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ABSTRACT:

Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering
platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection.
Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides
being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal
learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.

1. INTRODUCTION

Anomaly detection, often referred also as outlier detection, is a
vital application when we are looking for something abnormal.
To detect these anomalies, we have also to understand what is
normal. We might have a dataset, which we know with certainty
that there is nothing unusual in it. Thus, we can use this data-
set to teach normal behaviour to the anomaly detection method.
This is an example of semi-supervised learning (Chandola et
al., 2009). Anomalies can also be detected in un-supervised
manner, but then we have to make some assumptions about the
data. These assumptions can be, for example that the majority
of the data points are presenting normal behaviour or the anom-
alies has a sparse neighbourhood. In this study, we introduce a
new semi-supervised anomaly detection method for the hyper-
spectral data, which is based on the minimal learning machine
(de Souza Junior et al., 2015).

Our objective is to decrease the complexity of the training pro-
cess and actual anomaly detection. In the era of deep learning
complexity, of machine learning models has been increasing all
the time. Simultaneously popularity of hyperspectral imaging
has increased, because of the new smaller and cheaper imagers.
Many potential applications of the hyperspectral imaging use
complex machine learning models to predict or estimate para-
meters. If an imager is mounted on some autonomous platform
such as a drone, it will need to either storage a huge amount of
data or run machine learning models in real-time, while there
are restrictions with payload and available energy. Anomaly
detection is one application where model training and detection
should be done in real-time.

With hyperspectral images there exists large variability of an-
omaly detection algorithms from Mahalanobis distance-based
RX -method (Reed, Yu, 1990) and support vector approaches
(Banerjee et al., 2006) to deep autoencoders (Zhao et al., 2017).
The hyperspectral image itself can include several different kinds
of anomalies. Point anomalies are single data points, which
somehow stand out from the normal behaviour of the data (Chan-
dola et al., 2009). In Figure 1, anomalies are point anomalies.
∗ Corresponding author

In this study, we use our proposed method to detect point an-
omalies. Other types of anomalies that can be found from a
hyperspectral image, are spatial and spatiotemporal anomalies.

Figure 1. Example of two bands from hyperspectral test data.
Majority of data points are in normal behaviour and minority are

anomalies. Dataset contains both global and local anomalies.

In Figure 1, we can also see two different types of point anom-
alies. These are global and local anomalies. Global anomalies
are clearly distinguishable from the normal dataset. Local an-
omalies are geometrically inside of the normal dataset, or nor-
mal dataset somehow shadows it. In general, global anomalies
are easier to detect than local ones.

In the following sections, we will explain how minimal learning
machine works in the hyperspectral anomaly detection. We will
study its performance and compare it to the other well-known
methods.
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2. METHODS AND MATERIAL

2.1 Minimal learning machine

Minimal learning machine (MLM) is distance-based classifica-
tion method, which offers tools to create computationally cheap
training and classification (de Souza Junior et al., 2015). MLM
utilises linear mapping between input and output distances. In
case of the hyperspectral images, these distances would be
d(xi,mk) and δ(yi, tk), where xi ∈ X ⊂ RD are training
set of spectra with D wavebands and mk ∈ R are randomly
sampled subset of X and correspondingly yi ∈ Y ⊂ R are la-
bels of training set and tk ∈ T are subset of Y . Training set X
consist of N samples, and subset R has K samples. Now, we
define two matrices based on these distances ∆y ∈ RN×K and
Dx ∈ RN×K . By assuming the linear mapping between these
two distance matrices, we have a linear model

∆y = DxB + E, (1)

where B is coefficients and E is residual. Coefficients B can
be approximated using ordinary least squares estimator

B̂ = (DT
x Dx)

−1DT
x ∆y. (2)

Now B̂ is linear model between distances δ(yi, tk) and d(xi,mk).
distances between new spectrum xn and its label yn is

δ(yn, T ) = d(xn, R)B̂. (3)

Outputs yn can be estimated by solving optimisation problem

min
yn

K∑
k=1

(
(yn − tk)

T (yn − tk)− δ2(yn, T )
)2

. (4)

For anomaly detection, we do not have to estimate yn, which is
computationally most expensive part of the classification. If xn

is inside of the training set, it means that yn is nearby points in
subset T . Thus, the distribution of estimated distances δ(yn, T )
should be relatively similar to training phases distances in ∆y .
If xn is anomaly or outlier, it should be detected already in
δ(yn, T ). Now, it is enough to study the behaviour of δ(yn, T ).
Here we use L2 -norm

‖δ(yn, T )‖2 (5)

and variance
Var (δ(yn, T )) (6)

to detect anomalies. For these two values, we set threshold val-
ues that reveal anomalous spectra from the dataset. Because the
computationally heaviest part, calculating yn, is not done, the
computational complexity of anomaly detection is nearO(NK),
which is in relation with the number of samples in R.

Because we are using anomaly detection for the hyperspectral
data, both cosine and euclidean distances are studied when we
calculate distances d(xi, R) and d(xn, R) and compare the per-
formance of the method. As an angle based distance, cosine dis-
tance is more robust for intensity changes in the spectral data.

Implementation of the MLM for anomaly detection is done us-
ing python programming language and libraries: numpy and
scipy.

2.2 Reference methods

To test MLM anomaly detection capabilities, we compare it to
existing and well-known methods: one class support vector ma-
chine (OC-SVM), isolation forest (IsF), global RX algorithm
and local RX algorithm. Both OC-SVM and IsF can be used
in unsupervised way, but here we use those in semi-supervised
manner.

In the OC-SVM, the algorithm tries to find one decision bound-
ary for the whole dataset (Manevitz, Yousef, 2001). In the most
simple case, we could fit a hypersphere to the training data by
alternating its radius and center. When we consider hyperspec-
tral data, such as shown in Figure 1, we notice that one hy-
persphere is too coarse for this kind of dataset. Thus, here we
utilise gaussian kernel, which allows us to define more com-
plex decision boundaries. Because we are using the OC-SVM
in a semisupervised manner, during the training, we are leaving
a margin of the decision boundary ν to relatively small. This
means that boundary is following quite tightly the outlines of
the training set.

The IsF is derivative from the random forest (Liu et al., 2008). It
isolates observations by first selecting a feature randomly and
then splitting the data based on a random value between the
maximum and minimum values of the selected feature. This is
continued in a recursive manner until some selected depth of the
tree, or the maximum depth of the implementation is achieved.
Here anomalies have noticeably shorter path lengths. Again,
because of the semi-supervised learning, we are setting relat-
ively low contamination rate, which is regulating the proportion
of anomalies in the training dataset.

Both RX algorithms are using the Mahalanobis distance to de-
tect anomalies (Reed, Yu, 1990). The Mahalanobis distance
measures distance between a single data point x and distribu-
tion of the dataset Y by

d(x, Y ) =
√

(x− µ)TC−1(x− µ), (7)

where µ is mean of data points in Y and C is the covariance
matrix. In the global RX dataset Y is the whole spectral im-
age or in semisupervised case, the training data. The local RX
can be used only in an unsupervised manner by taking pixel’s
surrounding neighbourhood to the Y . In the local RX, spectral
image is gone trough by sliding window manner. Anomalies in
both cases are detected by setting up a threshold value. When
the distance is great, it is more likely that data point is anomal-
ous.

For OC-SVM and IsF we are using existing implementations
from Scikit-learn Python library (Pedregosa et al., 2011). RX
algorithms are implemented by using the numpy and scipy lib-
raries.

2.3 Artificial data

Methods are tested with two datasets. The first dataset is a sub
set from X-Rite’s ColorChecker containing four colours. Data
is captured using a visible and near-infrared hyperspectral cam-
era, which is manufactured by VTT (Saari et al., 2013). The
dataset has 100 wavebands from 450 nm to 750 nm. There are
separate training set and test set. In figure 1, test dataset is il-
lustrated based on two wavebands. In Figure 2, there is a visu-
alization of the training set and corresponding spectra. From
Figures 1 and 2 we can see that there is some fluctuation even
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between the data points of the same colour. In the training set
we have 2500 data points and each class has 625 data points.

The training set contains only normal behaviour, while in the
test set, there are 30 anomalous data points. Otherwise test set
has similar dimensions as the training set — containing 2500
data points. These are also subset from the same colour of the
colorchecker including same colours as the training set, but they
are from a different spatial location. Anomalous pixels are ran-
domly located in the test set. These are taken from different
parts of the colorchekcer. Figure 3 shows spectra of all anom-
alous pixels. There are three subsets of anomalies: two of them
are behaving like global anomalies, and one is a local anomaly,
as Figure 1 illustrates.

Figure 2. Illustration of the training dataset. Above there is
”RGB” presentation of the dataset in the spatial dimensions.
Below there are sample reflectance spectra from each class.

Figure 3. Spectra of anomalous pixels. These are randomly
distributed to the test dataset, which has same dimensions as the

training set has (50× 50× 100).

2.4 Forest data

The second dataset is from the Finnish forests, where the main
tree species are pines, spruces and birches. Training dataset
(1500 × 1400 × 38) contains mainly forest, some grass area
and forest road. This dataset is a subset of a larger dataset,
which has been previously used in tree species classification
(Nevalainen et al., 2017, Pölönen et al., 2018, Nezami et al.,

2020). Description of the dataset in details can be found from
(Nevalainen et al., 2017). The dataset has high spatial resol-
ution 9 cm ground sampling distance (GSD) and 38 spectral
bands from 507 nm to 820 nm. A narrowband RGB image of
the training dataset is shown in Figure 4. For actual training, we
randomly selected 100000 samples from the image. From this
dataset, we selected randomly 100 spectra to be a subset R.

The test set is from the same remotely sensed dataset. It in-
cludes similar features as the training set, but there are some
anomalous objects. There are three reflectance panels (size 1
m 1 m with a nominal reflectivity of 0.03, 0.1 and 0.5 ), one
black panel, one blue van, and cross-shaped georeferencing sig-
nal with an arm length of 3 m and width of 30 cm. These are
circulated with red in Figure 5. Spectra of van, reflectance panel
and the forest are shown in Figure 6.

Because the training dataset does not have labels for the whole
image, we performed k-means clustering (k=3) to produce needed
labels. This has not been included in training time, because
there are alternative ways to produce these labels.

Figure 4. Training data for the anomaly detection from the
forest. Data has been captured from the UAV with 9 cm GSD.

Figure 5. Test dataset for the anomaly detection from the forest.
Inside of red circulated areas are anomalous objects (three

reflectance panels, one black panel, one blue van, and
cross-shaped georeferencing signal).

Figure 6. Mean spectra of training dataset and samples from the
van and the reflectance panel (nominal reflectivitiy of 0.5).
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3. RESULTS

An artificial dataset was used to evaluate the performance of
MLM by varying the size of the actual training set and the por-
tion of set R from the training set. In a computational sense,
we measured both training and detection time, and compared
those to the reference methods. As a measure of accuracy, we
calculated the area under curve (AUC) and draw the receiver
operating characteristic curve (ROC) for best performing MLM
setup and reference methods. Threshold for anomaly detection
was set for the variance to > 70 % and the L2-norm to > 50 %
of maximum value. For the global RX threshold was set to
> 3.5 and for the local RX to > 5.

MLM description in section 2.1 shows that in the training and
the detection, the most influential factor is the size of subset
R. This is shown in Figures 7–10, where we compare training
and detection time against the size of the training dataset and
the subset R. Results for the euclidean and cosine distances
are reported separately. From Figures 7–10 we can see that
selected distance metric has an effect on training time: using
cosine distance is slower than using Euclidean distance.

In the case of AUC, cosine distance seems to perform better.
From Figures 11 and 12, we can see that for anomaly detection,
AUC of L2-norm and variance seems to produce quite similar
results. With L2-norm, AUC has less fluctuation than with vari-
ance. The variance of cosine distance is giving higher AUC
than L2-norm, but in the case of Euclidean distance, L2-norm
is less affected by the size of training sets and subset R.

Figure 7. Training time of the MLM using cosine distance
varying size of the training set and proportion subset R.

Figure 8. Training time of the MLM using Euclidean distance
varying size of the training set and proportion subset R.

In the Table 1 we compare results of MLM (cosine, variance,
training set size 2500, R size 250) to the reference methods.

Figure 9. Anomaly detection time of the MLM using cosine
distance varying size of the training set and proportion subset R.

Figure 10. Anomaly detection time of the MLM using Euclidean
distance varying size of the training set and proportion subset R.

Figure 11. Area under curve value of the MLM using L2-norm
with cosine distance (left) and Euclidean distance (right) varying

size of the training set and proportion subset R.

Figure 12. Area under curve value of the MLM using variance
with cosine distance (left) and Euclidean distance (right) varying

size of the training set and proportion subset R.

With a small dataset, OC-SVM is outperforming MLM in train-
ing and anomaly detection. IsF is slower than MLM in both cat-
egories. Both global and local XR are slower in the detection
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of anomalies. Training of the global XR is faster, but it only
calculates covariance matrix and means of the training set.

In Figure 13 ROC curves and AUC are compared with MLM
and reference methods. It reveals us that OC-SVM and IsF
have higher AUC than MLM. It seems that MLM is not cap-
able of detecting local anomalies, while OC-SVM and IsF are.
Both RX algorithms give moderate results. The main difference
between MLM and other methods presented in this study is that
with MLM, there are not any false alarms. This can also be
seen from Figure 14, which shows anomaly detection maps of
the test set.

A B C D E
Training time [s] 0.112 0.005 0.492 0.007 -
Testing time [s] 0.059 0.003 0.171 0.060 0.435

Table 1. Comparison of the computation times for the artificial
dataset. A: MLM (cosine, variance, training set size 2500, R

size 250), B: One-Class-SVM, C:Isolation forest, D: Global RX,
E: Local RX.

Figure 13. Comparison of the ROC-curves of the MLM and
reference methods. ROC curve of the MLM shows that it does
not have any false positives. MLM cannot find local anomalies.

We made only visual comparison to the results of the forest
dataset. For the MLM, we used variance with the threshold
> 0.4. Global and local RX threshold values were respectively
> 0.8 and > 0.1.

From Table 2, we can see that in the case of larger datasets,
MLM is outperforming all reference methods in testing, and
both OC-SVM and IsF in training. Also, visual results in Figure
15 show that MLM is more capable of detecting anomalies from
the dataset. MLM is capable of separating all anomalies with
relatively low false alarm rate. Both RX methods seem to be
useless. OC-SVM finds two reference panels and IsF finds part
of the van, georeferencing signal and one reference panel. Both
have a higher false alarm rate than MLM has.

All computations were done using MacBook Pro (Mid-2014)
with 3 GHz Intel Core i7 processor and 16 GB memory.

Figure 14. Anomaly detection maps of the MLM and reference
methods for the artificial dataset. A: MLM (cosine, variance,
training set size 2500, R size 250), B: One-Class-SVM, C:

Isolation forest, D: Global RX, E: Local RX

Figure 15. Anomaly detection maps of the MLM and reference
methods for the forest dataset. A: MLM (cosine, variance,
training set size 2500, R size 250), B: One-Class-SVM, C:

Isolation forest, D: Global RX, E: Local RX.

4. DISCUSSION

Overall, the results show that the main benefits of the MLM
are the low false alarm rate, the computational efficiency, and
the extremely easy implementation using distance functions and
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A B C D E
Training time [s] 0.546 2.589 9.445 0.0681 -
Testing time [s] 2.953 5.727 25.18 8.684 60.17

Table 2. Comparison of the computation times for the forest
dataset. A: MLM (cosine, variance, training set size 2500, R
size 250), B: One-Class-SVM, C: Isolation forest, D: Global

RX, E: Local RX.

standard linear algebra. Based on the results, MLM seems to
work in anomaly detection. It is effectively capturing global an-
omalies with low false alarm rate. As Figures 7–10 showed, the
most influencing factor affecting computational cost and time
is the size of subset R. This affects both training and testing.
MLM reveals its efficiency when datasets are large.

Variance as anomaly detection value from cosine distance is
working well with spectral data. This might be related to that
spectral data is more angle-dependent than for example intens-
ity related. Another interesting reason might be that variance
of data points’ cosine angles to other data points is actually an
anomaly detection method called angle-based outlier degree.

The reader should have some caution because, for example,
OC-SVM is using LIBSVM, which is native C++ implementa-
tion. If MLM were also implemented with C++, it would bene-
fit from that in time comparison.

Because in testing phase d(xn, R) is calculated in any case, we
tested how Var(d(xn, R)) or ||d(xn, R)||would work in the an-
omaly detection. Unfortunately, neither of these could produce
sensible separation between anomalous and normal data points.

There are some interesting options for future work. Because of
subsetR is playing a crucial role in the computational efficiency
of MLM, it should be paid attention to select these points more
carefully. In this study, we used random sampling. We believe
that with the intelligent selection we can significantly reduce
the subset’s size. There is still a need for the labelling of the
training data. There might be strategies to avoid this, or we can
change the labelling to other measures. It could be possible,
for example, to build some regression upon other anomaly de-
tection measures. MLM failed on detection of local anomalies.
This could be avoided by building some piecewise training and
detection algorithm.

5. CONCLUSION

In this study, we showed how minimal learning machine can be
used in anomaly detection in general and in particular in the hy-
perspectral anomaly detection. Computationally efficient solu-
tions are needed in real-time hyperspectral anomaly detection.
Fortunately, MLM meets these criteria. Besides computational
efficiency, MLM is easy to implement. It can be used in small
single-board computers to utilise it in such applications as drone
and cube satellite-based remote sensing.
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