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Abstract

The scattering of astrophysical neutrinos off the stable Iodine and Caesium nuclei
127I and 133Cs was studied to explore the possibility of utilizing them in neutrino
detection. The reactions considered in this work were elastic and inelastic weak
neutral current neutrino-nucleus and antineutrino-nucleus scatterings. The neutrinos
that were included were of the e-flavour and had their origin in supernova core
collapse events. The theoretical formalism of semileptonic neutrino-nucleus processes
was reviewed in great detail, and several key equations were derived meticulously.
The primary quantity of interest was the scattering cross section.

The model used for the description of the two odd-A nuclei of interest was the
MQPM, which is built upon the BCS model and QRPA. MQPM was thus applied to
the odd-A nuclei by first performing the BCS and QRPA calculations on even-even
reference nuclei (126Te, 128Xe, 132Xe and 134Ba) adjacent to the odd-A nuclei, and
then using these results to run the MQPM calculations for the odd-A nuclei. The
nuclear model provided the eigenfunctions and -energies of the nuclei and the reduced
neutral current one-body transition densities which entered into the cross section
calculations. The ultimate results of this thesis were the energy averaged total cross
sections, which were obtained by integrating the double differential cross section over
the angular coordinates, summing over all possible final nuclear states and folding
the cross section with the neutrino energy spectrum. The neutrino energy spectrum
used was a modified two-parameter thermal Fermi-Dirac distribution.

The resulting theoretical QRPA spectra were in decent agreement with experi-
mental results, while the MQPM spectra had some discrepancies, particularly at the
low-energy end. These had minimal effect on the cross sections, which were found
to be in line with earlier similar calculations. Overall, the results were cautiously
optimistic, but preliminary. Nothing in them outright implied that the nuclei consid-
ered would not be fit for neutrino detection, but further studies are needed for an
exhaustive assessment of their suitability for such a role.
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Tiivistelmä

Tutkielmassa tarkasteltiin astrofysikaalisten neutriinojen sirontaa stabiileista jodi- ja
caesium ytimistä 127I and 133Cs, tarkoituksena arvioida kyseisten ytimien hyödyn-
tämisen mahdollisuutta neutriinojen havaitsemisessa. Työssä käsiteltävät reaktiot
koostuivat elastisista ja epäelastisista heikon neutraalin virran neutriino-ydin ja
antineutriino-ydin sironnoista. Reaktioihin osallistuvina neutriinoina käytettiin
supernovaräjähdyksissä alkunsa saaneita elektronin neutriinoja. Semileptonisten
neutriino-ydin prosessien teoreettinen formalismi käytiin yksityiskohtaisesti läpi, ja
keskeisimmät yhtälöt johdettiin tarkasti. Työn kannalta oleellisin suure oli sironnan
vaikutusala.

Työssä tarkasteltujen parittoman massaluvun ytimien mallintamisessa käytetty
malli oli MQPM, joka itsessään rakentuu BCS-mallin ja QRPA:n päälle. MQPM:n
soveltaminen parittoman massaluvun ytimien mallintamiseen tapahtui siten tekemällä
ensiksi BCS- ja QRPA-laskut parittomien ytimien vieressä oleville parillis-parillisille
referenssiytimille (126Te, 128Xe, 132Xe and 134Ba), ja käyttämällä näistä saatuja tu-
loksia haluttujen MQPM-laskujen tekemiseen. Valitusta ydinmallista saatiin ytimien
tilojen aaltofunktiot ja näitä vastaavat energiat, sekä redusoidut neutraalin virran
yhden kappaleen siirtymätiheydet, joita käytettiin vaikutusalojen laskemisessa. Työn
lopullisina tuloksina olivat energiakeskiarvoistetut kokonaisvaikutusalat, jotka saatiin
integroimalla kaksoisdifferentiaalinen vaikutusala kulmakoordinaattien yli, summaa-
malla ytimen kaikkien mahdollisten lopputilojen yli, ja integroimalla lopuksi saatu
vaikutusala ja neutriinojen energiaspektri energian yli. Neutriinojen energiaspektrille
käytettiin muunnettua termistä kahden parametrin Fermi-Dirac jakaumaa.

Tuloksina saatujen QRPA-spektrien yhteensopivuus vastaavien kokeellisten spek-
trien kanssa oli kohtalainen, kun taas MQPM-spektreissä oli muutamia poikkeavuuk-
sia, erityisesti spektrien matalaenergiapäässä. Näillä oli minimaalinen vaikutus vaiku-
tusaloihin, joiden tulokset olivat verrattavissa aiempien vastaavanlaisten tutkimuksien
tulosten kanssa. Kaiken kaikkiaan saatuihin tuloksiin voidaan suhtautua varovaisen
optimistisesti, vaikka ne ovatkin tutkimuskysymyksen kannalta preliminäärisiä.
Mikään tuloksissa ei suoranaisesti viitannut siihen, että tutkittuja ytimiä ei voitaisi
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käyttää neutriinojen havaitsemisessa, mutta aiheeseen liityville jatkotutkimuksille on
tarvetta, jotta kysymykseen voidaan vastata tyhjentävästi.
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1 Introduction

A supernova event is the final stage in the stellar evolution of a massive star.
Categorized as a cataclysmic variable, a supernova consists of a violent explosion
that takes place after the silicon burning stage, leaving behind a neutron star or a
black hole if the event does not destroy the star altogether[1]. Supernovae are some
of the most notable astrophysical events that occur in the universe and an active
area of research for a variety of reasons. While they are perhaps best known as a
major contributor to the abundances of heavy elements in the universe, supernova
explosions also release a considerable amount of energy, some in the form of visible
light, which together with their transient nature has made them influential in the
history of astronomy1.

A considerable fraction of the energy released in a supernova is radiated in the
form of neutrinos, that are created in the many nuclear reactions that occur during
the explosion. As neutrinos have a mean free path in matter that is most conveniently
measured in light years[3], most of them reach earth unobstructed. This creates an
opportunity to study the conditions inside a star during a supernova explosion by
measuring the properties of the emitted neutrinos. There are also a number of open
questions regarding neutrinos themselves, such as the value of their rest mass[4],
the details of CP violation in the lepton sector of the Standard Model[5] and their
possible Majorana character[6], and research into astrophysical neutrinos can help
shed light into them as well. The drawback of the neutrinos being hardly impeded
by matter at all is that detecting them on earth is extremely difficult, requiring
enormous facilities designed for this purpose that are capable of detecting only a
tiny fraction of the total number of neutrinos passing through[7].

The detection of neutrinos is based on them interacting with matter via weak
interaction. In particular, a neutrino scattering off a nucleus by the exchange of an
intermediate vector boson can leave the nucleus in an excited state. The subsequent
decay of this excited state can then be observed by the detection of the decay

1SN1572 and SN1604 provided counter-evidence against the static Aristotelian model of the
universe[2].
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products. Atomic nuclei can therefore be used to indirectly detect neutrinos through
neutrino-nucleus scattering. The question of which nuclei would be fit for such use
is then of high importance. Nuclei chosen for detectors should have a sufficiently
high neutrino scattering cross sections to maximize the number of reactions. As the
timescales in experiments where neutrinos are detected can be of the order of months,
the nuclei should also be stable enough that their natural radioactive decay does not
interfere with the measurements considerably and create false positives. While there
are several other properties of the nuclei that need to be considered (such as price,
availability of the desired isotopes and chemical properties of the elements), these
are the most important from a nuclear physics perspective.

In this thesis we explore the possibility of using the only stable isotopes of Iodine
and Caesium, namely 127I and 133Cs, in supernova neutrino detection by calculating
the weak neutral current neutrino-nucleus scattering cross section. The nuclear model
chosen to describe the nuclei of interest was the microscopic quasiparticle-phonon
model (MQPM)[8], a model based on BCS quasiparticles[9] and QRPA phonons[10].
MQPM is applied to an odd-A nucleus by first selecting an adjacent even-even
nucleus as a reference nucleus, and then performing the BCS and QRPA calculations
on it. The generated BCS quasiparticles and QRPA phonons are then used to
construct the quasiparticle-phonon states for the odd-A nucleus[8]. For the odd-A
nuclei considered in this thesis, all adjacent even-even nuclei (126Te, 128Xe, 132Xe and
134Ba) were utilized as reference nuclei, i.e. both reference nuclei candidates for both
odd-A nuclei were used. The details of these nuclear models are presented in section
2, along with a detailed review of the theory behind neutrino-nucleus scattering.

In section 3 we present the results of the calculations of this thesis. These include
the QRPA spectra of the reference nuclei, the MQPM spectra of the odd-A nuclei
and the energy averaged total cross sections of the scattering reactions. The acquired
results are analyzed and, in the case of the energy spectra, their agreement with
measurements assessed using experimental data, while the theoretical cross sections
are merely compared with results of similar earlier calculations due to the absence
of experimental results. In the same section we also provide a brief overview on
the conditions inside a star undergoing a supernova explosion, focusing on the role
of neutrinos and what reactions generate them. In particular, we are interested in
the shape of their energy distribution as supernova neutrinos are emitted with a
wide range of energies, which is a fact that needs to be taken into account when



13

computing the total cross sections of the scatterings. Finally, in section 4 we discuss
the conclusions drawn from the results and suggestions of possible topics for further
research on the subject.
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2 Theory

In this section we will present the theoretical framework that was used to describe
the phenomena relevant to this thesis. The theory could be divided into the particle
physics part, focused mainly on semileptonic nuclear processes and the cross sections
of the scattering reactions, and the nuclear physics part, composed of general nuclear
theory and specific nuclear models that were used in this work. Despite this, we have
divided this section into three subsections instead of two. In the first, our goal is to
derive an equation for the double differential cross section of the scattering process.
In the second, we will discuss the nuclear physics of this thesis and how it enters
into the cross section calculations. In the third and final part we combine the results
of the previous two parts for an expression for the aforementioned cross section in
terms of parameters that we can input into the calculations, and quantities that arise
from the nuclear model used to construct the eigenstates and -energies of the nuclei
of interest.

2.1 Semileptonic neutrino reactions

We will first consider the general phenomenology of neutrino-nucleus scattering. Our
starting point will be the couplings between the weak intermediate vector boson fields
and the lepton and nuclear fields. We will build the Hamiltonian of the scattering
process from these and utilize a standard formalism of semileptonic nuclear processes
to arrive at an expression for the double differential reaction cross section in terms
of spherical tensor multipole operators. Throughout this section, we will be working
on the nuclear level. That is, the quark degrees of freedom inside nucleons will
be omitted and the nucleons will be treated as point-like particles. Their internal
structure is taken into account in later sections.
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2.1.1 Reaction basics and lepton fields

In the following we will consider the scattering events due to weak interaction between
low-energy astrophysical (anti)neutrinos and target nuclei. Both weak neutral- and
charged-currents will be discussed. The processes of interest can be represented by

l +N(A,Z)→ l′ +N ′(A,Z ′), (1)

where l and l′ are the incoming and outgoing leptons with four momenta kµ and k′µ,
and N(A,Z) and N ′(A,Z ′) the incoming and outgoing nuclei (with mass number A,
proton numbers Z and Z ′ and four momenta Kµ and K ′µ) respectively. These type
of processes are mediated by the exchange of intermediate vector bosons W± and Z0.
These gauge boson fields couple to charge changing (J (±)

µ ) and neutral (J (0)
µ ) weak

lepton and nuclear fields through the interaction Lagrangian density[11, Chapter 42]

LI(x) = g

2
√

2

[
J (−)
µ W+

µ + J (+)
µ W−

µ

]
+ g

2 cos θW
J (0)
µ Z0

µ (= −HI(x)), (2)

where g is a dimensionless coupling constant and θW the Weinberg angle. The
basic vertices associated with the couplings in the above Lagrangian density are
illustrated in figure 1. These basic vertices can be used to construct the Feynman
diagram of the second order process where a lepton and a nucleon interact through
an exchange of an intermediate boson, which is presented in figure 2. The four
momentum transfer associated with the reaction can be seen from the figure to
be qµ = k′µ − kµ = Kµ − K ′µ. The S-matrix of the process, which consists of the
lepton and hadron currents jµ(x) and Jµ(x) and the gauge boson propagator, can
be derived from the above Lagrangian density together with the Feynman rules of
the electroweak theory[12, Appendix B]. Instead of dealing with the gauge boson
propagator, it is convenient to consider the case when qµqµ �M2

B, that is, when the
transferred four-momentum is small compared to the gauge boson (B = W,Z) mass.
In this case the gauge boson propagator reduces to[12, Page 507]

−i(gµν − qνqµ
M2
B

)
qµqµ −M2

B + iε
≈ igµν
M2

B

, (3)

and the exchange of a gauge boson reduces to a point-like current-current interaction
between a lepton and a nucleon. We can now define an effective Hamiltonian density
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ν,p

l−,n W+

ν,p,n

ν,p,n Z0

ν,n

l+,p W−

J (−)
µ J (0)

µ J (+)
µ

Figure 1. The basic vertices of the couplings associated with the Lagrangian
density of equation 2 between the charge changing (J (±)

µ ) and neutral (J (0)
µ )

weak lepton and nuclear fields, and the intermediate vector bosons (W± and
Z0)[11, Chapter 42]. The nucleons (p and n) are taken to be point-like particles
without internal structure. The quark degrees of freedom are taken into account
later in the form of nuclear form factors.

Z0,W±
ν

ν ′,l∓k′µ

kµ

K ′µ

Kµ

N(A,Z)

N ′(A,Z ′)
qµ

jµ Jµ

Figure 2. Feynman diagram illustrating the interaction between an uncharged
lepton (ν) and an atomic nucleus (N(A,Z)) through the exchange of an intermedi-
ate vector boson (Z0 orW±). The outgoing lepton is uncharged in neutral current
reactions and charged in charged current reactions, with a charge opposite to that
of the exchanged vector boson. The lepton (jµ) nuclear (Jµ) currents are also
present to illustrate the connection to the effective current-current Hamiltonian
of equation 6.

Heff(x) = G√
2
jµ(x)J µ(x). (4)

where
G√

2
= g2

8M2
W

= g2

8M2
Z cos2 θW

, (5)

which reproduces the S-matrix of the process of figure 2 at the low momentum
transfer limit when it is treated in the lowest order.

The effective Hamiltonian operator Ĥeff operating on the Hilbert spaces of the
nucleus and the free lepton is acquired by integrating over the spatial coordinates

Ĥeff =
∫
Heff(x)d3x = G√

2

∫
jµ(x)J µ(x)d3x. (6)
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Using this, we get for the Hamiltonian matrix elements between states

Hfi = 〈f | Ĥeff |i〉 =
∫
〈f |Heff |i〉 d3x = G√

2

∫
〈f | jµ(x) |i〉 〈f | J µ(x) |i〉 d3x. (7)

After specifying the interaction Hamiltonian matrix elements of the system, the rate
of the reaction can be determined through Fermi’s golden rule. The transition rate
w from initial state i to final state f is given by[13, Chapter 5.7]

w(i→ f) = 2π|Hfi|2δ(Ef − Ei), (8)

where this expression is understood to be integrated over the density of states

ρ(Ef ) = dn
dEf

. (9)

The nucleus is extremely heavy compared to the incoming leptons and its recoil
energy will be neglected. The density of states for a box-normalized plane wave in
3D k-space is known to be[14, Chapter 3]

ρ(k′) = V
d3k′

(2π)3 = V

(2π)3 (k′)2dk′dΩ, (10)

where V is the volume of the box. The rightmost equality of equation 10 follows
from approximating the variable k′ as continuous and transforming to spherical
coordinates in k-space. Now using the fact that Ek′dEk′ = k′dk′ we get

ρ(k′) = V

(2π)3 (k′)2dk′dΩ = V

(2π)3k
′Ek′dEk′dΩ = ρ(Ek′) = ρ(Ef ). (11)

Integrating the transition rate over this with respect to energy now yields

w(i→ f) =
∫ ∞

0
2π|Hfi|2δ(Ef − Ei)

V

(2π)3k
′Ek′dEk′dΩ =

V

(2π)2

∫ ∞
0
|Hfi|2δ(EK′ + Ek′ − EK − Ek)k′Ek′dEk′dΩ = k′Ek′

(2π)2V |Hfi|2dΩ.
(12)

The scattering cross section σ in an experimental setting is defined as[15, Page 89]

σ = Wr(i→ f)
JνNN

= w(i→ f)
Jν

, (13)
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where Wr(i→ f) is the number of reactions/unit time, w is w integrated over the
angular coordinates, NN the number density of the target particles and Jν the flux
of the incoming particles. The flux is defined as the product of the velocity vν of the
incoming particles and their number density Nν . Now considering we have vν = c = 1
and Nν = 1/V , we get Jν = 1/V . The differential of the cross section is thus

dσ = w(i→ f)
Jν

= k′Ek′

(2π)2V |Hfi|2
1

1/V dΩ = k′Ek′

(2π)2V
2|Hfi|2dΩ (14)

and the differential cross section

dσ
dΩ = k′Ek′

(2π)2V
2|Hfi|2. (15)

To actually apply the above equation, the matrix elements of the nuclear and lepton
currents between the states need to be determined. We will next consider the lepton
current first, as it is relatively simple, consisting of couplings between point-like
Dirac particles that do not experience the often troublesome strong interaction.

Lepton fields can be treated mathematically as quantized Dirac fields normalized
to a box of volume V . The field operator ψ(x) is then given by[11, Page 431]

ψ(x) = 1√
V

∑
pλ

[
apλu(pλ)eip·x + b†pλv(−pλ)e−ip·x

]
, (16)

where apλ is the lepton annihilation and b†pλ the antilepton creation operator, λ
the helicity quantum number and u and v the Dirac spinors for a lepton and an
antilepton respectively. Leptons in the weak Hamiltonian couple through the vector
(γµ) and axial vector (γµγ5) forms, which lead to the lepton current[11, Chapter 42]

jµ(x) = ψl′γµ(1− γ5)ψl, (17)

where the adjoint ψ is defined as ψ = ψ†γ0. The complete state s of the system
consists of the nuclear state of a definite angular momentum quantum numbers Js
and Ms, and the free lepton state of momentum ks

|s〉 = |nsJsMs〉 |ksλs〉 . (18)

The ns in the above expression is used to denote the rest of the quantum numbers
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required to completely specify the quantum state of the nucleus. The lepton current
operator of equation 17 operates only on the lepton part of the state of the system so
we can ignore the nuclear part of equation 18 for now. For the reaction of equation 1
involving neutrinos we now get

〈f | jµ(x) |i〉 = 〈k′σ′|ψl′γµ(1− γ5)ψl |kσ〉 = 1
V

∑
p′,p
λ′,λ

〈0| ak′σ′
[
a†p′λ′u

†(p′λ′)e−ip′·x+

bp′λ′v
†(−p′λ′)eip′·x

]
γ0γµ(1− γ5)

[
apλu(pλ)eip·x + b†pλv(−pλ)e−ip·x

]
a†kσ |0〉 .

(19)

The above expression essentially consists of four terms that are proportional to the
vacuum expectation values of ak′σ′a†p′λ′apλa

†
kσ, ak′σ′a

†
p′λ′b

†
pλa
†
kσ, ak′σ′bp′λ′apλa

†
kσ and

ak′σ′bp′λ′b
†
pλa
†
kσ. The second and the third of these obviously vanish, as they have a

different number of creation and annihilation operators for both types of particles.
The fourth would lead to a delta function term of δk′kδσ′σ, which would correspond
to the case where the lepton is in the same state both before and after the scattering,
meaning that no scattering would take place. Thus only the first of these terms
contribute and equation 19 reduces to

〈f | jµ(x) |i〉 = 1
V

∑
p′,p
λ′,λ

〈0| ak′σ′
[
a†p′λ′u

†(p′λ′)e−ip′·x
]
γ0γµ(1− γ5)

[
apλu(pλ)eip·x

]
a†kσ |0〉

= 1
V

∑
p′,p
λ′,λ

u(p′λ′)γµ(1− γ5)u(pλ) 〈0| ak′σ′a†p′λ′apλa
†
kσ |0〉 e−i(p

′−p)·x = 1
V

∑
p′,p
λ′,λ

u(p′λ′)γµ·

(1− γ5)u(pλ)δk′p′δσ′λ′δkpδσλe−i(p
′−p)·x = 1

V
u(k′σ′)γµ(1− γ5)u(kσ)e−i(k′−k)·x =

1
V
u(k′σ′)γµ(1− γ5)u(kσ)e−iq·x ≡ 1

V
u(k′)γµ(1− γ5)u(k)e−iq·x,

(20)

where we have dropped the spin quantum numbers σ′ and σ, since they will be
summed over later. In a similar manner, for the reaction involving antineutrinos we
get

〈f | jµ(x) |i〉 = 1
V
v(−k)γµ(1− γ5)v(k′)e−iq·x. (21)
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Based on these results, we can write the lepton current matrix elements as

〈f | jµ(x) |i〉 = lµe
−iq·x = (l0,− l)e−iq·x, (22)

where

lµ = 1
V
·


u(k′)γµ(1− γ5)u(k), for neutrino reactions,

v(−k)γµ(1− γ5)v(k′), for antineutrino reactions.
(23)

The nuclear current can be written in a similar fashion

〈f | Jµ(x) |i〉 = 〈f | (J0(x),−J (x)) |i〉 = (〈f | J0(x) |i〉 ,−〈f |J (x) |i〉) ≡

(J0(x)fi,−J (x)fi)
(24)

to express the effective Hamiltonian as

Hfi = G√
2

∫
lµe
−iq·x

(
J0(x)fi
J (x)fi

)
d3x = G√

2

∫
e−iq·x [l0J0(x)fi − l ·J (x)fi] d3x.

(25)

2.1.2 Plane wave decomposition in vector spherical harmonics

To proceed further, it is convenient to first expand the plane wave factor in equation
25 in terms of spherical harmonics. For this, we will define a spherical basis[13,
Chapter 3.11] by first defining a Cartesian basis with unit vectors eq1 , eq2 and eq3

illustrated in figure 3 and given by

eq3 ≡
q

|q|
. (26)

The unit vectors eq1 and eq2 are determined by requiring that the set of unit vectors
be mutually orthonormal and that the coordinate system be right handed. We can
then construct a spherical basis by defining the unit vectors

e0 ≡ eq3 (27)

and
e± ≡ ∓

1√
2

(
eq1 ± ieq2

)
. (28)
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eq3

eq1 eq2

q

Figure 3. The Cartesian unit vectors used to define the spherical basis of
equations 27 and 28. The vector eq3 is defined by equation 26, which guarantees
that q ‖ eq3 .

In this basis any arbitrary three-vector l can be expanded as[10, Chapter 2.1.3]

l =
∑

λ=0,±1
lλe†λ = l1e†1 + l−1e†−1 + lλ=0e†0 = l1e†1 + l−1e†−1 + l3e†0, (29)

where we have adopted the notation lλ=0 ≡ l3, since l0 is already used to denote the
time component of the four-vector lµ.

Using the completeness of the spherical harmonics and spherical coordinates
(r,Ω) = (r,θ,φ) we can write[16]

eiq·x = eiqr cos θ =
∑
l′
Cl′(r)Y 0

l′ (Ω), (30)

where q = |q|. By operating on the above expression with
∫
Y 0∗
l (Ω)dΩ =

∫
Y 0
l (Ω)dΩ (31)

and utilizing the orthogonality of the spherical harmonics we get
∫
Y 0
l (Ω)eiqr cos θdΩ =

∑
l′
Cl′(r)

∫
Y 0∗
l Y 0

l′ (Ω)dΩ =
∑
l′
Cl′(r)δll′ = Cl(r). (32)

Substituting the explicit form of the spherical harmonic[17, Page 128]

Y 0
l =

√
2l + 1

4π Pl(cos θ) = l̂√
4π
Pl(cos θ) (33)
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into the left side of equation 32, we can write Cl as

Cl(r) =
∫ l̂√

4π
Pl(cos θ)eiqr cos θdΩ = l̂√

4π

∫ 1

−1

∫ 2π

0
Pl(cos θ)eiqr cos θdφd(cos θ) =

l̂√
4π

2π
∫ 1

−1
Pl(cos θ)eiqr cos θd(cos θ) = l̂

√
π

2
−il
−il

2

∫ 1

−1
Pl(cos θ)eiqr cos θd(cos θ) =

l̂
√
π

2
−il

jl(qr) = l̂
√

4πiljl(qr),

(34)

where the second to last equality follows from the integral representation of the
spherical Bessel function of the first kind jα(x)[18, Page 438]:

jα(x) = −i
α

2

∫ 1

−1
Pα(cos θ)eix cos θd(cos θ). (35)

The plane wave expansion in spherical harmonics is then

eiq·x =
∑
l

il
√

4πl̂jl(qr)Y 0
l (Ω) =

∑
l

il
√

4πl̂jl(ρ)Y 0
l (Ω), (36)

where ρ = qr.
Next we will write the earlier result in terms of the vector spherical harmonics

YM
Jl1 and use them to express the Hamiltonian matrix elements in terms of irreducible

tensor operators. The vector spherical harmonics are defined by[11, Page 55]

YM
Jl1(Ω) ≡

∑
m′λ′

(lm′1λ′|JM)Y m′

l (Ω)eλ′ . (37)

Multiplying both sides of this equation by (lm1λ|JM) and summing over J and M
we get

∑
JM

(lm1λ|JM)YM
Jl1(Ω) =

∑
JMmλ

(lm1λ|JM)(lm′1λ′|JM)Y m′

l (Ω)eλ′ =
∑
mλ

δmm′δλλ′Y
m′

l (Ω)eλ′ = Y m
l (Ω)eλ.

(38)
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Combining this result with equation 36 we get

eiq·xeλ =
∑
l

il
√

4πl̂jl(ρ)Y 0
l (Ω)eλ =

∑
l

il
√

4πl̂jl(ρ)
∑
JM

(l01λ|JM)YM
Jl1(Ω) =

∑
JMl

il
√

4πl̂jl(ρ)(l01λ|JM)YM
Jl1(Ω) =

∑
Jl

il
√

4πl̂jl(ρ)(l01λ|Jλ)Yλ
Jl1(Ω),

(39)

where in deriving the last equality we used the fact that for a Clebsch–Gordan
coefficient not to vanish, it must fulfil the sum condition for the magnetic quantum
numbers[10, Page 7]. In this case this leads to the equation 0 + λ = M , so the sum
over M contains only a single non-vanishing term. The sum over l can be similarly
reduced to a small number of terms by utilizing the triangular condition of the
Clebsch–Gordan coefficients[10, Page 7]. In this case the triangular condition leads
to

|l − 1| ≤ J ≤ l + 1⇒ l = J − 1, J, J + 1, (40)

so the sum over l reduces to only three terms. We will deal with the cases corre-
sponding to different λ-values separately.

When λ = 0, we get from equation 39 and the above triangular condition

eiq·xe0 =
√

4π
∑
J≥0

[
iJ−1 ̂(J − 1)jJ−1(ρ)((J − 1)010|J0)Y0

J(J−1)1(Ω)+

iJ ĴjJ(ρ)(J010|J0)Y0
JJ1(Ω) + iJ+1Ĵ + 1jJ+1(ρ)((J + 1)010|J0)Y0

J(J+1)1(Ω)
]
.

(41)

We will use the following identities for evaluating the Clebsch–Gordan coefficients in
the above expression[19, Appendix B]:

(j1m10|(j1 + 1)m) =

√√√√(j1 −m+ 1)(j1 +m+ 1)
(2j1 + 1)(j1 + 1) , (j1m10|j1m) = m√

j1(j1 + 1)
and

(j1m10|(j1 − 1)m) = −

√√√√(j1 −m)(j1 +m)
j1(2j1 + 1) .

(42)

From these we get

((J − 1)010|J0) =

√√√√(J − 1− 0 + 1)(J − 1 + 0 + 1)
(2J − 2 + 1)(J − 1 + 1) =

√√√√ J2

(2J − 1)J =
√

J

2J − 1 ,

(43)
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((J + 1)010|J0) = −

√√√√(J + 1− 0)(J + 1 + 0)
(J + 1)(2J + 2 + 1) = −

√√√√ (J + 1)2

(J + 1)(2J + 3) = −
√
J + 1
2J + 3

(44)

and

(J010|J0) = 0. (45)

With these, we get from equation 41

eiq·xe0 =
√

4π
∑
J≥0

iJ
[
i−1 ̂(J − 1)

√
J

2J − 1jJ−1(ρ)Y0
J(J−1)1(Ω)−

iĴ + 1
√
J + 1
2J + 3jJ+1(ρ)Y0

J(J+1)1(Ω)
]

= −
√

4π
∑
J≥0

iJ
[
i
√
JjJ−1(ρ)Y0

J(J−1)1(Ω)+

i
√
J + 1jJ+1(ρ)Y0

J(J+1)1(Ω)
]

= −i
∑
J≥0

√
4π(2J + 1)iJ

[√
J

2J + 1jJ−1(ρ)Y0
J(J−1)1(Ω)

+
√
J + 1
2J + 1jJ+1(ρ)Y0

J(J+1)1(Ω)
]
.

(46)

The above expression can be simplified by the identity[20, Chapter 5]

∇r [jl(r)Y m
l (Ω)] =

√
l + 1
2l + 1jl+1(ρ)Ym

l(l+1)1(Ω) +
√

l

2l + 1jl−1(ρ)Ym
l(l−1)1(Ω), (47)

where the three gradient is taken in the spherical coordinates. This results in

eiq·xe0 = −i
∑
J≥0

√
4π(2J + 1)iJ∇ρ

[
jJ(ρ)Y 0

J (Ω)
]
, (48)

where the three gradient is now in spherical coordinates with ρ = qr as the radial
coordinate. The operators ∇ρ and ∇r are related by

ρ = qr ⇒ dρ = qdr ⇒ ∇ρ = ρ̂
∂

∂ρ
+ θ̂1

ρ

∂

∂θ
+ φ̂ 1

ρ sin θ
∂

∂φ
= r̂

∂

q∂r
+ θ̂ 1

qr

∂

∂θ
+

φ̂
1

qr sin θ
∂

∂φ
= 1
q

(
r̂
∂

∂r
+ θ̂1

r

∂

∂θ
+ φ̂ 1

r sin θ
∂

∂φ

)
= 1
q
∇r,

(49)
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where ρ̂, r̂, θ̂ and φ̂ are the unit vectors of the spherical coordinate systems. In the
above derivation, we used the fact that

ρ̂ = qr

|qr|
= qr

q|r|
= r

|r|
= r̂. (50)

We can now write equation 48 as

eiq·xe0 = − i
q

∑
J≥0

√
4π(2J + 1)iJ∇r

[
jJ(ρ)Y 0

J (Ω)
]

=

− i

q

∑
J≥0

iJ
√

4πĴ∇
[
jJ(ρ)Y 0

J (Ω)
]
,

(51)

where we have dropped the subscript r from the three gradient operator.
The cases λ = ±1 are similar and will be dealt together. In these cases, equation

39 leads to

eiq·xeλ =
√

4π
∑
J≥1

[
iJ−1 ̂(J − 1)jJ−1(ρ)((J − 1)01λ|Jλ)Yλ

J(J−1)1(Ω)+

iJ ĴjJ(ρ)(J01λ|Jλ)Yλ
JJ1(Ω) + iJ+1 ̂(J + 1)jJ+1(ρ)((J + 1)01λ|Jλ)Yλ

J(J+1)1(Ω)
]
.

(52)

For the explicit form of the Clebsch–Gordan coefficients in the above equation we
will use the following identities[19, Appendix B] for λ = +1:

(j1(m− 1)11|(j1 + 1)m) =

√√√√(j1 +m+ 1)(j1 +m)
(2j1 + 2)(2j1 + 1) , (53)

(j1(m− 1)11|j1m) = −

√√√√(j1 −m+ 1)(j1 +m)
2j1(j1 + 1)

(54)

and

(j1(m− 1)11|(j1 − 1)m) =

√√√√(j1 −m+ 1)(j1 −m)
2j1(2j1 + 1) , (55)
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and the following identities for λ = −1:

(j1(m+ 1)1− 1|(j1 + 1)m) =

√√√√(j1 −m+ 1)(j1 −m)
(2j1 + 2)(2j1 + 1) , (56)

(j1(m+ 1)1− 1|j1m) =

√√√√(j1 +m+ 1)(j1 −m)
2j1(j1 + 1)

(57)

and

(j1(m+ 1)1− 1|(j1 − 1)m) =

√√√√(j1 +m+ 1)(j1 +m)
2j1(2j1 + 1) . (58)

Using these, we get

((J − 1)011|J1) =

√√√√(J − 1 + 1 + 1)(J − 1 + 1)
(2J − 2 + 2)(2J − 2 + 1) =

√√√√ J(J + 1)
2J(2J − 1) =

√
J + 1

2(2J − 1) ,

(J011|J1) = −

√√√√(J − 1 + 1)(J + 1)
2J(J + 1) = −

√√√√ J(J + 1)
2J(J + 1) = −

√
1
2 and

((J + 1)011|J1) =

√√√√ (J + 1)(J + 1− 1)
2(J + 1)(2J + 2 + 1) =

√√√√ J(J + 1)
2(J + 1)(2J + 3) =

√
J

2(2J + 3) ,

(59)

and

((J − 1)01− 1|J − 1) =

√√√√ (J + 1)(J − 1 + 1)
(2J − 2 + 2)(2J − 1) =

√√√√ J(J + 1)
2J(2J − 1) =

√
J + 1

2(2J − 1) ,

(J01− 1|J − 1) =

√√√√(J − 1 + 1)(J + 1)
2J(J + 1) =

√√√√ J(J + 1)
2J(J + 1) =

√
1
2 and

((J + 1)01− 1|J − 1) =

√√√√(J + 1− 1 + 1)(J + 1− 1)
2(J + 1)(2J + 2 + 1) =

√√√√ J(J + 1)
2(J + 1)(2J + 3) =

√
J

2(2J + 3) .

(60)

As it turns out, aside from the signs of the j1 = J coefficients, the Clebsch–Gordan
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coefficients are the same for both values of λ. Thus, for equation 52 we now get

eiq·xeλ =
√

4π
∑
J≥1

iJ
[
i−1 ̂(J − 1)

√
J + 1

2(2J − 1)jJ−1(ρ)Yλ
J(J−1)1(Ω)∓

Ĵ

√
1
2jJ(ρ)Yλ

JJ1(Ω) + i ̂(J + 1)
√

J

2(2J + 3)jJ+1(ρ)Yλ
J(J+1)1(Ω)

]
=

√
4π

∑
J≥1

iJ
[
∓
√

2J + 1
2 jJ(ρ)Yλ

JJ1(Ω) + i

√√√√J(2J + 3)
2(2J + 3) jJ+1(ρ)Yλ

J(J+1)1(Ω)−

i

√√√√(J + 1)(2J − 1)
2(2J − 1) jJ−1(ρ)Yλ

J(J−1)1(Ω)
]

=
√

4π
∑
J≥1

iJ
[
∓
√

2J + 1
2 jJ(ρ)Yλ

JJ1(Ω)+

i

√
J

2 jJ+1(ρ)Yλ
J(J+1)1(Ω)− i

√
J + 1

2 jJ−1(ρ)Yλ
J(J−1)1(Ω)

]
=
∑
J≥1

√
4π(2J + 1)

2 iJ
{

∓ jJ(ρ)Yλ
JJ1(Ω)− i

[√
J + 1
2J + 1jJ−1(ρ)Yλ

J(J−1)1(Ω)−
√

J

2J + 1jJ+1(ρ)Yλ
J(J+1)1(Ω)

]}
(61)

for both λ = ±1.
The different orders of spherical Bessel functions in equation 61 need to be dealt

with in order to proceed. The following differential relations can be used to express
spherical Bessel functions of a given order in terms of one with different order[19,
Page 439]: (

1
r

d
dr

)m (
rJ+1jJ(r)

)
= rJ−m+1jJ−m(r) (62)

and (
1
r

d
dr

)m (
r−JjJ(r)

)
= (−1)mr−J−mjJ+m(r). (63)

Choosing m = 1 we get
(

1
r

d
dr

)(
rJ+1jJ(r)

)
= rJjJ−1(r)⇔ 1

r

(
(J + 1)rJjJ(r) + rJ+1djJ

dr (r)
)

= rJjJ−1(r)

⇔
(

d
dr + J + 1

r

)
jJ(r) = jJ−1(r)⇒

(
d
qdr + J + 1

qr

)
jJ(qr) = jJ−1(qr)⇔

1
q

(
d
dr + J + 1

r

)
jJ(qr) = jJ−1(qr)

(64)
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and(
1
r

d
dr

)(
r−JjJ(r)

)
= −r−J−1jJ+1(r)⇔ rJ

(
Jr−J−1jJ(r)− r−J djJ(r)

dr

)
= jJ+1(r)

⇔
(
J

r
− d

dr

)
jJ(r) = jJ+1(r)⇒

(
J

qr
− d
qdr

)
jJ(qr) = jJ+1(qr)⇔

1
q

(
J

r
− d

dr

)
jJ(qr) = jJ+1(qr),

(65)

where we have used the transformation r → qr. With these above results, equation
61 can be written as

eiq·xeλ =
∑
J≥1

√
2π(2J + 1)iJ

{
∓ jJ(ρ)Yλ

JJ1(Ω)− i
[√

J + 1
2J + 1jJ−1(ρ)Yλ

J(J−1)1(Ω)−
√

J

2J + 1jJ+1(ρ)Yλ
J(J+1)1(Ω)

]}
=
∑
J≥1

√
2π(2J + 1)iJ

{
∓ jJ(ρ)Yλ

JJ1(Ω)− i

q

[
√
J + 1
2J + 1

(
d
dr + J + 1

r

)
jJ(ρ)Yλ

JJ−1(Ω) +
√

J

2J + 1

(
d
dr −

J

r

)
jJ(ρ)Yλ

JJ+1(Ω)
]}
,

(66)

where we have abbreviated J + 1 = J+ and J− = J − 1. We can use the following
curl relation[20, Chapter 5] for the terms inside the square brackets in the above
expression:

∇×
[
jJ(qr)Yλ

JJ1(Ω)
]

= i

[√
J + 1
2J + 1

(
d
dr + J + 1

r

)
jJ(ρ)Yλ

JJ−1(Ω)+√
J

2J + 1

(
d
dr −

J

r

)
jJ(ρ)Yλ

JJ+1(Ω)
]
.

(67)

With this we finally get for equation 66

eiq·xeλ =
∑
J≥1

√
2π(2J + 1)iJ

{
∓ jJ(ρ)Yλ

JJ1(Ω)− 1
q
∇×

[
jJ(qr)Yλ

JJ1(Ω)
] }

=

−
∑
J≥1

√
2π(2J + 1)iJ

{
λjJ(ρ)Yλ

JJ1(Ω) + 1
q
∇×

[
jJ(qr)Yλ

JJ1(Ω)
] }
.

(68)
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2.1.3 Spherical tensor multipole operators and reaction cross section

We can now use the Hermitian adjoints of equations 51 and 68 to write equation 25
in terms of irreducible tensors. For the aforementioned adjoints we get

(
eiq·xe0

)†
= e−iq·xe†0 = i

q

∑
J≥0

(−i)J
√

4πĴ
{
∇
[
jJ(ρ)Y 0

J (Ω)
]}†

=

i

q

∑
J≥0

(−i)J
√

4πĴ∇
[
jJ(ρ)Y 0

J (Ω)
]
.

(69)

and

(
eiq·xeλ

)†
= e−iq·xe†λ = −

∑
J≥1

√
2π(2J + 1)(−i)J

{
λjJ(ρ)

(
Yλ
JJ1(Ω)

)†
+

1
q
∇×

[
jJ(qr)

(
Yλ
JJ1(Ω)

)†]}
= −

∑
J≥1

√
2πĴ(−i)J

{
λjJ(ρ)Y−λJJ1(Ω)+

1
q
∇×

[
jJ(qr)Y−λJJ1(Ω)

] }
,

(70)

where we used
(
Yλ
JJ1(Ω)

)†
=
∑
mλ′

(Jm1λ′|Jλ)Y m†
J (Ω)e†λ′ =

∑
mλ′

(Jm1λ′|Jλ)(−1)mY −mJ (Ω)(−1)λ′e−λ′

=
∑
mλ′

(−1)m+λ′(Jm1λ′|Jλ)Y −mJ (Ω)e−λ′ =
∑
mλ′

(−1)λ(Jm1λ′|Jλ)Y −mJ (Ω)e−λ′ =
∑
mλ′

(−1)λ+1(J −m1− λ′|J − λ)Y −mJ (Ω)e−λ′ = (−1)λ+1 ∑
mλ′

(Jm1λ′|J − λ)Y m
J (Ω)eλ′

= (−1)λ+1Y−λJJ1(Ω)⇒
(
Yλ
JJ1(Ω)

)†
= Y−λJJ1(Ω), for λ = ±1.

(71)

By defining operators[21]

MLM(q) ≡ jL(ρ)Y L
M and MM

JL(q) ≡ jL(ρ)YM
JL1 (72)

we can write the adjoints above as

e−iq·xe†0 = i

q

∑
J≥0

(−i)J
√

4πĴ∇ [MJ0(q)] (73)
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and
e−iq·xe†λ = −

∑
J≥1

√
2πĴ(−i)J

[
λM−λ

JJ (q) + 1
q
∇×M−λ

JJ (q)
]
. (74)

Next we will expand the l-vector from equation 25 in the spherical basis by

l =
∑

λ=±1,0
lλe
†
λ, (75)

where we will use the notation lλ=0 = l3 to avoid confusion with the time component
of the lµ vector. We will also use the adjoint of the expansion of the plane wave in
spherical harmonics of equation 36:

(
eiq·x

)†
= e−iq·x =

∑
l

(−i)l
√

4πl̂jl(ρ)Y 0
l (Ω) =

∑
l

(−i)l
√

4πl̂ML0(q). (76)

Using the above results, we can finally express the Hamiltonian of equation 6 as

Ĥeff = G√
2

∫ [
l0e
−iq·xJ0(x)fi − e−iq·xl ·J (x)fi

]
d3x = G√

2

∫ [
l0e
−iq·xJ0(x)fi−

∑
λ=±1,0

(
lλe
−iq·xe†λ

)
·J (x)fi

]
d3x = G√

2

∫ {
l0
∑
J≥0

(−i)J
√

4πĴMJ0(q)J0(x)fi−

l3
i

q

∑
J≥0

(−i)J
√

4πĴ∇ [MJ0(q)] ·J (x)fi +
∑
λ=±1

lλ
∑
J≥1

√
2πĴ(−i)J

[
λM−λ

JJ (q)+

1
q
∇×M−λ

JJ (q)
]
·J (x)fi

}
d3x = G√

2

∫ {∑
J≥0

(−i)J
√

4πĴ
[
l0MJ0(q)J0(x)fi−

i

q
l3∇ [MJ0(q)] ·J (x)fi

]
+
∑
λ=±1

lλ
∑
J≥1

√
2πĴ(−i)J

[
λM−λ

JJ (q) + 1
q
∇×M−λ

JJ (q)
]
·

J (x)fi
}
d3x = G√

2

{∑
J≥0

(−i)J
√

4πĴ
[
l0

∫
MJ0(q)J0(x)d3x− i

q
l3

∫
∇ [MJ0(q)] ·

J (x)d3x

]
+
∑
λ=±1

lλ
∑
J≥1

√
2πĴ(−i)J

[
1
q

∫ [
∇×M−λ

JJ (q)
]
·J (x)d3x+

λ
∫ [
M−λ

JJ (q)
]
·J (x)d3x

]}
= G√

2

{∑
J≥0

(−i)J
√

4πĴ
[
l0MJ0(q)− l3LJ0(q)

]
+

∑
λ=±1

∑
J≥1

√
2πĴ(−i)J lλ

[
T el
J−λ(q) + λT mag

J−λ (q)
]}
,

(77)
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where we have defined the multipole operators[21]

MJM(q) =
∫
MJM(q)J0(x)d3x,

LJM(q) = i

q

∫
∇ [MJM(q)] ·J (x)d3x,

T el
JM(q) = 1

q

∫ [
∇×MM

JJ(q)
]
·J (x)d3x and

T mag
JM (q) =

∫ [
MM

JJ(q)
]
·J (x)d3x.

(78)

It is worth mentioning that all of the above operators OJM have both vector (V) and
axial vector pieces and can be expressed as OJM = OV

JM −OA
JM . The Hamiltonian

matrix elements are given by equation 25 and they are

Hfi = G√
2
〈f |

{∑
J≥0

(−i)J
√

4πĴ
[
l0MJ0(q)− l3LJ0(q)

]
+

∑
λ=±1

∑
J≥1

√
2πĴ(−i)J lλ

[
T el
J−λ(q) + λT mag

J−λ (q)
]}
|i〉 .

(79)

The above equation holds generally for all nuclear wave functions and local nuclear
weak currents provided that the matrix elements of the multipole operators are
expressed in terms of their corresponding reduced matrix elements by using the
Wigner-Eckart theorem[11, Chapter 45]. This will be done shortly, but we will first
concentrate on the special case that is of interest here, namely the case of unobserved
and unoriented nuclear targets.

Equation 15 is a valid expression for the differential cross section when the quan-
tum numbers of the initial and final state are known. This isn’t the case in practice
as the magnetic quantum numbers of the nuclei involved in the reactions aren’t
usually known. When the nuclear targets are assumed unoriented and unobserved,
we will sum over all the initial and final state magnetic quantum numbers and
average over the initial states. We will also consider the sums over the spins of the
leptons involved in the reactions later. Taking these two factors into consideration,
the differential cross section can be written as[11, Page 480]

dσ
dΩ = 2k′Ek′

(2π)2

V 2

2
∑

lepton spins

1
2Ji + 1

∑
MiMf

|Hfi|2
 . (80)

It is worth pointing out that we will not average over the initial lepton spins since
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as far as the massless (anti)neutrinos of the present case are considered, there are
only left-handed neutrinos and right-handed antineutrinos. We do sum over their
initial and final state spins, however, as the 1− γ5 coupling of equation 23 projects
the correct type of lepton handedness and eliminates forbidden couplings[11, Page
Chapter 42].

We will first consider the sums over the magnetic quantum numbers of the nucleus,
i.e. we want to find an expression for

1
2Ji + 1

∑
MiMf

|Hfi|2 = 1
2Ji + 1

∑
MiMf

| 〈f |Heff|i〉 |2. (81)

For the factor | 〈f |Heff|i〉 |2 = 〈f |Heff|i〉∗ 〈f |Heff|i〉 we get using equation 79

| 〈f |Heff|i〉 |2 = G√
2

{∑
I≥0

iI
√

4πÎ
[
l∗0 〈f |MI0(q)|i〉∗ − l∗3 〈f |LI0(q)|i〉∗

]
+
∑
κ=±1

∑
I≥1

√
2π·

ÎiI l∗κ

[
〈f |T el

I−κ(q)|i〉
∗ + κ 〈f |T mag

I−κ (q)|i〉∗
]}

G√
2

{∑
J≥0

(−i)J
√

4πĴ
[
l0 〈f |MJ0(q)|i〉−

l3 〈f |LJ0(q)|i〉
]

+
∑
λ=±1

∑
J≥1

√
2πĴ(−i)J lλ

[
〈f |T el

J−λ(q)|i〉+ λ 〈f |T mag
J−λ (q)|i〉

]}
= 4π·

G2

2

{ ∑
I,J≥0

iI

iJ
Î Ĵ

[
l∗0 〈f |MI0(q)|i〉∗ − l∗3 〈f |LI0(q)|i〉∗

][
l0 〈f |MJ0(q)|i〉−

l3 〈f |LJ0(q)|i〉
]

+
∑

κ,λ=±1

∑
I,J≥1

iI

2iJ Î Ĵ l
∗
κlλ

[
〈f |T el

I−κ(q)|i〉
∗ + κ 〈f |T mag

I−κ (q)|i〉∗
]
·

[
〈f |T el

J−λ(q)|i〉+ λ 〈f |T mag
J−λ (q)|i〉

]
+
∑
λ=±1

∑
I≥0,J≥1

iI

iJ

√
2

2 Î Ĵ lλ

[
l∗0 〈f |MI0(q)|i〉∗−

l∗3 〈f |LI0(q)|i〉∗
][
〈f |T el

J−λ(q)|i〉+ λ 〈f |T mag
J−λ (q)|i〉

]
+
∑
κ=±1

∑
I≥1,J≥0

iI

iJ

√
2

2 Î Ĵ l∗κ·[
〈f |T el

I−κ(q)|i〉
∗ + κ 〈f |T mag

I−κ (q)|i〉∗
][
l0 〈f |MJ0(q)|i〉 − l3 〈f |LJ0(q)|i〉

]}
.

(82)

By first considering only the latter two sums in the above expression, the terms
resulting from expanding the square brackets are all proportional to factors of the form
〈f |OJ0(q)|i〉∗ 〈f |O′J ′µ(q)|i〉 and 〈f |OJ0(q)|i〉 〈f |O′J ′µ(q)|i〉∗, where OJ0(q) =MJ0(q)
or LJ0(q) and O′J ′µ(q) = T el

J ′−µ(q) or T mag
J ′−µ(q). We will now apply the Wigner-Eckart
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theorem[10, Page 29]

〈nfJfMf |OJM |niJiMi〉 = (−1)Jf−Mf

 Jf J Ji

−Mf M Mi

 (nfJf ||OJ ||niJi). (83)

By applying the theorem on the aforementioned factors, summing over the initial
and final states and averaging over the initial states, we get

1
2Ji + 1

∑
MiMf

〈f |OJ0(q)|i〉∗ 〈f |O′J ′µ(q)|i〉 = 1
2Ji + 1

∑
MiMf

(−1)Jf−Mf

 Jf J Ji

−Mf 0 Mi


(Jf ||OJ(q)||Ji)∗(−1)Jf−Mf

 Jf J ′ Ji

−Mf µ Mi

 (Jf ||OJ ′ ||Ji) = 1
2Ji + 1(Jf ||OJ(q)||Ji)∗·

(Jf ||OJ ′ ||Ji)
∑
MiMf

 Jf J Ji

−Mf 0 Mi

 Jf J ′ Ji

−Mf µ Mi

 = 1
2Ji + 1(Jf ||OJ(q)||Ji)∗·

(Jf ||OJ ′ ||Ji)
1

2J + 1δJJ
′δ0µ = 0,

(84)

due to µ = ±1 6= 0. In the above derivation, we have used the identity[19, Appendix
B][10, Chapter 1]

1
2Ji + 1

∑
MiMf

 Jf J Ji

−Mf M Mi

 Jf J ′ Ji

−Mf M ′ Mi

 = 1
(2J + 1)(2Ji + 1)δJJ

′δMM ′

(85)
and omitted the quantum numbers nf and ni for the sake of brevity. Thus the last
two sum terms of equation 82 do not contribute in the present case.

We will next consider the first two sum terms on the right side of equation 82.
Expanding the square brackets we get

4πG2

2

{ ∑
I,J≥0

iI

iJ
Î Ĵ

[
l∗0 〈f |MI0(q)|i〉∗ − l∗3 〈f |LI0(q)|i〉∗

][
l0 〈f |MJ0(q)|i〉 − l3·

〈f |LJ0|i〉
]

+
∑

κ,λ=±1

∑
I,J≥1

iI l∗κlλ
2iJ Î Ĵ

[
〈f |T el

I−κ(q)|i〉
∗ + κ 〈f |T mag

I−κ (q)|i〉∗
][
〈f |T el

J−λ(q)|i〉

+ λ 〈f |T mag
J−λ (q)|i〉

]}
=
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4πG2

2

{ ∑
I,J≥0

iI

iJ
Î Ĵ

[
l0l
∗
0| 〈f |MI0(q)|i〉 |2 − l∗0l3 〈f |MJ0(q)|i〉∗ 〈f |LI0(q)|i〉−

l0l
∗
3 〈f |LI0(q)|i〉∗ 〈f |MJ0(q)|i〉+ l3l

∗
3| 〈f |LJ0(q)|i〉 |2

]
+

∑
κ,λ=±1

∑
I,J≥1

iI l∗κlλ
2iJ Î Ĵ ·

[
〈f |T el

I−κ(q)|i〉
∗ 〈f |T el

J−λ(q)|i〉+ λ 〈f |T el
I−κ(q)|i〉

∗ 〈f |T mag
J−λ (q)|i〉+

κ 〈f |T mag
I−κ (q)|i〉∗ 〈f |T el

J−λ(q)|i〉+ λκ 〈f |T mag
I−κ (q)|i〉∗ 〈f |T mag

J−λ (q)|i〉
]}
.

(86)

The terms in the first sum above are all proportional to factors of the form
〈f |OJ0|i〉∗ 〈f |O′J ′0(q)|i〉, where OJ0(q), O′J0(q) = MJ0(q) or LJ0(q). Applying
the Wigner-Eckart theorem, summing over all initial and final states and averaging
over the initial states just like before we get

1
2Ji + 1

∑
MiMf

〈f |OJ0|i〉∗ 〈f |O′J ′0(q)|i〉 = δJJ ′

(2J + 1)(2Ji + 1)(Jf ||OJ ||Ji)∗(Jf ||O′J ||Ji)

= δJJ ′

Ĵ2(2Ji + 1)
(Jf ||OJ ||Ji)∗(Jf ||O′J ||Ji).

(87)

The terms in the second sum above are similarly all proportional to factors of the form
〈f |OJλ|i〉∗ 〈f |O′J ′µ(q)|i〉, where OJλ(q), O′Jλ(q) = T el

J−λ(q) or T mag
J−λ (q). Proceeding

in the same manner as above, we get

1
2Ji + 1

∑
MiMf

〈f |OJλ|i〉∗ 〈f |O′J ′µ(q)|i〉 = δJJ ′δλµ
(2J + 1)(2Ji + 1)(Jf ||OJ ||Ji)∗(Jf ||O′J ||Ji)

= δJJ ′δλµ

Ĵ2(2Ji + 1)
(Jf ||OJ ||Ji)∗(Jf ||O′J ||Ji).

(88)

Combining the results derived above, we finally get

1
2Ji + 1

∑
MiMf

| 〈f |Heff|i〉 |2 = 4π
2Ji + 1

G2

2

{ ∑
I,J≥0

iI

iJ
Î Ĵ

Ĵ2
δIJ

[
l0l
∗
0|(Jf ||MJ ||Ji)|2−

l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)− l0l∗3(Jf |LJ(q)||Ji)∗(Jf ||MJ(q)||Ji)+
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l3l
∗
3|(Jf ||LJ(q)||Ji)|2

]
+

∑
κ,λ=±1

∑
I,J≥1

iI l∗κlλ
2iJ

Î Ĵ

Ĵ2
δIJδκλ

[
(Jf ||T el

J (q)||Ji)∗(Jf ||T el
J (q)||Ji)+

λ(Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji) + κ(Jf ||T mag
J (q)||Ji)∗(Jf ||T el

J (q)||Ji)+

λκ(Jf ||T mag
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji)
]}

= 4π
2Ji + 1

G2

2

{∑
J≥0

[
l0l
∗
0|(Jf ||MJ ||Ji)|2+

l3l
∗
3|(Jf ||LJ(q)||Ji)|2 − l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)− l0l∗3(Jf |LJ(q)||Ji)∗·

(Jf ||MJ(q)||Ji)
]

+
∑
λ=±1

∑
J≥1

l∗λlλ
2

[
|(Jf ||T el

J (q)||Ji)|2 + |(Jf ||T mag
J (q)||Ji)|2+

λ(Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji) + λ(Jf ||T mag
J (q)||Ji)∗(Jf ||T el

J (q)||Ji)
]}
.

(89)

The above expression can be simplified by exploiting the properties of complex
numbers and relations involving vectors in the spherical basis defined earlier.

For all z ∈ C, we can define Re : C→ R by[22, Chapter 1]

Re(z) = 1
2(z + z∗). (90)

Now, by choosing z = l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji) we can write

− l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)− l0l∗3(Jf |LJ(q)||Ji)∗(Jf ||MJ(q)||Ji) =

− 2Re
(
l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)

)
,

(91)

and similarly with z = (Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji) we get

λ(Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji) + λ(Jf ||T mag
J (q)||Ji)∗(Jf ||T el

J (q)||Ji) =

2λRe
(
(Jf ||T el

J (q)||Ji)∗(Jf ||T mag
J (q)||Ji)

)
.

(92)

Next consider the scalar and vector products of vectors in the spherical basis. The
scalar product of an arbitrary vector l with itself is

〈l|l〉 = l · l∗ =
∑
λ

lλe†λ ·
∑
κ

l∗κeκ =
∑
κ,λ

lλl
∗
κe
†
λ · eκ =

∑
κ,λ

lλl
∗
κδλκ =

∑
λ

lλl
∗
λ =

l+l
∗
+ + l−l

∗
− + l3l

∗
3 ⇒ l+l

∗
+ + l−l

∗
− =

∑
λ=±1

lλl
∗
λ = l · l∗ − l3l∗3,

(93)
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where the dot product between the basis vectors follow from the orthonormality of
the basis. For vector products between the basis vectors, we utilize the relations
defining the spherical basis presented in equations 27 and 28. We get

e†0 × e0 = eq3 × eq3 = 0, (94)

e†± × e0 = ∓ 1√
2

(
eq1 ∓ ieq2

)
× eq3 = ∓ 1√

2

(
eq1 × eq3 ∓ ieq2 × eq3

)
=

∓ 1√
2

(
−eq2 ∓ ieq1

)
= ∓i 1√

2

(
∓eq1 + ieq2

)
= ±i

(
± 1√

2

(
eq1 ∓ ieq2

))
= ±ie∓

(95)

e†± × e± = 1
2
(
eq1 ∓ ieq2

)
×
(
eq1 ± ieq2

)
= 1

2(eq1 × eq1 ± ieq1 × eq2 ∓ ieq2 × eq1+

eq2 × eq2) = 1
2(±ieq1 × eq2 ∓ ieq2 × eq1) = 1

2(±ieq3 ± ieq3) = ±ieq3 = ±ie0,

(96)

e†± × e∓ = −1
2
(
eq1 ∓ ieq2

)
×
(
eq1 ∓ ieq2

)
= −1

2(eq1 × eq1 ∓ ieq1 × eq2 ∓ ieq2 × eq1

− eq2 × eq2) = 1
2(∓ieq1 × eq2 ∓ ieq2 × eq1) = 1

2(∓ieq3 ± ieq3) = 0,

(97)

and
e†0 × e± = −e0 × e†∓ = e†∓ × e0 = ∓ie±, (98)

where in deriving the final product we used the antisymmetricity of the vector
product and the relation

e†λ = (−1)λe−λ. (99)

Using the results above, the vector product l× l∗ takes the form

l× l∗ = (l−1e†− + l3e†0 + l1e†+)× (l∗−1e− + l∗3e0 + l∗1e+) = −il−1l
∗
−1e0−

il−1l
∗
3e+ + il3l

∗
−1e− − il3l∗1e+ + il1l

∗
3e− + il1l

∗
1e0 = i

[
(l1l∗3 + l3l

∗
−1)e−+

(l1l∗1 − l−1l
∗
−1)e0 − (l−1l

∗
3 + l3l

∗
1)e+

]
.

(100)
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We denote
(l× l∗)3 = (l× l∗) · e†0 = i(l1l∗1 − l−1l

∗
−1). (101)

These results can then be used to simplify equation 89. Consider first the first
summand on the right side of equation 89. Using the equations above we can write

l0l
∗
0|(Jf ||MJ ||Ji)|2 + l3l

∗
3|(Jf ||LJ(q)||Ji)|2 − l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)

− l0l∗3(Jf |LJ(q)||Ji)∗(Jf ||MJ(q)||Ji) = l0l
∗
0|(Jf ||MJ ||Ji)|2 + l3l

∗
3|(Jf ||LJ(q)||Ji)|2−

2Re(l∗0l3(Jf ||MJ(q)||Ji)∗(Jf ||LJ(q)||Ji)).
(102)

For the second sum of equation 89 we get

∑
λ=±1

∑
J≥1

l∗λlλ
2

[
|(Jf ||T el

J (q)||Ji)|2 + |(Jf ||T mag
J (q)||Ji)|2 + λ(Jf ||T el

J (q)||Ji)∗·

(Jf ||T mag
J (q)||Ji) + λ(Jf ||T mag

J (q)||Ji)∗(Jf ||T el
J (q)||Ji)

]
=

∑
λ=±1

∑
J≥1

l∗λlλ
2

[

|(Jf ||T el
J (q)||Ji)|2 + |(Jf ||T mag

J (q)||Ji)|2 + 2λRe((Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji))
]

=
∑
J≥1

[
1
2
(
l∗−1l−1 + l∗1l1

) (
|(Jf ||T el

J (q)||Ji)|2 + |(Jf ||T mag
J (q)||Ji)|2

)
+ (l∗1l1 − l∗−1l−1)·

Re((Jf ||T el
J (q)||Ji)∗(Jf ||T mag

J (q)||Ji))
]

=
∑
J≥1

[
1
2 (l · l∗ − l∗3l3)

(
|(Jf ||T el

J (q)||Ji)|2+

|(Jf ||T mag
J (q)||Ji)|2

)
− i(l× l∗)3Re((Jf ||T el

J (q)||Ji)∗(Jf ||T mag
J (q)||Ji))

]
.

(103)

Combining these we finally arrive at the result

1
2Ji + 1

∑
MiMf

| 〈f |Heff|i〉 |2 = 4π
2Ji + 1

G2

2

{∑
J≥0

[
l0l
∗
0|(Jf ||MJ ||Ji)|2+

l3l
∗
3|(Jf ||LJ(q)||Ji)|2 − 2Re(l3l∗0(Jf ||LJ(q)||Ji)(Jf ||MJ(q)||Ji)∗)

]
+

∑
J≥1

[
1
2 (l · l∗ − l∗3l3)

(
|(Jf ||T el

J (q)||Ji)|2 + |(Jf ||T mag
J (q)||Ji)|2

)
−

i(l× l∗)3Re((Jf ||T mag
J (q)||Ji)(Jf ||T el

J (q)||Ji)∗)
]}
.

(104)
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2.1.4 Lepton matrix elements

Equation 104 contains a number of factors of the form lµl
∗
ν which are functions

of the lepton spins. Thus they contribute to the sums over the lepton spins in
equation 80. Before proceeding with the diracology of the lepton matrix elements,
the normalization of the Dirac-spinors appearing in equation 23 needs to be fixed.
This has actually been already done implicitly while deriving equation 15 when
the lepton flux was taken to be 1/V , which is equivalent to requiring that the
Dirac-spinors obey the relation[15, Chapter 5.5]

u†(k)u(k) = 1, v†(k)v(k) = 1. (105)

Substituting the explicit expressions[15, Page 105]

u(k) = N(k)
 χ±

σ·k
Ek+mχ±

 , v(k) = N(−k)
 σ·k
Ek+mχ±

χ±

 (106)

for the spinors u and v, we get for particles

u†(k)u(k) = |N(k)|2
(
χ†±

σ†·k
Ek+mχ

†
±

) χ±
σ·k

Ek+mχ±

 = |N(k)|2χ†±χ±
(

1 + (σ · k)2

(Ek +m)2

)

= |N(k)|2
(

1 + k2

(Ek +m)2

)
= |N(k)|2

(
1 + E2

k −m2

(Ek +m)2

)
= |N(k)|2·(

(Ek +m)2 + E2
k −m2

(Ek +m)2

)
= |N(k)|2

(
2E2

k + 2Ekm
(Ek +m)2

)
= 2Ek|N(k)|2

(
Ek +m

(Ek +m)2

)

= |N(k)|2
( 2Ek
Ek +m

)
⇒ N(k) =

√
Ek +m√

2Ek
up to a phase.

(107)

The same result is acquired in the same manner for antiparticles. In deriving the
above result we used the properties[23, Appendix D]

(σ · a)2 = a2 and σ†i = σi, (108)

for all three-vectors a and all Pauli matrices σi, i ∈ {1,2,3}.
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The spin sums of factors of the form lµl
∗
ν contain factors of

∑
spins

u(k)u(k) and
∑
spins

v(−k)v(−k). (109)

Before finding expressions for these, we will compute

/k = γµkµ = γ0Ek − γiki =
Ek12 0

0 −Ek12

−
 0 σiki

−σiki 0

 =
Ek12 −σ · k
σ · k −Ek12

 .
(110)

We now get

∑
spins

u(k)u(k) =
∑
spins
|N(k)|2

 χ
σ·k

Ek+mχ

(χ† σ·k
Ek+mχ

†
)
γ0 =

∑
spins
|N(k)|2

 χ
σ·k

Ek+mχ

 ·
(
χ† − σ·k

Ek+mχ
†
)

= Ek +m

2Ek
∑
spins

 χχ† − σ·k
Ek+mχχ

†

σ·k
Ek+mχχ

† − k2

(Ek+m)2χχ
†

 = 1
2Ek
·

(Ek +m)12 −σ · k
σ · k −E2

k−m
2

Ek+m 12

 = 1
2Ek

(Ek +m)12 −σ · k
σ · k − (Ek−m)(Ek+m)

Ek+m 12

 = 1
2Ek
·

(Ek +m)12 −σ · k
σ · k −(Ek −m)12

 = 1
2Ek

Ek12 −σ · k
σ · k −Ek12

+ 1
2Ek

m12 0
0 m12

 =

1
2Ek

(/k +m),

(111)

where we used

∑
spins

χχ† = χ+χ
†
+ + χ−χ

†
− =

1 0
0 0

+
0 0

0 1

 =
1 0

0 1

 ≡ 12. (112)

Again, we get for the antiparticle spinors v and v in a completely similar manner

∑
spins

v(k)v(k) = 1
2Ek

(/k −m)⇒
∑
spins

v(−k)v(−k) = − 1
2Ek

(/k +m). (113)

The above identities can be used to calculate the spin sums over the lµl∗ν factors. For
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l0l
∗
0 we get in the case of a charged current particle reaction[11, Chapter 46]

V 2

2
∑

lepton spins
l0l
∗
0 = V 2

2
∑

lepton spins

1
V
u(k′)γ0(1− γ5)u(k) 1

V
(u(k′)γ0(1− γ5)u(k))∗ =

1
2

∑
lepton spins

u(k′)γ0(1− γ5)u(k) (u(k′)γ0(1− γ5)u(k))† = 1
2

∑
lepton spins

u(k′)γ0(1−

γ5)u(k)u†(k)(1− γ†5)γ†0(u†(k′)γ0)† = 1
2

∑
lepton spins

u(k′)γ0(1− γ5)u(k)u†(k)γ0γ0(1−

γ5)γ0γ
0u(k′) = 1

2
∑

lepton spins
u(k′)γ0(1− γ5)u(k)u(k)γ0(1− γ5)u(k′),

(114)

where we used a number of properties of the gamma matrices and the fact that for
complex numbers such as u(k′)γ0(1− γ5)u(k), we have ∗ = †. Next we will consider
the right side of the above expression componentwise, move the factor u(k′) in front
of the factor u(k′), apply equation 111 and write the resulting expression as a trace
of a product of matrices[15, Chapter 6]. We thus get

V 2

2
∑

lepton spins
l0l
∗
0 = 1

2
∑

lepton spins
u(k′)γ0(1− γ5)u(k)u(k)γ0(1− γ5)u(k′) =

1
2Tr

[/k′ +m

2Ek′
γ0(1− γ5)

/k

2Ek
γ0(1− γ5)

]
= 1

8Ek′Ek

{
Tr
[
/k
′
γ0(1− γ5)/kγ0(1− γ5)

]
+

Tr
[
mγ0(1− γ5)/kγ0(1− γ5)

]}
= 1

8Ek′Ek

{
Tr
[
/k
′
γ0/kγ

0(1− γ5)(1− γ5)
]
+

Tr
[
/kγ0(1− γ5)mγ0(1− γ5)

]}
= 1

8Ek′Ek

{
2Tr

[
/k
′
γ0/kγ

0(1− γ5)
]
+

Tr
[
/kγ0(1− γ5)(1 + γ5)mγ0

]}
= 1

4Ek′Ek

{
Tr
[
/k
′
γ0/kγ

0
]
− Tr

[
/k
′
γ0/kγ

0γ5

]}
=

1
4Ek′Ek

4((k′)0k0 + (k′)0k0 − k′µkµ) = 1
Ek′Ek

(k′0k0 + k′ · k) = 1
Ek′Ek

(Ek′Ek + k′ · k)

= 1 + k̂
′
· k̂,

(115)

Where we have defined the vectors k̂ = k/(Ek) and k̂
′

= k′/(Ek′). For neutral
current particle reactions we have /k′ instead of /k′ +m, which eventually leads to the
same result as for charged current particle reactions, since the outgoing lepton mass
m cancelled out in the derivation above. The derivation is done similarly for charged
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and neutral current antiparticle reactions and the result is again the same as the one
above.

The rest of the lepton spin sums are done in a similar manner as the one above,
and the results are[11, Page 482]

V 2

2
∑

lepton spins
l3l
∗
3 = 1− k̂

′
· k̂ + 2 1

Ek′Ekq2 (k · q)(k′ · q), (116)

V 2

2
∑

lepton spins
l3l
∗
0 = q

q
·
(
k

Ek
+ k′

Ek′

)
, (117)

V 2

2
∑

lepton spins

1
2 (l · l∗ − l3l∗3) = 1− 1

Ek′Ekq2 (k · q)(k′ · q) (118)

and
− i2

V 2

2
∑

lepton spins
(l× l∗)3 = ±q

q
·
(
k

Ek
− k′

Ek′

)
, (119)

where in the last one the upper sign is used for neutrino, and the lower sign for
antineutrino reactions respectively. These equations, together with earlier results,
can then be used to finally arrive at an expression for the double differential cross
section. By defining the Coulomb-longitudinal (CL) and transverse (T) contributions
as[24]

σJCL ≡ (1 + cos θ)|(Jf ||MJ(q)||Ji)|2 + (1 + cos θ − 2b sin2 θ)|(Jf ||LJ(q)||Ji)|2+

qEexc(1 + cos θ)2Re [(Jf ||MJ(q)||Ji)(Jf ||LJ(q)||Ji)∗]
(120)

and

σJT ≡ (1− cos θ + b sin2 θ)
[
|(Jf ||T mag

J (q)||Ji)|2 + |(Jf ||T el
J (q)||Ji)|2

]
∓

Ek′ + Ek
q

(1− cos θ)2Re
[
(Jf ||T mag

J (q)||Ji)(Jf ||T el
J (q)||Ji)∗

]
,

(121)

where Eexc = Ek′ −Ek and q = |q|, we can write the double-differential cross section
as

d2σi→f
dΩdEexc

= G2k′Ek′

π(2Ji + 1)

∑
J≥0

σJCL +
∑
J≥1

σJT

 . (122)

In the above expressions, θ is the angle between incoming and outgoing neutrinos
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MQPM

QRPA

BCS
Figure 4. The hierarchy of the nuclear models used in this thesis. An arrow
from one model to another indicates that the results of that model were used as
inputs for the other.

and b = EkEk′/q
2.

2.2 Nuclear models

In this section we will present the theoretical nuclear physics relevant to this thesis.
We will first discuss the concepts and ideas of nuclear theory in general and later use
them to review the theory behind the nuclear models used in this work. The nuclear
model that actually produced inputs for the scattering cross section calculations
(MQPM) is built upon other, more simple models (BCS and QRPA) and uses their
results as inputs for certain parameters. This hierarchy between these models is
illustrated in figure 4. We will discuss each of these models at varying levels of
detail by utilizing a powerful and widely used standard approach to deriving nuclear
models, namely the equations-of-motion method.

2.2.1 The nuclear mean-field

The atomic nucleus is a quantum mechanical many-body system composed of strongly
interacting protons and neutrons. When the nuclear force is assumed to act only
between pairs of nucleons and they are taken to be point-like particles without an
internal structure, the nuclear Hamiltonian of a nucleus with mass and neutron
numbers A and N can be written as[10, Chapter 3]

H = T + V =
A∑
i=1

t(xi) + 1
2

A∑
i 6=j

v(xi,xj), (123)
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where t(xi) is the single-nucleon kinetic energy operator and v(xi,xj) the potential
energy operator for a pair of nucleons. Solving the resulting Schrödinger equation

HΨ(x1,x2,...,xA) = EΨ(x1,x2,...,xA) (124)

is an immensely difficult task not only due to the complicated form of the nuclear force,
but also due to the general difficulty of interacting quantum mechanical many-body
problems, for which analytical solutions are known for only the simplest of special
cases. A number of approaches to make the problem more tractable by approximating
certain aspects of the system and simplifying it have been developed. They usually
involve solving the stationary state wave functions and the corresponding energies
numerically, often through the means of diagonalizing the Hamiltonian matrix of
the system. In the following we will do just that by introducing the concept of a
nuclear mean field, express the problem in terms of particle creation and annihilation
operators of second quantization and finally transform the particle operators into
quasiparticle operators, arriving at the BCS model for atomic nuclei.

The Hamiltonian of equation 123 can be split into a non-interacting quasiparticle
part and residual interaction part by adding and subtracting a mean field term
on the right side of this equation[10, Page 40]. The mean field term is composed
of single-particle potentials summed over the number of nucleons. Formally the
mean field experienced by a single nucleon can be thought of as resulting from the
interactions of the nucleon with the other A− 1 nucleons during some small interval
of time ∆t = tf − ti, averaged over the length of the interval[10, Page 41]. The
idea of the mean field as a time averaged potential between the nucleons is not
applicable in practice and serves only as a formal definition and to provide intuitive
understanding for the concept, with the practical mean field being determined in
other ways. Nevertheless, we may write

v(xi) = 1
∆t

∫ tf

ti

A∑
j 6=i

v(xi,xj)dt, Vmean field =
A∑
i=1

v(xi), (125)

where in the former v(xi,xj) = v(xi(t),xj(t)). It should also be noted that the mean
field we consider here is spherically symmetric, and all nuclear models discussed
in this thesis are applicable to spherical (or in practice, nearly spherical) nuclei.
Deformed mean fields and nuclei will not be considered.
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Adding and subtracting the mean field potential to the nuclear Hamiltonian, we
can write it as

H =
A∑
i=1

t(xi) +
A∑
i=1

v(xi) + 1
2

A∑
i 6=j

v(xi,xj)−
A∑
i=1

v(xi) = H0 + VRES, (126)

where we have defined[10, Page 40]

H0 =
A∑
i=1

t(xi) +
A∑
i=1

v(xi) and VRES = 1
2

A∑
i 6=j

v(xi,xj)−
A∑
i=1

v(xi). (127)

We assume that VRES is considerably smaller than V and neglect it for now. The
Schrödinger equation for the non-interacting system is then

H0Ψ(x1,x2,...,xA) =
(

A∑
i=1

t(xi) +
A∑
i=1

v(xi)
)

Ψ(x1,x2,...,xA) = EΨ(x1,x2,...,xA),

(128)
which separates into A identical single-quasiparticle Schrödinger equations

(t(x) + v(x))ψα(x) = h(x)ψα(x) = εαψα(x), h(x) = t(x) + v(x), (129)

with the ansatz

Ψ(x1,x2,...,xA) = ψα1(x1)ψα2(x2) · · ·ψαA(xA), with
A∑
i=1

εαi = E, (130)

where we have adopted the so called Baranger notation[25]

|nalajamα〉 ≡ |amα〉 ≡ |α〉 (131)

for the quantum numbers of the single-quasiparticle states. Of these quantum
numbers, la and ja denote the orbital and total angular momentum of the state
respectively, while mα is the projection of ja onto the z-axis and is known as the
magnetic quantum number. The na is a quantum number that counts the states with
a particular la value. We will still choose refer to these single-quasiparticle states as
particles instead of quasiparticles, as we will reserve that term to the context of the
BCS model. Equation 129 can then be solved for the eigenstates and -energies of the
non-interacting system after the mean-field v(x) is specified. There exists a number
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of methods for determining the mean-field, ranging from treating the minimization
of the residual interaction between the particles as a variational problem in the
set of single-particle eigenstates {ψα} and solving the resulting non-linear equation
iteratively for self-consistency, to descriptions based on realistic bare nucleon-nucleon
interaction and meson exchange potentials, to simply picking a mathematically
convenient phenomenological potential that exhibits the essential features of a more
rigorously determined mean-field. In this thesis we will take the latter approach and
choose the Coulomb-corrected Woods-Saxon potential with spin-orbit coupling as a
phenomenological mean-field.

The Woods-Saxon mean-field is a spherically symmetric single-particle potential
given as a function of the radial distance r by[26]

vWS(r) = −V
(WS)

0

1 + e
r−R
a

, (132)

where V (WS)
0 , R and a are parameters that characterize the depth, radius and

thickness of the potential respectively. A plot of the potential with typical parameter
values is presented in figure 5. The essential features of the mean-field that arise
due to the nuclear strong force are captured by the Woods-Saxon potential. In
addition to the strong interaction, the protons in the nucleus as charged particles
also experience the electromagnetic interaction. In order to take this into account,
the mean-field potential experienced by protons is supplemented with a term of[10,
Page 46]

vC(r) = Ze2

4πε0
·


3−(r/R)2

2R , r ≤ R

1
r
, r > R

, (133)

i.e. the electrostatic potential of a charged sphere of radius R. The final piece that we
will add to the phenomenological potential is the so called spin-orbit term[3, Chapter
5]. It is proportional to L · S, that is, the scalar product of the particle orbital (L)
and spin (S) angular momentum operators. The historical motivation behind the
inclusion of the spin-orbit term in the mean-field is related to the mean-field shell
model of the atomic nucleus[3, Chapter 5], a theory where nucleon configurations
are taken to correspond to specific ways of placing the nucleons on independent
single-particle orbitals characterized by their total angular momentum j, orbital
angular momentum l and the quantum number n which indicates the relative order
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Figure 5. Illustration of a typical neutron Woods-Saxon potential for a nucleus
in the mass range of the nuclei 127I and 133Cs that were considered in this thesis.
The parameters V0, R and a were chosen according to their defining equations in
appendix A. Values of A = 130, N = 76 and Z = 54, which are intermediate to
the two nuclei considered, were used.

of the orbitals with the same l, with higher n values corresponding to orbitals with
higher energy (analogous to the principal quantum number of atomic physics). The
explicit form of the spin-orbit interaction used in this thesis is[10, Chapter 3.2]

vSO(r)L ·S = V
(SO)

0
r2

0
r

(
d
dr

1
1 + e

r−R
a

)
L ·S = − V

(SO)
0

V
(WS)

0

r2
0
r

(
d
drvWS(r)

)
L ·S, (134)

where the derivative d/dr is taken to operate only on the function inside the paren-
thesis, that is, vWS(r).

Assembling the different parts of the potential together, we finally arrive at an
expression for the Hamiltonian of the single-particle Schrödinger equation:

h(x) = h(r) = − 1
2m∇

2 + vWS(r) + vC(r) + vSO(r)L · S. (135)

The Laplacian expressed in spherical coordinates is

∇2 = 1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+ 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
= ∇2

r + ∇
2
Ω
r2 , (136)
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where we have defined

∇2
r = 1

r2
∂

∂r

(
r2 ∂

∂r

)
and ∇2

Ω = 1
sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 . (137)

By starting from the definition of the angular momentum as the generator of rotations,
it can be shown that the Cartesian components of L expressed in spherical coordinates
are[13, Chapter 3.6]

Lx = i

(
sinφ ∂

∂θ
+ cot θ cosφ ∂

∂φ

)
,

Ly = i

(
− cosφ ∂

∂θ
+ cot θ sinφ ∂

∂φ

)
and

Lz = −i ∂
∂φ
.

(138)

From these it follows straightforwardly that

L2 = L2
x + L2

y + L2
z = − 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2 = −∇2
Ω. (139)

The Laplacian can thus be written as

∇2 = ∇2
r −

L2

r2 (140)

and the single-particle Hamiltonian as

h(r) = − 1
2m

(
∇2
r −

L2

r2

)
+ vWS(r) + vC(r) + vSO(r)L · S. (141)

After specifying h(r), the states ψα and their energies εα can be solved, which in the
case of the Woods-Saxon potential will be done numerically.

After the set of single-particle states {ψα} has been acquired, the complete
solutions of equation 129 can be constructed as products of these single-particle
states. As the system consists of multiple identical fermions, the complete solution
wave functions Ψ must be antisymmetric with respect to the interchange of any
two nucleons of the same species[17, Chapter 5]. This is achieved by forming Slater
determinants of the single-particle states[10, Pages 42 and 57]. Slater determinants
are, however, mathematically and notationally cumbersome to manipulate, as the
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number of single-particle product terms in the wave function is equal to the product
of the number of ways in which N neutrons and Z protons can be arranged, which is
N ! · Z!. This results in an infeasibly large number of terms for all but the lightest of
nuclei. To avert this problem, we will adopt the standard formalism of many-body
quantum mechanics known as the occupation number representation.

2.2.2 Second quantization and the EoM method

To approach the problem of representing the Slater determinants of the wave functions
of nuclei, we will first consider the set of single-particle states {|α〉} that were acquired
as solutions of equation 129 (ψα(x) = 〈x|α〉). From these we can construct any
N -particle Slater determinant |α1α2...αN〉, from which in turn we can construct the
set of all N -particle Slater determinants {|α1α2...αN〉} in the single-particle states.
The set of Slater determinants spans (in the single-particle basis) the entire Hilbert
space for N -identical particles which we will denote by HN . In particular, we have
the vacuum state |0〉, which is the only element of H0. We can now define the Fock
space HF as[13, Chapter 7.5]

HF = H0 ⊕H1 ⊕H2 ⊕ · · · . (142)

The advantage of the Fock space is that N -particle Slater determinants, which are
Fock space vectors, can be represented by their occupation numbers n1,n2,...,nN of
the single-particle states which specify a Slater determinant completely. We thus
adopt the notation[13, Page 460]

|α1α2...αN〉 ≡ |n1,n2,...〉 . (143)

The states of this occupation number representation are conveniently understood in
terms of creation and annihilation operators that provide mappings from the Hilbert
spaces of N -identical particles to Hilbert spaces of N + 1 and N − 1 particles.

We define the creation c†α and annihilation cα operators based on their action on
Fock space vectors. We have[13, Page 461]

c†α |n1,n2,...,nα,...〉 = ηα |n1,n2,...,nα + 1,...〉 , when nα = 0, (144)
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cα |n1,n2,...,nα,...〉 = ηα |n1,n2,...,nα − 1,...〉 , when nα = 1 (145)

and
c†α |n1,n2,...,nα,...〉 = cα |n1,n2,...,nα,...〉 = 0, otherwise. (146)

In other words, the creation and annihilation operators change the particle number
of the system by adding and removing particles respectively. Specifying the phase
factor ηα as −1 raised to the power of the sum of all occupation numbers on the left
of nα specifies also the standard order of which the operators are to be written when
constructing many-body states, which is

|n1,n2,...〉 = |α1α2...αN〉 = c†α1c
†
α2 · · · c

†
αN
|0〉 . (147)

The operators satisfy the standard fermionic anticommutation relations[13, Page
463]

{cα,c†β} = δαβ, {c†α,c
†
β} = {cα,cβ} = 0. (148)

This formalism of representing the problem of a quantum many-body system in
terms of the creation and annihilation operators is known as second quantization,
which is a central topic of this section. We will next consider the construction of
nuclear operators in second quantization.

It can be shown that a general one-body operator O in coordinate representation

O =
A∑
i=1

o(xi) (149)

can be expressed in a second quantized form[10, Page 67]

O =
∑
αβ

oαβc
†
αcβ, (150)

where
oαβ = 〈α|O|β〉 =

∫
ψ†α(x)o(x)ψβ(x)d3x. (151)

In particular, we have for spherical tensor operators Oλµ (such as the multipole
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operators of equation 78)

Oλµ =
∑
αβ

〈α|Oλµ|β〉 c†αcβ =
∑
αβ

ĵ−1
α (a||Oλ||b)(jβmβλµ|jαmα)c†αcβ =

∑
αβ

ĵ−1
α (a||Oλ||b)(−1)jβ−mβ ĵα

λ̂
(jαmαjβ −mβ|λµ)c†αcβ = λ̂−1∑

ab

(a||Oλ||b)


∑
mαmβ

(jαmαjβ −mβ|λµ)c†α(−1)jβ−mβcβ

 = λ̂−1∑
ab

(a||Oλ||b)


∑
mαmβ

(jαmαjβ −mβ|λµ)c†αc̃−β

 = λ̂−1∑
ab

(a||Oλ||b)
 ∑
mαmβ

(jαmαjβmβ|λµ)c†αc̃β

 =

λ̂−1∑
ab

(a||Oλ||b)
[
c†αc̃β

]
λµ
,

(152)

where we have used the Wigner-Eckart theorem, the cyclic property[10, Page 9]

(j1m1j2m2|jm) = (−1)j1−m1
ĵ

ĵ2
(jmj1 −m1|j2m2) (153)

of Clebsch–Gordan coefficients, defined the operator

c̃β = (−1)jβ+mβc−β = (−1)jβ+mβcb,−mβ (154)

and finally used the fact that both c†α and c̃β are spherical tensor operators[10, Page
68], so the sum over the magnetic quantum numbers mα and mβ can be written as a
tensor product after making a change of index −mβ → mβ. Two-body operators can
be shown to have second quantized forms similar to the ones of one-body operators
of equation 149. In particular we have for the potential[10, Page 69]

V = 1
2
∑
αβγδ

〈αβ|V |γδ〉 c†αc
†
βcδcγ = 1

2
∑
αβγδ

vαβγδc
†
αc
†
βcδcγ = 1

4
∑
αβγδ

vαβγδc
†
αc
†
βcδcγ,

(155)
where the antisymmetrized two-nucleon interaction matrix element vαβγδ is defined
as

vαβγδ = vαβγδ − vαβδγ. (156)

The full nuclear Hamiltonian of equation 126 could now be expressed as a matrix in
the single-particle basis (which in practice would be truncated) and the energies and
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wave functions of the ground state and the excited states solved by diagonalization of
said matrix. Alternatively, we can treat nuclear configuration mixing as a variational
problem and derive the related equations by an approach known as the equations of
motion method, which we will employ below.

The equations of motion (EoM) method[10, Chapter 11] is a powerful approach
to the nuclear many-body problem that can be employed to derive a number of
sophisticated nuclear models. The idea behind EoM is to define an operator Q†ω,
that creates an excitation |ω〉 when operated upon the vacuum state |0〉, in terms
of products of creation and annihilation operators. We require that |ω〉 fulfils the
Schrödinger equation

H |ω〉 = Eω |ω〉 (157)

and construct the equation of motion for the excitation creation operator Q†ω[10,
Chapter 11.1.1]:

[H,Q†ω] |0〉 = HQ†ω |0〉 −Q†ωH |0〉 = H |ω〉 −Q†ωE0 |0〉 = Eω |ω〉 − E0 |ω〉 =

(Eω − E0) |ω〉 = (Eω − E0)Q†ω |0〉 ⇔ [H,Q†ω] |0〉 = (Eω − E0)Q†ω |0〉 ,
(158)

where E0 is the ground state energy H |0〉 = E0 |0〉. The notation can be simplified
by Eω − E0 → Eω, that is, by using Eω to denote the excitation energy instead of
the energy of the excited state. For a variational treatment, we first note that the
operator Q†ω consists of terms of the form[27, Chapter 8.4]

Cβ1β2...βjγ1γ2...γkΠ(c†β1 ,c
†
β2 ,...,c

†
βj
,cγ1 ,cγ2 ,...,cγk), (159)

where Cβ1β2...βjγ1γ2...γk is a coefficient and Π(c†β1 ,c
†
β2 ,...,c

†
βj
,cγ1 ,cγ2 ,...,cγk) denotes a

product of j creation operators c†β and k annihilation operators cγ so that each
individual operator is chosen from the set {c†α1 ,c

†
α2 ,...,c

†
αi
,cα1 ,cα2 ,...,cαi}, with the

requirement j + k = i. We require also that

[
Π(c†β1 ,c

†
β2 ,...,c

†
βj
,cγ1 ,cγ2 ,...,cγk)

]†
|0〉 = 0. (160)

The variations δQ† are then given by[27, Page 302]

δQ† = ∂Q†ω
∂C

δC ⇒ δQ |0〉 = 0, (161)
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where δC is an arbitrary variation.
The equation 158 can now be written as

〈0| δQ[H,Q†ω] |0〉 = Eω 〈0| δQQ†ω |0〉 ⇒ 〈0| [δQ,[H,Q†ω]] |0〉 = Eω 〈0| [δQ,Q†ω] |0〉 .
(162)

So far the treatment has been exact with the equation above arising from a genuine
variational principle. In practice, however, it may often be necessary to replace the
unknown exact vacuum state |0〉 with an approximate vacuum |Ψ0〉. To do this,
we first place yet another requirement on the form of the excitation operator Q†ω,
namely that in the terms of equation 159, the products of creation and annihilation
operators all consist of either an even or an odd number of these operators. These two
different types of basic excitations are known as Bose-like (even) and Fermi-like (odd)
excitations[10, Page 307]. With this in mind, equation 162 with the substitution
|0〉 → |Ψ0〉 can be written as

〈Ψ0| [δQ,H,Q†ω]± |Ψ0〉 = Eω 〈Ψ0| [δQ,Q†ω]± |Ψ0〉 , (163)

where

[δQ,H,Q†ω]± = 1
2

([
[δQ,H],Q†ω

]
±

+
[
δQ,[H,Q†ω]

]
±

)
and [A,B]± = AB±BA. (164)

In the above equation, we choose the upper signs (anticommutators) for Fermi-like
excitations and lower signs (commutators) for Bose-like excitation. It is also worth
noting that equation 163 guarantees 〈Ψ0|QαQ

†
β |Ψ0〉 = δαβ.

2.2.3 The BCS model

We now have the formalism needed to derive the equations of the BCS model. We
still need to specify the BCS vacuum |BCS〉 and the excitation operator Q†ω (from
which the variations δQ follow) to actually derive the equations. To do this, we will
introduce the BCS quasiparticle creation and annihilation operators a†α and aα in
terms of the particle creation and annihilation operators c†α and cα through what is
known as the Bogoliubov-Valatin transformation[10, Page 393]

a†α = uac
†
α + vac̃α, aα = uacα + vac̃

†
α. (165)
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The quasiparticle operators fulfil the same anticommutation rules of equation 148 as
the particle operators. The quasiparticle annihilation operator also annihilates the
BCS vacuum. In practice we are usually more interested in the spherical tensor form
of the annihilation operator aα, given by[10, Page 393]

ãα = uac̃α − vac†α. (166)

The basic excitation of the BCS model is now simply Q†ω = a†ω with variations
δQ = cω and c̃†ω. The variational parameters ua and va are given more meaning
after defining the BCS ground state, which will also be the vacuum for the EoM
calculation, as[10, Page 392]

|BCS〉 =
∏
α>0

(ua − vac†αc̃†α) |0〉 , (167)

where |0〉 denotes the particle vacuum. From the above equation we can see that
a particular single-particle orbital α is unoccupied with an associated probability
amplitude of ua and occupied with an associated probability amplitude of va. The
probabilities must be normalized as by u2

a + v2
a = 1, which is possible when u2

a = |ua|2

and v2
a = |va|2, i.e. ua and va are chosen to be real.

We will now derive the BCS equations by using the EoMmethod. The Hamiltonian
operator H expressed in second quantized form follows from equations 150 and 155:

H = T + V =
∑
αβ

tαβc
†
αcβ + 1

4
∑
αβγδ

vαβγδc
†
αc
†
βcδcγ. (168)

The Baranger notation, that was adopted earlier, for the quantum numbers is obvious
for the labels α, β and δ. For γ and ω we write γ = (c,mγ) and ω = (z,mω). We
will consider the variation δQ = cω first. Before computing the commutators [δQ, T ],
[δQ, V ], [T,Q†ω] and [V,Q†ω], we will consider a number of commutators of creation
and annihilation operators. By using equation 148 we get

[cω,c†αcβ] = cωc
†
αcβ − c†αcβcω = δωαcβ − c†αcωcβ − c†αcβcω = δωαcβ, (169)

[c†αcβ,c†ω] = c†αcβc
†
ω − c†ωc†αcβ = δβωc

†
α − c†αc†ωcβ − c†ωc†αcβ = δβωc

†
α, (170)
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[cω,c†αc
†
βcδcγ] = cωc

†
αc
†
βcδcγ − c†αc

†
βcδcγcω = δωαc

†
βcδcγ − c†αcωc

†
βcδcγ − c†αc

†
βcωcδcγ =

δωαc
†
βcδcγ − δωβc†αcδcγ,

(171)

[c†αcβ,c̃ω] = c†αcβ c̃ω − c̃ωc†αcβ = (−1)jz+mωc†αcβc−ω − (−1)jz+mωc−ωc
†
αcβ =

(−1)jz+mωc†αcβc−ω − (−1)jz+mωδ−ωαcβ + (−1)jz+mωc†αc−ωcβ = −(−1)jz+mωδ−ωαcβ,

(172)

[c†αc
†
βcδcγ,c

†
ω] = c†αc

†
βcδcγc

†
ω − c†ωc†αc

†
βcδcγ = δγωc

†
αc
†
βcδ − c†αc

†
βcδc

†
ωcγ − c†αc

†
βc
†
ωcδcγ =

δγωc
†
αc
†
βcδ − δδωc†αc

†
βcγ

(173)

and

[c†αc
†
βcδcγ,c̃ω] = c†αc

†
βcδcγ c̃ω − c̃ωc†αc

†
βcδcγ = (−1)jz+mωc†αc

†
βcδcγc−ω−

(−1)jz+mωc−ωc
†
αc
†
βcδcγ = (−1)jz+mωc†αc

†
βc−ωcδcγ − (−1)jz+mωδ−ωαc

†
βcδcγ+

(−1)jz+mωc†αc−ωc
†
βcδcγ = (−1)jz+mωδ−ωβc

†
αcδcγ − (−1)jz+mωδ−ωαc

†
βcδcγ.

(174)

Using the above identities and the symmetry properties of the antisymmetrized
two-nucleon interaction matrix element, we get for the aforementioned commutators

[δQ,T ] =
cω,∑

αβ

tαβc
†
αcβ

 =
∑
αβ

tαβ[cω,c†αcβ] =
∑
αβ

tαβδωαcβ =
∑
β

tωβcβ, (175)

[δQ,V ] =
cω,14 ∑

αβγδ

vαβγδc
†
αc
†
βcδcγ

 = 1
4
∑
αβγδ

vαβγδ[cω,c†αc
†
βcδcγ] =

1
4
∑
αβγδ

vαβγδ(δωαc†βcδcγ − δωβc†αcδcγ) = 1
4
∑
βγδ

vωβγδc
†
βcδcγ −

1
4
∑
αγδ

vαωγδc
†
αcδcγ =

1
4
∑
βγδ

vωβγδc
†
βcδcγ + 1

4
∑
αγδ

vωαγδc
†
αcδcγ = 1

2
∑
βγδ

vωβγδc
†
βcδcγ,

(176)
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[T,Q†ω] =
∑
αβ

tαβc
†
αcβ,uzc

†
ω + vz c̃ω

 =
∑
αβ

tαβuz[c†αcβ,c†ω] +
∑
αβ

tαβvz[c†αcβ,c̃ω] =

∑
αβ

tαβuzδβωc
†
α −

∑
αβ

tαβvz(−1)jz+mωδ−ωαcβ = uz
∑
αω

tαωc
†
α − (−1)jz+mωvz

∑
β

t−ωβcβ,

(177)

and

[V,Q†ω] =
1

4
∑
αβγδ

vαβγδc
†
αc
†
βcδcγ,uzc

†
ω + vz c̃ω

 = 1
4
∑
αβγδ

vαβγδuz[c†αc
†
βcδcγ,c

†
ω]+

1
4
∑
αβγδ

vαβγδvz[c†αc
†
βcδcγ,c̃ω] = 1

4
∑
αβγδ

vαβγδuz(δγωc†αc
†
βcδ − δδωc†αc

†
βcγ)+

1
4
∑
αβγδ

vαβγδ(−1)jz+mωvz(δ−ωβc†αcδcγ − δ−ωαc
†
βcδcγ) = uz

4
∑
αβδ

vαβωδc
†
αc
†
βcδ−

uz
4
∑
αβγ

vαβγωc
†
αc
†
βcγ + (−1)jz+mω vz

4
∑
αγδ

vα−ωγδc
†
αcδcγ − (−1)jz+mω vz

4
∑
βγδ

v−ωβγδc
†
βcδcγ

= uz
2
∑
αβδ

vαβωδc
†
αc
†
βcδ + (−1)jz+mω vz

2
∑
αγδ

vα−ωγδc
†
αcδcγ.

(178)

For the anticommutators of equation 164, we again consider a number of anticom-
mutators, namely

{c†βcδcγ,c†ω} = c†βcδcγc
†
ω + c†ωc

†
βcδcγ = δγωc

†
βcδ − c

†
βcδc

†
ωcγ − c

†
βc
†
ωcδcγ =

δγωc
†
βcδ − δδωc

†
βcγ,

(179)

{c†βcδcγ,c̃ω} = c†βcδcγ c̃ω + c̃ωc
†
βcδcγ = (−1)jz+mωc†βcδcγc−ω + (−1)jz+mωc−ωc

†
βcδcγ =

(−1)jz+mωc†βcδcγc−ω + (−1)jz+mωδ−ωβcδcγ − (−1)jz+mωc†βc−ωcδcγ =

(−1)jz+mωδ−ωβcδcγ,

(180)

{cω,c†αc
†
βcδ} = cωc

†
αc
†
βcδ + c†αc

†
βcδcω = δωαc

†
βcδ − c†αcωc

†
βcδ + c†αc

†
βcωcδ =

δωαc
†
βcδ − δωβc†αcδ,

(181)
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and

{cω,c†αcδcγ} = cωc
†
αcδcγ + c†αcδcγcω = δωαcδcγ − c†αcωcδcγ + c†αcδcγcω = δωαcδcγ.

(182)

Similarly as before, using the above identities and the basic anticommutation relations
of equation 148, we get for the anticommutators

{[δQ,H], Q†ω} =

∑
β

tωβcβ,uzc
†
ω + vz c̃ω

+

1
2
∑
βγδ

vωβγδc
†
βcδcγ,uzc

†
ω + vz c̃ω

 =

uz
∑
β

tωβ
{
cβ,c

†
ω

}
+ vz

∑
β

tωβ {cβ,c̃ω}+ uz
2
∑
βγδ

vωβγδ
{
c†βcδcγ,c

†
ω

}
+

vz
2
∑
βγδ

vωβγδ
{
c†βcδcγ,c̃ω

}
= uz

∑
β

tωβδβω + uz
2
∑
βγδ

vωβγδ
(
δγωc

†
βcδ − δδωc

†
βcγ

)
+

vz
2
∑
βγδ

vωβγδ(−1)jz+mωδ−ωβcδcγ = uztωω + uz
2
∑
βδ

vωβωδc
†
βcδ −

uz
2
∑
βγ

vωβγωc
†
βcγ+

vz
2
∑
γδ

vω−ωγδ(−1)jz+mωcδcγ = uztωω + uz
∑
βδ

vωβωδc
†
βcδ + (−1)jz+mω vz

2
∑
γδ

vω−ωγδcδcγ

(183)

and

{δQ, [H,Q†ω]} =

cω,uz∑
α

tαωc
†
α − (−1)jz+mωvz

∑
β

t−ωβcβ

+
cω,uz2 ∑

αβδ

vαβωδc
†
αc
†
βcδ + (−1)jz+mω vz

2
∑
αγδ

vα−ωγδc
†
αcδcγ

 = uz
∑
α

tαω
{
cω,c

†
α

}
−

(−1)jz+mωvz
∑
β

t−ωβ {cω,cβ}+ uz
2
∑
αβδ

vαβωδ
{
cω,c

†
αc
†
βcδ
}

+

(−1)jz+mω vz
2
∑
αγδ

vα−ωγδ
{
cω,c

†
αcδcγ

}
= uz

∑
α

tαωδωα + uz
2
∑
αβδ

vαβωδδωαc
†
βcδ−

uz
2
∑
αβδ

vαβωδδωβc
†
αcδ + (−1)jz+mω vz

2
∑
αγδ

vα−ωγδδωαcδcγ = uztωω + uz
2
∑
βδ

vωβωδc
†
βcδ−

uz
2
∑
αδ

vαωωδc
†
αcδ + (−1)jz+mω vz

2
∑
αγδ

vω−ωγδcδcγ = uztωω + uz
∑
βδ

vωβωδc
†
βcδ+

(−1)jz+mω vz
2
∑
αγδ

vω−ωγδcδcγ.

(184)
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From these we get

[δQ,H,Q†ω]+ = uzεz + uz
∑
βδ

vωβωδc
†
βcδ + (−1)jz+mω vz

2
∑
γδ

vω−ωγδcδcγ, (185)

where we have adopted the notation εz = tωω for the energies of the single-particle
states. The anticommutator on the right side of equation 163 follows from the basic
anticommutation relations of equation 148:

{δQ,Q†ω} = {cω,uzc†ω + vz c̃ω} = uz{cω,c†ω}+ vz{cω,c̃ω} = uz. (186)

For the expectation values of the symmetrized double commutator of equation 185
with respect to the BCS vacuum, we need the to determine 〈BCS| c†βcδ |BCS〉 and
〈BCS| cδcγ |BCS〉. For these, we invert equations 165 and 166, along with

ã†α = uac̃
†
α − vacα, (187)

which results in
c†α = uaa

†
α − vaãα and cα = uaaα − vaã†α. (188)

The vacuum expectation values are then given by

〈BCS| c†βcδ |BCS〉 = 〈BCS| (uba†β − vbãβ)(udaδ − vdã†δ) |BCS〉 =

− 〈BCS| (uba†β − vbãβ)vdã†δ |BCS〉 = 〈BCS| vbãβvdã†δ |BCS〉 = vbvd 〈BCS| ãβã†δ |BCS〉

= vbvd(−1)jb+jd+mβ+mδ 〈BCS| a−βa†−δ |BCS〉 = vbvd(−1)jb+jd+mβ+mδδ−β−δ = v2
bδβδ

(189)

and

〈BCS| cδcγ |BCS〉 = 〈BCS| (udaδ − vdã†δ)(ucaγ − vcã†γ) |BCS〉 =

− 〈BCS| (udaδ − vdã†δ)vcã†γ |BCS〉 = −〈BCS|udaδvcã†γ |BCS〉 =

− udvc(−1)jc+mγ 〈BCS| aδa†−γ |BCS〉 = −udvc(−1)jc+mγδδ−γ = −ucvc(−1)jc+mγδδ−γ.
(190)

In the above derivations, we used the fact that

aα |BCS〉 = ãα |BCS〉 = 〈BCS| a†α = 〈BCS| ã†α = 0. (191)
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Taking the vacuum expectation value of equation 185 we now get

〈BCS| [δQ,H,Q†ω]± |BCS〉 = 〈BCS|uzεz |BCS〉+ 〈BCS|uz
∑
βδ

vωβωδc
†
βcδ |BCS〉+

〈BCS| (−1)jz+mω vz
2
∑
γδ

vω−ωγδcδcγ |BCS〉 = uzεz + uz
∑
βδ

vωβωδ 〈BCS| c†βcδ |BCS〉+

(−1)jz+mω vz
2
∑
γδ

vω−ωγδ 〈BCS| cδcγ |BCS〉 = uzεz + uz
∑
βδ

vωβωδv
2
bδβδ−

(−1)jz+mω vz
2
∑
γδ

vω−ωγδucvc(−1)jc+mγδδ−γ = uzεz + uz
∑
β

vωβωβv
2
b−

(−1)jz+mω vz
2
∑
γ

(−1)jc+mγvω−ωγ−γucvc.

(192)

We will consider the terms on the right side of the above equation separately.
The first term of equation 192 is fine as it is, but for the second and third terms

we will express vαβγδ in terms of the coupled two-nucleon interaction matrix elements
〈ab; J,M |V |cd; J ′,M ′〉 with

|ab; J,M〉 = Nab(J)[c†ac
†
b]JM |0〉 , Nab(J) =

√
1 + δab(−1)J

1 + δab
. (193)

It can be shown that[10, Chapter 8.1.1]

vαβγδ =
∑
JM

[Nab(J)Ncd(J)]−1(jamαjbmβ|JM)(jcmγjdmδ|JM) 〈ab; J |V |cd; J〉 ,

(194)
where we have used the fact that[10, Page 207]

〈ab; J,M |V |cd; J ′,M ′〉 = δJJ ′δMM ′ 〈ab; J |V |cd; J〉 . (195)

With these, the second term of equation 192 can be written

uz
∑
β

vωβωβv
2
b = uz

∑
β

v2
b

∑
JM

[Nzb(J)]−2(jzmωjbmβ|JM)2 〈zb; J |V |zb; J〉 =

uz
∑
Jb

v2
b [Nzb(J)]−2 〈zb; J |V |zb; J〉

∑
Mmβ

(jzmωjbmβ|JM)2.
(196)

To compute the sum over the magnetic quantum numbers, we change the coupling
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order of the angular momenta as by

(jzmωjbmβ|JM) = (−1)jb+mβ Ĵ
ĵz

(jb −mβJM |jzmω). (197)

With this change, the sum becomes

∑
Mmβ

(jzmωjbmβ|JM)2 = Ĵ2

ĵ2
z

∑
Mmβ

(jb−mβJM |jzmω)(jb−mβJM |jzmω) = Ĵ2

ĵ2
z

, (198)

where we have used the orthogonality property[10, Page 8]

∑
mm′

(jmj′m′|JM)(jmj′m′|J ′M ′) = δJJ ′δMM ′ (199)

of the Clebsch-Gordan coefficients. Inserting this into equation 196 above yields

uz
∑
β

vωβωβv
2
b = uz

∑
Jb

v2
b [Nzb(J)]−2 〈zb; J |V |zb; J〉 Ĵ

2

ĵ2
z

=

uz ĵ
−2
z

∑
Jb

v2
b Ĵ

2[Nzb(J)]−2 〈zb; J |V |zb; J〉 = −uzµz,
(200)

where
µz ≡ −ĵ−2

z

∑
Jb

v2
b Ĵ

2[Nzb(J)]−2 〈zb; J |V |zb; J〉 . (201)

is known as the self-energy[10, Page 404]. We then express the third term of equation
192 in the same way and get

− (−1)jz+mω vz
2
∑
γ

(−1)jc+mγvω−ωγ−γucvc =

− (−1)jz+mω vz
2
∑
γ

(−1)jc+mγucvc
∑
JM

[Nωω(J)Nγγ(J)]−1(jzmωjz −mω|JM)·

(jcmγjc −mγ|JM) 〈zz; J |V |cc; J〉 = −(−1)jz+mω vz
2
∑
Jc

ucvc 〈zz; J |V |cc; J〉 ·

N−2
ωω (J)

∑
Mmγ

(−1)jc+mγ (jzmωjz −mω|JM)(jcmγjc −mγ|JM).

(202)

We first note that in the above equation for the Clebsch-Gordan coefficients not to
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vanish, the magnetic quantum numbers must satisfy

M = mω −mω = 0. (203)

Thus the sum over said quantum numbers reduces to

∑
Mmγ

(−1)jc+mγ (jzmωjz −mω|JM)(jcmγjc −mγ|JM) =

(jzmωjz −mω|J0)
∑
mγ

(−1)jc+mγ (jcmγjc −mγ|J0).
(204)

This can be simplified further with the identity2

∑
m

(−1)j−m(jmj −m|J0) = δJ0ĵ ⇔ δJ0ĵ = (−1)j−j
∑
m

(−1)j−m(jmj −m|J0) =

(−1)2j∑
m

(−1)−j−m(jmj −m|J0) = −
∑
m

(−1)j+m(jmj −m|J0).

(205)

using this we get

(jzmωjz −mω|J0)
∑
mγ

(−1)jc+mγ (jcmγjc −mγ|J0) = −(jzmωjz −mω|J0)δJ0ĵc =

− (jzmωjz −mω|00)δJ0ĵc = −(−1)jz−mγδJ0ĵ
−1
z ĵc,

(206)

where[10, Page 9]
(jmjm′|00) = (−1)j−mĵ−1δm−m′ (207)

was used. With the result of equation 206 we get for the third term

− (−1)jz+mω vz
2
∑
γ

(−1)jc+mγvω−ωγ−γucvc =

(−1)jz+mω vz
2
∑
Jc

ucvc 〈zz; J |V |cc; J〉N−2
ωω (J)(−1)jz−mγδJ0ĵ

−1
z ĵc =

vz
2 ĵ
−1
z

∑
Jc

ĵcucvc 〈zz; 0|V |cc; 0〉N−2
ωω (0) = vz ĵ

−1
z

∑
Jc

ĵcucvc 〈zz; 0|V |cc; 0〉 =

− vz∆z,

(208)

2For a proof of this, we again consider the special case (jmjm′|00) = (−1)j−mĵ−1δm(−m′), from
which we get

∑
m(−1)j−m(jmj−m|J0) = ĵ

∑
m(jmj−m|00)(jmj−m|J0) = ĵδJ0, where we used

the orthogonality relation[10, Page 8]
∑

m1,m2
(j1m1j2m2|JM)(j1m1j2m2|J ′M ′) = δJJ ′δMM ′ .
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where
∆z ≡ −ĵ−1

z

∑
Jc

ĵcucvc 〈zz; 0|V |cc; 0〉 . (209)

is known as the pairing gap[10, Page 403].
By combining equations 200 and 208 with equation 192 along with equations 163

and 186 we finally get

uzεz − uzµz − vz∆z = Eωuz ⇔ uzη̃z − vz∆z = Eωuz, (210)

where
εz − µz = η̃z. (211)

Had we picked instead of δQ = cω the other variation δQ = c̃†ω and done the same
derivation, we would have arrived at the equation

−vzη̃z − uz∆z = Eωvz. (212)

By squaring both of these equations and summing them together we get for the
excitation energy (or quasiparticle energy, as it is appropriately called)

E2
ωu

2
z = u2

zη̃
2
z − 2uzvzη̃z∆z + v2

z∆2
z, E

2
ωv

2
z = v2

z η̃
2
z + 2uzvzη̃z∆z + u2

z∆2
z ⇒

E2
ω(u2

z + v2
z) = E2

ω = u2
zη̃

2
z − 2uzvzη̃z∆z + v2

z∆2
z + v2

z η̃
2
z + 2uzvzη̃z∆z + u2

z∆2
z =

(u2
z + v2

z)η̃2
z + (u2

z + v2
z)∆2

z = η̃2
z + ∆2

z ⇒ Eω =
√
η̃2
z + ∆2

z,

(213)

where the normalization condition u2
z+v2

z = 1 was used extensively. The normalization
and the above result can be used to solve equations 210 and 212 in terms of uz and
vz. For the former we get

uzη̃z − vz∆z = Eωuz ⇔ vz∆z = (η̃z − Eω)uz ⇒ v2
z∆2

z = (1− u2
z)∆2

z = (Eω − η̃z)2u2
z

⇔
[
(Eω − η̃z)2 + ∆2

z

]
u2
z = ∆2

z ⇔ u2
z = ∆2

z

(Eω − η̃z)2 + ∆2
z

= ∆2
z

E2
ω − 2Eωη̃z + η̃2

z + ∆2
z

= E2
ω − η̃2

z

E2
ω − 2Eωη̃z + η̃2

z + E2
ω − η̃2

z

= (Eω − η̃z)(Eω + η̃z)
2Eω(Eω − η̃z)

= 1
2

(
1 + η̃z

Eω

)
⇒ uz =

θ(lz)
√

2

√
1 + η̃z

Eω

(214)
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and similarly for the latter

vz = 1√
2

√
1− η̃z

Eω
. (215)

Here θ(lz) is a phase factor which depends on the convention chosen[10, p. 401]. In the
Condon-Shortley (CS) convention, which is commonly used in quantum mechanics
because of its desirable properties, we have θ(lz) = (−1)lz . In an alternative phase
convention, the Biedenharn-Rose (BR) convention, we instead have θ(lz) = 1, making
the occupation amplitudes uz and vz non-negative. For this reason the BR-convention
is usually preferred over the CS-convention when dealing with BCS quasiparticles.

The BCS equations derived above are formally correct and describe a quantum
mechanical many-body system and its excitations. There is, however, a considerable
conceptual shortcoming in the theory that needs to be addressed. That is, the BCS
state doesn’t have a good particle number in the general case[10, Chapter 13.3]. The
BCS theory was originally developed to explain superconductivity in conventional
superconductors[9], where the lack of a good particle number is not a major concern
as the system consists of a number of electrons that is of the order of 1023. There is
no a priori reason to expect that in an atomic nucleus, where the particle number
is of the order of 102, the effects of a lack of a good particle number would be
negligible, and only comparison with experimental data can verify the validity of
such an assumption. Nevertheless, some constraints need to be put on the particle
number of the BCS state to have any hope of having a theory fit for describing a
nucleus of good particle number.

There are two commonly used methods for dealing with the particle number of
the BCS state[10, Page 398]. The first is to project states of good particle number
and consider them instead, and the second is to require that the expectation value
of the particle number (or average particle number) matches the nucleon number.
We will take the latter approach here. The average particle number can be deduced
easily by noting that the probability for a single-particle orbital a to be occupied is
v2
a, and that the degeneracy of an orbital is 2ja + 1 = ĵ2

a. Thus the average number of
particles in a particular single-particle orbital is ĵ2

av
2
a. The average particle number

of the entire system n is given by summing over the average particle numbers of all
the orbitals

n =
∑
a

ĵ2
av

2
a. (216)
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Alternatively, the particle number operator

n̂ =
∑
α

c†αcα (217)

can be expressed in terms of the operators a†α and ãα by the use of equations 188,
resulting in[10, Page 399]

n̂ =
∑
a

ĵ2
av

2
a +

∑
a

ĵa(u2
a − v2

a)[a†aãa]00 +
∑
a

ĵauava
(
[a†aa†a]00 − [ãaãa]00

)
. (218)

It can be clearly seen that only the first term on the right side of the above equation
doesn’t annihilate the BCS vacuum from neither the left nor the right, and is thus
the only term to contribute to 〈BCS| n̂ |BCS〉 = n, leading to the same result as
before.

Applying the constraint on the average particle number turns out to be quite
simple. The problem of deriving of the BCS equations discussed earlier can be
thought of as an unconstrained variational problem of minimizing the energy of
the BCS state E = 〈BCS|H |BCS〉. To convert this into a constrained variational
problem, the method of undetermined Lagrange multipliers[28, Chapter 13.3] can be
utilized. This amounts to adding a term of −λn̂ to the Hamiltonian H and treating
the problem as a regular unconstrained variational problem with an extra variational
parameter λ, the undetermined multiplier. The simplicity of all this, is that it turns
out that after expressing the Hamiltonian in terms of the quasiparticle creation and
annihilation operators like the particle number operator above, the Hamiltonian of
the constrained system H ′ with single particle energies ε can be expressed as[10,
Chapter 13.3.1] ∣∣∣∣∣

ε

H ′ =
∣∣∣∣∣
ε−λ

H, (219)

that is, constraining the variational problem amounts to shifting the single-particle
energies of the unconstrained Hamiltonian by −λ. In the following we drop the prime
and denote the constrained Hamiltonian by H.

The aforederived unconstrained BCS equations can be easily transformed into
the constrained ones by shifting the single-particle energies. For this, we write

ηz ≡ η̃z − λ ≡ εz − µz − λ. (220)
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The constrained BCS equations then consist of

uz = θ(lz)
√

2

√
1 + ηz

Eω
,

vz = 1√
2

√
1− ηz

Eω
,

ηz = εz − µz − λ,

Eω =
√
η2
z + ∆2

z,

µz = −ĵ−2
z

∑
Jb

v2
b Ĵ

2[Nzb(J)]−2 〈zb; J |V |zb; J〉 ,

∆z = −ĵ−1
z

∑
Jc

ĵcucvc 〈zz; 0|V |cc; 0〉 and

n =
∑
a

ĵ2
av

2
a.

(221)

In practice these equations are solved iteratively by, for example, supplying the
initial values of ∆z and λz, calculating the other relevant quantities of equations 221,
calculating new values for ∆z and λz and repeating the process until self-consistency
is reached[10, Chapter 14]. This is usually measured in the absolute difference
between the calculated average particle number and the desired particle number,
with self-consistency considered achieved when this number is smaller than a limit
set before starting the calculations. Different species of nucleons are also considered
separately in practical calculations.

2.2.4 QRPA and MQPM

While the BCS model which was presented earlier is a successful nuclear model
by itself, it is not the model that is of primary interest in this thesis. Instead, we
will use it as a starting point in deriving a more sophisticated model known as
the quasiparticle random-phase approximation (QRPA), which in turn will serve
as a basis for the actual model used, the microscopic quasiparticle-phonon model
(MQPM). The primary advantage of the QRPA over similar models, such as the
quasiparticle Tamm-Dancoff approximation (QTDA)[10, Chapter 16], is the inclusion
of ground-state correlations which can lead to transitions between states that are
highly collective in nature. The most prominent flaw of the model is that the
equations do not arise from a variational principle and they are approximations by
nature. Similar to the BCS equations, the QRPA equations can be derived with the
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EoM method. The derivation is relatively straightforward but somewhat tedious,
and an overview of this is presented below.

The basic excitation of QRPA can be written in terms of the variational parameters
Xω
ab and Y ω

ab, and the quasiparticle operators defined previously as[10, Page 558]

Q†ω =
∑
ab

[
Xω
abNab(J)

[
a†aa

†
b

]
JM

+ Y ω
abNab(J) [ãaãb]JM

]
≡
∑
ab

[
Xω
abA

†
ab(JM)− Y ω

abÃab(JM)
]
,

(222)

where

A†ab(JM) ≡ Nab(J)
[
a†aa

†
b

]
JM

, Ãab(JM) = −Nab(J) [ãaãb]JM and

Nab(J) =

√
1 + δab(−1)J

1 + δab
.

(223)

The variations are then Aab(JM) and Ã†ab(JM). The basic excitation is bosonic so
we have for the former variation

〈QRPA| [δQ,H,Q†ω]− |QRPA〉 = Eω 〈QRPA| [δQ,Q†ω] |QRPA〉 ⇔

〈QRPA|
[
Aab(JM),H,

∑
cd

[
Xω
cdA

†
cd(JM)− Y ω

cdÃcd(JM)
]]
|QRPA〉 =

Eω 〈QRPA|
[
Aab(JM),

∑
cd

[
Xω
cdA

†
cd(JM)− Y ω

cdÃcd(JM)
]]
|QRPA〉

(224)

and for the latter

〈QRPA|
[
Ã†ab(JM),H,

∑
cd

[
Xω
cdA

†
cd(JM)− Y ω

cdÃcd(JM)
]]
|QRPA〉 =

Eω 〈QRPA|
[
Ã†ab(JM),

∑
cd

[
Xω
cdA

†
cd(JM)− Y ω

cdÃcd(JM)
]]
|QRPA〉 .

(225)

The derivation essentially consists of determining the expectation values of
[
Aab(JM),H,A†cd(JM)

]
,
[
Aab(JM),H,Ãcd(JM)

]
,
[
Aab(JM),A†cd(JM)

]
and[

Aab(JM),Ãcd(JM)
]

(226)

along with their hermitian conjugates with respect to the the QRPA vacuum |QRPA〉.
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The exact form of the correlated QRPA ground state |QRPA〉 is not known prior
to solving the QRPA equations, so the BCS ground state |BCS〉 will be used as an
approximate vacuum to derive the equations[10, Page 558]. The approximation of
replacing the QRPA vacuum expectation value of the commutator of operators Qω

and Q†ω with the corresponding expectation value with respect to the BCS vacuum
is known as the quasiboson approximation (QBA). The replacement of the QRPA
ground state with the BCS ground state as an effective vacuum is the reason that
the QRPA does not satisfy a variational principle.

With the BCS ground state as the approximate vacuum, it can then be shown
that[10, Page 558]

〈BCS|
[
Aab(JM),A†cd(J ′M ′)

]
|BCS〉 = 〈BCS|

[
Aab(JM),Ãcd(J ′M ′)

]
|BCS〉 =

δacδbdδJJ ′δMM ′ .
(227)

This reduces the right sides of equations 224 and 225 to EωXω
ab and EωY ω

ab respectively.
For the left sides, we can define matrices A and B with elements[10, Page 559]

Aab,cd = 〈BCS| [Aab(JM),H,A†cd(JM)] and Bab,cd = −〈BCS| [Aab(JM),H,Ãcd(JM)]
(228)

when the Hamiltonian H is expressed in terms of the BCS quasiparticle operators
as[10, Chapter 13.3.2]

H = 1
2
∑
b

ĵ2
b

Eb

[
(Eb − ηb)

(
ηb + 1

2µb
)
− 1

2∆2
b

]
+
∑
b

ĵbEb[a†bãb]00 + VRES, (229)

where
VRES = 1

4
∑
αβγδ

vαβγδN [c†αc
†
βcδcγ], (230)

with the normal ordering N [· · · ] taken with respect to the BCS vacuum. By substi-
tuting the particle-hole operators by their expressions in terms of the quasiparticle
operators (equations 188) in the above expression, the residual interaction VRES can
be shown to consist of a sum of parts[10, Chapter 16.1]

H40 = 1
2
∑
abcdJ

(−1)JV (40)
abcd (J)

([
a†aa

†
b

]
J
·
[
a†ca
†
d

]
J

+ h.c.
)
, (231)
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H31 =
∑
abcdJ

(−1)JV (31)
abcd (J)

([
a†aa

†
b

]
J
·
[
a†cãd

]
J

+ h.c.
)
, (232)

and
H22 = 1

2
∑
abcdJ

(−1)JV (22)
abcd (J)

[
a†aa

†
b

]
J
· [ãcãd]J , (233)

where
V

(40)
abcd (J) = −1

2 [Nab(J)Ncd(J)]−1 uaubvcvd 〈ab; J |V |cd; J〉 , (234)

V
(31)
abcd (J) = −1

2 [Nab(J)Ncd(J)]−1 (uaubvcud − vavbucvd) 〈ab; J |V |cd; J〉 (235)

and

V
(22)
abcd (J) = −1

2 [Nab(J)Ncd(J)]−1 (uaubucud − vavbvcvd) 〈ab; J |V |cd; J〉+

2uavbucvd
∑
J ′

[Nad(J ′)Ncb(J ′)]−1
Ĵ ′

2
ja jb J

jc jd J ′

 〈ad; J ′|V |cb; J ′〉 .
(236)

The above equations can be used to determine the explicit forms of the matrix
elements of A and B. After a long, but a rather straightforward derivation these can
be shown to be[10, Chapters 16.2 and 18.1.2]

Aab,cd = (Ea + Eb)δacδbd + (uaubucud + vavbvcvd) 〈ab; J |V |cd; J〉+

Nab(J)Ncd(J)
[
(uavbucvd + vaubvcud) 〈ab−1; J |VRES |cd−1; J〉−

(−1)jc+jd+J(uavbvcud + vaubucvd) 〈ab−1; J |VRES |dc−1; J〉
] (237)

and

Bab,cd = −(uaubvcvd + vavbucud) 〈ab; J |V |cd; J〉+

Nab(J)Ncd(J)
[
(uavbvcud + vaubucvd) 〈ab−1; J |VRES |cd−1; J〉−

(−1)jc+jd+J(uavbucvd + vaubvcud) 〈ab−1; J |VRES |dc−1; J〉
]
.

(238)

The matrices can be shown to have the properties

A† = A and BT = B, (239)
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and they can be used to write equations 224 and 225 as[10, Chapters 11.2.1 and
18.1.1] ∑

c≤d
Aab,cdX

ω
cd +

∑
c≤d

Bab,cdY
ω
cd = EωX

ω
ab (240)

and
−
∑
c≤d

(B†)ab,cdXω
cd −

∑
c≤d

(AT)ab,cdY ω
cd = EωY

ω
ab, (241)

which together constitute the QRPA equations. They can be combined into a single
matrix equation  A B

−B∗ −A∗

Xω

Y ω

 = Eω

Xω

Y ω

 . (242)

This is a non-Hermitian matrix eigenvalue problem for the excited states and excita-
tion energies.

The QRPA is a realistic many-body theory that is widely in use in the present
day nuclear physics research, but for the nuclei considered in this thesis it is not
applicable by itself. The reason for this is that the QRPA is capable of describing
even-even nuclei only (or odd-odd nuclei in the case of pnQRPA[10, Chapter 19]).
To model odd-even nuclei, we will first consider even-even nuclei adjacent to the
odd-even nuclei of interest and solve the BCS and QRPA equations for the occupation
amplitudes ua and va, and the QRPA parameters Xω and Y ω. These will then be
used to define the basic excitation Γ†k(jm) of the microscopic quasiparticle-phonon
model by[8]

Γ†i (jm) =
∑
nb

Ci
nb
a†b=nbjm +

∑
aω

Di
aω

[
a†aQ

†
ω

]
jm
. (243)

The MQPM states thus consist of single-quasiparticle components and quasiparti-
cles coupled together with QRPA phonons that are essentially three-quasiparticle
components with good angular momentum quantum numbers j and m.

The derivation of the MQPM equations is again similar to the derivation of the
equations of the previous two models, and we will only present the key features of it
below. A detailed derivation can be found in e.g. [8]. In the EoM method we have
the variations ab and

[
a†aQ

†
ω

]†
jm

. Running these through the EoM method equations
163 while using the BCS state as the vacuum results in the matrix equation

 A B

BT A′

Ci

Di

 = Eω

1 0
0 N

Ci

Di

 . (244)
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The explicit forms of the submatrices A, B, A′ and N are presented in appendix C.
After solving the above equation for Ci and Di, the MQPM states can be

constructed by operating with Γ†k(jm) on the BCS state. In the case of this thesis,
the most relevant quantities associated with these states are the reduced neutral-
current one-body transition densities between them. To see why, we return to the
definitions of the multipole operators of equations 78. These operators Oλµ are
spherical tensors, so they can be expressed in the second quantized form of equation
152 as[24]

Oλµ = λ−1

 ∑
proton orbitals ab

(a||Op
λ||b)

[
c†ac̃b

]
λµ

+
∑

neutron orbitals ab
(a||On

λ ||b)
[
c†ac̃b

]
λµ

 ,
(245)

where we have decomposed the operator Oλµ into parts Op
λµ and On

λµ that operate
on only the protons and neutrons respectively (Oλµ, Op

λµ and On
λµ are functions of q

in the case of the multipole operators of equations 78). The reduced matrix elements
of the multipole operators appearing in equation 104 then consist of sums of terms
proportional to (again suppressing the quantum numbers of the nuclear states other
than the angular momenta Ji and Jf) (a||Or

λ||b)(Jf ||
[
c†ac̃b

]
λ
||Ji), where r = p or n.

The factor (a||Or
λ||b) will be considered in the next section while (Jf ||

[
c†ac̃b

]
λ
||Ji), the

reduced one-body neutral-current transition density, is precisely where the nuclear
physics enters into the scattering cross section calculation. It is independent of the
scattering process and is determined solely from the nuclear model employed. The
explicit forms of these reduced transition densities are somewhat complicated and
will not be derived here. They can be found in appendix C.

2.3 The nuclear current and nucleon form factors

In this section we will present the final two pieces of the theoretical machinery needed
to model the scattering between nuclei and astrophysical neutrinos. The first of these
is to find expressions for the multipole operators, that were used to decompose the
nuclear current operator in the effective Hamiltonian in terms of spherical tensors, in
terms of quantities that we can input into our cross section calculations. The second
is to properly take into account the composite particle nature of the nucleons, which
up until now have been treated as point-like elementary particles. Their internal
structure will be considered in terms of form factors, which will be the topic of the
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second part of this section.

2.3.1 The nuclear current

To conclude the review on the theory behind neutrino-nucleus scattering, we need to
find expressions for the reduced matrix elements of the multipole operators defined
in equations 78. These operators are given in terms of the nuclear current operator
J µ(x), and we will thus need to consider it first. In this section we will first construct
the first quantized form of the nuclear current operator and use it to acquire the
second quantized forms of the multipole operators. Our starting point is to consider
the decomposition of the nuclear current J µ(x) into vector and axial vector parts
JV,µ and JA,µ, so that

J µ(x) = JV,µ(x)− JA,µ(x). (246)

The different parts can be decomposed further by considering the currents of different
species of nucleons separately, leading to

JV/A,µ(x) = JV/A,µp (x) + JV/A,µn (x). (247)

where JV/A,µp(n) (x) is the current due to protons (neutrons).
The first quantized forms of JV/A,µp(n) (x) can be written as[11, Chapter 45.2]

J
V/A,µ
p(n) (x) =

Z(N)∑
k=1

J
V/A,µ
p(n) (k)δ(3)(x− xk). (248)

The corresponding second quantized form can then be shown to be[11, Page 472]

∑
p′pσ′σ

〈p′σ′|JV/A,µp(n) (x)|pσ〉 c†p′σ′cpσ, (249)

where the single-nucleon states |pσ〉 are free particles with wave functions

〈x|pσ〉 = 1√
V
eip·xχσ ≡ φpσ, (250)

i.e. box-normalized plane waves. We can write the explicit form of the matrix
elements 〈p′σ′|JV/A,µp(n) (x)|pσ〉 as

〈p′σ′|JV/A,µp(n) (x)|pσ〉 =
∫
φ†p′σ′(y)JV/A,µp(n),1 (y)δ(3)(x− y)φpσ(y)d3y. (251)
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To make use of the above equation, we first note that the most general forms of the
matrix elements at the origin are[29, Chapter 10.9]

〈p′σ′|JV,µp(n)(0)|pσ〉 = 1
V
u(p′σ′)

[
F

NC;p(n)
1 (Q2)γµ − FNC;p(n)

2 (Q2) i

mN
σµνqν

]
u(pσ)

(252)
and

〈p′σ′|JA,µp(n)(0)|pσ〉 = 1
V
u(p′σ′)FNC;p(n)

A (Q2)γ5γ
µu(pσ), (253)

when we impose the requirements of Lorentz covariance and parity conservation3.
In the above equations FNC;p(n)

1 (Q2), FNC;p(n)
2 (Q2) and FNC;p(n)

A (Q2) are the nucleon
weak neutral current Dirac, Pauli and axial form factors respectively, and Q2 = −qµqµ.
These result from the requirements that the matrix elements be invariant under
time-reversal and isospin. The assumption that the second quantized nuclear current
operator at the origin can be written as[24]

JV/A,µ(0) =
∑

p′pσ′σ
〈p′σ′|JV/A,µ(0)|pσ〉p p c

†
p′σ′cpσ+

∑
p′pσ′σ

〈p′σ′|JV/A,µ(0)|pσ〉n n c
†
p′σ′cpσ

(254)

(with p(n) denoting a single-particle proton (neutron) state) can then be used to
compare the above expression with equation 251 at x = 0.

To do the comparison, we expand the matrix elements of equations 252 and 253
in powers of 1/mN by using the explicit expression of equation 106 for the Dirac
spinors for the free nucleons (with m = mN), resulting in[11, Chapter 45.2]

〈p′σ′|JV/A,µ(0)|pσ〉p(n) p(n) = 1
V
χ†σ′M

V/A,µ
p(n) (Q2)χσ +O(1/m2

N), (255)

where the components of the four-vectors MV/A,µ
p(n) (Q2) are defined by[24]

MV,0
p(n)(Q

2) = F
NC;p(n)
1 (Q2), MA,0

p(n)(Q
2) = −F

NC;p(n)
A (Q2)

2mN
σ · (p + p′),

MV
p(n)(Q2) = F

NC;p(n)
1 (Q2)

2mN
(p + p′) + F

NC;p(n)
1 (Q2) + F

NC;p(n)
2 (Q2)

2mN
iq× σ,

MA
p(n)(Q2) = −FNC;p(n)

A (Q2)σ.

(256)

3We utilize the Conserved vector current hypothesis (CVC)[11, Chapter 42.7] here, and also
assume that there are no second class currents.
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We can make the substitution q → −i∇ in the above equations on the basis that
the nuclei involved in the scattering are highly localized in space. This guarantees
vanishing surface terms when partial integration is applied to equation 7 that defines
the kinematics of the system, which then leads to the substitution being justified[24].
Comparing the matrix elements of equations 251 and 255 now yields for the nuclear
current operator four-vector time components[24]

JV,0p(n)(x) = F
NC;p(n)
1 (Q2)

Z(N)∑
k=1

δ(3)(x− xk) = ρVp(n) and

JA,0p(n)(x) = F
NC;p(n)
A (Q2)

Z(N)∑
k=1

σ(k) ·
{ pk

2mN
,δ(3)(x− xk)

}
= ρAp(n),

(257)

and similarly for the spatial components

JVp(n)(x) = JVC,p(n)(x) +∇× µp(n)(x), JAp(n)(x) = −Ap(n)(x), (258)

where

JVC,p(n)(x) = F
NC;p(n)
1 (Q2)

Z(N)∑
k=1

{ pk
2mN

,δ(3)(x− xk)
}
,

µp(n)(x) = F
NC;p(n)
1 (Q2) + F

NC;p(n)
2 (Q2)

2mN

Z(N)∑
k=1

σ(k)δ(3)(x− xk) and

Ap(n)(x) = F
NC;p(n)
A (Q2)

Z(N)∑
k=1

σ(k)δ(3)(x− xk).

(259)

In the defining equation of µp(n)(x) above, we can abbreviate µNC;p(n) ≡ F
NC;p(n)
1 (Q2)+

F
NC;p(n)
2 (Q2).
The expressions above and equations 78 can then be used to derive single-particle

vector and axial vector operators for each of the multipole operators. ForMJM we
get

M
V ;p(n)
JM (q) =

∫
MJM(q′)FNC;p(n)

1 (Q′2)δ(3)(y− x)d3y = MJM(q)FNC;p(n)
1 (Q2) (260)
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and

M
A;p(n)
JM (q) = −

∫
MJM(q′)FNC;p(n)

A (Q′2)σ ·
{ py

2mN
,δ(3)(y− x)

}
d3y =

−
∫
MJM(q′)FNC;p(n)

A (Q′2)σ ·
( py

2mN
δ(3)(y− x) + δ(3)(y− x)

py
2mN

)
d3y.

(261)

To evaluate the above integral, we utilize the identity4

[F (x),p] = i∇F (x), (262)

from which it follows that

[F (x),p] = F (x)p− pF (x) = i∇F (x)⇔ pF (x) = F (x)p− i∇F (x). (263)

By choosing F (y) = δ(3)(y− x) we get for the integrand

MJM(q′)FNC;p(n)
A (Q′2)σ ·

( py
2mN

δ(3)(y− x) + δ(3)(y− x)
py

2mN

)
=

MJM(q′)FNC;p(n)
A (Q′2)σ ·

(
− i

2mN
∇δ(3)(y− x) + δ(3)(y− x)

py
mN

)
.

(264)

We will consider the terms inside the parentheses separately. For the latter, we have

−
∫
MJM(q′)FNC;p(n)

A (Q′2)σ ·
(
δ(3)(y− x)

py
mN

)
d3y = MJM(q)FNC;p(n)

A (Q2)σ · p
mN

= iMJM(q)FNC;p(n)
A (Q2)σ · ∇

mN
= i

q

mN
F

NC;p(n)
A (Q2)MJM(q)σ · ∇

q
=

i
q

mN
F

NC;p(n)
A (Q2)ΩJM(q),

(265)

where we have defined[24]

ΩJM(q) ≡MJM(q)σ · ∇
q

(266)

and made the substitution p = −i∇. For the former term we can first apply the
4Proof: For functions F (x),G(x) : R3 → R we have [F (x),p]G(x) = −iF (x)∇G(x) +

i∇(F (x)G(x)) = −iF (x)∇G(x) + iF (x)∇G(x) + iG(x)∇F (x) = (i∇F (x))G(x) ⇒ [F (x),p] =
i∇F (x), where we have used the substitution p = −i∇ and the identity ∇(F (x)G(x)) =
F (x)∇G(x) +G(x)∇F (x)[28, Page 915].
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identity
∇′f(x− x′) = −∇f(x− x′), (267)

from which we get

∫
MJM(q′)FNC;p(n)

A (Q′2)σ · i

2mN
∇δ(3)(y− x)d3y =

−
∫
MJM(q′)FNC;p(n)

A (Q′2)σ · i

2mN
∇yδ

(3)(y− x)d3y.
(268)

We can then use partial integration, noting again that the surface term disappears,
to obtain

−
∫
MJM(q′)FNC;p(n)

A (Q′2)σ · i

2mN
∇yδ

(3)(y− x)d3y =∫
F

NC;p(n)
A (Q′2)∇ · (MJM(q′)σ) i

2mN
δ(3)(y− x)d3y =

i

2mN

∫
F

NC;p(n)
A (Q′2)σ · (∇MJM(q′))δ(3)(y− x)d3y.

(269)

By defining the operator[24]

Σ′′JM(q) ≡
[
∇MJM(q)

q

]
· σ (270)

we can finally get

i

2mN

∫
F

NC;p(n)
A (Q′2)σ · (∇MJM(q′))δ(3)(y− x)d3y =

i

2mN
F

NC;p(n)
A (Q2)σ · (∇MJM(q)) = i

q

mN
F

NC;p(n)
A (Q2)1

2

(
∇MJM(q)

q

)
· σ =

i
q

mN
F

NC;p(n)
A (Q2)1

2Σ′′JM(q).

(271)

Combining the results we get

M
A;p(n)
JM (q) = i

q

mN
F

NC;p(n)
A (Q2)

[
ΩJM(q) + 1

2Σ′′JM(q)
]
. (272)

The corresponding operators for the other multipole operators of equation 78 are
found in a similar manner.

For LJM , we can relate its vector component to that ofMJM and the excitation
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energy Eω of the nuclear state by

LVJM(q) = −Eω
q
MV

JM(q), (273)

which follows from the CVC[21]. The axial vector part can be shown to be[24]

L
A;p(n)
JM = −iFNC;p(n)

A (Q2)Σ′′JM(q). (274)

By defining operators

∆JM(q) ≡MM
JJ(q) · 1

q
∇, ∆′JM(q) ≡ −

[
1
q
∇×MM

JJ(q)
]
· 1
q
∇ =

Ĵ−1
[
−
√
JMM

JJ+1(q) +
√
J + 1MM

JJ−1(q)
]
· 1
q
∇, ΣJM(q) ≡MM

JJ(q) · σ and

Σ′JM(q) ≡ −
[

1
q
∇×MM

JJ(q)
]
· σ = Ĵ−1

[
−
√
JMM

JJ+1(q) +
√
J + 1MM

JJ−1(q)
]
· σ,

(275)

the single-particle operators for T el
JM and T mag

JM can expressed as[24]

T el,V
JM = q

mN

[
F

NC;p(n)
1 (Q2)∆′JM(q) + 1

2µ
NC;p(n)(Q2)ΣJM(q)

]
,

Tmag,V
JM = −i q

mN

[
F

NC;p(n)
1 (Q2)∆JM(q)− 1

2µ
NC;p(n)(Q2)Σ′JM(q)

]
T el,A
JM = −iFNC;p(n)

A (Q2)Σ′JM(q) and Tmag,A
JM = −FNC;p(n)

A (Q2)ΣJM(q).

(276)

The second quantized forms of the multipole operators OJM of equation 78 can then
be written in terms of these first quantized single-particle operators OV/A;p(n)

JM . From
equation 245 we get

OJM = λ−1

 ∑
proton orbitals ab

(
(a||OV,p

λ ||b)− (a||OA,p
λ ||b)

) [
c†ac̃b

]
λµ

+

∑
neutron orbitals ab

(
(a||OV,n

λ ||b)− (a||OA,n
λ ||b)

) [
c†ac̃b

]
λµ

.
(277)

It can be then seen that the reduced matrix elements of the multipole operators
can be expressed in terms of the reduced matrix elements of the operators MJM(q),
MM

JL(q) · (1/q)∇, MM
JL(q) · (1/q)σ and MJM (q)σ · (1/q)∇, where L ∈ {J−1,J,J + 1}.
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For these we have[24]

(a||MJ(q)||b) = (−1)J+jb+ 1
2

√
4π

l̂al̂bĵaĵbĴ

la ja
1
2

jb lb J


la J lb

0 0 0

R(0)
abJ , (278)

(a||MM
JL(q) · 1

q
∇||b) = (−1)L+jb+ 1

2
√

4π
l̂aĵaĵbĴ L̂

la ja
1
2

jb lb J

 ·−√(lb + 1)(2lb + 3)

L 1 J

lb la lb + 1


la L lb + 1

0 0 0

R(−)
abJ+

√
lb(2lb − 1)

L 1 J

lb la lb − 1


la L lb − 1

0 0 0

R(+)
abJ

,
(279)

(a||MM
JL(q) · σ||b) = (−1)la√

4π
√

6l̂al̂bĵaĵbĴ L̂


la lb L
1
2

1
2 1

ja jb J


la L lb

0 0 0

R(0)
abJ (280)

and

(a||MJM(q)σ · 1
q
∇||b) = (−1)lb√

4π
l̂aĵaĵb

√
2(2jb − lb) + 1

la ja
1
2

jb 2jb − lb J

 ·la J 2jb − lb
0 0 0

[−δjb,lb+ 1
2
R(−)
abJ + δjb,lb− 1

2
R(+)
abJ

]
,

(281)

where

R(−)
abJ ≡ 〈nala| jL(ρ)

(
d
dρ −

lb
ρ

)
|nblb〉 , R(+)

abJ ≡ 〈nala| jL(ρ)
(

d
dρ −

lb + 1
ρ

)
|nblb〉

and R(0)
abJ ≡ 〈nala|jL(ρ)|nblb〉 .

(282)
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2.3.2 Form factors

In this section we will finish the theoretical review of this thesis with a brief discussion
on the form factors introduced in the previous section. We will first express the
previously mentioned neutral current form factors in terms of the electromagnetic
form factors, following closely the discussion presented in [30]. Starting off, we
consider the weak neutral current J (0)

µ of equation 2. The structure of this current
in the Standard Model is

Jµ = 2j3
µ − 2 sin2 θW j

EM
µ , (283)

which follows from the electroweak unification condition. In the above equation θW
is the Weinberg angle, and the j3

µ part consists of the sum of V-A couplings of the
forms

xγµ(1− γ5)1
2x and − yγµ(1− γ5)1

2y, (284)

where x denotes all neutrinos and the quarks u, c and t, while y denotes the leptons
e, µ and τ and the quarks d, s and b. The jEM

µ term is just the electromagnetic
current. For low energy neutrino scattering the most relevant part of j3

µ is that of
the u and d quarks. We therefore define

V 3
µ = uγµ

1
2u− dγµ

1
2d, A3

µ = uγµγ5
1
2u− dγµγ5

1
2d, V s

µ = sγµs, and Asµ = sγµγ5s,

(285)
and consider only the current

jNC
µ = V 3

µ − A3
µ −

1
2
(
V s
µ − Asµ

)
− 2 sin2 θW j

EM
µ . (286)

We will also separate the electromagnetic part of the current by considering only the
electromagnetic currents of u, d and s quarks. If we denote

V 0
µ = 1

6uγµu+ 1
6dγµd−

1
3sγµs, (287)

we can write the relevant quark electromagnetic current JEM
µ as

JEM
µ = V 3

µ + V 0
µ . (288)

We will next consider the matrix elements of the current jNC
µ .
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The single-nucleon matrix element of the weak neutral current in the case of
neutrino-nucleon scattering can be written in terms of the currents discussed (in
Heisenberg picture) as

〈p′|jNC
µ (0)|p〉 = 〈p′|V 3

µ |p〉−〈p′|A3
µ|p〉−

1
2
(
〈p′|V s

µ |p〉 − 〈p′|Asµ|p〉
)
−2 sin2 θW 〈p′|jEM

µ |p〉 ,
(289)

where
〈p′|jEM

µ |p〉 = 〈p′|V 3
µ |p〉+ 〈p′|V 0

µ |p〉 . (290)

We have suppressed quantum numbers other than the nucleon 4-momenta p and
p′ before and after the scattering event. If we again denote proton and neutron
single-particle states with subscripts, it then follows from isospin invariance of strong
interactions that

〈p′|V 3
µ |p〉p p

= − 〈p′|V 3
µ |p〉n n

and 〈p′|V 0
µ |p〉p p

= 〈p′|V 0
µ |p〉n n

. (291)

From these and equation 290 we then get

〈p′|V 3
µ |p〉p p

= 1
2
(
〈p′|jEM

µ |p〉p p
− 〈p′|jEM

µ |p〉n n

)
(292)

and
〈p′|V 0

µ |p〉p p
= 1

2
(
〈p′|jEM

µ |p〉p p
+ 〈p′|jEM

µ |p〉n n

)
. (293)

Now, using the equations presented so far, the fact that the matrix element of
the electromagnetic current can be expressed in terms of the electromagnetic Dirac
and Pauli form factors FEM;p(n)

1 (Q2) and FEM;p(n)
2 (Q2) as

〈p′|jEM
µ |p〉p(n) p(n) = u(p′)

[
γµF

EM;p(n)
1 (Q2) + i

2mN
σµνγ

νF
EM;p(n)
2 (Q2)

]
u(p), (294)

and a similar expression for the matrix element

〈p′|V s
µ |p〉p(n) p(n) = u(p′)

[
γµF

s;p(n)
1 (Q2) + i

2mN
σµνγ

νF
s;p(n)
2 (Q2)+

1
2mN

qµF
s;p(n)
3 (Q2)

]
u(p),

(295)

in terms of the strange form factors F s;p(n)
1 (Q2), F s;p(n)

2 (Q2) and F
s;p(n)
3 (Q2), we

arrive at the following expression for the weak neutral current vector form factors
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F
NC;p(n)
1,2 (Q2) and the strange form factors F s;p(n)

1,2 (Q2):

F
NC;p(n)
1,2 (Q2) = 1

2
(
F

EM;p(n)
1,2 (Q2)− FEM;n(p)

1,2 (Q2)
)
− 2 sin2 θWF

EM;p(n)
1,2 (Q2)−

1
2F

s;p(n)
1,2 (Q2),

(296)

where we have used the value F s;p(n)
3 (Q2) = 0. For this and the other details in the

derivation of the above equation, we again refer to [30]. A similar expression can
be found for the weak neutral current axial form factor FNC;p(n)

A (Q2) in terms of the
charged current axial form factors GA(Q2) and Gs

A(Q2):

F
NC;p(n)
A (Q2) = 1

2
(
+(−)GA(Q2)−Gs

A(Q2)
)
. (297)

The values of the form factors presented so far will be discussed next.
The electromagnetic Dirac and Pauli form factors are conveniently expressed in

terms of the Sachs electric and magnetic form factors Gp(n)
E (Q2) and Gp(n)

M (Q2) as[24]

F
EM;p(n)
1 (Q2) = G

p(n)
E (Q2) + τG

p(n)
M (Q2)

1 + τ
and FEM;p(n)

2 (Q2) = G
p(n)
M (Q2)−Gp(n)

E (Q2)
1 + τ

(298)
with the abbreviation τ = Q2/mN. In this thesis we will adopt the parametrizations
(parameters denoted by a, b, A and B)

Gp
E(Q2) =

1 + aE
p,1τ

1 + bE
p,1τ + bE

p,2τ
2 + bE

p,3τ
3 and Gn

E(Q2) = Aτ

1 +Bτ
GD(Q2) (299)

for the electric Sachs form factor and

G
p(n)
M (Q2)
µp(n)

=
1 + aM

p(n),1τ

1 + bM
p(n),1τ + bM

p(n),2τ
2 + bM

p(n),3τ
3 (300)

for the magnetic Sachs form factor[24]. The function GD(Q2) in the above equation
is known as the dipole form factor, and in the case of Gn

M(Q2), it is of the form

GD(Q2) = 1(
1 + Q2

M2
V

)2 , (301)

while µp(n) is the magnetic moment of the corresponding nucleon. For the strange



81

form factors F s;p(n)
1,2 (Q2) we use[24]

F
s;p(n)
1 (Q2) = F s

1Q
2

1 + τ
GD(Q2) and F s;p(n)

2 (Q2) = µs
1 + τ

GD(Q2), (302)

where F s
1 and µs are parameters. Finally, for the axial form factors we have[24]

GA(Q2) = GA(0)G′D(Q2) and Gs
A(Q2) = Gs

A(0)G′′D(Q2), (303)

where the functions G′D(Q2) and G′′D(Q2) are identical to GD(Q2) with the exception
that in place of the parameter MV , they have MA and M s

A respectively. All the
values for the parameters that were used in this thesis are presented in Appendix A.
For the theory behind these parametrizations and how the values were determined,
we refer to [31] for the electromagnetic Sachs form factors, [30] for the strange form
factors, and [32] for the axial form factors.
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3 Calculations and results

In this section we will discuss the numerical calculations of this thesis and present
their results. The calculations consisted of three distinct parts: numerically solving
the eigenstates and -energies of the nuclei of interest using the models discussed
in section 2.2, calculating the reduced single-particle neutral current transition
densities and nuclear matrix elements, and then using these to compute the neutrino
scattering cross sections. We will discuss the first and the last of these steps and
their corresponding results in detail. The second step of calculating the transition
densities was computationally rather straightforward and the results not particularly
illuminating when presented, so we have omitted most of the details on the discussion
on this step. For the explicit expressions for these quantities we refer to Appendix C.

3.1 The Nuclear physics part

The process of modeling the nuclei of interest consisted of multiple parts as the
model used, MQPM, is built upon other nuclear models, namely the BCS model and
the QRPA, as was discussed in section 2.2. Thus, to model 127I and 133Cs, the two
proton-odd neutron-even nuclei considered in this thesis, using MQPM, the states
of the adjacent even-even nuclei 126Te, 128Xe, 132Xe and 134Ba needed to be first
constructed using QRPA. The first step in the nuclear physics part of the calculations
was then to construct the BCS states of these even-even nuclei. There were, however,
a number of preliminary steps that preceded the primary nuclear model calculations
outlined above. These steps were essential for the later ones, and we will discuss
them first.

The zeroth step in the calculations before BCS or any other nuclear physics
related calculations could be undertaken was to specify the valence space of the
calculations, choose the residual interaction to be used and construct the single-
particle basis states. The valence space was bounded from below by choosing an
inert core consisting of 8 of both nucleons, i.e. an 16O nucleus, making 0d the lowest
single-particle orbital of the valence space. The proton and neutron numbers of
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127I and 133Cs all lie between the shell model magic numbers 50 and 82, and all
orbitals between them were included, of which 2s was the highest. The valence
space 0d-2s contains for all the orbitals contained in it their respective spin-orbit
parters5, with the exception of 0i11/2, partner to 0i13/2. The missing 0i11/2 orbital
was included despite it lying above the shell closure gap to form a valence space
complete in terms of spin-orbit partners. The single-particle states and their energies
for both species of nucleons have been illustrated for all even-even reference nuclei in
figures 6, 7, 8 and 9. For the other preliminaries, the residual interaction we used
was the Bonn-A one-boson exchange potential[33], and for the single-particle basis,
the wave functions associated with the single-particle Hamiltonian of equation 141
were solved in harmonic oscillator basis[10, Chapter 3.2.1]. The values used for the
various parameters present in equation 141 have been discussed in Appendix A.

After the preliminary preparations explained above were completed, the first step
in the nuclear physics part of the calculations was next to follow. The procedure
adopted for solving equations 221, i.e. the BCS equations, for the even-even nuclei
mentioned above was that of using phenomenological pairing parameters with values
chosen so that the theoretical pairing gaps were as close as possible to the correspond-
ing experimental values. To elaborate, we note that the pairing gaps ∆z that appear
in equations 221 are a result of an odd-even effect that is seen when comparing
the binding energies of adjacent even-A and odd-A nuclei; individual nucleons have
a tendency to form pairs with zero total angular momentum, reducing the energy
of the nucleon pair which leads to even-A nuclei typically having a higher binding
energy than an adjacent odd-A nuclei[10, Chapter 12]. The pairing gap ∆ can then
be defined through the mass difference of odd and even nuclei by equation[10, Page
371]

MA = 1
2(MA+1 +MA−1) + ∆, (304)

where MA is the mass of the odd-A nucleus.
The experimental pairing gaps can then be solved from equation 304. When

considering the nucleons separately, the pairing gaps are more conveniently expressed
in terms of the proton and neutron separation energies Sp and Sn, instead of the

5Two single-particle orbitals are said to be spin-orbit parters if they have the same n and l
quantum numbers, but differ in j as a result of the spin-orbit interaction splitting the states of
different j in energy.
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Figure 6. The used single-particle orbitals and their energies for 126Te, along
with the quasiparticle spectrum. The shell model structure and shell gaps for the
orbitals are clearly visible. Results for both species of nucleons are illustrated.
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Figure 7. The used single-particle orbitals and their energies for 128Xe, along
with the quasiparticle spectrum. The shell model structure and shell gaps for the
orbitals are clearly visible. Results for both species of nucleons are illustrated.
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Figure 8. The used single-particle orbitals and their energies for 132Xe, along
with the quasiparticle spectrum. The shell model structure and shell gaps for the
orbitals are clearly visible. Results for both species of nucleons are illustrated.
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Figure 9. The used single-particle orbitals and their energies for 134Ba, along
with the quasiparticle spectrum. The shell model structure and shell gaps for the
orbitals are clearly visible. Results for both species of nucleons are illustrated.
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nuclear masses. We have the simple equations[10, Page 500]

∆p(A,Z) = 1
2 [Sp(A+ 1,Z + 1)− Sp(A,Z)] (305)

and
∆n(A,Z) = 1

2 [Sn(A+ 1,Z)− Sn(A,Z)] (306)

for proton and neutron pairing gaps, which follow directly from equation 304 and
the definitions of the separation energies. These simple two-point formulae were,
however, not used to determine the experimental pairing gaps. Instead, the more
accurate three-point formulae[10, Page 500]

∆p(A,Z) = 1
4(−1)Z+1 [Sp(A+ 1,Z + 1)− 2Sp(A,Z) + Sp(A− 1,Z − 1)] (307)

and

∆n(A,Z) = 1
4(−1)A−Z+1 [Sn(A+ 1,Z)− 2Sn(A,Z) + Sn(A− 1,Z)] , (308)

that better account for the surrounding nuclear landscape around the nucleus of
interest were used.

For the theoretical pairing gaps, we have from the BCS equations

Eω =
√
η2
z + ∆2

z ≥ ∆z. (309)

Based on this, the results of the BCS calculations were fit to experimental data so
that

∆p = Eω,p,lowest and ∆n = Eω,n,lowest, (310)

i.e. so that the lowest excitation energies Eω, or quasiparticle energies, for both
species of nucleons were as close to the corresponding experimental pairing gaps as
possible. To perform these fits for the even-even nuclei adjacent to 127I and 133Cs,
the nucleon separation energies for a number of nuclei surrounding these were used.
They have been presented in tables 1 and 2 along with the calculated experimental
pairing gaps. the full BCS quasiparticle spectra for all reference nuclei and both
species of nucleons are illustrated in the same figures (6, 7, 8 and 9,) above as the
single-particle orbitals.

After solving the BCS equations and obtaining the occupation amplitudes and
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Table 1. The proton and neutron separation energies of the nuclei surrounding
the even-even nuclei 126Te and 128Xe adjacent to 127I[34][35][36][37][38]. The
separation energies were used to calculate the pairing gaps defined in equations
307 and 308, and they are grouped based on which one of the even-even nuclei
they were used for. The calculated proton and neutron pairing gaps are also
listed.

127I
126Te 128Xe

Nucleus Sp (MeV) Sn (MeV) Nucleus Sp (MeV) Sn (MeV)
127I 6.208 - 129Cs 4.928 -
126Te 9.0980 9.11369 128Xe 8.165 9.610
125Sb 7.311 - 127I 6.208 -
127Te - 6.28765 129Xe - 6.9071
125Te - 6.56897 127Xe - 7.246

∆p = 1.1693, ∆n = 1.3427 ∆p = 1.2985, ∆n = 1.2667

Table 2. The proton and neutron separation energies of the nuclei surrounding
the even-even nuclei 132Xe and 134Ba adjacent to 133Cs[39][40][41][42][43]. The
separation energies were used to calculate the pairing gaps defined in equations
307 and 308, and they are grouped based on which one of the even-even nuclei
they were used for. The calculated proton and neutron pairing gaps are also
listed.

133Cs
132Xe 134Ba

Nucleus Sp (MeV) Sn (MeV) Nucleus Sp (MeV) Sn (MeV)
133Cs 6.080940 - 135La 4.982 -
132Xe 9.1252 8.936720 134Ba 8.1679 9.4676
131I 7.3787 - 133Cs 6.080940 -
133Xe - 6.4359 135Ba - 6.97196
131Xe - 6.604410 133Ba - 7.1899

∆p = 1.1977, ∆n = 1.2083 ∆p = 1.3182, ∆n = 1.1933
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other quantities of interest for the even-even nuclei, the second step in the nuclear
physics part of the calculations could be undertaken. This consisted of using the
results of the BCS calculations to construct the QRPA matrices A and B of equations
237 and 238, and numerically solving the QRPA equation (equation 242). Similar
to the BCS calculations, phenomenological parameters were again used to fit the
calculated theoretical values of observables as close to the corresponding experimental
values as possible. For the QRPA calculations, the chosen observables were the
energies of some of the lowest states of the even-even nuclei. Before presenting the
results, we first briefly discuss the properties of the QRPA solutions and how they
affected the choice of the states used in the fits.

As was discussed in section 2.2, solving the QRPA equation yields the parameters
Xω and Y ω, which define the QRPA phonons Q†ω as by equation 222. The excited
states can then be constructed by operating on the QRPA vacuum with the phonon
operator, i.e.

|ω〉 = Q†ω |QRPA〉 . (311)

This is not the only way to generate excited states with the phonon operators.
Instead of using only a single phonon operator to create an excited state, multiple
phonon operators can be coupled together to form operators with a definite angular
momentum[10, Chapter 18.5]. For the purposes of this thesis, the most interesting
of such multiphonon states is the most simple of them, that is the case when two
identical phonons are coupled to form a collective vibrational state

|ωω; J,M〉 = 1√
2

[
Q†ωQ

†
ω

]
J,M
|QRPA〉 . (312)

There is ample experimental evidence for the existence of such states in the case of
quadrupole (2+) and octupole (3−) phonons[10, Chapter 18.5], of which the former
was relevant for the calculations in this thesis.

Coupling together two quadrupole phonons gives possible total angular momenta
0+, 2+ and 4+. Theoretically, this type of triplet of states is degenerate in energy
that is twice that of the single-phonon quadrupole state. In practice, however, in
the nuclei where collective vibrational two phonon states are found, the states of the
triplet are not exactly equal in energy, but typically close to each other and found
around the energy of twice that of the first 2+ state. Of all the even-even nuclei
considered in this thesis, all four of them had a lowest 4+ state that fit the description
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of a collective two-phonon vibrational state. The program used to solve the QRPA
equation and generate the states was only concerned with single-phonon states of
the form of equation 311, so the 4+

1 states could not be used for fitting. Another
notable feature of the QRPA solutions is a spuriosity affecting the lowest 1− state.
The cause of this is due to the constancy of the origin of the nuclear coordinates,
which, as the nucleons move, results in unphysical movement of the nuclear centre of
mass around the origin. This effect is discussed in more detail in [10, chapter 18.3.4],
and we merely note here that the energies of the 1−1 states for all the even-even nuclei
considered were not suitable to be used as fitting parameters due to contamination
of the states by this spurious effect.

Based on the factors discussed above, we chose the states 2+
1 , 3−1 , 4+

2 , 5−1 and 6+
1 of

the even-even nuclei to use in the fits. In addition to this, there is another spuriosity
regarding the 0+

2 states discussed in [25, 44]. As a result, its energy was fit as close
to zero as possible. The rest of the states were fit according to the corresponding
experimental values. The maximum value of angular momentum of a QRPA phonon
in the calculations was chosen to be 66. Part of the results of these calculations
are presented in figures 10 and 11, where we have illustrated some of the lowest
theoretical and experimental states of the even-even nuclei.

The agreement between theoretical and experimental spectra for all even-even
nuclei can be seen to be decent overall. The typical QRPA trend of agreement between
theoretical and experimental states being good at low energies and degrading as
the energies of the states increase is clearly seen, with a few, but not surprising
exceptions. In particular, the 2+

2 and 4+
1 states belonging to the two-phonon triplet

are not reproduced with single-phonon states considered in this thesis, and thus their
absence from the theoretical spectra was expected for all nuclei. One notable feature
regarding this supposed quadrupole phonon triplet is that it does not appear to be
a triplet. The energies of the lowest excited 0+ states are all around the range of
three times of that of the 2+

1 state for all nuclei, which is considerably too high to be
considered a two-phonon state composed of two quadrupole phonons. This was of
course already taken into account when the states that were used for fitting were
chosen. The discrepancy involving the missing 0+ of the triplet and its causes have

6The MQPM results are said to converge for a particular maximum value of QPRA phonon
angular momentum if the addition of higher multipoles into the QRPA calculations does not
significantly alter the energies of the lowest MQPM states. This was the case in this thesis with
the chosen maximum value of 6.
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Figure 10. The low-lying (< 2.5 MeV) theoretical QRPA energy spectra
of the even-even nuclei 126Te and 128Xe, and the corresponding experimental
spectra[35][37]. Only the ten lowest states above the first 2+ are labeled.
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Figure 12. The low-lying (< 2.5 MeV) theoretical MQPM energy spectra of
127I when the reference nuclei were 126Te (left) and 128Xe (right), along with the
corresponding experimental spectrum[36] (middle). Only the ten lowest states
are labeled.

also already been discussed in an earlier work[45] at mass numbers A ≤ 126 in the
context of QRPA calculations involving Xe isotopes.

The third and the final part of the nuclear state generation in the nuclear physics
calculations was utilizing the results of the QRPA calculations, specifically the QRPA
phonon operators Q†ω, along with the earlier BCS results to construct the MQPM
equations (equation 244) for the nuclei 127I and 133Cs. Both of the adjacent even-even
nuclei were used as the reference nucleus for each of the odd nuclei for a total of 4
different MQPM calculations. The aforementioned spurious QRPA states 0+

2 and 1−1
were entirely excluded from the MQPM calculations. Solving the MQPM equations
then yielded the states and energies of the nuclei of interest. The resulting low-lying
MQPM spectra have been presented in figures 12 and 13.

The agreement between theoretical 127I spectra and the corresponding experimen-
tal spectrum is less than fair at the lower end of the spectra. While the ground state
is correctly reproduced for both reference nuclei, the experimental spectrum has a
number of states below 1 MeV of which nearly all are missing in both theoretical
spectra, excluding the first 7/2+ state which is predicted to be very close to its
measured energy. The effect of the absence of these low-lying states to the neutrino
scattering cross sections is unlikely to be very significant, as supernova neutrinos
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Figure 13. The low-lying (< 2.5 MeV) theoretical MQPM energy spectra of
133Cs when the reference nuclei were 132Xe (left) and 134Ba (right), along with the
corresponding experimental spectrum[41] (middle). Only the ten lowest states
are labeled.

and antineutrinos are emitted at relatively high (≥ 10 MeV) average energies[46][47],
so it is reasonable to expect that the most likely final nuclear states would also be
high in energy. Similar calculations[48][49][50] involving other nuclei have indeed
shown that the bulk of the contributions to the cross section do in fact come from
high-energy states, thus lessening the concerns over inaccuracies at the lower end of
the theoretical spectra. There are also noticeable gaps between certain states in the
theoretical spectra, and states seem to form bands separated by these gaps. This
is likely due to similar band-gap structure of the BCS quasiparticle states which,
while not as pronounced as for the single-particle orbitals, is seen in the quasiparticle
spectra in figures 6 and 7.

For the case of 133Cs, the same conclusions mostly apply as the ones drawn for 127I.
The most prominent difference between the two is that for 133Cs the ground state is
not correctly reproduced in either of the theoretical calculations. There is, however, a
state matching the parity and angular momentum (7/2+) of the experimental ground
state that is very close to the theoretical ground state (5/2+), which in turn matches
the first experimental excited state. In other words, had the two lowest theoretical
states in the cases of both reference nuclei been predicted the other way around (the
lower being the higher, and vice versa), the situation would have been the same as
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with 127I. Because of the incorrectly predicted 133Cs ground state, the first excited
state was used as the initial state in neutrino scattering calculations discussed in the
next section. As a final note regarding the MQPM results, the question of which
of the even-even nuclei performed better as an reference nucleus for the MQPM
calculations should be addressed. For this, there was no clear winner for either of the
odd nuclei considered here. While one could make the argument that one even-even
nucleus provides marginally better predictions than its counterpart, the differences
are minor and no definite conclusions regarding this comparison can be drawn based
solely on the energy spectra.

After the MQPM states had been solved, the only thing left was to connect the
numerical nuclear physics results to the scattering reaction formalism. As discussed
in section 2, the nuclear physics entered into the calculations of the reaction cross
sections in the form of the reduced one-body transition densities, which were entirely
determined by the nuclear model used. These were computed after the previously
discussed nuclear calculations using the BCS, QRPA and MQPM results. The final
step linking the nuclear physics to the double-differential cross section is equation
122. To utilize this, we calculated the nuclear matrix elements, finishing the nuclear
physics portion of the numerical part of this thesis.

3.2 Reaction cross sections

In this section we will present the results for the reaction cross sections. The
calculations presented in the previous section culminated in obtaining all of the
necessary quantities required for computing the double-differential cross section.
Summing over the contributions of all the final nuclear states then produced the
differential cross section, which was (numerically) integrated to get the reaction cross
section with a given neutrino energy Eν . The neutrinos considered in this thesis
originate from supernova core collapses and are not emitted with one particular value
of energy. Instead, they lie on a spectrum determined by the details of the physics of
supernovae. To account for this, we averaged the cross section over an appropriately
chosen energy distribution. These averaged cross sections are also experimentally
significant as they are the quantities that are actually measured, further highlighting
the importance of the choice of energy spectrum. While a detailed description of
the mechanics of a supernova core collapse is beyond the scope of this thesis, we
will nevertheless present some general features that provide insight into our choice
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of neutrino energy spectrum next. For a more detailed look at this topic, we refer
to [1, Chapter 5.4], which we have also used as the primary source in the following
discussion.

The interior of a massive star at the onset of a supernova event is an environment
of immense pressure and temperature. The electron degeneracy pressure prevents
the core of the star from undergoing gravitational collapse when the mass of the core
is below the Chandrasekhar limit. Thermonuclear reactions inside the star, which at
that point in its lifespan consist primarily of silicon burning, eventually increase the
mass of the core beyond the limit, which causes the core to collapse inwards. This
considerably increases the electron density and thus the electron capture rates by
nuclei in the inner core. These electron capture reactions in the inner core are, along
with electron captures in the outer core after the rebound of the collapsing core and
a number of other reactions that occur in the core, the primary source of electron
neutrinos in supernova explosions, and the focus of this thesis. Secondary neutrino
sources include, for example, β-decay of the material ejected into space during the
explosion, and they were not considered in this work.

Neutrinos created inside the core travel through the interior of the star, interacting
with matter on the way, eventually arriving at the surface and escaping into space.
Matter density inside the core during a collapse eventually increases to a point where
the neutrino diffusion time exceeds the collapse time, forming a sphere-shaped region
of trapped neutrinos. The neutrinos inside this so called neutrino sphere interact
with the surrounding matter and reach thermal equilibrium, which played a key part
in our choice of the neutrino energy spectrum. As a system in thermal equilibrium,
the neutrino sphere has a well defined surface temperature inversely proportional
its radius. Based on these considerations, we assumed that the supernova neutrinos
could be reasonably accurately treated as being emitted as black-body radiation
with a thermal spectrum[24].

The energy of a gas of weakly interacting (with the term ”weak” in this context
pertaining to the strength of the interaction, being independent of its type) fermions
such as neutrinos in thermal equilibrium follows a Fermi-Dirac distribution[14,
Chapter 3.6]. The average number of fermions ni occupying the single-particle state
i with an energy Ei in a Fermi-Dirac distribution with a negligible chemical potential
is given by

ni = 1
eEi/T + 1 . (313)
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To account for degeneracy, we note that for massless particles, the density of states
in three dimensions is proportional to the square of the energy E2

i , which follows
from equation 10 and the well known dispersion relation

E2 = p2 = k2. (314)

for massless particles. The average number of particles having energy Ei is then
AniE

2
i , with A being a proportionality factor. This can be expressed as a probability

distribution by integrating the expression over energy and using the result as a
normalization factor, leading to

∫ ∞
0

A
E2
i

eEi/T + 1dEi = AN, (315)

and
pFD(Eν) = 1

AN
A

E2
ν

eEν/T + 1 = 1
N

E2
ν

eEν/T + 1 , (316)

where
N =

∫ ∞
0

E2
i

eEi/T + 1dEi. (317)

It is more convenient for our purposes to express the normalization factor N as a
Fermi-Dirac integral[51, Chapter 25.12]7

Fj(x) =
∫ ∞

0

yj

ey−x + 1dy, j > −1, (318)

by a change of variables x = Ei/T , dx = dEi/T , from which we get

N =
∫ ∞

0

E2
i

eEi/T + 1dEi = T 3
∫ ∞

0

(Ei/T )2

eEi/T + 1
dEi
T

= T 3
∫ ∞

0

x2

ex−0 + 1dx = T 3F2(0).
(319)

The distribution can thus be written as

pFD(Eν) = 1
T 3F2(0)

E2
ν

eEν/T + 1 , (320)

which can then be used to calculate the averaged cross section.
Equation 320 represents the energy distribution of a highly simplified model of

supernova neutrinos. While it is based on the general features that characterize the
7Some authors include a factor of 1/Γ(j + 1) on the right side of the definition, while others

omit it. In this work we choose to omit it.
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circumstances under which neutrinos are emitted and provides a good first approxima-
tion, there is considerable room for improvement. In particular, there exists evidence
based on Monte Carlo simulations of neutrino transport inside supernovae that the
actual energy spectrum is damped in its high-energy tail portion in comparison to
the Fermi-Dirac spectrum[46][47]. We consequently adopted a modified version of
the above distribution known as the pinched Fermi-Dirac spectrum[24] to better
model the tail part. This spectrum is obtained by introducing a term −α into the
exponent function in the Fermi-Dirac distribution, giving

pFDp(Eν) = 1
T 3F2(α)

E2
ν

eEν/T−α + 1 . (321)

The quantity α in the above equation is known as the degeneracy parameter, and it is
mathematically equivalent to the chemical potential multiplied by the temperature T
in a grand canonical ensemble treatment of non-interacting fermion gas[14, Chapter
3.6]. The convenience of expressing the Fermi-Dirac distribution in terms of the
Fermi-Dirac integral is also clearly seen, as pinching the distribution affects the
normalization by simply changing F2(x) in the denominator to be evaluated at α
instead of 0.

The distribution of equation 321 can then be used to calculate the energy averaged
cross sections 〈σ〉 of the scattering reactions considered by

〈σ〉 =
∫ ∞

0
pFDp(Eν)σ(Eν)dEν = 1

T 3F2(α)

∫ ∞
0

σ(Eν)E2
ν

eEν/T−α + 1dEν , (322)

i.e. by folding the cross section σ(Eν) with the distribution pFDp(Eν), after specifying
both the surface temperature of the neutrino sphere T and the degeneracy parameter
α. As mentioned earlier, the surface temperature of the neutrino sphere depends on
its radius. The radii at which neutrinos and antineutrinos are trapped are, however,
not identical. Up until now, we have considered mainly electron neutrinos when
discussing the creation of supernova neutrinos. While the processes that produce
electron antineutrinos are mostly different (reactions involving pair formation produce
both types of particles) from those that produce neutrinos, the same considerations
for the mechanics of the core collapse and explosion apply.

The formation of the neutrino sphere is intimately tied to the reactions responsible
for the coupling of the neutrinos inside the sphere. The most notable difference
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Table 3. The calculated energy averaged total scattering cross sections defined
in equation 322 for neutrino (νe) and antineutrino (νe) reactions with 127I, along
with the associated neutrino temperatures T and chosen degeneracy parameters α.
Results from using both even-even nuclei (126Te and 128Xe) adjacent to 127I as the
base nucleus for MQPM calculations are presented. The neutrino temperatures
were obtained by applying equation 324 and the values for average energies of
neutrinos used were 〈Eν〉νe = 11 MeV and 〈Eν〉νe = 16 MeV. The cross sections
of inelastic reactions are in units of 10−42cm2 and the cross sections of elastic
reactions in units of 10−40cm2.

127I
Parameters From 126Te From 128Xe

Type α T 〈σ〉inel 〈σ〉el 〈σ〉inel 〈σ〉el
νe 0.0 3.49 5.15 29.9 3.79 29.7
νe 3.0 2.76 3.69 28.3 2.61 28.1
νe 0.0 5.08 16.9 57.5 13.1 57.2
νe 3.0 4.01 13.5 55.5 10.2 55.2

Table 4. The calculated energy averaged total scattering cross sections defined
in equation 322 for neutrino (νe) and antineutrino (νe) reactions with 133Cs, along
with the associated neutrino temperatures T and chosen degeneracy parameters
α. Results from using both even-even nuclei (132Xe and 134Ba) adjacent to
133Cs as the base nucleus for MQPM calculations are presented. The neutrino
temperatures were obtained by applying equation 324 and the values for average
energies of neutrinos used were 〈Eν〉νe = 11 MeV and 〈Eν〉νe = 16 MeV. The
cross sections of inelastic reactions are in units of 10−42cm2 and the cross sections
of elastic reactions in units of 10−40cm2.

133Cs
Parameters From 132Xe From 134Ba

Type α T 〈σ〉inel 〈σ〉el 〈σ〉inel 〈σ〉el
νe 0.0 3.49 5.16 33.1 4.03 33.0
νe 3.0 2.76 3.68 31.4 2.74 31.2
νe 0.0 5.08 16.8 63.6 13.8 63.3
νe 3.0 4.01 13.6 61.4 10.9 61.1
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between electron neutrinos and antineutrinos is that the charged current reactions

n+ νe ←→ p+ e− and p+ νe ←→ n+ e+ (323)

do not occur at the same rate inside the core. The larger number of neutrons
relative to the protons in the core leads to the former of these reactions to occur more
frequently than the latter. Thus a higher mass density is needed to trap antineutrinos,
leading to a smaller sphere radius and higher average energy. This was taken into
account in the calculations of this thesis, and we adopted the commonly used values
of 〈Eν〉νe = 11 MeV and 〈Eν〉νe = 16 MeV for the average neutrino energies[24]. As
the temperature is related to the average energy by[52, Chapter 4.1]

T = F2(α)
F3(α) 〈Eν〉 , (324)

specifying the average energies also uniquely determines the temperatures.
For our choice of the value for the degeneracy parameter α, we followed the

approach of [24], and performed the calculations of the total energy averaged cross
sections using the values α = 0 and α = 3.0 for both nuclei. We calculated these
cross sections for both nuclei, using all four adjacent even-even nuclei as the reference
nucleus, for both neutrinos and antineutrinos and elastic and inelastic scatterings.
The results are presented in tables 3 and 4 along with the neutrino temperatures
used.

It can be seen from the results that for both nuclei, neutrino types and choices
of degeneracy parameter, the elastic cross sections are considerably higher than the
corresponding inelastic cross sections. The elastic cross sections are experimentally
less significant, as they cannot be directly measured. Their primary use is mainly
as input parameters in computer simulations involving supernovae. The effect of
the neutrino temperature to the cross section is also apparent in the results. The
cross sections are quite sensitive to the temperature, with higher temperatures
leading to higher cross sections. This effect is clearly seen in the cross sections of
the inelastic scatterings, where the dependence between the cross section and the
neutrino temperature is strong, and to a lesser but still remarkable extent in the
elastic scatterings. This temperature sensitivity highlights the importance of the
contributions of the high-energy tail part of the neutrino spectrum on the cross
sections, and thus the value of the degeneracy parameter that controls the ”pinching”
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of the spectrum. Overall, the results, as far as their magnitude is concerned, are in
agreement with similar calculations from earlier works, performed in compareable
nuclear mass ranges[52][53].
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4 Conclusions

In this thesis we have explored the possibility of using the nuclei 127I and 133Cs in
the detection of electron neutrinos and antineutrinos of astrophysical origin from a
theoretical point of view. We have reviewed the theory underlying neutrino-nucleus
scattering in considerable detail and derived expressions for several key quantities
involved in the scattering reactions. We have discussed the standard formalism of
many-body quantum mechanics applied to nuclear systems, reviewed the features of
the equations-of-motion method and applied it to present a detailed derivation of the
BCS equations, the general features of the derivation leading to the QRPA equations
and a brief overview of how the MQPM equations arise from the said method. We
have also presented the necessary details on nucleon form factors needed to account
for the effects of their internal structure, which was otherwise neglected.

In the numerical part of this thesis, we have performed the BCS calculations
for the even-even nuclei adjacent to 127I and 133Cs, namely 126Te, 128Xe, 132Xe and
134Ba, then used these results to do the QRPA calculations for the same nuclei, and
finally used the results of both of these calculations to generate the MQPM states for
the two odd nuclei. In these calculations we have used a single-particle basis based
on a Coulomb-corrected Woods-Saxon potential and Bonn-A one-boson exchange
potential for the residual interaction with a valence space spanning the orbitals 0d-2s
in addition to 0i11/2. We have also computed the required neutral current transition
densities and nuclear matrix elements needed for the cross section calculations.

We have computed the energy averaged cross sections for neutrino and antineu-
trino scatterings for both nuclei of interest using all the obtained MQPM results,
for both elastic and inelastic scattering reactions. In these computations, we have
used a neutrino energy distribution based on a thermal Fermi-Dirac spectrum with a
modification in the form of a degeneracy parameter to account for the behaviour
of the tail of the distribution. All cross sections were calculated with both the
degeneracy parameter set to zero for a pure Fermi-Dirac neutrino spectrum, and
with a value commonly used in literature for comparison. We have also briefly
discussed the mechanics behind supernova explosions and the conditions that causes
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the neutrinos to be emitted with a different average energy to that of antineutrinos,
which was taken into account in the calculations of the cross sections.

For the results that were obtained, the QRPA spectra of the even-even nuclei
were in fair agreement with the corresponding experimental spectra. One so far
unaddressed issue regarding these results is that equations 307 and 308 are valid only
at a sufficient distance away from shell closures where the separation energies can
behave irregularly[10, Page 500]. In the case of the proton gap of 126Te, 125Sb has
one proton above a closed shell making the application of equation 307 somewhat
questionable. For this, we consulted the chart of nuclides and noted that the
separation energies of the nuclei around 126Te behave in a suitably regular manner
for equation 307 to be used in determining the pairing gap. The later MQPM
calculations resulted in two very similar theoretical spectra for 127I without radical
differences for both of the reference nuclei 126Te and 128Xe, further supporting the
notion that the use of equation 307 for determining the proton pairing gap of 126Te
was justified.

Another decision that could be contested regarding the QRPA fits is the identifi-
cation of the experimental 2+

2 and 4+
1 states as being part of a two-phonon triplet

when no experimental candidates for the 0+ state belonging to this triplet were found
for any of the even-even nuclei. The choice to adopt this interpretation for the two
aforementioned states was touched upon in the previous section, and also indirectly
justified later on in the same section. Similarly to the entirely spurious 0+ state
which was fit as close to zero energy as possible, the exact energy of the 4+

1 state was
less important in the grand scheme of things. Modeling supernova neutrino-nucleus
scattering requires a reasonably accurate description of high-lying excited nuclear
states to properly account for all the possible final states, so whether the fit of the
lowest theoretical 4+ state was done to the lowest or second lowest experimental
state which differ by around 0.5 MeV makes very little difference in the end. As a
final note on this, the theoretical 4+ state used for fitting could not have actually
even been fit to the lowest experimental 4+ state in the case of 126Te and 128Xe, as
the parameter used to adjust the energy of this state could not be set to a value
inside its range of applicability that would have lowered the energy of the theoretical
state to the first experimental state.

The MQPM results for both odd nuclei had discrepancies with respect to the
experimental results, particularly at the low-energy end of the spectra. These were



105

discussed in the previous section where we noted that most of the contributions
to the supernova neutrino scattering cross section come from nuclear states that
are relatively high in energy, meaning that disagreements between theoretical and
experimental low-energy spectra are not a serious concern. While no singular reason
that would explain these discrepancies could be named, there are ways to improve
the accuracy of the low-lying theoretical spectrum. One of these ways has to do with
the chosen Woods-Saxon single-particle parametrization. In this work, we chose the
standard Bohr-Mottelson parametrization[54, Chapter 2] discussed in Appendix A.
This parametrization is a result of fitting the parameter values in a simple way to
produce a single-particle potential that can be used to describe a large number of
nuclei with at least decent agreement with experiment. This has the disadvantage
that agreement for any particular nucleus may be poor, deviating from the general
trend captured in the parametrization. One way to improve the theoretical results is
then to change the single-particle potential parametrization in a suitable way.

A simple way to adjust the parametrization without abandoning the Bohr-
Mottelson parametrization entirely is to scale it phenomenologically until it repro-
duces the desired single-particle energies. Studying the low-lying spectrum of an
odd-A nucleus can then be used determine how the single-particle energies should be
set. With the quasiparticle based models used in this work, it is natural to interpret
the lowest-lying states as simple one-quasiparticle states. Constructing these states
in this way can be achieved by adjusting the single-particle energies of the adjacent
even-even nucleus, so that its BCS quasiparticle spectrum contains quasiparticles
with energies matching the lowest states of the odd nucleus. With our choice of
parametrization in this thesis, the quasiparticle spectra do not match any of the
adjacent odd-A nuclei for any of the used reference nuclei particularly well. Aside
from the lowest few of the quasiparticle states, they are considerably higher in energy
when compared to the lowest experimental states. This has been illustrated in figures
14 through 21.

The procedure outlined above can be expected to produce nearly perfect agreement
with theoretical and experimental spectra at low levels, and it has been applied to a
number nuclei in the vicinity of the ones studied in this work with good results[8].
The question of whether this is worth the effort for the nuclei considered here in
possible future studies is another matter. While the states that contribute the most
to the total scattering cross section are mostly high in energy, having an energy
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Figure 20. The five lowest states above ground state for both proton-odd nuclei
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of 134Ba for comparison.
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spectrum with more accurate low-lying states can be beneficial when analyzing the
different contributions to the total cross section discussed at the end of this section.
At the very least, it would be desirable for the theoretical spectrum of 133Cs to
reproduce the correct spin and parity for the ground state.

In general, the question of whether particular computed MQPM wave functions
are suitable to use in neutrino scattering calculations is hard to answer based solely
on the energy spectrum. In this thesis, the suitability of the MQPM states relied
on the success of similar calculations in comparable mass ranges, and the acquired
results for the scattering cross sections, which were in line with the results of other
similar calculations. One way to actually test how well the wave functions perform, is
to use them to compute logft values of β-decay and compare these with experimental
values[45]. This manner of extensive calculations were, however, not undertaken
in this work as their inclusion would have added to the already time consuming
numerical contents of this thesis, and done so without contributing to the discussion
of its primary topics in a sufficiently meaningful way. They were thus considered
an addition beyond the scope of this master’s degree thesis that would be more
appropriately included in a doctoral dissertation more exhaustive and extensive than
this work.

The results for the energy averaged cross sections were found to be in line with
results of similar calculations for nuclei comparable in mass to the ones examined
in this thesis. The elastic cross sections dominated the corresponding inelastic
cross sections as expected, and the results were relatively sensitive to the neutrino
temperature. In the context of supernova neutrino detection, the results were
promising in the sense that nothing outright indicated that the nuclei considered
would be unfit for such use. Nevertheless, determination of the suitability of these
nuclei for neutrino detection will require further studies into them. In this thesis we
have focused solely on electron neutrinos and antineutrinos while ignoring neutrinos of
other flavours. Investigations into the cross sections of µ- and τ -neutrino scatterings
are thus one priority in a possible follow-up study on the matter.

Another aspect to consider in the future is the effect of different contributions
to the total cross section. Analysis of the individual contributions from different
multipole channels together with knowledge of the distribution of the theoreti-
cal final nuclear states can be used to interpret the effect of a scattering on the
nucleus as a transition in the quasiparticle picture between states with definite
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quasiparticle-phonon configurations, which can be illuminating when discussing the
nuclear structure in scattering reactions. The contributions to these multipole chan-
nels from terms with different tensorial character (vector, axial-vector, interference)
are also of interest. The distribution of final nuclear states is also important as it
determines the profile of the decay radiation, which can be detected to indirectly
detect neutrino-nucleus scattering.

Finally, we have only considered weak neutral current reactions in this work. For
a truly exhaustive study of the nuclei considered here, weak charged current processes
need to be examined as well. They provide methods of detecting neutrino-nucleus
scattering reactions that are unavailable for neutral current processes, such as the
possibility of measuring the accumulation of species of nuclei neighbouring the nuclei
used in detectors as a result of the transmutation of elements in charged current
reactions8. When only the number of scattering reactions is of interest, this manner
of detecting apparatus has the benefit that instead of actively monitoring for decay
products of highly excited nuclear states, the amount of accrued elements can be
checked over longer periods of time.

In conclusion, the study of the nuclei 127I and 133Cs presented in this thesis
provides a preliminary look into their suitability in detecting supernova neutrinos.
The results that were obtained can function as a reference frame for future studies
into other nuclei with similar mass numbers and as inputs for supernova simulations,
but they do not conclusively settle the question of the viability of using them in
neutrino detectors. While there are a number of additional aspects related to the
nuclei that need to be covered in the future to accurately gauge whether they would
perform adequately in this role, the key results presented in this work seem to suggest
that these sort of studies could be worthwhile.

8It should be noted that weak neutral current reactions can also lead to transmutation of
elements, as high energy neutrinos can excite nuclei into states well above their proton and neutron
separation energies, which can then decay by particle emission.
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Appendix A: Conventions and parameter values

The following conventions were adopted throughout this thesis unless stated otherwise.
The fundamental constants were chosen so that

~ = c = kB = 1.

For the metric tensor gµν and four-vectors aµ we have

gµν = gµν ≡ diag(1,− 1,− 1,− 1), aµ ≡

a0

a

 , aµ ≡ (a0,− a) aµ = gµνa
ν .

For arbitrary four-vectors aµ and bµ we have

a · b = aµb
µ = gµνa

νbµ = gµνaµbν = a0b0 − a · b. (325)

The gamma matrices γµ were defined in terms of the Pauli matrices σi (i ∈ {1,2,3})
by

γ0 ≡

12 0
0 −12

 , γi ≡

 0 σi

−σi 0

 ,
which were in turn used to define the quantities

γ5 = γ5 ≡ iγ0γ1γ2γ3, σµν ≡ i

2 [γµ,γν ] , ψ ≡ ψ†γ0, /a ≡ γµaµ.

In section 2.2.1 we introduced the Woods-Saxon potential along with the parameters
V

(WS)
0 , R and a which fully characterize it. For a nucleus of nucleon numbers Z and
N and mass number A, the values of these parameters that were used in this thesis
were determined by equations

R = r0A
1/3, r0 = 1.27 fm, a = 0.67 fm, V

(WS)
0 =

(
51± 33N − Z

A

)
MeV,
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Table 5. The values of the parameters used in calculating Sachs electric and
magnetic form factors.

i aM
p,i bM

p,i aM
n,i bM

n,i aE
p,i bE

p,i

1 1.09 12.31 8.28 21.30 -0.19 11.12
2 - 25.57 - 77 - 15.16
3 - 30.61 - 238 - 21.25

Table 6. The phenomenological scaling parameters used in the BCS calculations
in this thesis.

Parameter 126Te 128Xe 132Xe 134Ba
gpairp 0.8793 0.9114 0.8627 0.8990
gpairn 0.9915 0.9648 0.9710 0.9640

where in the last equality the +(−) sign is used for protons (neutrons). For the
parameter V (SO)

0 of the spin-orbit part of the single-particle potential, we used

V
(SO)

0

V
(WS)

0
= 0.44⇔ V

(SO)
0 = 0.44V (WS)

0 .

In the following we list the values of the parameters that were used to determine
the values of Sachs electric and magnetic form factors discussed in section 3.1. These
have been presented in table 5. The adopted parametrization is that of reference [31].
We also list here the phenomenological parameters of the BCS and QRPA calculations
that were used to fit theoretical observables to experimentally determined values.
The BCS parameters have been presented in table 6 and the QRPA parameters
in table 7 for states of natural parity (even J , positive parity and odd J , negative
parity) and table 8 for states of unnatural parity (even J , negative parity and odd
J , positive parity). The QRPA parameters are used to scale the two-body matrix
elements in the QRPA equations for the particle-particle (gpp) and particle-hole
(gph) channels, which can be, and usually is, done separately for different multipoles,
which is exactly what was done in the QRPA calculations in this thesis.
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Table 7. The phenomenological renormalization parameters used for the states
of natural parity in the QRPA calculations in this thesis.

Nucleus Parameter 0+ 1− 2+ 3− 4+ 5− 6+

126Te gpp 0.6916 1.0 1.0 1.0 1.0 1.0 1.0
gph 0.3476 0.5 0.5578 0.6410 0.4880 0.8753 0.9304

128Xe gpp 0.7971 1.0 1.0 1.0 1.0 1.0 1.0
gph 0.2976 0.5 0.5269 0.6303 0.6525 0.7911 0.9343

132Xe gpp 0.6520 1.0 1.0 1.0 1.0 1.0 1.0
gph 0.3191 0.5 0.5329 0.6139 0.4328 0.9324 0.3600

134Ba gpp 0.7333 1.0 1.0 1.0 1.0 1.0 1.0
gph 0.3051 0.5 0.5229 0.6143 0.4691 0.8948 0.4580

Table 8. The phenomenological renormalization parameters used for the states
of unnatural parity in the QRPA calculations in this thesis.

Nucleus Parameter 0− 1+ 2− 3+ 4− 5+ 6−

126Te gpp 1.0 1.0 1.0 1.0 1.0 1.0 1.0
gph 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128Xe gpp 1.0 1.0 1.0 1.0 1.0 1.0 1.0
gph 1.0 1.0 1.0 1.0 1.0 1.0 1.0

132Xe gpp 1.0 1.0 1.0 1.0 1.0 1.0 1.0
gph 1.0 1.0 1.0 1.0 1.0 1.0 1.0

134Ba gpp 1.0 1.0 1.0 1.0 1.0 1.0 1.0
gph 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Appendix B: Gamma matrix identities and trace
theorems

Some of the following trace theorems and properties of the γ-matrices[29] were used
in the derivation of certain quantities in section 2.1. They can also be used to derive
the quantities that were not explicitly derived in said section.

{γµ,γν} = 2gµν , γµγ
µ = 4, γµ = γµ, σµν = σµν , iγ5 = iγ5, γµ/aγ

µ = −2/a,

γµ/a/bγ
µ = 4a · b, γµ/a/b/cγ

µ = −2/c/b/a, γµ/a/b/c/dγ
µ = 2

(
/d/a/b/c + /c/b/a/d

)
,

/a/b = a · b− iσµνaµbν .

For odd n ∈ N

Tr/a1 · · · /an = 0, Tr/a1 · · · /a2n = Tr/a2n · · · /a1, Tr1 = 4, Tr/a/b = 4a · b, Trγ5 = 0,

Trγ5/a/b = 0, Tr/a1/a2/a3/a4 = 4 (a1 · a2a3 · a4 + a1 · a4a2 · a3 − a1 · a3a2 · a4) ,

Trγ5/a/b/c/d = 4iεαβγδaαbβcγdδ.

There were also a number of additional trace theorems that can be found here[15,
section 12.4]. It is worth noting that these are not presented in the standard
conventions adopted in this thesis. For changing between different conventions, we
refer to[11, Appendix D].
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Appendix C: MQPM matrices and reduced neutral-
current one-body transition densities for proton-
odd nuclei

In this appendix we present the MQPM submatrices A, B, A′ and N . We rely
mostly on references[8, 53] for these explicit expressions. To express the matrices in
a convenient manner, we adopt the notation

X
ω
aa′ ≡


Xω
aa′ when a < a′,

2Xω
aa′ when a = a′,

(−1)ja+ja′+JωXω
a′a when a > a′.

(326)

We define the quantity Y
ω
aa′ in a similar manner. By working backwards in the

MQPM derivation, we expand the MQPM equations

〈BCS|
{
anjm,Ĥ,Γ†i (jm)

}
|BCS〉 = Ωi 〈BCS|

{
anjm,Γ†i (jm)

}
|BCS〉 (327)

and

〈BCS|
{[
a†aQ

†
ω

]†
jm
,Ĥ,Γ†i (jm)

}
|BCS〉 = 〈BCS|

{[
a†aQ

†
ω

]†
jm
,Γ†i (jm)

}
|BCS〉 , (328)

which arise from the EoM treatment of the MQPM basic excitations, using equation
243 (keeping only terms proportional to |Xω

aa′|2 and |Y ω
aa′ |2), to get the expressions

A(aa′; j) = 〈BCS|
{
aa,Ĥ,a

†
a′

}
|BCS〉 , (329)

A′(ωaω′a′; j) = 〈BCS|
{[
a†aQ

†
ω

]†
j
,Ĥ,

[
a†a′Q

†
ω′

]
j

}
|BCS〉 (330)

B(ωaa′; j) = 〈BCS|
{

[aaQω]j ,Ĥ,a
†
a′

}
|BCS〉 (331)
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and
N(ωaω′a′; j) = 〈BCS|

{[
a†aQ

†
ω

]†
j
,
[
a†a′Q

†
ω′

]
j

}
|BCS〉 (332)

where we have suppressed the quantum number m. For the first one we have the
simple identity

〈BCS|
{
aa,Ĥ,a

†
a′

}
|BCS〉 = Eaδaa′ . (333)

We can express the fourth one in terms of the matrix

K(ωaω′a′; j) = ĴωĴω′
∑
b

ja′ jb Jω

ja′ j Jω′

Xω
ba′X

ω′

ba −
δjjb
ĵ2
Y
ω
baY

ω′

ba′

 (σbaσba′)−1 (334)

as
N(ωaω′a′; j) = δωω′δaa′ +K(ωaω′a′; j), (335)

which can in turn be used to express the second one as

〈BCS|
{[
a†aQ

†
ω

]†
j
,Ĥ,

[
a†a′Q

†
ω′

]
j

}
|BCS〉 = 1

2 (Ωω + Ea + Ωω′ + Ea′)N(ωaω′a′; j)−

1
2 ĴωĴω

′
∑
b

ja′ jb Jω

ja′ j Jω′

 (Ωω + Ea + Ωω′ + Ea′ − 2Eb)X
ω

ba′X
ω′

ba(σbaσba′)−1−

1
2 ĴωĴω

′
∑
b

δjjb
ĵ2

(Ωω + Ea + Ωω′ + Ea′ + 2Eb)Y
ω

baY
ω′

ba′(σbaσba′)−1.

(336)

For the third one, we have (with j = ja′)

〈BCS|
{

[aaQω]j ,Ĥ,a
†
a′

}
|BCS〉 = 1

3
Ĵω

ĵa′

[ ∑
b≤b′

Hpp(bb′aa′Jω) (ubub′Xω
bb′ − vbvb′Y ω

bb′)σ−1
bb′

−
∑
b≤b′

Hhh(bb′aa′Jω) (vbvb′Xω
bb′ − ubub′Y ω

bb′) +
∑
b≤b′

Hph(bb′aa′Jω) (ubvb′Xω
bb′ − vbub′Y ω

bb′)

−
∑
b≤b′

Hhp(bb′aa′Jω) (vbub′Xω
bb′ − ubvb′Y ω

bb′)
]
,

(337)

where

Hpp(bb′aa′Jω) = 2vbub′G(bb′aa′Jω), Hhh(bb′aa′Jω) = 2ubvb′G(bb′aa′Jω), (338)
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Hph(bb′aa′Jω) = 2vbvb′F (bb′aa′Jω) + 2ubub′F (b′baa′Jω)(−1)jb+jb′+Jω (339)

and

Hhp(bb′aa′Jω) = 2ubub′F (bb′aa′Jω) + 2vbvb′F (b′baa′Jω)(−1)jb+jb′+Jω . (340)

In the above expressions, the quantities

G(bb′aa′Jω) = −1
2 [Nbb′(Jω)Naa′(Jω)]−1 〈bb′; Jω|V |aa′; Jω〉 (341)

and
F (b′baa′Jω) = −1

2 〈bb
′−1; Jω|VRES|aa′−1; Jω〉 (342)

are the Baranger two-body matrix elements.
In the context of neutrino scattering off nuclei, the most interesting quantities

derived from the nuclear model are the reduced one-body transition densities. We
therefore present them here for the MQPM in the case of neutral current reactions
involving proton-odd nuclei. These are taken directly from[53] with minor alterations.
In the following we adopt the labels p and n to denote the two species of nucleons,
and a and b to denote both species generally with the requirement, that in each
expression the labels a and b denote a nucleon of the same species. With this in
mind, we also define

σab ≡
√

1 + δab. (343)

In the MQPM, we have the cases of reduced one-body transition densities between
two one-quasiparticle states, two quasiparticle-phonon states and between a one-
quasiparticle state and a quasiparticle-phonon state. In the first case, we have

(nf ||
[
c†ac̃b

]
λ
||ni) = λ̂

(
uaubδanf δbni + (−1)ja+jb−λvavbδaniδbnf

)
. (344)

In the last case we similarly have (with Jωi and Jωf denoting the angular momenta
of the QRPA phonons)

(nf ||
[
c†nc̃n′

]
λ
||niωi; Ji) = −δninf δλJωi (−1)jnf+Ji+λĴiσ

−1
nn′

(
vnun′X

ωi
nn′ + unvn′Y

ωi
nn′

)
,

(345)
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and

(nfωf ; Jf ||
[
c†nc̃n′

]
λ
||ni) = δninf δλJωf Ĵfσ

−1
nn′

(
unvn′X

ωf
nn′ + vnun′Y

ωf
nn′

)
, (346)

for neutrons, and

(nf ||
[
c†pc̃p′

]
λ
||niωi; Ji) = (−1)jnf+Ji+λ+1λ̂ĴiĴωi

δnfni δλJωi
Ĵ2
ωi

σ−1
pp′

(
vpup′X

ωi
pp′+

upvp′Y
ωi
pp′

)
+
(
δp′nivpup′

jnf λ Ji

jp′ Jωi jp

σ−1
pnf
X
ωi
pnf

+ δpnf
δJijp′

ĵ2
p′

upvp′·

(−1)jp+jp′+λσ−1
p′ni

Y
ωi
p′ni

)
− (−1)jp+jp′+λ

(
δpnivpup′

jnf λ Ji

jp Jωi jp′

σ−1
p′nf

X
ωi
p′nf

+

δp′nf
δJijp

ĵ2
p

vpup′(−1)jp+jp′+λσ−1
pni
Y
ωi
pni

),
(347)

and

(nfωf ; Jf ||
[
c†pc̃p′

]
λ
||ni) = λ̂Ĵf Ĵωf

δnfni δλJωf
Ĵ2
ωf

σ−1
pp′

(
upvp′X

ωf
pp′ + vpup′Y

ωf
pp′

)
+

(
δp′nfupvp′

Jf λ jni

jp Jωf jp′

σ−1
pni
X
ωf
pni

+ δpni
δJf jp′

ĵ2
p′

vpup′(−1)Jf+jni+λσ−1
p′nf

Y
ωf
p′nf

)
−

(−1)jp+jp′+λ
(
δpnfupvp′

Jf λ jni

jp′ Jωf jp

σ−1
p′ni

X
ωf
p′ni

+ δp′ni
δJf jp

ĵ2
p

vpup′·

(−1)jni+Jf+λσ−1
pnf
Y
ωf
pnf

)
(348)

for protons. The second case can be expressed as

(nfωf ; Jf ||
[
c†ac̃b

]
λ
||niωi; Ji) = uaub(nfωf ; Jf ||

[
a†aãb

]
λ
||niωi; Ji)+

(−1)ja+jb+λvavb(nfωf ; Jf ||
[
a†bãa

]
λ
||niωi; Ji),

(349)
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where

(nfωf ; Jf ||
[
a†nãn′

]
λ
||niωi; Ji) = δnfniλ̂Ĵωf Ĵωi Ĵf Ĵi

 Ĵf λ Ĵi

Jωi jnf Jωf

 ·
∑
b′

(−1)Jf+jnf+jn+jb′σ−1
nb′σ

−1
n′b′

(Jωf λ Jωi

jn′ jb′ jn

Xωf
nb′X

ωi
n′b′+

(−1)λ
Jωf λ Jωi

jn jb′ jn′

Y ωf
n′b′Y

ωi
nb′

)
(350)

and

(nfωf ; Jf ||
[
a†pãp′

]
λ
||niωi; Ji) = λ̂Ĵωf Ĵωi Ĵf Ĵi

δp′ni(−1)jnf+Jωf+Ji+λ·
Ji Jf λ

jp jp′ Jωi

∑
b′
σ−1
pb′σ

−1
nf b′

(Jf Jωi jp

jb′ Jωf jnf

Xωf
pb′X

ωi
nf b′
−
δjb′Jf

ĵ2
b′

Y
ωi
pb′Y

ωf
nf b′

)
−

δpnf (−1)Jωi+jni+jp+jp′+Ji+λ

Ji Jf λ

jp jp′ Jωf

∑
b′
σ−1
nib′
σ−1
p′b′

(Ji Jωf jp′

jb′ Jωi jni

Xωf
nib′
X
ωi
p′b′

−
δjb′Ji
ĵ2
b′

Y
ωi
pb′Y

ωf
p′b′

)
+ δninf

 λ Jf Ji

jnf Jωi Jωf

∑
b′

(−1)jp+jb′+jnf+Jfσ−1
pb′σ

−1
p′b′

(
Jωf Jωi λ

jp′ jp jb′

Xωf
pb′X

ωi
p′b′ + (−1)λ

Jωi Jωf λ

jp′ jp jb′

Y ωi
pb′Y

ωf
p′b′

)
+ σ−1

pni
σ−1
p′nf

(

(−1)Jωf+Jωi+jp′+λ


jp jni Jωf

jp′ Jωi jnf

λ Ji Jf

X
ωf
pni
X
ωi
p′nf

+ (−1)jp+Jf+λ
δjp′Jf

δjpJi

ĵ2
p′ ĵ

2
p

Y
ωi
pni
Y
ωf
p′nf

)

+ δpnf δp′niδωfωi Ĵf Ĵiλ̂(−1)jp+Ji+Jωf+λ

Ji Jf λ

jp jp′ Jωf .


(351)

The equations above hold when the initial and final states i and f are not the same.
When i = f , equations 344, 345, 346, 347, 348 and 349 need to be modified by
adding a term of δabδλ0v

2
aĵaĴi.
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