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Abstract This text discusses Jacobi fields and the structures needed in their defi-
nition, vector bundles and connections in particular. The one-to-one -correspondence
between Jacobi fields and the variation fields of families of geodesics is proven as a
final result.
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1 Introduction

A manifold is roughly speaking the most general object which can still be described
by coordinates, though in general this is only possible locally. More structure can
then be added to the manifold in layers. Smooth manifolds are defined by requir-
ing that the familiar concept of differentiation in R

n is applicable locally on the
manifold. Smooth manifolds are still very abstract spaces and more familiar con-
cepts of geometry are found by defining angles and lengths on the manifold using
a metric. This results in the structure of a Riemannian manifold.

Historically one of the more interesting objects defined on a Riemannian manifolds
are geodesics, curves which extremize the length between two points. In a flat
geometry, these are of course just straight lines, but in even the relatively simple
geometry of a sphere has a much richer structure of geodesics. Geodesics have
both individual and collective properties, and an important tool in studying the
latter are the Jacobi fields which describe how families of geodesics vary under the
change of a variable.

The purpose of this text is to review the structure of a Riemannian geometry. Since
this branch of mathematics is too large to be decently covered by a short text, I will
do this by focusing on Jacobi fields and defining the relevant structures along the
way, with the final aim being to prove the connection between the so called Jacobi
equation and the variation fields of geodesics. In the process, I will discuss the vec-
tor bundle structure of tensor fields and use it to define the concept of a covariant
derivative on a manifold. Instead of proper Riemannian manifolds, I will mostly
deal with pseudo-Riemannian manifolds which pop up in many applications such
as general relativity.

This text follows primarily the presentation in the textbooks by John Lee [Lee13,
Lee18]. I will assume that the reader has prior knowledge on point set topology
and vector analysis in R

n. As the discussion on the basic definitions of manifolds
and tensors is rather brief, it is also useful to be somewhat familiar with these
concepts.
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2 Basic concepts

Before I can begin discussing the main subject of curvature and Jacobi fields, I
need to introduce the basic concepts and notation of differential geometry. I be-
gin this section by defining the concept of a manifold and, from there on, discuss
tangent vectors and tensors. After this I move on to pseudo-Riemannian geometry
by defining the metric. Since most of these developments are standard and can be
found in any textbook on the subject, I will state many results without proof.

2.1 Manifolds

The basic object studied in differential geometry is a manifold. At its most rudi-
mentary level a manifold is any set which can be described by coordinates locally.
More structure can be found by restricting the coordinate systems, and in this text
I will exclusively work with smooth manifolds, for which all coordinate transfor-
mations are infinitely many times differentiable.

I will assume that this is at least somewhat familiar to the reader and will quickly
give the basic definitions and results related to smooth manifolds. I will not go
into much detail regarding the topology required of manifolds and the reader can
consult for example [Lee13, ch. 1] for more details.

Definition 2.1. Let M be a topological space. A coordinate chart is a pair (U,φ),
where U is an open subset ofM and φ :U → φ(U ) ⊂R

n is a homeomorphism. Two
coordinate charts (U,φ) and (V ,ψ) are compatible if U ∩ V = ∅ or the coordinate
transform φ ◦ψ−1 : ψ(U ∩V )→ φ(U ∩V ) is a diffeomorphism with respect to the
differentiable structure of Rn.

An atlas is a collection A of mutually compatible coordinate charts A = {((Ui ,φi) :
i ∈ I}where I is some indexing set and the setsUi coverM, that isM =

⋃
i∈IUi . The

atlas is called maximal if there are no compatible charts not included in the atlas.

A smooth manifold is a second countable Hausdorff space equipped with a maxi-
mal atlas A.

The integer n is called the dimension of the coordinate chart and it can be proven
that all overlapping compatible coordinate charts have the same dimension [Lee13,
theorem 1.2]. The dimension of a connected smooth manifold is therefore constant
and this constant is called the dimension of the manifold.

In this text, unless otherwise stated, M will always refer to a smooth manifold, p
to a point on it and n to its dimension. Since all manifolds discussed are smooth, I
will also simply refer to smooth manifolds as manifolds. In this text a coordinate
chart on M always refers to an element of the atlas A. When it is necessary to refer
to individual coordinate functions of the chart (U,φ) I will denote them xi :U →R

for all i = 1, ...,n unless otherwise specified.
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2.2 Tangent spaces and tensors

There are many objects defined on a manifold, mainly functions, tangent vectors,
vector fields, tensors and tensor fields. As with manifolds, I will only discuss the
smooth variants of these concepts and will often drop the smooth specifier.

The first ones to be defined are smooth functions, since they are used to define the
rest of the objects. A smooth function on M is a map f : M → R such that for any
coordinate chart (U,φ) the composite map f ◦φ−1 is infinitely differentiable. The
set of all smooth functions in M is denoted C∞(M). A smooth function on an open
subset U is defined analogously.

I will also need to discuss maps between manifolds. LetM andM ′ be manifolds. A
map f :M→M ′ is smooth if given any two coordinate charts (U,φ), (U ′ ,φ′) on M
and M ′ respectively the composite map φ′ ◦ f ◦φ−1 is infinitely differentiable in its
domain. Smooth maps between open subsets of manifolds are defined in the same
way.

A curve γ on the manifold (or its subset) is defined as usual as the map γ : I →M
where I ⊂ R is an interval. I will assume that all curves are smooth, that is the
composition φ◦γ is infinitely differentiable in its domain for any coordinate chart
(U,φ).

Next I will define tangent vectors as an equivalence class of curves on the manifold.

Definition 2.2. Let M be a manifold and p ∈ M. Two curves σ1,σ2 : (−ε,ε)→ M,
where ε > 0 is some real number and with σ1(0) = p = σ2(0), are tangent at p, if in
some coordinate chart around p

d
dt
xi(σ1(t))

∣∣∣∣∣
t=0

=
d
dt
xi(σ2(t))

∣∣∣∣∣
t=0

for all i. The equivalence class of curves

[σ ] = {ρ : (−ε,ε)→M | ρ tangent with σ at p}

is called a tangent vector at p. The set of all vectors at p is the tangent space TMp.

Tangent vectors are well-defined as the concept of tangency of curves is indepen-
dent of the chosen coordinate system. This can be proven with a straightforward
calculation using the chain rule and the fact that as a coordinate transformation is
a diffeomorphism, its Jacobian matrix is invertible at all points.

The concept of tangency of two curves with different domains in R can be defined
analogously. This will not be relevant in this text and to avoid clutter I will settle
for the definition presented above.

Since there is no way to add points directly in M, the addition and scalar multi-
plication of tangent vectors are defined in R

n using the coordinate charts and the
results are then mapped back to M.
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Proposition 2.3. [Ish99, theorem 2.1] The tangent space TMp is a n-dimensional vec-
tor space when addition and scalar multiplication are defined in each coordinate patch
(U,ψ) as [σ1] + [σ2] = [ψ−1 ◦ (ψ ◦ σ1 + ψ ◦ σ2] and λ[σ1] = [ψ−1 ◦ (λψ ◦ σ1)] for all
σ1,σ2 ∈ TMp and λ ∈R.

Note that in the definition of the vector operations, the domain I ⊂ R of the sum
curve ψ ◦ σ1 + ψ ◦ σ2 in R

n must be restricted so that (ψ ◦ σ1 + ψ ◦ σ2)(t) ∈ ψ(U )
for all t ∈ I . A similar restriction has to be made for the definition of the scalar
multiplication.

While the curve formulation of tangent vectors is geometrically intuitive, it is often
cumbersome to work with. For the rest of this text, I will usually use the more
algebraic approach of identifying vectors at p with the corresponding directional
derivative operators. More formally, I will identify the space of derivations at p,
linear maps d : C∞(M)→R which satisfy the Leibnitz rule

d(f g) = d(f )g(p) + f (p)d(g)

for all f ,g ∈ C∞(M), with the tangent space TMp.

First I will define the action of a vector v ∈ TMp at some point p on a function f as
the directional derivative operation along a representative curve. Denote

v(f ) :=
d
dt
f (σ (t))

∣∣∣∣∣
t=0
,

where v = [σ ]. It is straightforward to verify that this operation is independent
of the chosen representative curve and defines a derivation at the point p. I will
denote this derivation with dv .

As with the more familiar vectors of Rn, it is often most convenient to work with
a component representation of tangent vectors with respect to some basis. Since
tangent vectors are also directional derivative operators, a natural basis to work
with can be found by working in a coordinate patch and using the chain rule.

To this end, I will define some notation. Let f be a smooth function and (U,φ) a
coordinate chart. Note that the function f ◦φ−1 : φ(U ) ⊂ R

n→ R can be differen-
tiated as usual with respect to the differentiable structure in R

n. As such, I will
define the partial derivatives of f with respect to the coordinate chart (U,φ) as

∂if =
∂f

∂xi
:=

∂

∂xi
f ◦φ−1.

I will call the map f ◦φ−1 a coordinate representation of f .

For future use I will also define the Jacobian matrix or the differential of a smooth
map between manifolds f : M → M ′ with respect to the coordinate charts (U,φ)
and (U ′ ,φ′) onM andM ′ respectively as the Jacobian matrix of the map φ′◦f ◦φ−1.
The rank of the map at a point is the rank of its differential at that point. The
differential and its rank are discussed fully in [Lee13, chapters 3,4].
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I can now express the action of a vector on a function using the chain rule on a
coordinate representation.

Theorem 2.4. [Ish99, p. 82] Let (φ,U ) be a coordinate chart on manifold M. The
action of a vector v on function f at a point p ∈U can be expressed as

v(f ) =
∑
i

vi∂if

for some unique coefficients vi , i = 1, ...,n. The coefficients are unique in each coordinate
system and are called the vector components of v in the coordinate basis.

Since sums like v(f ) =
∑
i f

i∂if crop up everywhere in this text, I will later always
use the Einstein summation convention. Under this convention I will drop the
explicit summation sign and assume all repeated indices are implicitly summed
over. For example, the above could be written as v(f ) =

∑
i f

i∂if = vi∂if .

This result can be used to prove the one-to-one correspondence between tangent
vectors and derivations at the point p.

Theorem 2.5. [Ish99, theorem 2.2] Let Dp be the space of all derivations at p ∈M. The
map TMp→Dp , v 7→ dv , is a linear isomorphism.

In the following I will make no distinction between the tangent vector and the
corresponding directional derivative operation.

It will also be necessary to discuss vectors at many different points of M, which
gives rise to the concept of a vector field.

Definition 2.6. The map v :M→
⋃
p∈M TMp, v(p) = vp ∈ TMp for all p is a smooth

vector field if it is smooth in the sense that v(f ) : p 7→ vp(f ) is a smooth function
for every f ∈ C∞(M). The set of all vector fields on M will be denoted VF(M).

Like tangent vectors are identified with derivations, I will identify vector fields
with the corresponding fields of derivations, and its action on a smooth function
f will be denoted v(f ) ∈ C∞(M). The definition of a vector field will be elabo-
rated further in section 3 where vector fields will be identified with sections of the
tangent bundle.

It can be verified that in general the map C∞(M)→ C∞(M), f 7→ Y (X(f )), where
X and Y are vector fields, does not satisfy the Leibnitz rule. As such it does not
define a derivation or a vector field.

However, it is possible to define an operation between X and Y which produces a
third vector field, namely the Lie bracket. Let X,Y be vector fields on M. The Lie
bracket of the vector fields [X,Y ] is defined as

[X,Y ]pf = Xp(Y (f ))−Yp(X(f ))
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for all points p ∈M and smooth functions f . The proof that a Lie bracket is a vector
field can be found in [Lee13, lemma 8.25].

Vector fields are not the only objects defined on M. I will also need the concept of
covectors or duals to these vectors. The following definitions and theorems, as well
as their proofs, match almost exactly the ones on vectors and vector fields.

Definition 2.7. Let p ∈ M. The set TM∗p = {ω : TMp → R | ω linear } is called
the cotangent space at p and its elements are called covectors. An assignment
p 7→ ωp ∈ TM∗P is called a 1-form on M if it is smooth in the sense that that ω(v) is
a smooth function for all vector fields v.

In terms of linear algebra, the cotangent space is just the dual space of the tangent
space. As covectors are linear transformations, their sums and products are natural
to define as (ω1+ω2)(v) = ω1(v)+ω2(v) and (λω1)(v) = λω1(v) for anyω1,ω2 ∈ TM∗p,
v ∈ TMp and λ ∈ R. With these definitions TM∗p is a n-dimensional vector space
[Lee13, chapter 11].

A more general class of objects, tensors, can be constructed using tangent vectors
and their duals.

Definition 2.8. The multilinear map Tp :
(�m

i=1TMp

)
×
(�r

i=1TM
∗
p

)
→ R is called

a (r,m)-tensor at p. Denote the space of all such tensors at p with TM(r,m)
p . The

smooth assignment p 7→ Tp ∈ TM
(r,m)
p is called a tensor field on M.

In this definition the smoothness is in the sense that the map p 7→ Tp((v1)p, ...,ω1
p, ...)

is a smooth function for any vector fields vi and 1-forms ωj , where i = 1, ...,m and
j = 1, ..., r. I will in the following always assume all tensor fields to be smooth.

From this definition it is immediately clear that a covector is a (0,1)-tensor. The
action of a vector v on covector ω can be defined by v(ω) := ω(v), and as such a
tangent vector can be regarded as a (1,0)-tensor. (0,0)-tensors are be defined to be
smooth functions on M.

Similarly to the tangent and cotangent bundles, the union of all (r,m)-tensor spaces
is the (r,m)-tensor bundle TM(r,m) which will be discussed more in section 3.

As with individual tangent vectors it is useful to define a component representation
of vector fields. In this case the components are functions onM instead of numbers.
Even though this is rather simple to do starting from the coordinate bases defined
earlier, the coordinate basis is only one of the possible bases on TMp. As such I can
be more general and simply choose a basis for each tangent space.

However, the choice is not entirely unrestricted. I want the component functions
to be smooth and as such it would be desirable that the basis vectors vary smoothly
between nearby points on M. In general, this is not possible to achieve over the
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entire manifold, and therefore I define the smooth set of bases over some open set
U ⊂M.

Definition 2.9. Let e = {ei}ni=1 be a set of vector fields on an open set U ⊂M, such
that at each point p the vectors {(ei)p}ni=1 form a basis in TMp. This set is called a
frame (on TM) in U .

Using these definitions, I can show that the earlier defined coordinate bases form
a frame on the coordinate patch.

Proposition 2.10. Let (φ,U ) be a coordinate patch. Define vectors {(∂/∂xi)p} at p ∈ U
by

(∂/∂xi)pf = ∂if .

for all functions f . These vectors form a basis in TMp. The set of vector fields {∂/∂xi}ni=1
forms a frame on U .

Proof. Since f is by definition a smooth function, all its partial derivatives are as
well, and thus ∂/∂xi are smooth vector fields on M. By theorem 2.4 the partial
derivatives form a basis on each tangent space, which completes the proof.

Any vector field v can be expanded in terms of a frame e = {ei}ni=1 on U ⊂M as viei
for some smooth functions vi :U →R. These functions are called the components
of v with respect to the frame e.

I will next outline a proof for the above statement. Let p ∈ U . Since the vec-
tors {(ei)p}ni=1 form a basis in TMp, the tangent vector vp can be expressed as vp =
vi(p)(ei)p for some maps vi : M → R. It is then left to show that the maps vi are
smooth.

This is easiest to do starting with the coordinate frame. Suppose the component
map vi for some i is not smooth. The action of v on the coordinate function xi is
v(xi) = vj∂jxi = vi which was assumed not to be smooth. This is a contradiction as
the coordinate functions are smooth by definition and v is a vector field.

A very similar idea works on a general frame as well. Consider a point p ∈ U and
let ei = eji∂j be the frame fields, where eji are the components of the frame fields in
terms of the coordinate frame. Then the requirement ei(f ) = 1 and ej(f ) = 0 for all
i , j can be represented in some coordinate chart containing p as a system of linear
ordinary differential equations (ODEs). By the existence and uniqueness theorems
for ODEs, there is a smooth solution f to the system defined in some neighborhood
of p [Lee18, theorem 4.32]. Then v(f ) = vjej(f ) = vi by construction and vi must
be a smooth map.

As the cotangent spaces are vector spaces as well, it is useful to define bases and
frames for them as well in an analogous way. The most convenient frames are
compatible with the vector frame used, and in this text I will use these special
frames exclusively.
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Proposition 2.11. [Lee13, p. 278] Let {(ei)p}ni=1 form a basis in TMp. There is a unique
basis of covectors in TM∗p, denoted {(σ k)p}nk=1, that fulfills (σ k)p((ei)p) = δki , where δki is
the Kronecker delta. This basis is called the dual basis. If {ei}ni=1 form a frame on TM in
U , the dual bases form a frame for TM∗ in U called the dual frame.

The component representation for 1-forms can be defined analogously to the tan-
gent vector case.

Giving a component expression is often the most convenient way to define a vector
field or a 1-form. In principle this can be done separately for each frame. However,
in order for the vector field or 1-form to be well defined the different component
expressions have to agree in the overlaps of the frame domains. I will now discuss
this in the case of vector fields.

More rigorously, let e = {e1, ..., en} and e′{e′1, ..., e′n} be frames with domains U and
U ′ with U ∩U ′ , ∅. At each point p ∈ U ∩U ′ the bases are related with a basis
change matrix A(p). I will denote the elements of the matrix A(p) with Aij(p). Then

(ej )p = Aij(p)(e′i)p for all p. I will, here and later, use the shorthand notation for the

previous equation ej = Aije
′
i when specifying the point in question is not essential.

All components of A must be smooth functions, as Aij is the j:th component map
of ej in terms of the frame e′. Thus A is a smooth map A :U ∩U ′→ GL(n).

Let v be a vector field defined in U ∩U ′ and denote its coordinates with respect
to the frames with vi and v′i . Then v′ie′i = v = vjej = vjAije

′
i , which immediately

implies that v′i = Aijv
j . Since A is a basis change at each point, it can also be

inverted to give vi = (A−1)ijv
′j .

The component representation for tensors follow immediately from linearity and
the component representations for vectors and covectors.

Proposition 2.12. Let T ∈ TM(r,m)
p , {vi}mi=1 ⊂ TMp and {ωk}rk=1 ⊂ TM

∗
p. Let e be a

frame and σ its dual in an openU ⊂M. The tensor T acts on these vectors and covectors
as

T (v1, ...,vm,ω
1, ...,ωr ) = T k1...kr

i1...im
vi11 ...v

im
mω

1
k1
...ωrkr ,

where the tensor components with respect to frame e are defined as

T k1...kr
i1...im

= T (ei1 , ..., eim ,σ
k1 , ...,σ kr ).

The upped indices are called covariant and the lower contravariant.

Proof. The vectors and 1-forms can be represented as vi = vai ea, ω
k = ωkbσ

b for all
i,k. Expanding every argument of T gives

T (v1, ...,vr ,ω
1, ...,ωm) = T (vi11 ei1 , ...,ω

m
km
σ km).

8



As T is linear in all its arguments the above expression simplifies into the sum

T (v1, ...,vr ,ω
1, ...,ωm) = vi11 ...v

ir
r ω

k1
1 ...ω

m
km
T (ei1 , ...,σ

km).

This proves the proposition.

The transformation properties of 1-form and tensor components can be derived
the same way as for vector fields. In particular if e and e′ are frames, σ = {σ1, ...,σn}
is a frame dual to e and σ ′ = {σ ′1, ...,σ ′n} is defined so that σ j = (A−1)jiσ

′i , it is useful
to note that

σ ′i(e′j ) = Aikσ
k((A−1)ljel) = Aik(A

−1)ljδ
k
l = Aik(A

−1)kj = δij .

Thus, σ ′ is the dual frame to e′. This implies that dual frames transform under the
inverse matrix compared with the corresponding frames.

I will also present some definitions which will initially serve only as a shorthand
notation. The disjoint union of all tangent spaces is called the tangent bundle and
it is denoted TM. Similarly the disjoint unions of all cotangent spaces and (r,m)-
tensor spaces are the cotangent bundle TM∗ and the (r,m)-tensor bundle TM(r,m)

respectively. These spaces have a vector bundle structure, which will be discussed
in section 3, in addition to which they are manifolds.

Theorem 2.13. Tangent, cotangent and tensor bundles are manifolds.

Proof. I will prove this only for the tangent bundle, since the proofs for the cotan-
gent and tensor bundles are nearly identical. It is sufficient to construct a topology
and a maximal atlas for the tangent bundle.

Let {(Uα ,φα)}α∈I for some indexing set I be a set of coordinate patches which cover
the manifold M. Since the tangent bundle is a disjoint union of the tangent spaces,
for every v ∈ TM there is an unique x ∈ M such that v ∈ TMx. Denote the point
associated with a vector v with pr1(v).

Define Vα =
⋃
x∈Uα TMx and the map ψα : Vα→R

2n,

ψα(v) = (x1, ...,xn,v1, ...,vn) = (~x, ~v)

for all α ∈ I , where φα(pr1(v)) = (x1, ...,xn) and (v1, ...,vn) are the components of
v with respect to the coordinate frame of (Uα ,φα). I will use the vector arrow to
denote vectors in R

n. It is simple to verify that ψα is an injection.

Define B = {ψ−1
α (W ) : W ⊂ R

2n open ,α ∈ I}. I will show that this is a basis of a
topology. It is clear that the sets in B cover TM, and as such it is sufficient to show
that given any B,B′ ∈ B and p ∈ B∩B′ there is B′′ ⊂ B such that p ∈ B′′.

By assumption there exist α,β ∈ I and open A,A′ ⊂ R
2n such that B = ψ−1

α (A) and
B′ = ψ−1

β (A′). I will show that B ∩ B′ ∈ B. Denote Ṽα = ψα(Vα) and note that the
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composite map ψβ ◦ψ−1
α : Ṽα ∩ Ṽβ → Ṽα ∩ Ṽβ acts as (~x, ~vα) 7→ (~x, ~vβ), where ~vα and

~vβ are the components of v with respect to the different coordinate frames. Since
the components of vectors transform smoothly under a change of frame, ψβ ◦ψ−1

α

is a diffeomorphism and ψβ ◦ψ−1
α (A′) is open. It can be verified that

B∩B′ = ψ−1
α (A∩ (ψβ ◦ψ−1

α )−1(A′)),

and so B∩B′ ∈ B [Lee13, p. 22]. B is thus a basis of a topology.

The maps ψα : Vα → Ṽα are homeomorphisms under the topology generated by B
by construction. The fact that this topology is also second countable and Hausdorff
is proven in [Lee13, p. 22].

As the coordinate changes ψβ ◦ ψ−1
α are smooth, A′ = {(Vα ,ψα) : α ∈ I} is a set of

mutually compatible coordinate charts. There then exists the maximal atlas A =
{All coordinate charts compatible with A′} and TM equipped with the atlas A is a
(2n-dimensional) manifold.

Before moving on, I must define some operations on tensors. The first of these is
the tensor product with which it is possible to combine two tensors into one of
higher rank. To be more precise, the tensor product is the operation ⊗ : TM(r1,m1) ×
TM(r2,m2)→ TM(r1+r2,m1+m2) with

(T1 ⊗ T2)(v1, ...,vm1+m2
,ω1, ...,ωr1+r2) = T1(v1, ...,vm1

,ω1, ...,ωr1)

× T2(vm1+1, ...,vm1+m2
,ωr1+1, ...,ωr1+r2).

From the definition it is immediately clear that the tensor product is linear and
associative but it is not commutative.

In turn, the rank of the tensor can be lowered by contracting a pair of its indices.
To avoid clutter, I will define a contraction using an example. Let T ∈ TM(3,2). A
contraction with respect to 2nd contravariant index and 1st covariant index of T
is defined as the (2,1)-tensor for which

tr2
1T (v,ω1,ω2) =

∑
l

T (el ,v,ω1,σ
l ,ω2)

for all vector fields v and 1-forms ω. In the definition some frame e is chosen for
every open set and σ is its dual frame. This definition can be proven to be indepen-
dent of the chosen frame by expanding el and σ l in terms of some other frame and
its dual. As the transformation matrices for the frame fields and their duals are
inverses of each other they cancel leaving the contraction invariant. The definition
of a contraction is extended to other pairs of indices and tensors of different ranks
in the natural way.

A multiple contraction is defined in a similar way. To use the same example, the
contraction of T :s 1st and 2nd contravariant indeces with 3rd and 2nd covariant
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indeces respectively is the (1,0)-tensor

tr12
32T (ω) =

∑
lk

T (el , ek ,ω,σ
k ,σl)

for any 1-form ω. As with a single contraction this definition generalizes imme-
diately to other tensors and sets of indices. When the exact set of indices being
contracted is not relevant, I will denote a contraction simply as trT .

The main utility of contractions is that the actions of tensors on vectors and covec-
tors can be expressed using them and tensor products. This will be useful later in
proofs involving the covariant derivatives. To avoid complications with indices, I
will again present the lemma using an example of a (3,2)-tensor.

Lemma 2.14. The action of a (3,2)-tensor field T on vector fields v1,v2 and 1-forms
ω1,ω2,ω3 can be expressed as a contraction

T (v1,v2,ω1,ω2,ω3) = tr12345
34512(T ⊗ v1 ⊗ v2 ⊗ω1 ⊗ω2 ⊗ω3).

This result generalizes to tensors of other ranks.

Proof. I will prove this for the example of a (3,2)-tensor, but the calculation for a
tensor of any other rank is identical. It is sufficient to prove the result for each
coordinate patch separately. Let U be a coordinate patch and e a frame on it. By
the definitions of trace and tensor product

tr12345
34512(T ⊗ v1 ⊗ v2 ⊗ω1 ⊗ω2 ⊗ω3)

= T (ek , el ,σ
a,σ b,σ c)v1(σ k)v2(σ2)ω1(ea)ω

2(eb)ω
3(ec)

= T abc
kl vk1v

l
2ω

1
aω

2
bω

3
c

= T (v1,v2,ω
1,ω2,ω3).

As the notation for a contraction used in 2.14 is very cumbersome, it is usually
easier to use the component notation and explicitly write out the sums using the
Einstein summation convention. However, later in this text the indices being con-
tracted will be clear from the context. As I will not have to write the indices ex-
plicitly, the above notation will be sufficient.

2.3 The metric

In order to define the geometry of a manifold, it should be possible to measure
lengths and angles of its tangent vectors. This requires each tangent space to be
an inner product space. However, it turns out that a traditional inner product
structure is somewhat too restrictive for many applications, and as such I will settle
for the following definition of a metric.
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Definition 2.15. Let M be a smooth manifold. A (0,2)-tensor field g on M is a
Riemannian metric if it fulfills the following conditions for each p ∈M:

1. Symmetry: gp(v,w) = gp(w,v) for all v,w ∈ TMp.

2. Positive definiteness: gp(v,v) ≥ 0 for all v ∈ TMp, and gp(v,v) = 0 if and only
if v = 0.

A (0,2)-tensor field g is a Pseudo-Riemannian metric if it is symmetric and non-
degenerate, that is for all p ∈M there is no v ∈ TMp for which gp(v,w) = 0 for all
w ∈ TMp. The pair (M,g) is called a (pseudo-)Riemannian manifold.

Note that only the full Riemannian structure defines an inner product in each
tangent space. The geometric interpretation for a Riemannian manifold is then
much simpler than that of the pseudo-Riemannian case. In particular, since in that
case the lengths of tangent vectors are positive definite, it is possible to define the
lengths of curves in the usual way by integrating the length of the tangent vector.

Given a curve γ : [a,b]→M on a Riemannian manifoldM, its length can be defined
as

`(γ) =
∫ b

a

√
g(γ̇(t), γ̇(t))dt.

In addition, the metric can be used to give any Riemannian manifold the metric
space structure[Lee18, ch. 6].

In this text I will refer to pseudo-Riemannian metrics simply as a metric, since in
most cases discussed here the full Riemannian structure is not needed.
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3 Bundles

In addition to their manifold structure, tangent, cotangent and tensor bundles have
also the structure of a vector bundle. This structure can be used to give one unified
definition for both vector and tensor fields and later it will also be used to define
more specialized objects such as vector fields along a curve.

In this section, I will first define a fibre bundle and its section. Afterwards I will
further define a particular kind of a fibre bundle, a vector bundle, and discuss the
pullback-operation on such bundles.

3.1 Fibre bundles and sections

A bundle is a space which can locally be represented as a product space, but which
may still globally have a non-trivial topology. More rigorously

Definition 3.1. Let E and M be topological spaces and π : E→M a surjective and
continuous map. The tuple (E,M,π) a bundle with base space M and total space
E. The map π is called the projection and for p ∈M the preimage π−1(p) is called
the fibre at p.

The bundle is often referred to as the bundle π : E→M.

An intuitive picture of a bundle is a space π−1(p) attached to each point p in a
continuous way. Since the definition of a bundle is very general, I will further
restrict all bundles discussed here to be smooth, that is both E and M are assumed
to be smooth manifolds, and the projection π is assumed to be a smooth function.
I will assume this for all bundles considered in this text unless otherwise stated.

Despite the generality of the definition, bundles can be used to define an useful
generalization of a smooth function on M.

Definition 3.2. A smooth map s : M → E is a (smooth) section on the bundle
(E,M,π), if it fulfills the condition π ◦ s = id where id is the identity map.

A function between manifolds f : X → Y can be thought of as a section on the
bundle (X×Y ,M,π), where π(x,y) = x for all (x,y) ∈ X×Y . Bundles with less trivial
topology can be used to define more complex objects. I will use the notation Γ (E)
for the space of all sections on the bundle π : E→M.

The bundle used as the example is also a special kind of a bundle, whose fibres are
all isomorphic with each other. This kind of a bundle is called a fibre bundle. As
with general bundles I will assume that fibre bundles are smooth.

Definition 3.3. Let (E,M,π) be a bundle and F a manifold. The tuple (E,M,π,F)
is a fibre bundle if for every point p ∈ M there is a open neighborhood U and a
diffeomorphism φ : U × F → π−1(U ) such that (π ◦ φ)(x,v) = x for all x ∈ U and
v ∈ F. The set F is called the fibre of the bundle.
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As with bundles, I will often refer to a fibre bundle with its projection. The maps
φ :U ×F→ π−1(U ) are called local trivializations.

3.2 Vector bundles

It is not unreasonable to guess that the tangent bundle on a manifold has indeed
a bundle structure where the fibre at each point is the tangent space. I will prove
this later. However, since in this case each fibre is a vector space, the resulting
bundle has more structure than a general fibre bundle. The same structure is also
present in other tensor bundles, and it is useful to define a more restricted kind of
a bundle, a vector bundle.

Definition 3.4. A bundle (E,M,π) is a (k-dimensional) vector bundle if for every
p ∈M there is an open neighborhoodU and a diffeomorphism φ :U ×Rk→ π−1(U )
for which (π◦φ)(x,v) = x for all x ∈U and the fibre π−1(x) has linear structure such
that the map R

k→ π−1(x) : v 7→ φ(x,v) is a linear isomorphism for all x.

Note that a vector bundle is a fibre bundle with the fibre F = R
k . I can now give a

more rigorous definition to the tangent bundle, since previously the concept was
used merely as a shorthand.

Definition 3.5. Let E =
⋃
p∈M TMp be the union of all tangent spaces onM equipped

with the topology constructed in the proof to theorem 2.13. The tangent bundle
on M is the bundle (E,M,π), where the projection is defined as π(vp) = p for all
vp ∈ TMp ⊂ E. Denote the tangent bundle TM.

Theorem 3.6. The tangent bundle on M is a vector bundle.

Proof. Since the sets TMp ⊂ E are disjoint, π is well defined and it is a projection
by construction. Clearly π−1(p) = TMp for all p ∈M. Let p ∈M. By the definition
of a manifold there is an (open) coordinate chart (U,ϕ) for which p ∈U .

Any vx ∈ π−1(U ) can be expressed as vx = (x1, ...,xn,v1, ...,vn), where xi are the co-
ordinates of x ∈ U and vi are the components of vx with respect to the coordinate
frame. Define φ :U ×Rn→ π−1(U ) with

φ(x, (v1, ...,vn)) = (x,vi(∂i)x)

where ∂i are the coordinate frame fields on U . As all its component maps are
smooth, φ must be a smooth as well. The inverse of φ is straightforward to both
construct and verify to be smooth in the same way. As such, φ is a diffeomorphism.
The map φ also fulfills the condition π(φ(x,v)) = x. It is then left to show that the
map ~v 7→ φ(x, ~v) is a linear isomorphism.

Since the addition and scalar multiplication in TMx are simply addition and mul-
tiplication of the components, ~v 7→ φ(x, ~v) is linear. As φ is a bijective, the map is a
linear isomorphism.
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The most important reason of giving the tangent bundle a vector bundle structure
is that this allows a definition of vector fields that is more readily generalized.
Analogously to the example of a function f : X → Y in the previous subsection,
vector fields can be identified with smooth sections on the tangent bundle.

Proposition 3.7. VF(M) is linearly isomorphic to Γ (TM), when the addition and scalar
multiplication are defined on Γ (TM) are defned as (s1 + s2)(p) = s1(p) + s2(p) and
(cs1)(p) = cs1(p) for all s1, s2 ∈ Γ (TM) and c ∈R.

Proof. Since s1(p) + s2(p), cs1(p) ∈ TMp = π−1(p) for all s1, s2 ∈ Γ (TM), c ∈ R and
p ∈M the operations are well defined. There is a trivial identification ψ : VF(M)→
Γ (TM) with

ψ(v) = (p 7→ (p,vp)) ∈ Γ (TM)

for all vector fields v. It is straightforward to verify that ψ is both bijective and
linear.

The previous results on the tangent bundle can be generalized to all tensor bundles
in order to give a definition of tensor fields in terms of bundles.

Definition 3.8. Let E =
⋃
p∈M TM

(r,m)
p equipped with its topology as a manifold.

The (r,m)-tensor bundle on M is defined as the bundle (E,M,π) with the projection

π(Tp) = p for all Tp ∈ TM
(r,m)
p .

The tensor bundles are r +m-dimensional vector bundles and, similarly to the case
with vector fields, the space of all (r,m)-tensor fields is linearly isomorphic with
Γ (TM(r,m)) when the vector operations are defined in the natural way. The proofs
for this will be omitted, as they are almost identical to the case of a tangent bundle.

Many of the tools used with tensor bundles generalize to all vector bundles. One
such a tool I will need later are frames on the vector bundle which are defined
analogously to the tensor bundle case. A frame on a k-dimensional vector bundle
is a k-tuple (e1, ..., ek) of sections such that the tuple of vectors (e1(p), ..., ek(p)) forms
a basis for R

k at every point p ∈ M. The components of a section s : M → E with
respect to this frame are defined as the unique smooth maps si : M → R for which
s = siei . These definitions are discussed in more detail in [Bal99, p. 6].

The transformation properties derived for the components of a vector in section 2.2
generalize immediately to all sections. I will use the same notation for the frame
change matrices.

3.3 Pullback bundle

For later use, I will also define the pullback operation on fibre bundles. The con-
cept of a pullback is of great use in many different fields of differential geometry
although the precise definition varies from case to case. In essence, given a map
between manifolds and some structure on one of them, the map can be used to pull
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back similar structure to the other manifold. In this case the structure pulled back
is that of a fibre bundle. The presentation here follows closely that in [Bal99].

Definition 3.9. Let (E,M,π,F) be a fibre bundle and M ′ a manifold. Let f : M ′ →
M be a smooth map. The pullback bundle f ∗E is defined as the fibre bundle
(E′ ,M ′ ,π′ ,F) where

E′ := {(p′ , e) ∈M ′ ×E | f (p′) = π(e)}

and the projection is π′(p′ , e) = p′ for all (p′ , e) ∈ E′.

Note that (π′)−1(p′) = {(p′ , e) : π(e) = f (p′)} = {(p′ , e) : e ∈ π−1(f (p′))} for all points
p′ ∈M ′. It is then simple to see that the fibre (π′)−1(p′) is naturally identified with
with the corresponding fibre π−1(f (p′)). As (E,M,π,F) is a fibre bundle, (π′)−1(p′)
is isomorphic to F. Thus, the original bundle and the pullback bundle have the
same fibre F.

I will next use this to show that the pullback bundle is well defined. It is necessary
to show that E′ is a submanifold of M ′ × E and the local trivializations exist. I
will start with the former and only prove it locally, that is that every point has a
neighborhood which is a submanifold.

Define F1,F2 : M ′ × E → M, F1(p′ , e) = f (p′) and F2(p′ , e) = π(e). Let (p′0, e0) be
any point in E′ and (U,φ) be a coordinate patch on M with f (p′0) ∈ U and denote
V = F−1

1 (U )∩ F−1
2 (U )∩E′. As F1 and F2 are smooth V is an open neighborhood of

(p′0, e0) with respect to the relative topology of E′. Define F : F−1
1 (U )∩F−1

2 (U )→R
n

with F(p′ , e) = φ ◦F1(p′ , e)−φ ◦F2(p′ , e). V is then the level set F−1({0}).

Denote the dimensions of M with n. Consider the differential matrix of the map
F at an arbitrary point (p′ , e). As F1 is independent of e and F2 is independent of
p′, the differential of F is a block matrix where the blocks are the differentials of F1
and F2 respectively. As such, the rank of F at (p′ , e) ∈ F−1

1 (U )∩F−1
2 (U ) is larger than

or equal to the rank of F2, which is the same as the rank of the projection map π at
e.

The rank of the projectionπ : E→M at e is n. This can be proven by expressingπ in
the neighborhood W of e in a coordinate system adapted to the local trivialization
W ' π(W )×F where F is the fibre of the bundle. In this coordinate system π is the
identity map in its n first coordinates and is independent of the rest, and as such
the rank is n.

The rank of F cannot be larger than the dimension of its target manifold R
n. Using

this and the previous result the rank of F at (p′ , e) is n. As the point (p′ , e) ∈ F−1
1 (U )∩

F−1
2 (U ) was not specified the rank of F is constant. Since V = F−1({0}) is the level

set of a smooth map of constant rank, V is a submanifold [Lee13, theorem 5.12].

Next, I will construct the local trivializations. Let p′ ∈ M ′. Since (E,M,π,F) is a
fibre bundle there is a neighbourhood U of point f (p′) and a local trivialization
φ :U ×F→ π−1(U ).
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The open set V = f −1(U ) is an neighbourhood of p′. I will defineψ : V ×F→ π′−1(V )
as

ψ(x,v) = (x,φ(f (x),v))

for all x ∈ V and v ∈ F. This is well defined sinceπ(φ(f (x),v)) = f (x) andπ′((x,φ(f (x),v))) =
x. ψ is also smooth since its component maps are smooth and clearly π′(ψ(x,v)) = x.
It is then left to show that it is bijective.

Let (y,e) ∈ π′−1(V ), that is y ∈ V and e ∈ E such that π(e) = f (y). As φ is a diffeo-
morphism, there is v ∈ F) such that φ(f (y),v) = e. Then

ψ(y,v) = (y,φ(f (y),v)) = (y,e)

and ψ is surjective. If y,y′ ∈ V and y , y′, it is trivial that ψ(y,v) , ψ(y′ ,v′) for all
v,v′ ∈ F. Let v,v′ ∈ F such that v , v′ and y,y′ ∈ V . Since φ is injective, φ(f (y),v) ,
φ(f (y′),v′) and so ψ(y,v) , ψ(y′ ,v′). ψ is then injective.

The inverse of ψ can be verified to act as ψ−1(x,e) = (x,pr2(φ−1(e))) for all (x,e) ∈
π−1(V ) ⊂ M ′ × E. In the previous expression pr2 is the projection to the second
component in U × F. With the same reasoning as with ψ, the inverse of ψ is a
smooth map. Thus ψ is a diffeomorphism and the local trivialization I was looking
for.

The structure of a vector bundle is also preserved in a pullback. To prove this it
is sufficient to show that the local trivialization satisfies the linearity requirement.
Using the same definitions as for the general fibre bundle, let x ∈ V and denote
L : Rk→ π−1(x), L(v) = ψ(x,v) = (x,φ(f (x),v)).

Since φ satisfies the linearity requirement,

L(v + v′) = (x,φ(f (x),v + v′)) = (x,φ(f (x),v) +φ(f (x),v′)).

for all v,v′ ∈Rk . The second component of (x,e) ∈ π−1(x) is an element of π−1(f (x))
which is linearly isomorphic with R

k . As such, vector operations on π−1(x) can be
defined in a natural way on the second component. With this linear structure,

L(v + v′) = (x,φ(f (x),v)) + (x,φ(f (x),v′)).

L is also compatible with the scalar multiplication, which can be verified with the
same calculation as above. The map ψ then satisfies the linearity requirement and
f ∗E is a vector bundle.

As with the entire bundle structure, sections on the bundle can also be pulled back
into sections on the pullback bundle.

Definition 3.10. Let s : M → E be a section on π : E → M and f : M ′ → M. The
pullback of s is the section f ∗s on the pullback bundle f ∗E, where

(f ∗s)(p′) = (p′ , s ◦ f (p′)) ∈ E′ .
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Note that for every section s′ on f ∗E the first component of s′(p′) is just p′ at every
point. Since the first component of the section contains no additional information
it is less cumbersome to work with only the latter component.

Lemma 3.11. A smooth map s′ : M ′ → f ∗E is a section if and only if there is a smooth
map s :M ′→ E such that π ◦ s = f and s′(p′) = (p′ , s(p′)) for all points p′ ∈M ′.

Proof. Let s′ : M ′ → f ∗E be a section and define s(p′) = pr2(s′(p′)) ∈ E. Then by
definition of the pullback bundle π(s(p′)) = f (p′).

Let s :M ′→ E and s′ :M ′→ f ∗E be smooth maps and s′(p′) = (p′ , s(p′)). This is well
defined, since π(s(p′)) = f (p′). As π′(s′(p′)) = p′ trivially, s′ is a section.

The map s : M ′ → E is called a section of E along f . I will denote the space
of all sections of E along f with Γf (E). Since sections on f ∗E are in one-to-one
correspondence with sections on E along f , I will make no distinction between the
two.

The most important example of a section along a map encountered later in this text
is a tensor field along a curve. Let γ : I →M be a smooth curve on M, where I ⊂ R

is an open interval. Since γ is a smooth map between manifolds it can be used to
pull back the tensor bundles on M. Sections of tensor bundles along γ are called
tensor fields along the curve.

As with proper sections, sections of a vector bundle along a map can be expressed
in terms of their components. Let U be an open set on M and {e1, ..., ek} a frame
on it. Note that the vectors {e1 ◦ f (p′), ..., ek ◦ f (p′)} form a basis for all p′ ∈ f −1(U ).
Thus any section s on U along f can be expanded as s = si(ei ◦ f ) for some maps
si : M ′ → R. The maps (s1, ..., sk) are called the components of s with respect to the
pulled back frame.

The components of sections along a map transform as usual. Let {e1, ..., ek} and
{e′1, ..., e

′
k} be frames in overlapping open sets U and U ′ on M and A be the change

of frame ei = Aji e
′
j . This immediately implies

(ei ◦ f )(p′) = (Aji ◦ f )(p′)(e′j ◦ f )(p′)

for all points p′ ∈ f −1(U ∩ U ′). Thus, A ◦ f is gives the change of frame on the
pullback bundle and components sections transform as s′i = (Aij ◦f )sj where si and

s′j are the components of a section s in the different frames.
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4 Curvature

In this section, I will define and discuss the curvature of a pseudo-Riemannian
manifold. For this end, I will first define a connection on the tangent bundle and
after that, I will show that there is a unique torsion free metric compatible connec-
tion, namely the Levi-Civita connection. Finally, I will define the curvature tensor.

4.1 Connection and the covariant derivative

First step towards defining the curvature tensor is to define a directional derivative
for vector fields and tensors in general. However, as vectors at different points are
objects of different tangent spaces, they cannot be summed, and thus the usual
difference quotinent definition is not usable. Instead, I begin by noting that the
operation of the usual directional derivative is linear and satisfies the Leibnitz rule
and demand the same of the new operation.

Definition 4.1. Let π : E →M be a smooth vector bundle over a manifold M and
Γ (E) be the set of smooth sections over E. The map ∇ : VF(M) × Γ (E) → Γ (E),
(X,Y ) 7→ ∇XY , is a connection or a covariant derivative if it fulfills the following
properties:

• For all X1,X2 ∈ VF(M), f1, f2 ∈ C∞(M) and Y ∈ Γ (E)

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y .

• For all X ∈ VF(M), a,b ∈R and Y1,Y2 ∈ Γ (E)

∇X(aY1 + bY2) = a∇XY1 + b∇XY2.

• For all X ∈ VF(M), Y ∈ Γ (E) and f ∈ C∞(M)

∇X(f Y ) = f ∇XY +X(f )Y .

This definition does not specify a unique connection, and without additional struc-
ture on the manifold there is no natural way to choose one connection over another.
It turns out that, as is the case with tensors, a connection on the tangent bundle can
be defined using a set of functions in each coordinate patch.

Lemma 4.2. Let ∇ be a connection on the tangent bundle TM, {e1, ..., en} be a frame of
vector fields on an open set U ⊂M and X,Y ∈ VF(M). Then

∇XY = Xi(ei(Y
k) +ωkijY

j )ek

in U , where the connection coefficients ωkij are defined as ∇eiej =ωkijek .
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Proof. In U the vector fields can be expressed in terms of their components X =
Xkek , Y = Y kek . Then

∇XY = ∇Xkek (Y
lel)

= Xk∇ek (Y
lel)

= Xk((∇ekY
l)el +Y l∇ekel)

= Xk((∇ekY
l)el +Y lωiklei)

= Xi(ei(Y
k) +ωkijY

j )ek ,

where in the last line the labeling of the sums was changed.

This calculation did not actually use any of the particular properties of a tangent
bundle, and as such it can immediately be generalized to any vector bundle: If ∇ is
a connection on a vector bundle π : E→M, (e1, ..., ek) is a frame on an open U ⊂M,
X ∈ VF(M) and s is a section on E,

∇Xs = (X(si) +ωij(X)sj )ei ,

where ∇Xej =ωij(X)ei . The object ω is called the connection 1-form associated with

∇ and the usual connection coefficients are ωijk =ωij(ek).

As seen from the above expression, a connection on the tangent bundle is defined
uniquely in terms of its connection coefficients. However, since ∇Xs has to be a
well defined section, the connection coefficients have to transform in a particular
way when changing a frame.

As before, let {e1, ..., ek} and {e′1, ..., e
′
k} be frames in overlapping open sets U and U ′

onM and A be the change of frame ei = Aji e
′
j . Denote ∇eiej =ωkijek and ∇e′ie

′
j = ω̃kije

′
k

and w = ∇Xs for some X ∈ VF(M) and s ∈ Γ (E). Since w is a section, its components
transform as

w′i = Aikw
k

= Aik(X(sk) +ωkj (X)sj )

= Aik(X((A−1)kj s
′j ) +ωkj (X)(A−1)jl s

′l)

= X(s′i) + (AikX((A−1)kj ) +Aikω
k
l (X)(A−1)lj )s

′j .

On the other handw′i can also be expressed asw′i = X(s′i)+ω̃ij(X)s′j and comparing
the two expressions results in

ω̃ij(X) = AikX((A−1)kj ) +Aikω
k
l (X)(A−1)lj .

In terms of connection coefficients the condition reads

ω̃ijk = Ail∂k((A
−1)lj ) +Airω

r
lk(A

−1)lj .
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For more details see [Bal99, section 2.1].

In principle it would be possible to define a connection on each of the tensor bun-
dles separately. However, once a connection is chosen for the tangent bundle, there
is a unique connection on each tensor bundle compatible with the tensor opera-
tions defined in section 2.

Theorem 4.3. Let ∇ be a connection on TM. The following requirements define an
unique connection on each of the tensor bundles over M:

• On TM(0,0) =M ×R the connection is defined as ∇Xf = X(f ).

• On TM the connection agrees with ∇.

• The connections fulfill the generalized Leibnitz rule

∇X(T1 ⊗ T2) = T1 ⊗∇XT2 +∇XT1 ⊗ T2

for all tensors T1,T2 of any rank.

• The connection commutes with all contractions.

Proof. I will prove the theorem by explicitly constructing the coordinate expression
for the action of the connection in each TM(r,m).

In TM(0,0) the action on f is given by ∇Xf = X(f ). Since X is a derivation, this
expression is clearly linear in X and fulfills the Leibnitz rule, and so it defines a
connection. In TM(1,0) ∇ is a connection by definition.

Let ω ∈ TM(0,1) and note that ω(Y ) = tr(ω⊗Y ) for all vector fields Y . Using lemma
2.14 and the fact that the connection commutes with traces

∇X(ω(Y )) = ∇Xtr(ω⊗Y )

= tr(∇X(ω⊗Y ))

= tr((∇Xω)⊗Y +ω⊗ (∇XY ))

= tr((∇Xω)⊗Y ) + tr(ω⊗ (∇XY ))

= (∇Xω)(Y ) +ω(∇XY ),

from which follows (∇Xω)(Y ) = ∇X(ω(Y )) − ω(∇XY ) = X(ω(Y )) − ω(∇XY ). The
resulting expression is fully defined in terms of the connections on TM(1,0) and
TM(0,0) and fulfills both the Leibnitz rule and linearity, and so it describes a well
defined connection on TM(0,1).
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The definition for a (r,m) tensor can be solved in the same way. Let T ∈ TM(r,m).
Using lemma 2.14 and commuting the contraction and the connection gives

∇X(T (v1, ...,ω
m)) = ∇X(tr(T ⊗ v1 ⊗ ...⊗ωm))

= tr(∇X(T ⊗ v1 ⊗ ...⊗ωm))

= tr((∇XT )⊗ v1 ⊗ ...⊗ωm + T ⊗∇X(v1 ⊗ ...⊗ωm))

= ...

= tr((∇XT )⊗ v1 ⊗ ...⊗ωm + T ⊗∇X(v1)⊗ ...⊗ωm

+ ...+ T ⊗ v1 ⊗ ...⊗∇X(ωm))

= (∇XT )(v1, ...,ω
m) + T (∇Xv1, ...,ω

m) + ...+ T (v1, ...,∇Xωm).

where the generalized Leibnitz rule was used repeatedly. From this expression I
can solve

(∇XT )(v1, ...,ω
m) = ∇X(T (v1, ...,ω

m))− T (∇Xv1, ...,ω
m)− ...− T (v1, ...,∇Xωm).

This expression is well defined in terms of covariant derivatives of functions, vector
fields and 1-forms. It can also be verified to fulfill the linearity and Leibnitz rule
requirements of a connection, since each term fulfills them separately.

The expression for the covariant derivative of a tensor can be written out in terms
of a frame. I will do this explicitly for the case of a (0,2)-tensor such as a metric.
Expanding both argument vector fields in terms of a frame {e1, ..., en} results in

(∇XT )(v1,v2) = X(T (v1,v2))− T (∇Xv1,v2)− T (v1,∇Xv2)

= Xk∂k(Tijv
i
1v
j
2)− TijXk(∂kvi1 +ωiklv

l
1)v2

− Tijvi1X
k(∂kv

j
2 +ωjklv

l
2)

= Xk(∂kTij −ωlkiTlj −ω
l
kjTil)v

i
1v
j
2.

The component of ∇XT can be identified as ∂kTij −ωlkiTlj −ω
l
kjTil .

In the rest of the text I will always use these compatible connections for the tensor
bundles, and when there is no danger of confusion I will refer to them all as "the
connection". The symbol∇will always refer to the connection relevant to the tensor
it operates on.

4.2 Connection on a pullback bundle

A connection is another structure that can be pulled back with a map. First it is
necessary to define a pushforward of a tangent vector.

Definition 4.4. Let M and M ′ be manifolds and v be a tangent vector at the point
p ∈ M. Let f : M → M ′ be a smooth map and σ a representative curve of v. The
pushforward of v is the tangent vector f∗v = [f ◦ σ ] at f (p) ∈M ′.
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Note that while individual vectors can be pushed forward between manifolds, the
pushforward of a vector field is not well defined unless f is a diffeomorphism. An
example of a pushforward that will be useful later on is the pushforward along a
curve γ : I → M of a coordinate basis vector (∂t)p at some point p ∈ I . For any
smooth function g the action of the pushforward vector is

γ∗(∂t)p(g) =
d
dt

(g ◦γ(t))|t=p = γ̇(p)(g).

As such the pushforward is γ∗∂t = γ̇ at all points on the curve.

It is sufficient to define the pullback connection on sections along f and I will do
that in terms of their components.

Definition 4.5. Let f : M ′ →M be a smooth map, π : E→M a vector bundle and
∇ a connection on E with the connection 1-form ω. The pullback connection ∇f
is the connection on f ∗E for which

∇fXs = (X(si) + (ωij ◦ f )(f∗X)sj )(ei ◦ f ),

for all sections onM ′ along f , vector fieldsX onM ′ and any frame {ei}ni=1 onU ⊂M.

The section along f ∇fXs can be verified to be well defined using the transformation
properties of ω discussed in the previous subsection [Bal99, chapter 2.3]. ∇f is
clearly linear in its arguments, since ω is also linear. As X acts as a derivation, ∇f
also satisfies the Leibniz rule. Thus, ∇f is a well defined connection.

Note that the covariant derivative of a pullback section is the pullback of a differ-
entiated section. If there is no danger of confusion, I will drop the superscript f
from ∇f .

An important and simple example of a pullback connection is a connection along
a curve. I will consider that in the case of tangent vectors. Let γ : I →M, where I
is an interval, be a curve. The covariant derivative along γ of a vector field v along
γ in the direction of the only coordinate basis vector on I is

∇γ∂tv = ∇∂tv = (∂tv
i +ωijkv

j γ̇k)(ei ◦γ).

In the rest of the text I will denote ∇t = ∇∂t .

4.3 The Levi-Civita connection

While choosing the connection for the tangent bundle specifies the connections on
the tensor bundles, there was no obvious way to choose the first reference connec-
tion. Introducing a metric on the manifold changes this. First, I need to define the
torsion of a connection.

Definition 4.6. The torsion tensor is the tensor field T defined as

T (X,Y ) = ∇XY −∇YX − [X,Y ],

where X,Y are vector fields on M and [X,Y ] is their Lie bracket.
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The components of the torsion tensor with respect to a frame can be read immedi-
ately from the definition. Let e be a frame inM and [ei , ej ] = γkijek . The components
of the torsion tensor T in this frame are given by

T ijk =ωijk −ω
i
kj −γ

i
jk .

A connection for which the torsion tensor vanishes everywhere is said to be torsion
free. Since partial derivatives on a smooth function commute, the Lie bracket of
the coordinate frame fields vanish, which immediately leads to a useful symmetry
property of a torsion free connection.

Lemma 4.7. Let e be a coordinate frame in some coordinate patch. The torsion tensor
vanishes in this patch if and only if ωijk =ωikj with respect to this frame.

Since a metric defines a (not necessarily positive definite) inner product on the
tangent spaces, it is natural to demand that the covariant differentiation obeys the
Leibnitz rule with regards to this inner product, that is

∇Xg(Y ,Z) = g(∇XY ,Z) + g(Y ,∇XZ).

for all vector fields X,Y ,Z. Using the Leibnitz rule for the component expression
of the derivative yields

∇Xg(Y ,Z) = Xi((∇igjk)Y jZk + gjk(∇iY j )Zk + gjkY
j(∇iZk)),

where ∇i = ∇ei . This gives the desired expression if the first term vanishes, which
in turn motivates the following definition:

Definition 4.8. Let M be a pseudo-Riemannian manifold and ∇ be a connection
on M. The connection is metric compatible if

∇Xg = 0

for any vector field X.

Demanding that a connection is both torsion free and metric compatible singles out
one special connection, the Levi-Civita connection, from all the possible choices.

Theorem 4.9. LetM be a pseudo-Riemannian manifold. There is an unique connection
on M which is torsion free and metric compatible.

Proof. I will prove the existence and uniqueness of the Levi-Civita connection by
constructing an explicit expression for the connection coefficients in a coordinate
patch in the coordinate frame. In the torsion free and metric compatible case I will
denote the connection coefficients Γ ijk . Suppose that ∇ is a metric compatible and
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torsion free metric. By metric compatibility

0 = ∇igjk = ∂igjk − Γ lijglk − Γ
l
ikglj ,

0 = ∇jgki = ∂jgki − Γ ljkgli − Γ
l
jiglk ,

0 = ∇kgij = ∂kgij − Γ lkiglj − Γ
l
kjgli .

Since the connection is torsion free by lemma 4.7 its coefficients are symmetric in
the lower indices. The metric is symmetric as well, and so subtracting the last two
equations from the first yields

0 = ∂igjk −∂jgki −∂kgij + 2Γ ljkgli .

The connection coefficients can be solved from this expression:

Γ ljk =
1
2
g li(∂jgik +∂kgij −∂igjk).

This expression can be verified to fulfill the transformation properties of connec-
tion coefficients, and therefore the connection is well defined. As such, the torsion
free and metric compatible connection exists. As I constructed the explicit connec-
tion coefficients, the connection must be unique as well.

The connection coefficients with respect to the coordinate frame were calculated
in the above proof and they will be referred to as the Christoffel symbols of the
metric. In the rest of the text, unless otherwise specified, I will use the Levi-Civita
connection.

4.4 Riemannian curvature

There is now enough tools available to define the curvature tensor on the manifold.
The definition of the curvature tensor itself does not refer to any particular con-
nection, every connection results in their own definition of curvature. However,
the familiar curvature of a surface is found by choosing the Levi-Civita connec-
tion. This is explored fully in [Lee18, ch. 7], but in this text I will only need the
definition itself.

Definition 4.10. Let M be a pseudo-Riemannian manifold with a connection. The
curvature tensor R is defined by

R(X,Y )W = ∇X∇YW −∇Y∇XW −∇[X,Y ]W

for any vector fields X,Y and W . If the connection is the Levi-Civita connection,
the curvature tensor is called the Riemann tensor.

25



5 Jacobi fields

5.1 Geodesics

Geodesics are the generalization of euclidean straight lines to general manifolds.
The usual definition of a straight line in R

n is the shortest path between two points,
but this approach runs soon into trouble with a general metric. The problems
are especially prevalent with non-Riemannian metrics, with which the minimizing
curve between two points does not exist at all.

Instead geodesics must be defined by another property of straight lines, that is
in R

n (certain parametrizations of) straight lines are the only curves with a zero
acceleration vector. The acceleration of a curve in R

n can be defined simply as
componentwise derivative along the curve of the tangent vector. This definition
generalizes to pseudo-Riemannian manifolds by taking the covariant derivative
along the curve as defined in section 4.2 of the tangent vector.

Motivated by this, I first define the parallel transport of a vector along a curve.

Definition 5.1. Let γ : [a,b]→M be a curve with γ(a) = p and v0 a tangent vector
at p. The parallel transport of v along γ , denoted v(λ), is defined as the vector
field v along curve γ which satisfies the equation

∇λv(λ) = 0

with initial condition v(a) = v0, where λ is curve parameter.

The existence and uniqueness of a parallel transport vector field can be proven
using the existence and uniqueness theorems on ODEs [Lee18, theorem 4.32]. The
acceleration of the curve is therefore zero if and only if the curve parallel transports
its own tangent vector.

Definition 5.2. A geodesic is a curve λ 7→ γ(λ) which parallel transports its tan-
gent vector, ∇λγ̇ = 0. This equation is called the geodesic equation.

Writing this equation out in a coordinate frame yields the usual component repre-
sentation of the geodesic equation

d2γ i

dλ2 +ωijk
dγ j

dλ

dγk

dλ
= 0,

where λ is the curve parameter along λ. Note that whether a curve is a geodesic
can be dependent on its parametrization.

5.2 The exponential map

Geodesics on a manifold have some collective properties which are necessary when
discussing Jacobi fields later. These properties are most easily stated using the so
called exponential map which I will define shortly. I will state most results in this
subsection without proof and the reader may consult [Lee18] for more details.
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It is a well-known result that a system of linear ODE:s has a solution for all initial
values, and the solution is a smooth function of the initial values [Lee18, theorem
4.31]. Since in every coordinate patch the geodesic equation can be expressed as
a system of linear ODE:s, given any point p ∈M and a tangent vector v ∈ TMp, at
least locally there exists a geodesic with a tangent vector v at p.

It is possible to extend this beyond the single coordinate chart. Stating this is sim-
plified by first defining the concept of a maximal geodesics. In short, a geodesic
γ : I → M is maximal if there is no geodesic γ̃ : Ĩ → M for which I ( Ĩ and
γ(t) = γ̃(t) for all t ∈ I . The main existence result for geodesics can then be stated
as follows:

Theorem 5.3. [Lee18, corollary 4.28] For every p ∈M and v ∈ TMp there is a unique
maximal geodesic γp,v : I → M, 0 ∈ I , with the initial conditions γp,v(0) = p and
γ̇p,v(0) = v.

This geodesic is called the geodesic with initial point p and the initial velocity v
and I will denote it γv . I will not explicitly state the initial point when it is not
necessary.

The exponential map can be defined using these geodesics, although it is first nec-
essary to specify its domain. Let E = {v ∈ TM : γv defined on [0,1]}.

Definition 5.4. The exponential map is defined as exp : E →M with exp(v) = γv(1)
for all v ∈ TM. For all p ∈M the restricted exponential map expp is the restriction
of the exponential map to the set Ep = E ∩ TMp.

There are many important results concerning the exponential map, but in this text
I will use only a few of them.

Theorem 5.5. [Lee18, prop. 5.19] The exponential map has the following properties:

• For each v ∈ TM the geodesic with initial velocity v is given by γv(t) = exp(tv)
whenever either side is defined.

• The exponential map is smooth.

• E is an open subset of TM and contains the image of the zero vector field.

The first of these properties is clear from the definition of the exponential map and
the second one can be proven by using the smoothness of the solution to a system
of linear ODE:s.

5.3 Jacobi fields

I can now finally define the Jacobi fields. In non-rigorous terms a Jacobi field is
the variation vector field of some family of geodesics, that is it encodes how the
geodesic changes with the family parameter. I will give the rigorous definition
next:
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Definition 5.6. Let G : [0.1] × (−ε,ε)→M, G(t, s) = γs(t), where ε > 0 is some real
number, the curve t 7→ γs(t) is a geodesic for every s and G is smooth. G is called a
one-parameter family of geodesics and denote γ = γ0. The variation field of this
family is the vector field along γ

J(λ) = ∂sγs(λ)
∣∣∣
s=0
,

where λ is the curve parameter along γ . The partial denotes a tangent vector to the
curve s 7→ γs(λ).

A family of geodesics G satisfies a number of identities that will be of use later.
I will use the notation in which (∂tG)(t′ , s′) is the tangent vector of the curve t 7→
G(s′ , t) at point t = t′ and similarly (∂sG)(t′ , s′) is the tangent vector to the curve
s 7→ G(s, t′) at s = s′. I will not explicitly state the point (s′ , t′) where the tangent
vectors are evaluated.

Lemma 5.7. A family of geodesics G satisfies the equation ∇t∂sG = ∇s∂tG.

Proof. I will show this in a coordinate chart. In this coordinate chart G can be
expressed as G(s, t) = (γ1

s (t), ...,γns (t)). The i:th component of ∇t∂sG with respect to
the coordinate frame is then

(∇t∂sG)i = ∂t(∂sγ
i
s ) + Γ ijk(∂tγ

j
s )(∂sγ

k
s ).

Since the Christoffel symbol is symmetric in the lower indices, the latter term is
immediately symmetric with respect to changing t and s. Since partial derivatives
of a smooth function commute, the first term is also symmetric, which proves the
proposition.

Lemma 5.8. [∇t ,∇s]V = R(∂tG,∂sG)V for any vector field V along G.

Proof. I will here give only the outline of the proof. The reader can find the full
details in [Lee18, proposition 7.5].

It is sufficient to prove the lemma locally. As in the previous proof, in a coordinate
chart G can be expressed as G(s, t) = (γ1

s (t), ...,γns (t)). The vector field V can be
expanded as V (s, t) = V i(s, t)∂i , where ∂i are the coordinate frame fields along G.

Calculating the action of the commutator on V using the Leibnitz rule results in

[∇t ,∇s]V = V i(∇s∇t∂i −∇t∇s∂i).

This form already resembles the Riemann tensor. If∇was a connection on the man-
ifold M instead of its pullback along G, the rest of the calculation would proceed
by expanding the covariant derivatives as ∇t = (∂γ js /∂t)∇j and ∇s = (∂γ js /∂s)∇j .
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Substituting this to the commutator results in

V i(∇s∇t∂i −∇t∇s∂i) = V i(
∂γks
∂s
∇k(

∂γ
j
s

∂t
∇j∂i)−

∂γks
∂t
∇k(

∂γks
∂s
∇j∂i))

= V i
∂γ

j
s

∂t

∂γks
∂s

R(∇j∇k∂i −∇k∇j∂i)

= V i
∂γ

j
s

∂t

∂γks
∂s

R(∂j ,∂k)∂i ,

= R(∂tG,∂sG)V .

where in the second equality the Leibniz rule was used and most of the terms
cancel.

This calculation can be applied to vector fields along G as well by noting that the
frame fields along G can be extended to corresponding frame fields on M. After
this the calculation can be carried out on M and the resulting vector field can be
identified with the corresponding vector field along G.

Using these two lemmas I can prove that a variation field of any family of geodesics
satisfies the so called Jacobi equation.

Theorem 5.9. Let J be the variation field of the familyG. J satisfies the Jacobi equation

∇2
t J +R(J, γ̇)γ̇ = 0.

where γ̇ = (∂tG)(t,0).

Proof. Since G is a family of geodesics, it satisfies the geodesic equation

∇t∂tG = ∇tγ̇s = 0

for all t and s. Taking the s-covariant derivative and commuting the outermost
derivatives gives

0 = ∇s∇t∂tG = (∇t∇s + [∇s,∇t])∂tG.

Using lemma 5.7 the first term becomes

∇t∇s∂tG = ∇2
t ∂sG.

As ∇tG = γ̇s is a vector field, lemma 5.8 gives

[∇s,∇t]γ̇s = R(∂sG,∂tG)γ̇s = R(∂sG,γ̇s)γ̇s.

Substituting the previous two results yields

0 = ∇2
t ∂sG+R(∂sG,γ̇s)γ̇s

and evaluating this expression at s = 0 results in the Jacobi equation

∇2
t J +R(J, γ̇)γ̇ = 0.
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Vector fields which satisfy the Jacobi equation are called Jacobi fields, and as
proven above, any variation field of a family of geodesics is a Jacobi field. The
converse turns out to be true as well in many cases. In the following proof I will
assume the existence and uniqueness theorems for the systems of differential equa-
tions.

Theorem 5.10. Let γ : I →M, where I is a compact interval in R. Any Jacobi field on
γ is the variation field of some family of geodesics.

Proof. This proof is inspired by [Ilm20, theorem 5.8] and [Lee18, prop. 10.4].

Let J be a vector field on γ satisfying the Jacobi equation. It can be assumed without
loss of generality that 0 ∈ I . Let a : (−ε,ε) → M be a curve with a(0) = γ(0) and
ȧ(0) = J(0). This is always possible, since J(0) is an equivalence class of curves
satisfying these conditions and I can just choose one of those.

Let b(s) be any vector field along a(s) for which b(0) = γ̇(0) and ∇sb|s = ∇tJ(0).
Define G′ : D→M, G′(t, s) = exp(tb(s)), where D ⊂ R

2 is the largest domain where
G′ can be defined. Note that the curve t 7→ G′(t,0) is by definition the maximal
geodesic which agrees with γ in the overlap of domains and as such I × {0} ⊂ D. It
remains to show that there is δ ∈R such that I × (−δ,δ) ⊂ D.

The domain of the exponential map E is an open set and as D is its preimage under
the continuous map (t, s) 7→ tb(s), D must be open as well. As D is open, for every
p ∈ I I can choose δp = 1

2dist((p,0),R2 −D) > 0. Here dist is the Euclidean distance
function dist(x,U ) := inf{|x − y| : y ∈U ⊂R

n} for all x ∈ R2. Then B(δp,p) = {x ∈ R2 :
|x − p| < δp} ⊂ D. As I is compact and the distance function is a continuous map
there is δ = min{δp : p ∈ I} > 0. This implies

I × (−δ,δ) ⊂
⋃
p∈I
B(δp,p) ⊂ D,

and I can define the family of geodesicsG as the restriction ofG′,G : I×(−δ,δ)→M,
G(t, s) = G′(t, s).

G is a variation of γ as G(t,0) = γ(t) for all t ∈ I . Denote the variation field of G by
J ′. Note that J ′(0) = ∂sG(s,0) = ∇sb(0) = J(0) and using lemma (...)

∇tJ ′(0) = ∇t∂sG(0,0) = ∇s∂tG(0,0).

Since ∂tG(0,0) = γ̇(0) = b(0),

∇tJ ′(0) = ∇sb(0) = ∇tJ(0)

by the construction of b.

As J ′ is a variation field it must satisfy the Jacobi equation. Since J and J ′ satisfy
the same system of linear second order ODEs and agree to first order at 0, the
uniqueness of solutions demands J = J ′. This completes the proof.
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