68 0.16 1.55 1.14 26 0.00 0.65 0.35 0.00 0.10 0.05 41 0.03 0.04 0.03 0.00 0.00 0.00
12 0.00 1.83 0.03 2.14 1.34 0.51 27 0.00 0.08 0.24 0.04 0.13 0.13 42 0.00 0.00 0.02 0.00 0.00 0.00
13 0.00 1.32 0.04 3.03 3.64 0.24 28 0.00 2.48 0.73 0.05 0.64 0.17 43 0.00 0.02 0.00 0.00 0.00 0.00
14 0.00 0.16 0.10 1.44 0.48 0.14 29 0.00 0.02 0.08 0.75 0.13 0.16 44 0.00 0.01 0.02 0.01 0.00 0.00
15 0.00 0.18 0.05 4.56 0.35 0.46 30 0.68 0.01 0.09 0.30 0.10 0.06
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TABLE X. The same as in Table VI but for OMC on 116Sn to states in 116In.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 2.12 0.95 0.08 0.14 0.41 14 0.00 0.05 0.04 0.00 0.00 0.27 27 0.01 0.00 0.00 0.85 0.61 0.06
2 0.21 2.70 2.39 0.23 0.00 0.76 15 0.01 0.09 0.07 0.01 0.14 0.38 28 0.01 0.00 0.01 0.00 0.04 0.24
3 0.35 0.89 0.37 4.03 0.00 1.71 16 0.00 0.02 1.76 0.09 0.00 0.06 29 0.00 0.03 0.01 0.17 0.11 0.09
4 0.00 0.09 0.72 0.12 6.86 0.15 17 0.00 1.64 1.74 0.01 0.00 0.73 30 0.01 0.03 0.02 0.00 0.02 0.03
5 0.03 1.51 0.81 3.51 0.01 1.17 18 0.01 2.89 0.60 0.19 0.04 0.18 31 0.01 0.05 0.00 0.01 0.16 0.02
6 0.14 1.12 0.12 5.96 0.03 1.11 19 0.04 1.56 1.13 0.06 0.00 0.76 32 0.00 0.06 0.00 0.00 0.00 0.01
7 0.00 0.00 0.00 2.10 1.36 0.55 20 0.03 0.40 0.74 0.16 0.04 0.15 33 0.03 0.09 0.00 0.01 0.00 0.09
8 0.00 0.01 0.01 1.51 1.43 0.90 21 0.00 3.29 0.59 0.07 0.07 0.12 34 0.00 0.06 0.02 0.00 0.00 0.02
9 0.00 0.00 0.00 1.59 2.92 0.56 22 0.00 0.00 1.02 0.73 0.39 0.11 35 0.00 0.11 0.06 0.02 0.00 0.00
10 0.00 0.21 0.00 2.71 1.29 0.13 23 0.00 0.00 0.19 0.45 0.13 0.49 36 0.00 0.04 0.02 0.00 0.01 0.00
11 0.00 0.06 0.03 0.00 0.27 0.44 24 0.01 1.37 0.12 1.01 0.99 0.12 37 0.05 0.00 0.03 0.03 0.02 0.00
12 0.00 0.00 0.07 0.01 1.78 0.89 25 0.71 0.14 0.00 0.10 0.54 0.01 38 0.00 0.00 0.03 0.01 0.00 0.00
13 0.01 0.04 0.01 0.01 0.83 4.59 26 0.18 0.00 0.00 0.19 0.11 0.04 39 0.00 0.02 0.00 0.00 0.00 0.00

TABLE XI. The same as in Table VI but for OMC on 128Xe to states in 128I.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 0.29 0.53 0.18 0.09 0.80 17 0.00 0.20 0.05 0.80 0.26 3.82 33 0.00 0.00 0.04 0.35 0.48 0.03
2 0.00 0.00 0.00 0.29 0.48 0.15 18 0.00 0.11 0.10 1.60 0.52 0.46 34 0.11 0.12 0.00 0.42 0.06 0.08
3 0.00 0.00 0.00 0.09 1.15 0.18 19 0.00 0.20 0.07 0.89 0.43 0.91 35 0.00 0.01 0.00 0.04 0.00 0.03
4 0.03 0.79 1.38 0.11 0.25 1.44 20 0.01 0.59 0.95 2.09 0.20 0.30 36 0.02 0.01 0.00 0.07 0.08 0.03
5 0.00 0.83 0.77 0.01 0.00 1.25 21 0.00 2.60 1.03 0.25 1.62 0.66 37 0.00 0.12 0.01 0.00 0.09 0.06
6 0.01 0.83 2.53 0.17 0.37 0.41 22 0.07 0.70 0.72 0.00 0.00 0.28 38 0.00 0.03 0.02 0.00 0.00 0.01
7 0.00 3.00 0.58 0.00 0.00 0.42 23 0.00 1.43 0.45 1.81 0.05 0.05 39 0.00 0.08 0.04 0.52 0.00 0.00
8 1.01 1.28 0.16 0.00 0.03 0.29 24 0.00 0.54 0.86 2.03 0.00 0.09 40 0.00 0.03 0.02 0.00 0.01 0.00
9 0.03 0.30 0.22 0.01 0.00 2.37 25 0.00 0.09 0.94 0.00 0.28 0.34 41 0.07 0.01 0.00 0.04 0.00 0.00
10 0.00 0.42 1.11 0.00 0.00 1.25 26 0.00 0.09 0.38 0.07 0.12 0.07 42 0.00 0.00 0.03 0.00 0.03 0.00
11 0.00 0.06 0.99 0.02 6.46 0.07 27 0.00 2.98 0.37 0.26 0.14 0.07 43 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.27 0.08 0.12 0.11 1.36 28 0.00 0.00 0.38 0.20 0.08 0.22 44 0.00 0.02 0.00 0.03 0.00 0.00
13 0.00 0.00 0.00 4.37 3.60 0.19 29 0.00 0.00 0.38 0.02 0.15 0.10 45 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 1.63 0.00 0.81 0.33 0.61 30 0.49 0.00 0.06 0.15 0.18 0.11 46 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.03 1.76 0.37 0.64 31 0.24 0.02 0.00 0.10 0.61 0.03 47 0.00 0.00 0.00 0.00 0.00 0.00
16 0.03 0.14 0.02 0.92 2.62 0.31 32 0.00 0.81 0.00 0.40 0.11 0.09 48 0.00 0.00 0.00 0.03 0.00 0.00

TABLE XII. The same as in Table VI but for OMC on 130Xe to states in 130I.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 0.56 0.73 0.01 2.25 1.88 17 0.00 0.21 1.12 0.01 0.44 0.22 33 0.07 0.04 0.00 0.04 0.00 0.03
2 0.01 0.49 0.78 0.03 0.00 0.87 18 0.00 3.03 0.73 0.02 0.74 0.55 34 0.00 0.06 0.01 0.01 0.02 0.06
3 0.00 2.02 4.81 0.02 0.00 1.86 19 0.00 0.53 1.42 1.95 0.00 0.42 35 0.01 0.02 0.02 0.00 0.00 0.00
4 0.05 0.39 0.00 0.02 3.73 1.66 20 0.00 0.77 0.96 0.38 0.48 0.16 36 0.00 0.09 0.05 0.03 0.00 0.01
5 0.00 2.14 0.35 0.18 0.36 0.43 21 0.05 0.35 0.43 0.05 0.16 0.34 37 0.00 0.02 0.02 0.00 0.03 0.00
6 0.00 0.34 0.03 2.25 0.01 0.41 22 0.00 0.10 0.99 0.04 0.01 0.08 38 0.00 0.00 0.02 0.01 0.00 0.00
7 0.70 0.06 0.62 2.80 1.13 0.56 23 0.00 0.77 0.18 0.13 0.00 0.02 39 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.05 0.00 1.41 2.78 1.34 24 0.00 1.60 0.78 0.33 0.10 0.09 40 0.03 0.00 0.00 0.03 0.00 0.00
9 0.00 0.00 0.26 1.27 0.41 1.30 25 0.00 0.01 0.00 0.40 0.51 0.36 41 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.06 1.07 0.87 0.38 2.04 26 0.00 0.00 0.28 0.23 0.43 0.03 42 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.02 1.40 2.88 1.15 27 0.00 0.01 0.15 0.51 0.13 0.03 43 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.05 0.02 1.70 0.27 0.84 28 0.00 0.68 0.00 0.10 0.54 0.06 44 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 1.69 0.02 0.86 0.69 2.16 29 0.00 0.05 0.00 0.09 0.03 0.06 45 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.61 0.02 0.97 0.16 1.81 30 0.65 0.00 0.02 0.00 0.00 0.11 46 0.00 0.00 0.00 0.00 0.00 0.00
15 0.10 0.70 0.05 0.09 0.30 0.74 31 0.00 0.07 0.00 0.47 0.07 0.02 47 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.01 0.11 2.95 0.81 1.32 32 0.00 0.01 0.00 0.00 0.10 0.01 48 0.00 0.01 0.00 0.00 0.00 0.00
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TABLE XIII. The same as in Table VI but for OMC on 136Ba to states in 136Cs.

Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%) Bin No. W (Jπ )/Wtot (%)

0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others 0+ 1+ 2+ 1− 2− Others

1 0.00 1.12 0.39 0.00 2.31 0.95 18 0.00 0.54 1.72 1.92 1.30 0.92 35 0.00 0.02 0.04 0.00 0.00 0.05
2 0.00 0.00 0.61 0.03 0.00 1.58 19 1.11 2.62 0.62 0.08 0.00 0.36 36 0.00 0.05 0.01 0.00 0.00 0.00
3 0.00 2.45 0.25 0.02 0.00 0.31 20 0.00 0.91 1.63 0.02 0.02 0.14 37 0.00 0.05 0.02 0.00 0.00 0.00
4 0.00 0.10 5.35 0.02 0.02 2.42 21 0.00 0.72 0.66 0.02 0.00 0.34 38 0.00 0.00 0.03 0.01 0.00 0.00
5 0.00 2.46 0.00 0.06 3.66 1.36 22 0.01 0.17 0.70 0.01 0.00 0.04 39 0.00 0.00 0.00 0.01 0.00 0.00
6 0.00 0.33 0.43 1.21 0.01 0.38 23 0.00 1.83 1.19 0.04 0.01 0.06 40 0.01 0.00 0.00 0.01 0.00 0.00
7 0.00 0.00 0.03 2.78 0.01 0.20 24 0.00 0.46 0.30 0.79 0.00 0.06 41 0.48 0.00 0.00 0.00 0.00 0.00
8 0.00 0.02 0.35 2.17 1.96 1.06 25 0.00 0.03 0.05 0.11 0.07 0.34 42 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 1.03 2.77 1.09 26 0.00 0.01 0.35 0.28 0.53 0.10 43 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.20 1.81 0.38 1.83 27 0.00 0.84 0.00 0.49 0.56 0.05 44 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.05 1.31 1.33 1.16 1.93 28 0.00 0.00 0.00 0.13 0.17 0.11 45 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.02 1.69 2.01 1.39 29 0.00 0.01 0.00 0.00 0.40 0.10 46 0.00 0.00 0.00 0.00 0.00 0.00
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17 0.00 0.26 0.07 0.01 0.10 1.00 34 0.00 0.08 0.02 0.00 0.00 0.03 51 0.01 0.00 0.00 0.00 0.00 0.00
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Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double
beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy
and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations
are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order.
The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order
nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model
spaces using the spherical version of the proton-neutron quasiparticle random-phase approximation with two-
nucleon interactions based on the Bonn one-boson-exchange G matrix. Both the OMC and 0νββ processes
involve 100-MeV-range momentum exchanges and hence similarities could be expected for both processes in
the feeding of the 0νββ intermediate states. These similarities may help improve the accuracy of the 0νββ NME
calculations by using the data from the currently planned OMC experiments.

DOI: 10.1103/PhysRevC.102.024303

I. INTRODUCTION

Ordinary muon capture (OMC) is a process in which a
negative muon from an atomic K orbit is captured by the
nucleus of the atom. The large mass of the captured muon
induces large momentum exchange, q ≈ 50–100 MeV, which
leads to final states that are both highly excited and of high
multipolarity. These same states are expected to contribute
as the intermediate states of neutrinoless double beta (0νββ)
decay in 0νββ decay chains. Here, we discuss cases where
the OMC happens on the daughter nucleus of a 0νββ-decay
parent and hence the OMC corresponds to the right virtual
branch (β+ type of transitions) of the 0νββ decay. This makes
OMC a promising tool to study the nuclear matrix elements
(NMEs) of the 0νββ decay [1,2].

We are interested in the ground-state–to-ground–state
0νββ decay, which can be schematically written as

A
Z−2X′(0+) ��� A

Z−1Y(Jπ ) ��� 2e− + A
ZX(0+) , (1)

where the even-even parent nucleus X′ of mass number A
and atomic number Z − 2 in its 0+ ground state emits two
electrons e− leading to the 0+ ground state of its daughter X,
an even-even isobar of atomic number Z . The transition goes
through the virtual states of multipolarity Jπ of the interme-
diate odd-odd nucleus Y of atomic number Z − 1; here, J is
the angular momentum and π the parity of the intermediate
state. The dashed arrow represents virtual transitions through
the intermediate states. Using the notation of Eq. (1) the OMC
process, which corresponds to the right branch of the 0νββ

process of Eq. (1), can be illustrated as

μ− + A
ZX(0+) → νμ + A

Z−1Y(Jπ ) , (2)

where the muon (μ−) is captured by the 0+ ground state of
the even-even nucleus X leading to the Jπ multipole states of

its odd-odd isobar Y (see the review by Measday [3]). At the
same time a muon neutrino νμ is emitted. Comparing Eqs. (1)
and (2) one can see how ordinary muon capture is linked with
neutrinoless double β decay: OMC feeds the same excited
Jπ states of Y that are involved as virtual states in the 0νββ

decay.
Through the years a number of calculations for the OMC

transitions in different nuclear-structure formalisms and for
various nuclei have been performed in order to probe the
right-leg virtual transitions of 0νββ decays as well as the
value of the particle-particle interaction parameter gpp of
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) [4–6], or the in-medium renormalization of the
axial-vector coupling constant gA [7–12]. Thanks to the large
momentum exchange in the OMC, the process activates also
the induced weak currents, including the weak magnetism
and pseudoscalar contributions, quite like in the case of the
0νββ decay [13]. The magnitude of the induced pseudoscalar
term is mostly unknown in atomic nuclei [7,8,14–21]. Addi-
tional OMC experiments and calculations concerning nuclei
involved in 0νββ decays could help theories better understand
the possible connections between OMC and 0νββ NMEs as
well as the effective values of the weak couplings [22].

There have been early attempts to compare the OMC
rates against the 2νββ (two-neutrino double beta decay)
NMEs for light nuclei using the nuclear shell model [6]. In
the work of Kortelainen et al. [6] it was found that there
was a clear correlation between the energy distributions of
the OMC rates to 1+ states and the energy decomposition
of the 2νββ NMEs for the 2νββ decays of the sd-shell
nuclei 36Ar, 46Ca, and 48Ca. In this study we extend these
studies to 0νββ decays of medium-heavy and heavy nu-
clei by computing the average OMC matrix elements in the
intermediate nuclei of 0νββ decays up to some 50 MeV

2469-9985/2020/102(2)/024303(9) 024303-1 ©2020 American Physical Society
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using the pnQRPA formalism and compare them with the
energy-multipole decompositions of the NMEs of 0νββ de-
cays computed using the same formalism and model spaces.
We compute the average OMC matrix elements instead of
OMC rates in order to reduce the phase-space effects. We
decompose the average OMC ME to Jπ multipole states
within MeV energy bins while for the 0νββ decay the energy-
multipole decomposition entails division of the NMEs into
multipoles and their energy distributions binned by MeV en-
ergy intervals. In [23] we computed the strength functions for
the OMC on 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe,
and 136Ba, leading to states in 0νββ intermediate nuclei
76As, 82Br, 96Nb, 100Tc, 116In, 128I, 130I, and 136Cs. In this
study we extend those calculations by comparing the aver-
age OMC matrix elements with the corresponding energy-
multipole decompositions of 0νββ NMEs.

Since we are interested in wide excitation-energy regions
of medium-heavy or heavy open-shell nuclei, the shell-model
framework is infeasible for our calculations due to the enor-
mous computational burden and the very restricted single-
particle model spaces allowed by the shell-model treatment.
The pnQRPA formalism allows us to study the OMC and
0νββ decay NMEs at high excitation energies, since it allows
the use of large no-core single-particle bases. Even though
the pnQRPA often fails to predict the properties of individual
states accurately, it can reproduce the gross features of a distri-
bution of nuclear states quite reasonably. In our earlier studies,
it has been shown that the pnQRPA reliably reproduces the
locations of the isovector spin-dipole giant resonances [24],
as well as the location of the newly discovered OMC giant
resonance in the case of 100Mo [25,26], and the low-energy
OMC rates in the case of 76Se [1,23].

This article is organized as follows. In Sec. II we briefly
introduce the pnQRPA formalism as well as the underlying
formalism of the ordinary muon capture and 0νββ decay. In
Sec. III we display and discuss the obtained results for the
OMC rates and 0νββ-decay matrix elements and examine
possible connections between them. The final conclusions are
drawn in Sec. IV.

II. COMPUTATIONAL SCHEME

In this section we introduce briefly our computational
scheme. All the calculations are based on the pnQRPA theory.
In the first subsection we outline the key points of the pnQRPA
theory and introduce the parameters related to the correspond-
ing Hamiltonian. In the second subsection we outline the
theoretical aspects of the OMC rate, and in the last subsection
we introduce the underlying theory of the 0νββ-decay NMEs.

A. pnQRPA and its Hamiltonian parameters

For the present calculations we adopt the spherical version
of the proton-neutron QRPA. The calculations use an even-
even nucleus as a reference and then create proton-neutron
excitations to reach the states of the adjacent odd-odd nucleus.
We find the wave functions and excitation energies for the
complete set of Jπ excitations in the odd-odd nuclei by per-
forming a pnQRPA diagonalization in the unperturbed basis

of quasiproton-quasineutron pairs coupled to Jπ [27,28]. The
resulting pnQRPA states in odd-odd nuclei are of the form∣∣Jπ

k M
〉 =

∑
pn

[
X

Jπ
k

pn A†
pn(JM ) − Y

Jπ
k

pn Ãpn(JM )
]|pnQRPA〉 ,

(3)
where k labels the states of spin-parity Jπ , the quantities X and
Y are the forward- and backward-going pnQRPA-amplitudes,
A† and Ã are the quasiproton-quasineutron creation and anni-
hilation operators, M is the z projection of J and |pnQRPA〉 is
the pnQRPA vacuum. The transition densities corresponding
to transitions between the 0+

gs ground state of the even-even
reference nucleus and a Jπ

k excited state of the corresponding
odd-odd nucleus, entering both the muon capture rates and the
0νββ NMEs, can then be written as(

0+
gs

∣∣∣∣[c†
pc̃n]J

∣∣∣∣Jπ
k

) = √
2J + 1

[
vpunX

Jπ
k

pn + upvnY
Jπ

k
pn

]
, (4)(

Jπ
k

∣∣∣∣[c†
pc̃n]J

∣∣∣∣0+
gs

) = √
2J + 1

[
upvnX

Jπ
k

pn + vpunY
Jπ

k
pn

]
, (5)

where v (u) is the BCS occupation (vacancy) amplitude in the
even-even nucleus. The formalism is explained in more detail
in Refs. [27,28].

The X and Y amplitudes in Eq. (3) are calculated by di-
agonalizing the pnQRPA matrix separately for each multipole
Jπ . We adopt as the two-body interaction the one derived from
the Bonn-A one-boson-exchange potential, introduced in [29].
We follow the partial isospin-restoration scheme introduced
in [30], and multiply the isoscalar (T = 0) and isovector
(T = 1) parts of the particle-particle G-matrix elements by
factors gT =0

pp and gT =1
pp , respectively. The isovector parameter

gT =1
pp is adjusted such that the Fermi part of the corresponding

two-neutrino double beta (2νββ) NME vanishes, leading to
partial isospin-symmetry restoration. The isoscalar parameter
gT =0

pp is subsequently varied to reproduce the 2νββ-decay
half-life. As for the particle-hole part, it was scaled by a
common factor gph, fixed, as usual, by fitting the centroid of
the Gamow-Teller giant resonance (GTGR) in the 1+ channel
of the calculations. These (particle-particle and particle-hole)
renormalization factors are adopted from [24] except for the
case A = 82, which was not included in there. For A = 82 we
adopt the values from [23].

The quasiparticle spectra for protons and neutrons, needed
in the pnQRPA diagonalization, are obtained by solving the
BCS equations for protons and neutrons in the even-even
reference nuclei. The calculated BCS pairing gaps are fitted
to the phenomenological proton and neutron pairing gaps in
a way described in detail in [31]. The values of the resulting
pairing scaling factors are listed in [24,31].

For each even-even reference nucleus involved in the com-
putations, we adopt the single-particle bases exploited suc-
cessfully in our earlier calculations [23,24,31], i.e., we employ
no-core bases with all the orbitals from the N = 0 oscillator
major shell up to at least two oscillator major shells above the
respective Fermi surfaces for both protons and neutrons. The
single-particle energies were obtained by solving the radial
Schrödinger equation for a Coulomb-corrected Woods-Saxon
(WS) potential, optimized for nuclei close to the β-stability
line [32]. As was mentioned in [24,31], this choice is justified
since the ββ-decaying nuclei are always situated rather close
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to the bottom of the valley of beta stability. Both the bound
and quasi-bound single-particle states are taken along in the
calculations. The single-particle energies close to the Fermi
surfaces were slightly modified in order to better reproduce
the low-lying spectra of the neighboring odd-mass nuclei at
the BCS-quasiparticle level.

B. Formalism of the ordinary muon capture

We compute the OMC nuclear matrix elements and rates
using the formalism that was originally developed by Morita
and Fujii in [33]. This formalism takes into account both the
genuine and induced vector and axial-vector weak nucleon
currents. The OMC rate from a Ji initial state to a Jf final
state can be written as

W = 2π〈|M.E.|2〉avq2 dq

dE f
, (6)

where

dq

dE f
=

[
1 − q

mμ + AM

]
(7)

and

〈|M.E.|2〉av = 2Jf + 1

(2 j′ + 1)(2Ji + 1)

∑
i j

∑
κu

×
[∑

ν

C(i)M(i)
νu

]∗[∑
ν ′

C( j)M( j)
ν ′u

]
, (8)

where j′ is the angular momentum of the bound muon. The
definitions of the matrix elements M(i)

νu and the corresponding
coefficients C(i) can be found in Table I of [33].

The Q value of the OMC process can be computed from

q = (mμ − W0)

(
1 − mμ − W0

2(M f + mμ)

)
, (9)

where W0 = M f − Mi + me + EX [33]. Here, M f (Mi) is the
nuclear mass of the final (initial) nucleus, me the rest mass of
an electron, and EX the excitation energy of the final Jπ state.

If we assume that the muon is initially bound on the K
atomic orbit, and use Bethe-Salpeter point-like-nucleus ap-
proximation formula [34] for the bound muon wave function,
the capture rate of Eq. (6) can be written as

W = 8P(αZm′
μ)3 2Jf + 1

2Ji + 1

(
1 − q

mμ + AM

)
q2 , (10)

where A is the mass number of the initial and final nuclei, Ji

(Jf ) the angular momentum of the initial (final) nucleus, M the
average nucleon rest mass, mμ the mass of the bound muon,
m′

μ the reduced mass of the muon in the parent μ-mesonic
atom, Z the atomic number of the initial nucleus, α the fine-
structure constant, and q the decay energy (Q value) of the
OMC.

The term P in Eq. (10) has a complex form containing the
nuclear matrix elements of the OMC, various geometric and
kinematic factors, and weak coupling constants. The P term
can be written explicitly for an nth forbidden transition. In
[33] the authors derive explicit forms for the P term for differ-
ent degrees of forbiddenness, assuming the muon being bound

on the atomic K orbit before capture, and approximating the
bound-state muon wave function as the one of a point nucleus.
All terms of the order of 1/M2 (except for terms containing the
square of the weak pseudoscalar coupling, gP, which is large
compared with the other coupling constants) were omitted.
We extend these explicit forms by including all the terms
of the order of 1/M2 in our calculations, as given explicitly
in [23].

The P term involves the usual weak vector and axial-vector
couplings gV ≡ gV(q) and gA ≡ gA(q) at finite momentum
transfer q > 0. The conserved vector current (CVC) and
partially conserved axial-vector current (PCAC) hypotheses
give the values gV(0) = 1.00 and gA(0) = 1.27 for a free
nucleon at zero momentum transfer, and for finite momentum
transfer we can use the dipole approximation [2]. For the
induced pseudoscalar coupling gP the Goldberger-Treiman
PCAC relation [35] gives gP/gA = 7.0. However, deviations
from the CVC and PCAC values have been recorded at zero
momentum transfer [7,8,22,36].

Using the notation of Eq. (10) we can write Eq. (8) in the
form

〈|M.E.|2〉av = 8(2Jf + 1)

2Ji + 1
(αZm′

μ)3P . (11)

Here, we define an average OMC matrix element as

|M (μ)|av =
√

〈|M.E.|2〉av =
√

8(2Jf + 1)

2Ji + 1
(αZm′

μ)3P . (12)

We compare this quantity, instead of OMC rate, with the 0νββ

decay nuclear matrix element in order to reduce the phase-
space effects.

In this work we choose the slightly quenched values
of gA(0) = 0.8 and gP(0) = 7.0 and keep the CVC value
gV(0) = 1.00 for all the studied cases. These values were
adopted also in our earlier works [23,26] but the (qualitative)
results of the present study are not sensitive to the exact values
of these couplings.

C. Outline of the 0νββ-decay theory

We exploit the 0νββ-decay formalism outlined, e.g., in
[37] and further processed in [24,38], assuming that the 0νββ

decay is dominated by the light-Majorana-neutrino-exchange
mechanism. Here, we are only interested in the ground-state–
to–ground-state transitions. The half-life for such a 0νββ

transition can be written as[
t (0ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G0ν |M (0ν)|2

∣∣∣∣ 〈mν〉
me

∣∣∣∣2

, (13)

where G0ν is a phase-space factor for the final-state leptons
in units of inverse years (see [39]), defined here without
including the axial-vector coupling gA. The effective light-
neutrino mass, 〈mν〉, of Eq. (13) is defined as

〈mν〉 =
∑

j

(Ue j )
2mj (14)

with mj being the mass eigenstates of light neutrinos. The
amplitudes Ue j are the components of the electron row of the
light-neutrino-mass mixing matrix.
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The 0νββ-decay NME M (0ν) in Eq. (13) is defined as

M (0ν) = M (0ν)
GT −

(
gV

geff
A

)2

M (0ν)
F + M (0ν)

T , (15)

where we adopt the CVC value gV = 1.0 for the weak
vector coupling strength. The double Fermi, Gamow-Teller,
and tensor nuclear matrix elements for 0νββ decays are
defined as

M (0ν)
F =

∑
k

(
0+

f ‖
∑
mn

hF(rmn, Ek )t−
m t−

n ‖0+
i

)
, (16)

M (0ν)
GT =

∑
k

(
0+

f ‖
∑
mn

hGT(rmn, Ek )(σm · σn)t−
m t−

n ‖0+
i

)
, (17)

M (0ν)
T =

∑
k

(
0+

f ‖
∑
mn

hT(rmn, Ek )ST
mnt−

m t−
n ‖0+

i

)
, (18)

where t−
m is the isospin lowering operator (changing a neutron

into a proton) for the nucleon m. The spin tensor operator ST
mn

is defined as

ST
mn = 3[(σm · r̂mn)(σn · r̂mn)] − σm · σn. (19)

The summation over k in Eqs. (16)–(18) runs over all the
states of the intermediate odd-odd nucleus, and Ek is the
excitation energy of a given state. Here, rmn = |rm − rn| is
the relative distance between the two decaying neutrons,
labeled m and n, and r̂mn = (rm − rn)/rmn. The ground state of
the initial (final) even-even nucleus is denoted by 0+

i (0+
f ). The

terms hK (rmn, Ek ), K = F, GT, T are the neutrino potentials
defined in [38].

In the pnQRPA framework the nuclear matrix elements can
be written as

M (0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1) jn+ jp′ +J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′; J ′||OK ||nn′; J ′)

× (
0+

f

∣∣∣∣[c†
p′ c̃n′ ]J

∣∣∣∣Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2

∣∣∣∣[c†
pc̃n]J

∣∣∣∣0+
i

)
,

(20)

where the summation over k1 and k2 runs over the different
pnQRPA solutions for a given multipole Jπ . The operators OK

inside the two-particle matrix element refer to Eqs. (16)–(18),
and they can be written as

OF = hF(r, Ek )[ fCD(r)]2 , (21)

OGT = hGT(r, Ek )[ fCD(r)]2σ1σ2 , (22)

OT = hT(r, Ek )[ fCD(r)]2ST
12 , (23)

where ST
12 is the tensor operator of Eq. (19) and r = |r1 − r2|

is the distance between the participating nucleons. The energy
Ek is the average of the kth pnQRPA-computed eigenvalues of
the initial and final nuclei, corresponding to a given multipole
Jπ . The term 〈Jπ

k1
|Jπ

k2
〉 is the overlap between the two sets of

FIG. 1. Multipole decompositions in terms of relative 0νββ ma-
trix elements (positive y axes) and average matrix elements of the
OMC on 76Se (negative y axes) as functions of the excitation energy
E in the intermediate nucleus 76As of the 0νββ decay of 76Ge. Here,
Jπ refer to the angular momenta and parities of the virtual states in
76As and all quantities have been summed within 1 MeV energy bins.
The scale values of the y axes have been omitted, since they are not
relevant for the current analysis. For more information see the text.

Jπ states, and it can be written as

〈
Jπ

k1

∣∣Jπ
k2

〉 =
∑

pn

[
X

Jπ
k1

pn X̄
Jπ

k2
pn − Y

Jπ
k1

pn Ȳ
Jπ

k2
pn

]
, (24)

where X and Y (X̄ and Ȳ ) are the pnQRPA amplitudes of the
final (initial) nucleus.

The factor fCD(r) in Eqs. (21)–(23) takes into account the
nucleon-nucleon short-range correlations (SRC) [40,41]. We
use the CD-Bonn form [42] with the parametrization

fCD(r) = 1 − 0.46e−(1.52/fm2 )r2
[1 − (1.88/fm2)r2] . (25)

III. RESULTS AND DISCUSSION

In this section we present and discuss the results
of our studies. We concentrate on the positive Jπ =
0+, 1+, 2+, 3+, 4+ and negative Jπ = 1−, 2−, 3−, 4− multi-
polarities of both the average OMC ME distributions and the
0νββ NME distributions. These multipoles are by far the most
important ones for the OMC rates [23] and the leading ones
for the 0νββ NMEs [24,43]. We discuss also the cumulative
average OMC MEs and 0νββ NMEs.

We computed the average OMC MEs and the 0νββ-
decay NMEs using the formalism and parameters discussed
in Sec. II A. For the values of the weak coupling constants,
involved in both the 0νββ and OMC processes, we adopt the
moderately quenched values gA = 0.8 and gP = 7.0, and the
CVC value gV = 1.0. This is in line with our earlier studies
[23,26]. As stated at the end of Sec. II B, the results are not
very sensitive to the values of these couplings.
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FIG. 2. The same as in Fig. 1 for the A = 82 system.

FIG. 3. The same as in Fig. 1 for the A = 96 system.

FIG. 4. The same as in Fig. 1 for the A = 100 system.

FIG. 5. The same as in Fig. 1 for the A = 116 system.

FIG. 6. The same as in Fig. 1 for the A = 128 system.

FIG. 7. The same as in Fig. 1 for the A = 130 system.
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FIG. 8. The same as in Fig. 1 for the A = 136 system.

A. Distributions of the relative OMC MEs and 0νββ NMEs

In Figs. 1–8 we compare the computed relative OMC ME
distributions

|M (μ)|av (Jπ )(E )

/ ∑
E

|M (μ)|av (Jπ )(E )

with the multipole decompositions M (0ν)(Jπ ) of the 0νββ-
decay NMEs expressed in terms of relative contributions

|M (0ν)(Jπ )|(E )

/∑
E

|M (0ν)(Jπ )|(E ) .

The analyses have been done for each multipole Jπ separately,
and for increasing excitation energy E in the OMC daugh-
ter (the same as 0νββ-decay intermediate nucleus) using
summed average OMC MEs and 0νββ NMEs within energy
bins of 1 MeV. We have chosen to plot only absolute values of
the matrix elements since they carry the essential information
needed in the present comparison of the OMC and 0νββ

decay. Only in the case of A = 100 the Jπ = 1+ contribution
to the total 0νββ NME is negative. There are, however,
negative contributions coming from individual energy bins in
many cases (the same is of course true for the OMC matrix
element). As such, the possible different relative signs of the
contributions are not important in the context of our study,
since we are interested in the multipoles and energy regions
where notable (positive or negative) contributions appear in
both the OMC matrix element and the 0νββ NME. This
means that the nuclear states, with their wave functions, play
an important role in both processes for these particular mul-
tipoles and energy regions. In order to make the comparison
meaningful the excitation energy of the lowest Jπ state of the
pnQRPA set (for 0νββ decay the right-hand set) is fitted to
the measured excitation energy. We display the relative 0νββ

multipole NMEs on the positive and relative OMC MEs on
the negative y axes. Since the comparison is qualitative and
the quantities are relative we have omitted the scales of the y
axes.

In the following we analyze the correspondences related
to different multipoles arising from the Figs. 1–8. It should
be noted that the number of 0+ pnQRPA states is little, and
hence the similarities between the two distributions are harder
to conclude than for the other multipoles.

A = 76: The correspondence between relative OMC-rate
and 0νββ-NME distributions for the multipoles Jπ = 0+ is
weak. However, for the rest of the multipoles one can see
correspondences: in the cases of Jπ = 1+, 2+, 3+ one can see
two bumps at similar energies. The Jπ = 1− distributions both
are peaked at ≈10 MeV, and the Jπ = 3−, 4− distributions
at ≈15 MeV. On the other hand, in the case of Jπ = 2− the
0νββ decays trough the 2− ground state of 76As seem to be
enhanced.

A = 82: The Jπ = 1+, 2+, 3+ and Jπ = 1−, 3− distribu-
tions show nice correspondence. The Jπ = 0+ distributions
both show a peak at E ≈ 5 MeV, and the low-energy cor-
respondences of Jπ = 4± are also pretty good. In the case
of Jπ = 2− 0νββ seems to be more concentrated in low
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FIG. 9. Normalized cumulative average OMC MEs and normal-
ized 0νββ NMEs as functions of energy in the intermediate nuclei
76As (a) and 136Cs (b) of the A = 76 and A = 136 0νββ triplets. For
more information, see the text.
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TABLE I. Contributions (in percentages) from different multipoles to 0νββ-decay NMEs and average OMC MEs for different 0νββ-decay
triplets. The presented values are normalized ratios R(0ν ) = |M (0ν )|(Jπ )/|M (0ν )| and R(μ) = |M (μ)|av (Jπ )/|M (μ)|av .

A = 76 A = 82 A = 96 A = 100 A = 116 A = 128 A = 130 A = 136

�����Jπ

Case
R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ)

0+ 2 3 2 2 0 3 1 2 1 2 1 3 1 2 1 2
1+ 7 18 6 17 6 17 6 17 9 16 2 16 2 14 7 14
1− 16 21 16 21 18 18 20 19 23 18 13 17 13 17 9 17
2+ 13 16 14 17 13 16 12 16 9 16 12 17 12 15 14 15
2− 10 18 9 17 7 17 3 17 7 17 5 16 5 17 6 16
3+ 5 11 5 11 6 12 5 12 6 11 6 12 6 12 7 12
3− 11 6 11 6 10 7 9 8 9 8 10 8 10 9 9 9
4+ 7 2 7 2 8 2 8 2 7 3 9 3 9 4 9 4
4− 5 5 5 5 4 5 4 5 4 5 5 5 5 6 5 6∑

76 10 75 98 72 97 68 98 75 96 63 97 63 96 67 95

energies, but both distributions show three clear bumps at
similar energies.

A = 96: The Jπ = 0+ distributions show three bumps at
energies E ≈ 10, 20, 30 MeV, but there is a strong peak in
the 0νββ distribution at E ≈ 15 MeV, that is missing from
the OMC distribution. In the cases of Jπ = 1+ and Jπ = 2−
the 0νββ distributions are clearly more concentrated on lower
energies than OMC. The correspondence of Jπ = 2+, 3+, 1−,
and 3− is not too good, either. However, the Jπ = 4+ distribu-
tions show three clear bumps at similar energies.

A = 100: In this case, the situation in the cases of Jπ =
1± and 2− is similar as in Figs. 3(b) and 3(g): 0νββ is
more concentrated on lower energies. However, the Jπ = 2+
distributions both show a clear bump at E ≈ 25 MeV, and
Jπ = 3+ at E ≈ 15 MeV. The Jπ = 4+ distributions show
good correspondence at E < 30 MeV, but there is an extra
peak at E ≈ 35 MeV in the 0νββ distribution. The Jπ =
3−, 4−, on the other hand, show two clear bumps at similar
energies.

A = 116: In this case, the correspondence is best for the
Jπ = 1+, 2+, 3+ multipoles, which show three clear bumps
in both distributions. In the case of Jπ = 4+ there is some
concentration in both distributions at around 20 MeV. There
are similarities also in the cases of the Jπ = 1−, 2−, 3−, 4−:
there are two clear bumps at similar energies in both spectra.
On the other hand, the Jπ = 0+ distributions show no clear
correspondence.

A = 128: In this case, the correspondence is best for the
Jπ = 1+, 2+, 3+, 4+ and 4− multipoles, which show two clear
bumps at E ≈ 8 MeV and at E ≈ 20 MeV, and for Jπ =
1−, 2−, 3−, which show three bumps. The Jπ = 0+ distribu-
tions also have two peaks at E ≈ 5 and 20 MeV.

A = 130: In this case, the low-energy correspondence for
Jπ = 2−, 4− multipoles is great. The Jπ = 0+, 1+ distribu-
tions both show three peaks, and the Jπ = 2+, 3+, 4+ three
bumps at similar energies. The Jπ = 3− distributions also
show two bumps at E ≈ 10 and 25 MeV, but there is an
extra peak in the 0νββ distribution that is absent in the OMC
distribution. In the case of Jπ = 1− the 0νββ decay is more
concentrated on lower energies.

A = 136: In this case, the correspondence is clearest for
the Jπ = 1+, 2+ distributions, which show two bumps at
around E ≈ 3 MeV and at E ≈ 20 MeV. The Jπ = 3− distri-
butions also show two bumps at around E ≈ 10 MeV and E ≈
25 MeV. As for the Jπ = 1−, 2− multipoles, there are two
bumps in both distributions, but the second bump is situated at
slightly lower energy for in the 0νββ distribution. In the case
of Jπ = 4− the OMC distribution is more spread compared to
the 0νββ distribution, but both distributions show a bump at
around E ≈ 10 MeV.

All in all, the correspondence between the Jπ = 0+ 0νββ-
NME and OMC-ME distributions seems to be not too good,
and the overall correspondence seems to be best for the Jπ =
3± and 4± multipoles. Also for other multipoles there seems
to be a more or less clear correspondence for all the discussed
0νββ triplets. The distributions and their correspondences
vary quite much between the different 0νββ triplets indicating
that nuclear structure varies strongly with nuclear mass owing
to different mean-field properties (single-particle energies,
Fermi surfaces) and two-nucleon correlations.

B. Cumulative average OMC MEs and 0νββ NMEs

Cumulative average OMC MEs and 0νββ NMEs nicely
illustrate the build-up of these quantities as functions of the
excitation energy in the intermediate nuclei of the discussed
0νββ triplets. We choose the A = 76 and A = 136 triplets
as representative cases and plot the corresponding cumulative
matrix elements∑

Jπ

|M (0ν)(Jπ )|(E )

/ ∑
Jπ ,E

|M (0ν)(Jπ )|(E )

and ∑
Jπ

|M (μ)|av (Jπ )(E )

/ ∑
Jπ ,E

|M (μ)|av (Jπ )(E )

in Fig. 9. Thus, Fig. 9 is just an other way to present the
results of Figs. 1–8. We can see that the running sums for
the average OMC MEs and 0νββ NMEs, for both triplets,
are quite similar, but in the A = 76 case [panel (a)] the 0νββ
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FIG. 10. The same as in Fig. 9, but only for the A = 76 0νββ-
decay triplet and containing contributions from only the leading
multipoles Jπ = 1+, 1−, 2+, 2−.

NME starts at a higher value and has thus a smaller inclination
of the cumulative curve. Both cases show that 0νββ decay is
slightly more concentrated on lower energies than OMC.

In Table I we show for the discussed 0νββ-decay triplets
the relative multipole contributions to the 0νββ NMEs and
average OMC MEs for Jπ (J � 4), which are the leading
multipoles for both the 0νββ decay and OMC (see Figs. 1
and 3 of [38], and the results of [23]). The multipole Jπ = 0−
is omitted from the table, since its contribution to both |M (0ν)|
and |M (μ)|av is negligible. First of all, one can see that basi-
cally all of the OMC strength is coming from the multipoles
with J � 4, while the 0νββ strength is more distributed to
higher multipoles, and only about 60 − 75% comes from the
multipoles with J � 4. Having a closer look at the table one
notices that the multipoles Jπ = 1+, 1−, 2+, 2− are among
the leading multipoles for both the 0νββ decay and OMC
for all the nuclei. Also multipoles Jπ = 3−, 4+ are important
for the 0νββ NMEs, but less important for the OMC. On the
other hand, Jπ = 3+ is rather important for OMC but not so
important for 0νββ decay. The Jπ = 2+ and 1− contributions
are practically the same for both quantities. On the other hand,
a considerable part of the OMC strength is coming from the
multipoles Jπ = 1+, 2−, but they are less important for the
0νββ-decay NMEs. These features of the 0νββ-decay NMEs
were also recorded in [38], the small quantitative deviations
from our results stemming from the much smaller single-
particle bases employed there.

The multipoles Jπ = 1+, 1−, 2+, 2− are, according to
Table I, the leading multipoles for both the average OMC
MEs and 0νββ NMEs in our example case of A = 76. In
Fig. 10 we plot for the A = 76 case the cumulative sums of the
OMC rate (|M (μ)|av) and 0νββ NME (|M (0ν)|) stemming only
from these multipoles. We notice that the 0νββ decay strength
is coming from lower energies than the OMC strength,
as is also the case for the total multipole contributions in
Fig. 9. Comparing Figs. 9 and 10 implies that the multipoles

Jπ = 1±, 2± not only constitute most of the 0νββ decay and
OMC strength, but also define the energy distributions of the
processes.

IV. SUMMARY AND CONCLUSIONS

In this work we computed the average matrix ele-
ments corresponding to the ordinary muon capture on the
0+ ground states of 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe,
130Xe, and 136Ba, which are the daughter nuclei of the
eight 0νββ-decaying parent nuclei 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 128Te, 130Te, and 136Xe. We compared these matrix
elements with the corresponding 0νββ-decay nuclear matrix
elements. The calculations were performed using the proton-
neutron quasiparticle RPA with realistic two-body interactions
and slightly modified no-core Woods-Saxon single-particle
bases. We studied the cumulative behavior of the average
OMC MEs and 0νββ NMEs and also presented multipole
decompositions of the average OMC MEs and 0νββ-decay
NMEs.

We found that there are correspondences especially be-
tween the Jπ = 3±, 4± 0νββ NMEs and average OMC MEs,
and also for other multipoles there can be seen correspon-
dences for all the studied 0νββ-decay triplets. Furthermore,
we noticed that overall the cumulative behavior of the 0νββ

NMEs and average OMC MEs is quite similar, but for A �
128 the 0νββ NME is more evenly distributed within the
energy region of E = 0–50 MeV than the OMC ME. This
difference is related to the different behavior of these two
quantities at low excitation energies in the 0νββ-decay inter-
mediate nuclei.

When studying the multipole decompositions of the 0νββ-
decay NMEs and average OMC MEs we found that basically
all of the OMC strength is coming from the multipoles with
J � 4, while the 0νββ strength is more distributed to higher
multipoles, only approximately 60–75% coming from the
multipoles with J � 4. We also found that the multipoles
Jπ = 1+, 2+, 1−, 2− are among the leading multipoles for
both the 0νββ decay and average OMC MEs for all the
studied 0νββ-decay triplets.

According to this study, the overall behavior of the OMC
and 0νββ matrix elements is pretty similar. Therefore, mea-
surements of the OMC strength functions for the daughter
nuclei of 0νββ decays could enable a systematic study of
the involved nuclear wave functions and the sensitivity of
the OMC strength functions to the effective values of the
weak axial couplings, and hence help improve the accuracy
of calculations of the NMEs of the 0νββ decay. Experimental
studies are in progress, e.g., at RCNP Osaka for nuclei of
interest in studies of nuclear double beta decay and astroneu-
trino interactions.
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