
Mathematical foundations of
the eigenvalue problem in
quantum mechanics

Bachelor thesis, 3.6.2016

Author:

Topi Löytäinen

Instructor:

Robert van Leeuwen



2



3

Abstract

Löytäinen, Topi
Mathematical foundations of the time-independent eigenvalue problem in quantum
mechanics
Bachelor thesis
Department of Physics, University of Jyväskylä, 2016, 48 pages

The mathematical foundations of the quantum theory are recapitulated up to the
formulation of the time-independent eigenvalue problem. The work follows closely to
that of John von Neumann in his book the mathematical foundations of quantum
mechanics. The requirements set for the Hilbert space and the ensuing theorems are
summarized in a prompt manner. The greatest effort is used up in addressing the
geometry of Hilbert space. With the theory thus far developed, an overlook into the
proper formulation of the eigenvalue problem is stated. The work finishes with an
example of the eigenvalue problem in an infinitely deep potential well. The example
points out the need of proper understanding of the development of the quantum
theory.

Keywords: Mathematical foundations, time-independent, eigenvalue problem, quan-
tum mechanics
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Tiivistelmä

Löytäinen, Topi
Kvanttimekaniikan ajasta riippumattoman ominaisarvo ongelman matemaattiset
perusteet
LuK-tutkielma
Jyväskylän yliopisto, 2016, 48 sivua

Työssä tarkastellaan kvanttiteorian ominaisarvo-ongelman matemaattisia perusteita
asettamalla vaatimuksia Hilbertin avaruudelle. Työ seuraa läheisesti John von
Neumannin käsittelyä kirjassa ’’Mathematical Foundations of Quantum Mechanics’’.
Vaatimukset Hilbert avaruudelle, sekä niistä seuraavat teoreemat, on yhteenvedetty
lyhyesti. Aiheen käsittelyssä keskitytään Hilbert-avaruuden geometriaan, johon
ominaisarvo-ongelman muodostaminen pohjautuu. Lopuksi käsitellään esimerkkiä
äärettömän syvästä potentiaalikuopasta, jonka kautta nähdään tarve kvanttiteorian
määritelmien ja teoreemien korrektille ymmärtämiselle.

Avainsanat: Matemaattiset perusteet, ajasta riippumaton, ominaisarvo ongelma,
kvanttimekaniikka
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Foreword

In writing this work as my bachelor’s thesis, I am not trying to invent the quantum
theory anew. And it is my impression that it is not required from me. Therefore the
treatment as given here follows closely to that of John von Neumann in his book the
mathematical foundations of quantum mechanics.

I took my first course in quantum mechanics in the fall 2015 and the simplicity
of the theory, that describes phenomenon which are all but intuitive, made an
impression on me. The title that now stands on the front page of this thesis was by
no means the first thing that I wished to write my thesis on. It has changed quite
many times along this journey but I am still extremely satisfied with it.

The underlying motivation was to learn in detail the mathematical foundations
on which the quantum theory stands upon. Only after that I hoped to summarize
the essential requirements and theorems therein. Therefore, the beginning of this
work is rather abstract. However, after that it is possible to offer an example why
the presented mathematical rigour is needed in quantum mechanics.

There is much more to the quantum theory as what is presented in this work.
For this work, the eigenvalue problem was the natural moment at which to stop the
review. Up to that point, I still hope that this work might serve as a comprehensive
summary of the mathematical foundations to any other third year physics student.

In Jyväskylä, 3.6.2016

Topi Löytäinen
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1 Introduction

The great success of the quantum theory can hardly be denied by anyone in the
scientific community. A student of physics is inevitably encountered by quantum
mechanics at some point in his studies. Therefore the aim of this work is to give
a short summary of the mathematical foundations of quantum mechanics. As the
quantum theory is relatively large, the scope will be limited to the development of
the eigenvalue problem.

This work will follow closely to the work of John von Neumann in his book the
mathematical foundations of quantum mechanics. The work given by Neumann
consists roughly of introductory considerations, development of the mathematical
machinery needed for a detailed inspection and some general considerations on
measurements and the problems included in it. This work will focus on the first two
chapters of Neumann’s book.

At the beginning of the 20th century great efforts were made to escort the
quantum theory into a unified body capable of explaining physical problems with
mathematical plainness. Two different approaches accomplished the same end. One
commenced by Heisenberg and developed by the likes of Born, Jordan and Dirac
and the other, the so-called ’’wave mechanics’’, developed by Schrödinger. These
two theories were proved to be the same in a mathematical sense by Schrödinger
in the year 1926. This unified structure, the ’’transformation theory’’, became the
basis of quantum mechanics as we know it today [1, p.5]. The ideas related to these
two theories and their correspondence are discussed.

The development of a pragmatic quantum theory requires a wide variety of
different areas of mathematics including geometry, analysis, linear algebra and
statistics. In this work we shall put our effort into defining an entity called the
Hilbert space with some certain mathematical properties. As the nature of this thesis
is more of a literature summary, the focus of this work will be on the narration of the
necessary requirements of the Hilbert space and the mathematical theorems thereby
acquired.

The work ends with a general statement on how the eigenvalue problem Hψ = λψ
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should be stated with the help of a family of projections E(λ). As a final chapter
before the conclusions, an example is taken from the eigenvalue problem of an
infinitely deep potential well. This example follows closely to that of reference [4]
but takes a different form of the solutions to Hψ = λψ and a different wave function
as the objects of scrutiny. The results are in agreement with [4].

When the reader is in doubt what the particular mathematics or physics term
means, he is encouraged to check the glossary of terms in the appendix. The terms are
in alphabetical order to make the referencing as effortless as possible. Furthermore,
all proofs, definitions and postulates that are given in chapters 2 and 3, are addressed
in greater detail in [1].
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2 Preliminary considerations

The year 1925 witnessed the birth of the first complete system of quantum theory
called the Heisenberg-Born-Jordan ’’matrix mechanics’’. Schrödinger accomplished
the same ends by developing the so-called ’’wave mechanics’’. And in the year
1926 he proved that the two theories are in fact equivalent. With the help of
Born’s statistical interpretation, Dirac and Jordan united the two theories in to the
’’transformation theory’’ [1, p.5]

Both theories begin by proposing a classical mechanical problem which is char-
acterized by the Hamiltonian function H(q1,...,qk,p1,...,pk). Here q1,...,qk symbolize
the values of k coordinates and p1,...,pk the conjugate momenta of the q1,...,qk coor-
dinates. After this, the task is to find out as much as possible about the behaviour of
the system with the help of the Hamiltonian. These properties include the possible
energy levels, stationary states, transition probabilities et cetera[1, p.6-8].

In the matrix mechanics we seek a system of k matrices Q1,...,Qk,P1,...,Pk which
satisfy the well known commutation rules of quantum mechanics. Then, by join-
ing these with the classical mechanical Hamiltonian function, we get the matrix
W = H(Q1,...,Qk,P1,...,Pk) which must become a diagonal matrix. It follows then
that the allowed energy levels of the system are the diagonal elements w1,w2,...

of the matrix W. Furthermore, the elements q(1)
mn,...,q(k)

mn of the matrices Q1,...,Qk

determine, in a certain way, the transition probabilities and hence the radiation
emitted[1, p.8-9]. The fundamental problem of this method is then in solving the
eigenvalue equation: ∑

ν

hµνxν = λxµ (1)

where λ determines the desired wµ, xµ is some vector of the configuration space and
hµν the elements of the matrix H [1, p.21]. Where in turn H is used to find the
diagonal matrix W [1, p.17-18].

In the wave mechanics, we first form the same Hamiltonian H(q1,...,qk,p1,...,pk),
take an arbitrary function Ψ(q1,...,qk) from the configuration space of (q1,...,qk) and
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then form the differential equation [1, p.11]:

H
q1,...,qk,− i~

∂

∂q1
,...,− i~ ∂

∂qk

Ψ(q1,...,qk) = λΨ(q1,...,qk). (2)

Schrödinger proved that equation 2 has a character of an eigenvalue problem. Par-
ticularly it is required that the eigenfunction Ψ(q1,...,qk) vanishes at the boundaries
of the configuration space and that it is regular. In this sense the values of λ in
equation 2 are the allowed energy levels [1, p.13].

Even though this work is about the time-independent eigenvalue problem, it
should be briefly pointed out, for purposes of completeness, that if the system varies
in time, it does it so according to the differential equation [1, p.14]:

H
q1,...,qk,− i~

∂

∂q1
,...,− i~ ∂

∂qk

Ψ(q1,...,qk; t) = i~
∂

∂tΨ(q1,...,qk; t). (3)

Moreover the time-dependence of Ψ can be derived from equations 2 and 3 to be of
the following form [1, p.16]:

Ψ = Ψ(q1,...,qk; t) =
∞∑

n=1
e

−iλn(t−t0)
~ anΨn(q1,...,qk). (4)

However, from here onwards we shall consider the wave functions of equation 2
which are independent of time [1, p.15].

These are the two theories that Dirac and Jordan proved to be equal. We can see
that the two theories differ considerably in what branch of mathematics quantum
mechanical problems are to be solved. It should not then come as a surprise that, in
order to set a mathematical relation between them, one is faced with some serious
mathematical difficulties. Nevertheless, it has been proved that the two theories
must always yield alike results [1, p.31].

In order to sketch the outlines of this proof we need to define few concepts. Take
the discrete space of index values Z = (1,2,...) and the continuous state space Ω
of a mechanical system. Here Ω is k-dimensional and k is the number of degrees
of freedom. In Z, functions are the sequences x1,x2,... and in Ω functions are the
wave functions ψ(q1,...,qk) [1, p.28]. We wish to establish a relation between certain
functions of these two spaces. From both Z and Ω we only accept functions with
finite ∑

ν

|xν |2 or
∫
...
∫

︸ ︷︷ ︸
Ω

|Ψ(q1,...,qk)|2dq1...dqk



15

respectively and we also call the totality of such functions FZ and FΩ respectively.
The reader can now see where the term function space originates from. It can then
be proven that FZ and FΩ are isomorphic [1, p.29]. It should be emphasized that
in this way there is no direct relation between the spaces Z and Ω. But that is not
what we need. We are only looking for functions that have a finite sum of squares
or a finite integral of the square. And isomorphism between FZ and FΩ means in
this context, that they have the same desired abstract mathematical properties in
different forms. And therefore, as it has been stated, it follows that they must always
give same results[1, p.31].

The structure FZ is generally known as Hilbert space [1, p.33]. In order to develop
a unified theory out of these two, we shall continue to investigate properties common
to both FZ and FΩ. The mathematical structure which we thereby achieve is called
the abstract Hilbert space[1, p.33]. Therefore, in the following chapter we shall
report the requirements we set for the abstract Hilbert space and that the properties
that ensue must belong both to FZ as well as FΩ.
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3 Abstract Hilbert space

3.1 Defining the Hilbert space

In defining an abstract Hilbert space in this context, we need to keep in mind the
concepts that are needed in quantum mechanics. Furthermore these concepts need
to have the same meaning both in FZ and in FΩ. As for the concepts, we need the
scalar product, the addition and subtraction of two elements of the Hilbert space
and the inner product of two elements [1, p.34]. Before we continue with this, let us
state the notation explicitly.

Points of Hilbert space will be denoted by f,g, . . . ,φ,ψ, . . . , complex numbers by
a,b, . . . , x,y, . . . and positive integers by k,l,m, . . . ,µ,ν, . . . . Furthermore the Hilbert
space shall be denoted by <n or <∞ and when there is no need to distinguish whether
the space is finite or infinite dimensional, it shall be denoted by < [1, p.35]. It should
then be understood merely as space. We can now state our first two requirements
for the space:
Requirement A: < is a linear space [1, p.36].
Requirement B: A Hermitian inner product is defined in < [1, p.38].

Basically these two guarantee that vector algebra works the way that we have
been accustomed to it. That is, addition is both commutative and associative and
multiplication is distributive and associative. Furthermore, we have the null element
and the identity element at our disposal. From this it naturally follows that linear
vector calculus can also be used [1, p.37]. Moreover, the inner product is also of
great importance since it allows us to define length in the space < [1, p.39].

It should be noted that while all of this is very similar to the treatment done
in the formation of a two dimensional Euclidean space, it is not the same. We
are in progress of defining generally the properties of an Euclidean space for the
spaces FZ and FΩ. In the last section we already stated the final result: FZ and FΩ

are isomorphic. Now we are building the theory from down to up, aiming at this
result. For the purpose of doing this correctly in a mathematical way, a certain level
of abstraction has to be preserved. So for now, the points f,g, . . . ,φ,ψ, . . . should
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merely be regarded as mathematical abstractions called points.
From the requirements it then follows that addition f + g, the scalar product af

[1, p.36] and the Hermitian inner product (f,g) are all defined [1, p.38]. With these
at our disposal we can make the following three definitions:

Definition 1: The magnitude of an element f ∈ < is ||f || =
√

(f,f) and the
distance between f and g is ||f − g|| [1, p.39].

Definition 2: Elements f1,...,fk ∈ < are linearly independent if it follows from
a1f1 + ...+ akfk = 0 that a1 = ... = ak = 0 [1, p.37].

Definition 3: A subset M of < is called a linear manifold if it contains all the linear
combinations a1f1 + ...akfk of any k(= 1,2,...) of its elements f1,...,fk. Taking any
arbitrary subset A of <, it then follows that a linear combination containing it, is
called the linear manifold spanned by A. It is denoted by {A} [1, p.38].

It follows then that the magnitude has all the properties of distance. It can
especially be proven that Cauchy’s inequality holds [1, p.40]. Furthermore, it follows
that the magnitude has the property of being positive definite [1, p.42]. Moreover,
the algebraic vector operations af,f + g,(f,g) of all f,g ∈ < are all continuous in all
variables [1, p.44].

Requirements A and B do not allow us to differentiate between <n and <∞. As
the concept of dimensions is related to the amount of linearly independent vectors,
we need take a new requirement C. There are two different versions of this which
we separate to C(n) and to C(∞) [1, p.45].
Requirement C(n): There are exactly n linearly independent vectors. That is, it
is possible to specify n such vectors, but not n+ 1 [1, p.45].
Requirement C(∞): There are arbitrarily many independent vectors [1, p.45].

It should be noted that C is not essentially a new requirement since if A and
B hold then either C(n) or C(∞) holds. It then follows without further assumptions
that < with C(n) has all the properties of a n-dimensional, complex Euclidean space.
However, in order to guarantee the identity between < and the infinite dimensional
Hilbert space <∞ we need two additional requirements for the space to fulfil [1, p.45].
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Requirement D: < is complete [1, p.46].
Requirement E: < is separable [1, p.46].

It should be noted that for a n-dimensional space, that is <n, we require A, B
and C(n) and from these requirements D and E will follow. Whereas for infinite
dimensional space we have to take all five [1, p.45]. Effectively these requirements
allow us to define the geometry of the Hilbert space [1, p.46]. And that is what we
shall consider in the next chapter.

3.2 The geometry of Hilbert space

The point of the first part of this chapter is to give an idea to the reader how FZ and
FΩ come to satisfy the conditions A-E. This being said, we begin the exploration of
the geometry of the Hilbert space with the following two definitions:

Definition 4: Two units f,g of < are orthogonal if (f,g) = 0. Two linear manifolds
M1,M2 are orthogonal if each element of M1 is orthogonal to each element of M2. A
set D is called an orthonormal set if for all f,g ∈ D, (f,g) = δfg. Where δfg is the
Kronecker delta function. Moreover, D is complete if it is not a subset of any other
set that contains extra elements [1, p.46-47].

Definition 5: A linear manifold which is also closed is called a closed linear manifold.
If A is any set in <, and we add to {A} all its limit points, we obtain a closed linear
manifold which contains A. We call it the closed linear manifold spanned by A and
denote it by [A] [1, p.47-48].

The property of orthonormality can hardly be stressed too much in geometry.
For this reason definitions 4 and 5 are of crucial importance. Furthermore, almost
every theorem, that is about to follow, has something to do with orthonormal sets.
It should also be pointed out that definition 5 is important only in <∞ because in
<n all linear manifolds are of the type described by it [1, p.47]. With these we may
present our first two theorems:

Theorem 1: In <n every orthonormal set has ≤ n elements, and is complete if and
only if it has n elements [1, p.48].

Theorem 2: In < each orthonormal set is finite or countably infinite set. If the set
is complete then it is also infinite [1, p.49].

The first theorem for <n furnishes us with a relatively simple check of complete-
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ness; property which will be exploited later on. However, for <∞, the infinite amount
of elements is not sufficient for its completeness [1, p.50]. In order to achieve this,
we need to acquire few more results. Since by definition completeness of a set is
closely related to convergence, the required completeness property is achieved by
addressing the convergence criterion through the postulate C(∞). Then the following
theorems hold generally:

Theorem 3: Let φ1,φ2... be an orthonormal set. Then all series of infinitely many
terms, such as ∑

ν
(f,φν)(g,φν), are absolutely convergent. Especially if f = g then∑

ν
|(f,φν)|2 ≤ |f |2 [1, p.51].

Theorem 4: Let φ1,φ2... be an infinite orthonormal set. Then the series
∞∑
ν=1

xνφν

converges if and only if
∞∑
ν=1
|xν |2 does. It then follows, assuming convergence, that

for f = ∑
ν
xνφν , it holds that (f,φν) = xν [1, p.52-53].

Theorem 5: Let φ1,φ2... be an orthonormal set and f an arbitrary vector. Then
for xν = (f,φν) and (ν = 1,2,...) the sum f ′ = ∑

ν
xνφν is always convergent if the

series is infinite. Also, the expression f − f ′ is orthogonal to φ1,φ2,... [1, p.53].
Theorem 3 effectively establishes an idea of convergence and thus serves as a

stepping stone for theorem 4. Theorem 5 in itself is not useful to us, but as it is
used in the proof of the following theorem, it is given for purposes of completeness.
Therefore, the general criteria of completeness, for both finite or infinite dimensional
space, is given by the following theorem [1, p.54]:

Theorem 6: Let φ1,φ2... be an orthonormal set. Each one of the following conditions
is necessary and sufficient for completeness:

1. The closed linear manifold [φ1,φ2...] spanned by φ1,φ2... is equal to <.

2. f = ∑
ν
xνφν , where xν = (f,φν) is always true.

3. (f,g) = ∑
ν

(f,φν)(g,φν) is always true [1, p.54].

In addition to completeness, we would like to be able to come up with a method
how to orthonormalize a given set. In linear algebra this is known as the Gram-
Schmidt procedure [2, p.79-80]. And as linear manifolds are merely some sets
with properties as given in definition 3, we would like to extend this notion of
orthonormality to them. This is because it is almost always convenient to choose an
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orthonormal basis for our calculations [2, p.79]. With this, we can give the last two
theorems of the geometry of the Hilbert space.

Theorem 7: Both in infinite and finite dimensional space, to each set f1,f2,..., there
corresponds an orthonormal set φ1,φ2,... which spans the same linear manifold as
the former set [1, p.55]

Theorem 8: Corresponding to each closed linear manifold M there is an orthonormal
set which spans the same M as a closed linear manifold [1, p.56].

With theorem 8 we have arrived to the point where we can address how < can be
shown to be identical with <n or <∞, depending whether C(n) or C(∞) holds [1, p.58].
It suffices to show that < allows a one to one mapping on the set of all {x1,...,xk} or
{x1,x2,...} respectively, in such a way that

1. af ↔ {ax1,ax2,...} follows from f ↔ {x1,x2,...}

2. f + g ↔ {x1 + y1,x2 + y2} follows from f ↔ {x1,x2,...} and g ↔ {y1,y2,...}

3. (f,g) =
n or ∞∑
ν=1

xνyν follows from f ↔ {x1,x2,...} and g ↔ {y1,y2,...} [1, p.58-59]

Needles to say that such a mapping can be defined and a reader more interested in
the details of the proof is encouraged to see reference [1] for further details.

We have now come far enough to address the problem whether the requirements
A-E hold in FZ and FΩ. However, as the exact proof of how they come to hold in FZ

and FΩ is not necessary for the understanding of the coming text [1, p.59], we shall
only recite here the essential points. For FZ this follows from the fact that an <
with A-E must be identical in all properties with <∞ [1, p.58-59]. It should also be
pointed out that requirements D and E follow from A-C(n) but not from A-C(∞) [1,
p.45,59]. Which means that for an infinite dimensional space requirements D and E
have to be stated explicitly.

Before considering FΩ, it should be noted that in the k-dimensional space q1,...,qk,
where FΩ is defined, the dimensions q1,...,qk are allowed to vary from minus infinity
to plus infinity [1, p.60]. With this in mind the validity of the requirements A-E
in FΩ can be checked one by one. For this we rely on the Lebesgue measure and
the thus defined Lebesgue integral [1, 3, p.59-61]. For A we must show that if f,g
belong to FΩ then af and f ± g also belong to it [1, p.60]. For B we define the
inner-product (f,g) as

∫
Ω fg [1, p.61]. For C it can be shown that C∞ holds [1,

p.62]. For D it can be shown that for a sequence f1,f2,... that satisfies the Cauchy
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convergence criterion, there exists a limit f that belongs to FΩ. Furthermore f is
also the limit of a subsequence fn1 ,fn2 ,... of f1,f2,... [1, p.62-64] And finally for E we
are capable of specifying a function sequence f1,f2,... that is everywhere dense in FΩ

which is exactly what was required [1, p.64-69].
Taken < which satisfies A-E, we can also answer the question as to what is

the condition for a subset M of <, so that M satisfies the same requirements. The
condition is that M must be a closed linear manifold [1, p.69-70].

With the above we have shown several theorems of orthonormal sets within < and
established an understanding of the underlying concepts proving the isomorphism
between FZ and FΩ. Now we may go further into the geometric analysis of Hilbert
space [1, p.73]. Effectively this means discussion on the various projection theorems
of Hilbert space.

We now wish introduce new notation which allows us to discuss the topic more
effectively. Taken any arbitrary sets A,B,... of <, the set that results from their
combination, whether a linear manifold or a closed linear manifold, is denoted by
{A,B,...} or [A,B,...] respectively. The same notation holds for arbitrary elements
too. Moreover, if in particular M,< are closed linear manifolds then we designate
the closed linear manifold [M,<,...] by M + <+ ... [1, p.73]. Furthermore, taken a
subset M of <, we denote the totality of elements of < which are orthogonal to all
elements of M by <−M. It follows that the set <−M is a closed linear manifold
and we call it as the closed linear manifold complementary to M [1, p.73-74]. With
this we get the following theorem:

Theorem 9: Let M be a closed linear manifold. Then each f of < can be resolved
in one and only one way into two components, f = g + h where g is from M and h

from <−M [1, p.74].
We call g the projection of f in M and h the normal from f onto M. Since g

is acquired from f through an operation, that is the act of checking what part of
it lies in the manifold M, we introduce the notation PMf for g [1, p.74]. From this
it follows that the projection has the properties mentioned in theorem 10. As the
concept of an operator is needed, let us specify it explicitly in definition 6.

Definition 6: An operator R is a function defined in a subset of < with values from
<. That is, a relation which establishes a correspondence between certain elements
f ∈ < and elements Rf ∈ < [1, p.87].
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Theorem 10: The operator PM has the following properties:

1. PM(a1f1 + ...+ akfk) = PMa1f1 + ...+ PMakfk.

2. (PMf,g) = (f,PMg)

3. PM(PMg) = PMg [1, p.75].

It can be noted that the manifold M can be characterized as the set of all solutions
to the equation PMf = f . Furthermore the first property defines the so-called linear
operators and the second the so-called Hermitian operators [1, p.75-76]. As the
projection PM is related to the manifold M in question, we would like to characterize
such operators independently of the manifold in question [1, p.77]. Thus we give the
following theorem:

Theorem 11: An operator E that is defined everywhere, is a projection if and only
if it has the properties: (Ef,g)=(f ,Eg) and E2=E. If these properties are satisfied, it
also follows that 1-E is also a projection [1, p.77,79].

We can then ask ourselves how the magnitude of the element f is affected by
the operation of projection. We recall the notation introduced in definition 1 for
the magnitude of an element. It can then be especially shown that ||Ef ||2=(Ef,f)
and ||Ef || ≤ ||f || is always true. Furthermore, E is continuous as can be seen from
||Ef -Eg||=||E(f − g)|| ≤ ||f − g|| [1, p.79].

Let us consider two operators R,S. Then by R±S, aR and RS we understand
the operators that are defined by (R±S)f=Rf± Sf , (aR)f=a−Rf , (RS)f=R(Sf),
respectively. Moreover, we use the notation R0 = 1, R1 = R, RR = R2 and so
on. Furthermore, RlRm=Rl+m is also true [1, p.80]. The rules of calculation for
different projections are also of interest to us and it can be shown that all elementary
calculations are generally valid for the exception of commutation [1, p.80]. Therefore
we give the following theorem:

Theorem 12: Let E,F be projections of the closed linear manifolds M,<. Then EF
is also a projection if and only if E and F commute. Also, EF belongs to the closed
linear manifold B which consists of the elements common to M,<. The operator
E+F is a projection if and only if EF=0 or FE=0. Thus all of M is orthogonal to
all of <. It then follows that E+F belongs to M + < and especially in this case it
equals to M + <. Moreover, the operator E-F is a projection if and only if EF=F or
if FE=F [1, p.80-81].
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Now we may also ask, how does the property of magnitude, carry over for
projections. It can be shown that it works in the most sensible way. That is,
the statement E≤F is equivalent to the general validity of ||Ef || ≤||Ff || [1, p.83].
Further properties of magnitude of the projection operators can be given with the
following two theorems.

Theorem 13: Let E1,...,Ek be projections. Then E1 + ... + Ek is a projection if
and only if all El,Em, where l,m = 1,...,k and l 6= m, are all mutually orthogonal.
Another necessary and sufficient condition is that for all f , the condition ||E1f ||2 +
...+||Ekf ||2 ≤ ||f ||2 holds. Furthermore, E1+...+Ek is the projection of M1+...+Mk

where we note that E1 = PM1 ,...,Ek = PMk
[1, p.84].

Theorem 14: Let E1,E2,... be an increasing or decreasing sequence of projections.
That is either E1 ≤ E2 ≤ ... or E1 ≥ E2 ≥ ... respectively. These converge to a
projection E in the sense that for all f , Enf → Ef . Furthermore, it holds that
En ≤ E or En ≥ E respectively [1, p.85].

We can now conclude our geometry oriented study of the functional spaces. In
the next chapter we shall narrate through some of the different operators of the
spaces FZ,FΩ. Before this, it should be noted that we have already stated a great
deal about operators in the space <. Theorems 1 through 9 were considered purely
in order to establish rigorously the concept and the properties of a closed linear
manifold. This was then further developed as a study of projection operators.

Yet, before we continue to linear operators, it should be stated that, in the
simplest of terms an operator can be described as an instruction to do something to
the function that follows after [2, p.16]. Moreover, in function spaces operators behave
as linear transformations, provided that they carry all functions to other functions
within the space and in such a manner that it satisfies the linearity condition [2,
p.97]. And as FZ,FΩ are both just the kind, we have spend considerable effort into
getting ourselves to this point.
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3.3 Linear operators in Hilbert space

The focus of this chapter will be on the linear operators of the Hilbert space. We
have already stated the definition of an operator in the preceding section. In addition
to that definition, we shall consider relations which are linear. However, let us first
consider properties of operators in general.

If the domain of an operator R encompasses the entire <, it is said to be defined
everywhere. However, it is not necessary that the range of R is contained in the
domain of R. This is to say that R2f is not necessarily defined even if Rf is [1, p.87].
It should also be noted that R±S is defined only in the intersection of the domains
of R and S [1, p.88].

The inverse R−1 of the operator R is defined if Rg = f has a solution g and
this g is then the inverses value. It is also required that Rf takes on each of its
values only once [1, p.88-89]. The operator laws of calculation given after theorem 11
hold here too. However, we can further extend these properties. Taken R,S which
have inverses, then RS has an inverse too which is (RS)−1=S−1R−1. Moreover for a
non-zero constant a, it holds that (aR)−1= 1

a
R−1. Finally we can set the same power

notation for the inverses: R−1R−1=R−2, R−1R−1R−1=R−3 and so on [1, p.89].
From here onwards, we shall only consider operators that are linear and whose

domains are everywhere dense [1, p.89]. Because of this we need the following
definition:

Definition 7: An operator A is said to be linear if its domain is a linear manifold
and if A(a1f1 + ...+ akfk) = a1Af1 + ...+ akAfk holds [1, p.89].

It should be noted that in quantum mechanics we must abandon the requirement
that operators should be defined everywhere. Instead a sufficient substitute is
acquired by requiring that the domain of an operator is everywhere dense [1, p.90].
For example let us consider a one dimensional configuration space in Schrödinger’s
wave mechanics. So we have q ∈ ]−∞,∞[ and for the wave functions ψ(q) square
integrability holds:

∞∫
−∞

|ψ(q)|2 dq <∞. (5)

And as it has been said multiple times, these type of functions form the Hilbert
space [1, p.90]. Now considering the position operator q, which is a linear operator,
we notice that its domain is not the entire Hilbert space [1, p.90]. This is because
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the value of the integral
∞∫
−∞

|qψ(q)|2 dq =
∞∫
−∞

q2|ψ(q)|2 dq

can be infinite even if equation 5 holds [1, p.90]. If this happens then the position
operator q has carried the wave function ψ(q) out of the Hilbert space; that is qψ(q)
is not part of the Hilbert space [1, p.90].

Definition 8: Two operators A,A∗ are said to be adjoint if they have the same
domain, and if in this domain both (Af,g)=(f,A∗g) and (A∗f,g)=(f,Ag) hold [1,
p.91-92].

It should be stressed that the requirement of equal domains in definition 8 is
an important one. The consequences of negligent treatment of domains shall be
elaborated more in detail in Chapter 4.

Without getting stuck on the properties of an adjoint operator, it can be shown
that in the Schrödinger wave mechanics, assuming a k-dimensional configuration
space, the equations (ql)∗ = ql and

(
− i~ ∂

∂ql

)∗
= −i~ ∂

∂ql
hold for the position and

momentum operators; where 1 ≤ l ≤ k [1, p.92-93]. Furthermore, in the matrix
theory, for any linear operator A, that is characterized by the matrix aµν , it can be
seen that the adjoint A∗, is the complex-conjugate-transposed matrix aνµ [1, p.95-96].
We further define:

Definition 9: The operator A is called self-adjoint if A∗=A [2, p.83]. It is also said
definite if it is always true that (Af,f) ≥ 0. The operator U is said to be unitary if
UU∗=U∗U=1 [1, p.96].

Again it should be emphasized that from the condition A∗=A it follows that the
operators have the same domain. Furthermore, all unitary operators are continuous,
which is not always the case for self-adjoint operators. For example the position and
momentum operators q and −i~ ∂

∂q
are both discontinuous [1, p.97-98]. Moreover,

we know that all projections are self-adjoint, and as it was stated above, both the
position and momentum operators are self-adjoint [1, p.98].

For operators, just as for numerical functions in analysis, the property of con-
tinuity is of elementary importance [1, p.99]. For this reason we wish to state the
subsequent theorem.

Theorem 15: A linear operator R is everywhere continuous if it is continuous
at the point f = 0. A necessary and sufficient condition for this property is the
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existence of a constant C for which the inequality ||Rf || ≤ C||f || holds in general.
It follows that this condition is equivalent to the general validity of the inequality
|(Rf,g)| ≤C||f || ||g||. Moreover, for a self-adjoint R this is required only for f = g;
that is, the inequalities −C||f ||2 ≤ (Rf,f) ≤ C||f ||2 must hold [1, p.99].

It would be to our advantage, if we could somehow limit the inner product of two
elements, where the other is operated on by some operator R, in a similar manner to
that of the Cauchy’s inequality. In practice this is achieved with theorem 16.

Theorem 16: If R is self-adjoint and definite, then |(Rf,g)| ≤
√

(Rf,f)(Rg,g).
From (Rf,f)=0, it then follows that Rf=0 [1, p.101].

3.4 The Eigenvalue problem

With the mathematical machinery thus far developed, we can now formulate equations
1 and 2 in a unified manner. In essence, from both of the equations, we are trying to
find all the non-zero solutions φ of

Hφ = λφ (6)

where H is the Hamiltonian described in chapter two and in particular it is a self-
adjoint operator, φ is an element of the Hilbert space and λ a real number [1,
p.102-103]. From the solutions we require that they span <∞ as a closed linear
manifold [1, p.105]. In the matrix theory, that is in the space FZ, it is required that
a matrix S = {sµν} can be formed from the solution φ of the equation 6 such that it
possesses an inverse S−1 [1, p.103]. On the other hand, in the wave theory, that is
in the space FΩ, it is required that each wave function φ(q1,...,qf), which does not
have to be a solution of equation 6, can be developed in a series of the solution φ

such that
φ(q1,...,qf ) =

∞∑
n=1

cnφn(q1,...,qf )

where φ1,φ2,... may even belong to different λ [1, p.103]. One of the properties of
the solutions to the equation 6 is that they are all orthogonal to each other. This
can be seen from the inner-product of two solutions that belong to different λ1,λ2

λ1(φ1,φ2) = (λ1φ1,φ2) = (Hφ1,φ2) = (φ1,Hφ2) = (φ1,λ2φ2) = λ2(φ1,φ2)

where you should start reading the equation from the term (Hφ1,φ2). And as
λ1(φ1,φ2) = λ2(φ1,φ2) but λ1 6= λ2 it must follow that (φ1,φ2) = 0 [1, p.104]. We
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could have also used the Gram-Schmidt procedure to achieve an orthonormal set.
Furthermore from theorem 2 it follows that we can write both the eigenvalues λ and
the solutions φ1,φ2 as a sequence which may or may not terminate [1, p.104-105].

It then follows that the solutions to equation 6 form a closed linear manifold, but
only if we assume that H is continuous and everywhere defined [1, p.105]. Then by
theorem 7 there must exist another set ψ1,ψ2,... that spans the same closed linear
manifold as the solutions themselves. And as it was required at the beginning of
the chapter, these solutions must span the whole <∞. From this it follows that
the set ψ1,ψ2,... must also do this and because of theorem 6, the set ψ1,ψ2,... is also
complete [1, p.105-106].

Therefore in quantum mechanics the solution to the eigenvalue problem requires
finding a sufficient number of solutions ψ and λ to equation 6 such that an orthonor-
mal set can be formed from them [1, p.106]. However, this is not always possible. In
the wave theory for a certain subset of the solutions to equation 6 there exists no
finite value for the integral of the square of the absolute value [1, p.106].

The requirement that a complete orthonormal set can be formed from the solutions
of equation 6 comes from the well known algebraic fact that in <n the solutions of

n∑
ν=1

hµνxν = λxµ (µ = 1,...,n)

form a complete orthonormal set [1, p.107]. See the correspondence to equation 1.
The transition to the limit n→∞ does not come without complications. Essentially
we have to formulate the eigenvalue problem anew in <n and then transition ourselves
to the limit n → ∞ such that we have the desired completeness property of the
solutions in <∞ [1, p.107]. The property that we require is that we can diagonalize
the matrix form of H. This formulation is carried out in detail in reference [1]
but the result is as follows: For the operator H, we seek a family of projections
E(λ) where −∞ < λ <∞. For E(λ) we require the properties:

P1: For λ→ −∞, E(λ)f → 0 and for λ→∞, E(λ)f → f . Moreover for λ→ λo,
λ ≥ λo, E(λ)f → E(λo)f [1, p.118]

P2: From λ′ ≤ λ” it follows that E(λ′) ≤ E(λ”) [1, p.118]

P3: The integral
∞∫
−∞

λ2d(||E(λ)f ||2)
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determines the domain of H. The integral may be convergent or divergent.
However Hf is defined only if the integral is convergent. It follows that

(Hf,g) =
∞∫
−∞

λd(E(λ)f,g)

and whenever the former integral is finite the latter integral is absolutely
convergent [1, p.118].

A family of projections E(λ) with the properties P1 and P2 is known as the resolution
of identity. Furthermore, a resolution of identity with a relation P3 to H is said
to belong to H [1, p.119] It should be noted that properties P1 and P2 make no
reference to the operator H [1, p.119]. Furthermore, in P3 we have used Stieltjes
concept of the integral.

Now the eigenvalue problem in <∞ changes to the question that, does there
always exist, for the operator H, resolutions of the identity belonging to H? If so,
how many? The answer we would like to have, is that there always exists precisely
one [1, p.119]. In addition to this we have to ascertain that, if the resolution of the
identity E(λ) belongs to a self-adjoint operator A, when is the equation

Aφ = λφ

solvable? We exclude the uninteresting φ = 0 solution. Carrying out the inspection
we can deduce that the equation is solvable only at the discontinuities of E(λ)
and the solutions φ form a closed linear manifold [1, p.120-123]. Furthermore the
discontinuities of E(λ) are known as the discrete spectrum of A [1, p.124].

In the context of this text it is difficult to emphasize the importance of the
above theorem enough. However, it should be explicitly stated that the above
theorem applies to all self-adjoint operators and it has been given the name spectral
theorem [5, p.87-88,97]. The significance follows from its applicability to the position
and momentum operators. The reader is encouraged to see references [1] and [5] for
a more detailed explanation.

There is a great deal more that should be considered about the solvability of
the eigenvalue problem in order to achieve mathematical rigour. However, for our
purposes the development has been carried far enough. As the self-adjointness
property of the operator in the eigenvalue problem is of importance, we shall briefly
consider an example for the Hamiltonian.
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4 Self-adjoint Hamiltonian operator

Before we continue onwards it is a good idea to recall definitions 8 and 9. In
particular the requirement that for an adjoint operator the domains must be the
same. Moreover for a self-adjoint operator it follows that the formal expression of
the adjoint is the same. With this in mind let us turn our attention towards the
example of an infinite square well in one dimension. The reason why we choose
such a simplified example, is, that it is somewhat the standard problem of quantum
mechanics [4] and that it serves as an accessible test case for other systems [2, p.25].

We shall first consider the expectation value of energy to familiarize the reader
with the calculations. Then we shall consider the expectation value of the square
of the energy first as 〈E2〉 = 〈Hψ,Hψ〉 and then as 〈E2〉 = 〈ψ,H2ψ〉. We will show
that this leads to a contradiction if the proper domain of H is not considered.

Should the reader feel like some calculations are not clear, he is encouraged to
check reference B for clarification. In this example we shall adopt the Schrödinger
wave mechanics approach as the means of analysis. The particle in the system in
question is restricted by a potential of the form:

V (x) =

 ∞ |x| ≥ L
2

0 |x| < L
2 ,

where L is the width of the well [4]. Outside this well the probability of finding the
particle in question is zero [2, p.25]. This means that we can analyse the situation
only within the interval |x| < L

2 . In this interval the Hamiltonian takes on the
form [2, p.25]

H = − ~2

2m
d2

dx2 ,

and the domain D(H) of the Hamiltonian is:

D(H) =
{
φ, Hφ ∈ FΩ

(
− L

2 ,
L

2

)
, φ

(
± L

2

)
= 0

}
. (7)

It should be noted that FΩ is not the commonly used notation for a Hilbert space
where functions are square integrable. Usually it is noted by L2 or L2 where the
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number 2 indicates that functions are square-integrable [2, 4, p.101]. However, since
in this work we have been talking about the functional spaces as FZ and FΩ, we
hang on to that notation. In any case, the eigenvalue problem that we are trying to
solve is the time-independent Schrödinger equation [2, p.25]:

− ~2

2m
d2

dx2ψ = Eψ.

This equation can be solved to have the following normalized eigenfunctions:

ψn(x) =


√

2
L

cos
(

(n+1)π
L

x
)

when n is even√
2
L

sin
(

(n+1)π
L

x
)

when n is odd.
(8)

It should be noted that presenting the solutions in this form n ∈ N and that zero is
included in N. The benefit of giving the solutions in this form is that a particular
eigenfunction has the same parity as the running number n. Moreover, the energy
levels can be calculated to be:

En = π2~2

2mL2 (n+ 1)2. (9)

Now let us consider this situation in a similar manner as set in references [4] and [2].
For our example let us choose the state n = 1 from equation 8 to define the initial
normalized wave function:

ψ(x) =


√

105
2L5x

(
L− 4

L
x2
)
|x| ≤ L

2

0 |x| ≥ L
2 .

(10)

This function fulfils all the requirements that we set for the domain of functions for
the Hamiltonian in equation 7. It should be noted that at the beginning of chapter
3.4 we set the requirement that in wave mechanics, we must be able to present all
wave functions in the form of equation 11. The reader is encouraged to revisit the
result given in theorem 4. In more familiar terms this follows from the completeness
of the solutions 8 that the initial function 10 can be expressed as a linear combination
of them [2, 4, p.27-28]:

ψ(x) =
∞∑

n=1,3,5,...
cnψn(x), cn = (ψn,ψ) = 24

√
105(−1)n−1

2 +1

π3(n+ 1)3 , (11)

where the index n is now all odd numbers. We shall need the value of Hψ later on
so let us calculate it here:

ψ̃ = Hψ = ~2

m

√
7560
L7 x. (12)
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With all these preliminary calculations done, we can turn our attention towards
the different energy values that the system can acquire. The mean energy can be
calculated in a similar manner as set in the calculation of reference [4] and in [2,
p.30]:

〈E〉 =
∞∑

n=1,3,5,...
|cn|2En = 30240~2

π4mL2

∞∑
n=1,3,5,...

1
(n+ 1)4 = 21~2

mL2 . (13)

The energy can also be calculated by using the Hamiltonian in a manner described
in [2, p.22-23] and in [4]:

〈E〉 = (ψ,Hψ) = (ψ,ψ̃) = 21~2

mL2 . (14)

It can be seen from equations 13 and 14 that it does not matter in which way the
mean energy is calculated. Furthermore we can compare our result with the energy
E1. Calculating this from equation 9 we can see that:

〈E〉 = 21
2π2E1. (15)

So the mean energy of a particle in the state defined by equation 10 is just slightly
more than the energy of a particle in the state ψ1. This sounds like a reasonable
result. Let us now continue to calculate 〈E2〉 using the same two methods as above.
First we get:

〈E2〉 = 〈Hψ,Hψ〉 =
∞∑

n=1,3,5,...
|cn|2E2

n = 15120~4

π2m2L4

∞∑
n=1,3,5,...

1
(n+ 1)2 = 630~4

m2L4 . (16)

Again the reader is reminded that the sum contains only odd integers. But using
the Hamiltonian in the manner as described in [2, p.23] and [4]:

〈E2〉 = (ψ,H2ψ) = (ψ,Hψ̃) = (ψ,0) = 0. (17)

We can see that the values of equations 16 and 17 differ even though they are
supposed to be the same value of interest. So where did our calculations go wrong?
Let us recall the example given just after definition 7. There we questioned the
square-integrability of the expression:

∞∫
−∞

q2|ψ(q)|2 dq. (18)

Here, on the other hand, the expression resulting in the value of equation 17 surely
is integrable. However, we also known that it must be wrong. The problem lies
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in the fact that we operated with the Hamiltonian to a function which is not part
of it’s domain. That is, the expression of equation 12 does not fulfil the boundary
conditions as set in equation 7 and thus ψ̃ is not in the domain of H. From this it
follows that 〈Hψ,Hψ〉 6= 〈ψ,H2ψ and the contradiction arises.

The aim of this example was to point out the importance one should pay to
mathematical rigour. It is important to keep in mind the defined domain of the
operator that we are working with. As it is pointed out in reference [4] the value of
〈E2〉 should be calculated in the following manner.

Recognizing |(ψn,ψ)|2 as the probability that the system is in particular eigenstate
with energy En [2, 4, p.106] and the fact that eigenvalues must be real, as pointed
out at the beginning of chapter 3.4, we get the expression:

〈E2〉 = 〈Hψ,Hψ〉 =
∞∑

n=1,3,5,...
E2
n|(ψn,ψ)|2 =

∞∑
n=1,3,5,...

E2
n(ψ,ψn)(ψn,ψ)

〈E2〉 =
∞∑

n=1,3,5,...
(ψ,Hψn)(Hψn,ψ).

(19)

Now we can use the self-adjointedness property of H in accordance with definitions 8
and 9 and the result presented in reference [4]:

〈E2〉 =
∞∑

n=1,3,5,...
(Hψ,ψn)(ψn,Hψ) =

∞∑
n=1,3,5,...

(ψ̃,ψn)(ψn,ψ̃) = (ψ̃,ψ̃) = 630~4

m2L4 , (20)

which is what we got as a result in equation 16 for 〈E2〉. If the reader finds the
transition from the sum to the expression (ψ̃,ψ̃) unfamiliar, he is encouraged to
revisit theorems 3 and 6.
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5 Conclusions

We set out to write this work with the intention of summarizing the essential
mathematical machinery that is needed for a rigorous treatment of the quantum
theory. In particular, our aim was to outline the theory up to the point of the
time-independent eigenvalue problem as it is presented in reference [1]. And in order
to do full justice to the title of this work, we chose a simple example to point out
the importance of fully appreciating the exact definitions of the operator theory.

It must be said that the first part of this work is rather abstract and does not offer
much to a reader that has no experience with the quantum theory. However, our
aim was to write this to a person, that has had the first contact with the quantum
theory, and wishes to see a summary of the treatment, that has to be carried out, in
order to properly develop the quantum theory. It is my experience that some of the
mathematical niceties, as someone might call them, are overlooked in the most basic
courses of quantum theory. That was the motivation behind this work.

I believe that into an extent this work functions as an adequate summary of the
mathematical foundations of the quantum theory. Moreover, the example we took
in chapter 4 highlights the necessity of being aware of the exact definitions in order
to develop a functioning theory. The exact calculations are not necessary for the
understanding of this work, but they do offer a deeper insight to the problem at
hand. Therefore they are included in reference B.

On the basis of this text, a more detailed description of the spectral theory could
be pursued. This could be supported with examples for the position and momentum
operators. However, taking that into consideration goes beyond the scope of this
work. In conclusion, I would still like to claim that this thesis has fulfilled its original
purpose.
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A Glossary of terms

The terms and concepts explained here appear in alphabetical order. If the term in
question is defined within the main text, it will not appear here. Since there are
multiple terms taken from the source [3] the referencing is done, for purposes of
practicality, in the manner that the term between the square brackets is the search
word one should use in the provided site.
Associative property: A property that a certain calculation or an operation pos-
sesses. That is, for an operation ⊕, the following holds: (a⊕ b)⊕ c = a⊕ (b⊕ c) [1,
p.36].
Boundedness: A function F (f) ∈ < or in any subset of <, is said to be bounded if
for all f it holds that ||F (f)|| < C or |F (f)| < C where C ∈ R [1, p.43].
Cauchy-convergence criterion: For a sequence f1,f2,... there exists an N = N(ε),
for each ε > 0, such that ||fm − fn|| < ε for all m,n > N [1, p.46].
Cauchy’s inequality: For f,g ∈ < it holds that |(f,g)| ≤ ||f || · ||g||. It follows
that for the equality to hold, f,g must be identical except for a constant complex
factor [1, 3, p.40-41,Cauchy’s Inequality].
Closed set: A set A ∈ < is said to be closed if it contains all its limit points [1,
p.44].
Commutation rules of quantum mechanics: For the coordinates and momen-
tum: [Qm,Qn] = 0, [Pm,Pn] = 0 respectively. And for the coordinate momentum
pair: [Pm,Qn] = −i~δmn, where δmn is the Kronecker delta function [1, p.9].
Commutative property: For an operation ⊕, the following holds: a⊕ b = b⊕ a
[1, p.36].
Completeness of <: < is said to be complete if a sequence f1,f2,... ∈ < satisfies
the Cauchy convergence criterion and thus is convergent [1, p.46].
Continuity: A function F (f) ∈ < is continuous at the point f0 ∈ <, if for each ε > 0
there exists a δ > 0, such that from ||f − f0|| < δ it follows that ||F (f)−F (f0)|| < ε

or |F (f)− F (f0)| < ε [1, p.43].
Convergence: A sequence f1,f2,... is said to converge to f , or to have the limit f ,
if the numbers ||f1 − f ||,||f2 − f ||,... converge to zero [1, p.43].
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Countably infinite: Any given set is said to be countably infinite if one can
arrange the set to one-to-one correspondence with the natural numbers [3, Countably
Infinite].
Diagonal matrix: A matrix H is said to be diagonal, if all elements outside the
main diagonal are zero. Illustration below [2, p.90]:

Hm,m =



h1,1 0 · · · 0
0 h2,2 · · · 0
... ... . . . ...
0 0 · · · hm,m


Distributive property: For an operation ⊕, the following holds: (a + b) ⊕ c =
a⊕ c+ b⊕ c and c⊕ (a+ b) = c⊕ a+ c⊕ b [1, p.36].
Domain: For an operator R, the domain is the class of the f for which Rf is defined
[1, p.87].
Everywhere dense set: A set A ∈ < is said to be everywhere dense if its limit
points encompass all < [1, p.44].
Hermitian inner product: The inner product (f,g) has the following properties:
(f ′ + f ′′,g) = (f ′,g) + (f ′′,g), (af,g) = a(f,g), (f,g) = (g,f) and (f,f) ≥ 0. The
equality in the last property is achieved if and only if f = 0 [1, p.38-39].
Intersection: The intersection of two sets A and B is the set of elements common
to both A and B [3, Intersection].
Isometry: Isometry is a length preserving mapping between two mathematical
structures [1, p.30].
Isomorphism: An isomorphism between two algebraic structures means that it
is possible to set up a one-to-one correspondence between them that is linear and
isometric [1, p.30].
Kronecker’s delta funtion: A function which looks at two given index entities
and assigns value 0 if they differ. If they are the same, then the function assigns the
value 1. This can be seen below [2, p.27]:

δm,n =

 1, for m = n

0, for m 6= n

Lebesgue integral: This type of integral covers a wider class of functions than
the Riemann integral. It is defined by using the Lebesgue measure of a set and it
uses the Lebesgue sum Sn = ∑

i
ηiµ(Ei). Here ηi is the value of the function on the
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subinterval i and µ(Ei) is the Lebesgue measure of the set Ei of points for which
values are approximately ηi [3, Lebesgue Integral].
Lebesgue measure: An extension of classical notions of length and area to more
complicated sets. For example, given an open set S ≡ ∑

k
(ak,bk) containing disjoint

intervals, the Lebesgue measure µL of the set S, is defined as µL(S) ≡ ∑
k

(bk − ak)
[3, Lebesgue Measure].
Limit point: A point is a limit point of a set A ∈ <, if it is a limit of a sequence
from A [1, p.43-44].
Linearity condition: A transformation T̂ is linear if the following equation holds
for any vectors |α〉 , |β〉 and scalars a,b:

T̂ (a |α〉+ b |β〉) = a(T̂ |α〉) + b(T̂ |β〉)

Where we used the bra-ket notation for vectors [2, p.80].
Linear manifold: For a set that contains f1,...,fk, it follows that a1f1 + ...+ akfk

is also contained in it where a1,...,ak are any arbitrary constants [1, p.89]. See also
the definition of a linear space below.
Linear space: For units f and g of the space, addition f+g and scalar multiplication
af , where a ∈ C, is defined. That is if f and g belong to the space, so does f + g

and af . Furthermore, the space has a null element [1, p.36].
Operator: An operator R is a function defined in a subset of < with values from
<. That is, a correspondence which designates to certain f ∈ < certain Rf ∈ < [1,
p.75].
Positive definitiveness: A function F is said to be positive definitive, if the matrix
{F (xix−1

j )} is Hermitian and all its eigenvalues are non-negative [3, Positive Definite
Function].
Range: The range of an operator R is the mapping of the operators domain mediated
by R [1, p.87].
Regular function: A function is called regular if and only if it is analytic and
single-valued throughout a region [3, Regular Function]
Separable <: < is called separable if there exists a sequence f1,f2,... ∈ < which is
everywhere dense in < [1, p.46].
Single valued function: For each point in the domain of the function, the function
has a unique value in the range [3, Single-valued function]
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Stieltjes integral: For a subdivision v0,v1,...,vk of the interval [a,b]

a ≤ v0 < v1 < ... < vk ≤ b

we form the sum
k∑

n=1
f(vn)(g(vn)− g(vn−1))

If this sum converges always as the subdivisions v0,v1,...,vk are made smaller and
smaller, then the integral

b∫
a

f(x)dg(x)

exists and it is defined to be equal to this limit. For g(x) = x this is equivalent to
the Riemann integral [1, p.112].
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B Calculations

Let us calculate the wave function defined by ψ1 that will satisfy the boundary
conditions of our system. Because we choose to inspect the sine function, which is an
odd function, the initial wave function has to be of the form ψ(x) = Ax(B − Cx2).
One requirement is that the function will be zero at the edges of the potential. This
means that (B − Cx2) = 0 must hold when x = ±L

2 . From this we can deduce that
B = L with C = 4

L
works. From the normalization requirement we have:

1 =
L/2∫
−L/2

|ψ(x)|2dx = |A|2
L/2∫
−L/2

x2
(
L− 4

L
x2
)2

dx. (21)

This polynomial is fairly simple to integrate and by inserting the limits to the
integrated function we get:

1 = |A|2L5 2
105 → A = ±

√
105
2L5 . (22)

The final form of the wave function defined by ψ1 is ψ =
√

105
2L5x

(
L− 4

L
x2
)
. Let us

next calculate the coefficients cn:

cn = (ψn,ψ) =
L/2∫
−L/2

√
2
L

sin((n+ 1)π
L

x)
√

105
2L5x(L− 4

L
x2) dx. (23)

Integrating this with Maxima gives us:

cn =
2
√

105
(
(2π2n2 + 4π2n+ 2π2 − 24) sin

(
πn+π

2

)
+ (12πn+ 12π) cos

(
πn+π

2

))
π4n4 + 4π4n3 + 6π4n2 + 4π4n+ π4

This monstrosity gives us the desired cn. However, we can simplify it quite a lot
since we are only interested in the odd integers. So let us examine the trigonometric
functions more in detail. Their argument is of the form (n+ 1)π/2 where the index
n is all the positive odd integers. From this it follows that the argument is always
some multiple of pi; that is π,2π,3π,4π,... Therefore sine has a value zero all the
time whereas for cosine the values are -1,1,-1,1,... It then follows that the cosine
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function can be expressed as (−1)n−1
2 +1. Therefore the above expression for cn can

be simplified to:

cn = 2
√

105(12πn+ 12π)(−1)n−1
2 +1

π4(n4 + 4n3 + 6n2 + 4n+ 1) (24)

The expression for n in the denominator can be factorized to get:

cn = 2
√

10512π(n+ 1)(−1)n−1
2 +1

π4(n+ 1)4 (25)

which further simplifies to:

cn = 24
√

105(−1)n−1
2 +1

π3(n+ 1)3 (26)

Next, let us investigate the expression ψ̃ = Hψ:

Hψ = − ~2

2m
d2

dx2

√105
2L5x

(
L− 4

L
x2
) = − ~2

2m

−
√

105
2L5

24
L
x

 = 12~2

m

√
105
2L7x. (27)

And the final form is acquired by taking the 12 inside the square root:

ψ̃ = Hψ = ~2

m

√
7560
L7 x. (28)

As stated in the main text the mean energy can be calculated by using the equation:

〈E〉 =
∞∑

n=1,3,5,...
|cn|2En. (29)

It should be stressed that here the summing index goes over only the odd numbers.
Continuing by inserting equation 26 and

En = π2~2

2mL2 (n+ 1)2 (30)

into equation 29, we get:

〈E〉 =
∞∑

n=1,3,5,...

60480
π6(n+ 1)6

π2~2(n+ 1)2

2mL2 = 30240~2

π4mL2

∞∑
n=1,3,5,...

1
(n+ 1)4 . (31)

Now we notice that this form of the sum resembles a lot of the well known Riemann
zeta function. The only difference is that the index runs through only all the positive
odd integers; not all positive integers. However, this can be compensated with a
change of the index. We notice that the term n+ 1 is always an even number. So
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we apply the change n+ 1 = 2k where the index k is allowed to have any positive
integer value. With this we acquire for the mean energy the expression:

〈E〉 = 30240~2

π4mL2

∞∑
k=1

1
(2k)4 = 1890~2

π4mL2

∞∑
k=1

1
k4 . (32)

Now using the well known result for the Riemann zeta function:

ζ(4) =
∞∑
k=1

1
k4 = π4

90 . (33)

Substituting this value we get:

〈E〉 = 1890~2

π4mL2
π4

90 = 21~2

mL2 . (34)

And a quick dimension analysis with ~ = [Js],m = [kg] and L = [m] shows that:

〈E〉 =
 (Js)2

kgm2

 = [J] (35)

as it should be. Continuing with the mean energy, but this time calculating the
value by using the Hamiltonian:

〈E〉 = (ψ,Hψ) = (ψ,ψ̃) =
L/2∫
−L/2

√
105
2L5x

(
L− 4

L
x2
)~2

m

√
7560
L7 x dx. (36)

By taking the constants out and simplifying the expression we get:

〈E〉 = 630
L6

~2

m

L/2∫
−L/2

x2
(
L− 4

L
x2
)

dx = 630
L6

~2

m

L
3 x

3 − 4
5Lx

5

L/2
−L/2

(37)

and by substituting the limits we acquire the result:

〈E〉 = 21~2

mL2 (38)

Continuing with the calculation of 〈E2〉:

〈E2〉 =
∞∑

n=1,3,5,...
|cn|2E2

n =
∞∑

n=1,3,5,...

60480
π6(n+ 1)6

π4~4(n+ 1)4

4m2L4

〈E2〉 = 15120~4

π2m2L4

∞∑
n=1,3,5,...

1
(n+ 1)2

(39)

Applying the same trick n+ 1 = 2k for the index as before we get:

〈E2〉 = 3780~4

π2m2L4

∞∑
k=1

1
(k)2 . (40)
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And by using the result known for the zeta function:

ζ(2) =
∞∑
k=1

1
k2 = π2

6 (41)

we get for 〈E2〉 the expression:

〈E2〉 = 3780~4

π2m2L4
π2

6 = 630~4

m2L4 . (42)

Now let us calculate this using the Hamiltonian. For this we need to figure out the
value of Hψ̃. Recalling equation 28 we get:

Hψ̃ = − ~2

2m
d2

dx2

~2

m

√
7560
L7 x

 = 0 (43)

and therefore for the integral we have

〈E2〉 = (ψ,H2ψ) =
L/2∫
−L/2

√
105
2L5x

(
L− 4

L
x2
)

0 dx = 0. (44)

Let us calculate 〈E2〉 in the ’’proper’’ manner. As stated in the main text, the value
of 〈E2〉 can be calculated from the expression:

〈E2〉 =
∞∑

n=1,3,5,...
E2
n|(ψn,ψ)|2 (45)

where we can use the well known result |z|2 = z∗z and distribute the En inside the
inner products to get:

〈E2〉 =
∞∑

n=1,3,5,...
E2
n(ψ,ψn)(ψn,ψ) =

∞∑
n=1,3,5,...

(ψ,Enψn)(Enψn,ψ)

〈E2〉 =
∞∑

n=1,3,5,...
(ψ,Hψn)(Hψn,ψ).

(46)

Now because both ψn and ψ are in the domain of H we can use the symmetry
property to get:

〈E2〉 =
∞∑

n=1,3,5,...
(Hψ,ψn)(ψn,Hψ) =

∞∑
n=1,3,5,...

(ψ̃,ψn)(ψn,ψ̃). (47)

In the main text we used the result:
∞∑

n=1,3,5,...
(ψ̃,ψn)(ψn,ψ̃) = (ψ̃,ψ̃). (48)
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In agreement with reference [4]. The value of (ψ̃,ψ̃) can be calculated from the
integral:

(ψ̃,ψ̃) =
L/2∫
−L/2

~2

m

√
7560
L7 x

~2

m

√
7560
L7 x dx = ~4

m2
7560
L7

L/2∫
−L/2

x2 dx. (49)

And by integrating and substituting the limits we get as before:

〈E2〉 = (ψ̃,ψ̃) = 630~4

m2L4 . (50)

One might also be curious as how to calculate the sum of equation 48. We shall
show it explicitly here. Since both ψn and ψ̃ are real it follows that (ψ̃,ψn) = (ψn,ψ̃).
Therefore equation 48 simplifies to:

∞∑
n=1,3,5,...

(ψ̃,ψn)(ψn,ψ̃) =
∞∑

n=1,3,5,...
(ψ̃,ψn)2 (51)

where ψ̃ is as defined in equation 28 and the full expression for ψn has to be carried
over from the main text:

ψn(x) =


√

2
L

cos
(

(n+1)π
L

x
)

when n is even√
2
L

sin
(

(n+1)π
L

x
)

when n is odd.
(52)

So we are faced with the trouble that ψn fluctuates between sine and cosine. Let us
investigate the inner product more in detail. The expression (ψ̃,ψn) can be calculated
from the integral:

(ψ̃,ψn) =
L/2∫
−L/2

ψ̃(x)ψn(x) dx. (53)

However, we notice from equation 28 that ψ̃ is an odd function and that cosine is an
even function. Since the integration limits are symmetrical we can conclude that all
the inner products between ψ̃ and cosine are zero. And since sine is an odd function
we can expect to find a finite value between ψ̃ and it. Therefore it suffices only to
consider the value of the integrals:

L/2∫
−L/2

~2

m

√
7560
L7 x

√
2
L

sin
(

(n+ 1)π
L

x

)
dx. (54)

Before we begin, let us state the full expression to which we are trying to find a
value to:

〈E2〉 =
∞∑

n=1,3,5,...

 L/2∫
−L/2

~2

m

√
7560
L7 x

√
2
L

sin
(

(n+ 1)π
L

x

)
dx
2

. (55)
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The constants in equation 55 can be taken out of the integral, raised to the power of
two and then taken out of the sum:

〈E2〉 = ~4

m2
15120
L8

∞∑
n=1,3,5,...

 L/2∫
−L/2

x sin
(

(n+ 1)π
L

x

)
dx
2

. (56)

Integrating this yields:

〈E2〉 = ~4

m2
15120
L8

∞∑
n=1,3,5,...

2L2
(

sin
(
π(n+1)

2

)
− π(n+ 1) cos

(
π(n+1)

2

))
2π2(n+ 1)2

2

. (57)

For this expression we can do the same treatment as we did for the expression of cn.
Therefore the equation simplifies down to:

〈E2〉 = ~4

m2
15120
L8

∞∑
n=1,3,5,...

−L2(−1)n−1
2 +1

π(n+ 1)

2

. (58)

Raising this expression to the second power and taking the constants out of the sum
we get:

〈E2〉 = 15120~4

π2m2L4

∞∑
n=1,3,5,...

1
(n+ 1)2 . (59)

We can already see that this is the result we arrived at in the calculation of equation 39.
So by identical treatment as before we arrive at the result:

〈E2〉 = 630~4

m2L4 . (60)

This completes our examination of the calculations.
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