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Two-dimensional materials and their mechanical properties are known to be profoundly affected by rippling
deformations. However, although ripples are fairly well understood, less is known about their origin and con-
trolled modification. Here, motivated by recent reports of laser-controlled creation of line defects in graphene, we
investigate how line defects could be used to control rippling in graphene and other two-dimensional materials.
By sequential multiscale coupling of density-functional tight-binding and continuum elasticity simulations,
we quantify the amount of rippling when the number and the cumulative length of the line defects increase.
Simulations show that elastic sheets with networks of line defects create rippling that induces considerable
out-of-plane rigidification and in-plane softening with nonlinear elastic behavior. We hope that these insights
help to guide experimental attempts to modify the mechanical properties of graphene and other two-dimensional
materials.
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I. INTRODUCTION

While graphene and other two-dimensional (2D) materials
are often portrayed as planar sheets, real samples frequently
contain ripples and other out-of-plane deformations [1,2].
Rippling deformations affect materials’ mechanical, elec-
tronic, and thermal properties and are of pivotal importance
for a number of applications.

From a mechanical applications point of view, the most no-
table effect of rippling is its propensity to increase the out-of-
plane rigidity of 2D materials [3–6]. The magnitude of rigid-
ity is important for kirigami applications [7], nanomechani-
cal systems [8], mechanical resonators [9], cantilevers [10],
material systems [11], and applications dependent on the
thermal expansion coefficient [12], to mention six examples.
Rigidity is equally important also for nanostructured mem-
branes, nanoribbons in particular [13]. The application poten-
tial of customized rigidity is aptly illustrated by the mundane
example of corrugated sheets as packaging materials; the
customized rigidity of 2D materials can be envisioned to
substantially expand the range of mechanical applications at
the nanoscale [14].

In addition to mechanical properties, rippling affects also
phononic and electronic transport. Directional rippling ren-
ders phononic transport anisotropic [15], while electronic
transport is modified by pseudomagnetic fields induced by
areas of local Gaussian curvature [16–19].

Finally, rippling changes the nature of interaction with sub-
strates. Rigidified membranes conform poorly to the surface
morphology and come into local, dispersed contact with the
substrate, reducing adhesion [20]. Rippling can therefore be
used to customize surface adhesion, adjust the extent of inter-
calation of foreign molecules, and modify various properties
of multilayers [21,22].

*pekka.j.koskinen@jyu.fi

Ripples can have several different origins. They can origi-
nate from thermal fluctuations, defects, adsorbates, and exter-
nal stresses and their characteristics have been investigated by
atomic force and transmission electron microscopies [4,23–
34]. But whatever the origin, the list of applications above
implies that achieving better control over rippling should be
considered highly desirable.

It is therefore exciting that recent experiments have shown
indications of controlled rigidification of graphene by using a
technique called optical forging [35,36]. The technique, which
consists of direct writing with a pulsed laser under inert atmo-
sphere, creates defect structures of linear character [37,38].
The graphene samples in these experiments were initially
supported, but in the resulting three-dimensional structures
the forged graphene is essentially suspended, making the
presence of substrates irrelevant. Modeling and experiments
indicate that the forging process presumably creates line
defects as arrays of adjacent Stone-Wales point defects [38].
Although the mechanical properties of rippled membranes as
such are fairly well known [39], line defects as the source of
rippling is not understood.

In this article, therefore, we pursue to investigate how line
defects create rippling in 2D materials, by using a sequential
multiscale approach. We start from atomistic modeling, using
Stone-Wales line defects in graphene as prototypical, exem-
plary line defects. Results from these atomistic simulations
are then fed into a mesoscale continuum model that enables
investigating rippling at relevant length scales and makes the
results generic to different 2D materials.

II. ELASTIC PARAMETERS FROM
ATOMISTIC SIMULATIONS

To obtain parameters for the continuum model, we first
investigate atomistic models for prototypical line defects. We
consider line defects induced into pristine graphene, exclud-
ing grain boundaries and other topological defects that change
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crystal orientation [40,41]. As discussed above, we focus on
line defects inspired by observations from optically forged
graphene samples that presumably contain linear arrays of
Stone-Wales (SW) defects [38,42]. Although these line de-
fects are neither fully characterized nor fully established, they
enable the construction of concrete and feasible line defect
models. In SW defects one carbon bond rotates 90◦ and forms
two neighboring pentagons and two neighboring heptagons.
The formation energy is large (4.6 eV) [42], but it reduces
by as much as 1.5 eV when a second defect is formed near
an existing one at suitable distance and orientation [38,43].
This attractive and anisotropic interaction makes pulsed laser
irradiation auspicious for growing SW line defects [38]. Since
the atomic arrangement of SW line defects is unknown, we
content ourselves with creating four different model geome-
tries and obtain rough magnitudes for the microscopic strain
fields involved [Fig. 1(a)].

The model geometries are simulated by density-functional
tight-binding (DFTB) theory [44–46], using the HOT-
BIT code [47]. DFTB was chosen because it reproduces
graphene’s elastic properties well compared to density-
functional theory (bending modulus 1.6 eV and Young’s
modulus 1.4 TPa) [48–50] and enables effective explorations
across various system sizes by a few orders of magnitude
faster calculations [51–60].

The line defects were modeled in a periodic, rectangular
simulation cell of width w and length lx [Fig. 1(a)], within
which the SW defects were distributed along the x direction.
Using a 10 × 1 k-point sampling, the geometries were opti-
mized to force tolerance 0.005 eV/Å [61] and zero unit cell
stress. The ultimate result from this procedure was the unit
cell strain ε(w) = �lx/lx for different widths w.

As the central result, the unit cell strains were observed to
scale as

ε(w) = ε0
a

w
, (1)

where a = 2.46 Å is the graphene lattice constant and ε0

is a fit parameter characterizing the line defect in question
[Fig. 1(b)]. Conceptually, the functional form implies that—
from a continuum point of view—the presence of an atom-
istic line defect can be simply and accurately represented
by a stripe of width a with a longitudinal strain ε0 [inset
of Fig. 1(b)]. The strain ε0 for different line defect models
varied in the range ε ≈ −10% to 20%. While ε0 has both
negative and positive values, here we focus on positive values,
meaning line defects with compressive stress. Only compres-
sive stress can be released by rippling deformations when the
defect density is low. Such rippling is demonstrated at atomic
scale by the planar model LD3, in which the compressive
stress is reduced by a slight out-of-plane buckling [Fig. 1(b)].
Conversely, tensile stress can be released by rippling only
at defect densities high enough to fall beyond the scope of
this work. One example of a line defect with tensile stress is
LD4, in which rotated bonds and the compressive stress orient
perpendicular to the line defect [62,63].

To summarize the atomistic simulations, the central results
are the scaling in Eq. (1) and the range of strains ε0 ≈
10–20 %. There would have been many more possibilities
for atomic structures of line defects, but obtaining a rough
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FIG. 1. Mesoscopic elasticity of line defects from atomistic mod-
eling. (a) Four Stone-Wales line defect (LD) models, enclosed in
simulation cells of width w from 1.6 to 4.7 nm. Cell length lx was
optimized for each w to get the strain ε(w) = �lx/lx along the
line defect. The rotated bonds (red bars), surrounded by pentagons
(blue shading) and heptagons (red shading), indicate the direction of
compressive stress. Line defect models are all planar except for LD2,
where the peak-to-peak out-of-plane corrugation is 0.9 Å. (b) Unit
cell strains ε(w) for each line defect model. Strains are fitted to
the functional form ε(w) = ε0(a/w), where ε0 (in brackets) is a
line-defect-dependent fit parameter and a = 2.46 Å is the graphene
lattice constant. Inset: The effect of the line defect on the mesoscale
is equivalent to a strip of width a strained longitudinally by ε0.

range of strains suffices for our purposes. Knowledge of the
range allows us to proceed to mesoscale continuum elasticity
modeling, which can use Eq. (1) to account for the presence
of line defects consistently with respect to the discretization
length.

III. CONTINUUM ELASTICITY SIMULATIONS

A. The elasticity model

The continuum elasticity model we use is similar to the one
introduced in Ref. [64] and used in Ref. [55] in the context of
carbon nanotubes. The sheet is modeled as a hexagonal lattice
of linear springs of equilibrium length d and spring constant
k̃s. The in-plane strain energy of a spring connecting vertices
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A and B is thus

Es = 1
2 k̃s(|�rAB| − d )2, (2)

where |�rAB| is the distance from A to B. The bending energy
related to neighboring vertices A and B is given by

Eb = 1
2 k̃bθ

2
A + 1

2 k̃bθ
2
B, (3)

where k̃b is a parameter controlling the bending rigidity and θX

is the angle between the vector �rAB and the unit normal vector
n̂X at vertex X ∈ {A, B}. The normal vector n̂X is defined as
the area-weighted mean of the normal vectors of the triangles
surrounding the vertex.

In the continuum limit of the model, the energy density for
small uniaxial strains ε is approximately

Fs = 3
√

3

8
k̃sε

2 ≡ 1

2
ksε

2. (4)

Similarly, the energy density for pure bending at bending
radius R is

Fb = 3
√

3

16

k̃b

R2
≡ 1

2

kb

R2
. (5)

The quantities ks and kb in Eqs. (4) and (5) are the uniaxial
strain modulus and the bending modulus of the sheet, to be
compared with literature values.

This model was implemented in PYTHON using a rhombic
cell with periodic boundary conditions. The cell length was
lcell = 120 nm and discretization length 2 nm (unstretched
spring lengths). These values are sufficient for a faithful
continuum description of the type of rippling we focus on.
The strain modulus was ks = 26 eV/Å2, which is comparable
to the strain modulus of graphene, while it represents roughly
also other 2D materials such as hexagonal boron nitride
and transition-metal dichalcogenides [4]. In order to obtain
different ratios for ks/kb and thereby represent materials with
various rigidities [4,50,65,66], values of the bending modulus
kb were chosen as 13, 26, and 52 eV. The bending moduli
are greater than inferred from atomistic ab initio calculations
for flat graphene, but still significantly smaller than values
measured for graphene samples, and are expected to be re-
alistic considering the discretization length [4,6]. Reiterating,
although our atomistic simulations involved only graphene
and certain line defect models, we use generic parameters with
the intention to get a broad view of the effect of line defects
on the rippling on 2D materials; our elasticity model is fully
general.

In the model, the strain fields from line defects were repre-
sented by the stretching of bonds. The magnitude of stretching
was determined by adopting a sequential multiscale strategy,
which implied that parallel strains induced by atomic scale
defects are inversely proportional to the width of the system,
as given by Eq. (1). Then, for a given distribution of line
defects and the concomitant strain field, the minimum energy
geometry was determined by the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS-B) optimization method
with a relative accuracy of 10−7, meaning a total energy
tolerance below 0.1 eV. Also the cell size was optimized
for each strain field. Using the Nelder-Mead simplex method
implemented in the SCIPY optimization library [67], cell size
was optimized to 0.1 Å accuracy.
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FIG. 2. Rippling with an isolated line defect. Plot shows the
maximum height variation of the sheet, �hmax, as a function of ε0 for
three different values of kb. Inset: Optimized geometry of an isolated
line defect (dashed line) with ε0 = 10% and kb = 26 eV.

The effective elastic moduli of the rippled sheets—the
actual measurable quantities in typical experiments—were
calculated by modifying cell sizes and boundary conditions.
The effective strain moduli keff

s were calculated by straining
the cells uniaxially to 4% maximum strain. The effective
bending moduli keff

b were calculated by adapting the boundary
conditions to cylindrical symmetry, in the spirit of revised
periodic boundary conditions [53,58]. The smallest radii for
determining the bending modulus were ten times the cell
length. For these small strains and small curvatures the effec-
tive moduli could then be extracted directly from the energy
density profiles through Eqs. (4) and (5).

To get progressively deepening insight into the effect of
line defects on rippling, we investigated three different line
defect scenarios: (i) an isolated line defect, (ii) a hexagonal
line defect lattice, and (iii) a random network of line defects.
We investigated these scenarios using different values of
compressive strain ε0 and increasing cumulative lengths of the
line defects.

B. Limit of low defect density: Isolated line defects

In the first scenario we had a single, isolated defect span-
ning across the sheet. We chose the width w in Eq. (1) equal
to the lattice constant of 2 nm, representing a transformation
of given ε0 into appropriate mesoscopic strain. An illustrative
sample of the resulting optimized structure reveals rippling
surrounding the line defect (Fig. 2). This type of rippling is
familiar from the everyday behavior of clothes and fabrics. It
also agrees with the reported rippling at the edges of semi-
infinite graphene membranes [68,69]. The ripple amplitude
increases as a function of ε0. The increase is steady, although
slightly nonmonotonous due to finite size effects; the cell
can accommodate only a discrete number of waves along the
line defect. Note that, at least within the given strain range,
the bending modulus has only a small effect on the ripple
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FIG. 3. Rippling with hexagonal and random line defect net-
works. (a) The geometry of a hexagonal line defect network with
cumulative length of line defects lLD = 3lcell (left), together with the
resulting rippling for kb = 26 eV (right). The copies of the simulation
cell on the left are shaded. (b) The geometry of a random line
defect network with lLD = 5lcell (left), together with the resulting
ripples for kb = 26 eV (right). (c) Standard deviation of sheet height
as a function of the cumulative length of line defects for different
scenarios of networks and values of kb.

amplitude. This trivial behavior indicates that the geometry
is dominated by strain energy.

C. Interacting defects: Hexagonal and
random line defect networks

Hexagonal and random line defect network scenarios yield
similar results and we therefore discuss them simultaneously.
Here the main variable is lLD, the cumulative length of all the
line defects, and especially its ratio to the cell length lcell.
In the hexagonal scenario, defects were grown from single
points toward six symmetric directions, increasing the defect
length until the lines became fully connected, with maximum
cumulative length of lLD = 3lcell [Fig. 3(a)]. In the random
line defect scenario the cumulative line defect length could
be larger and was varied from 2.5lcell to 10lcell. Random
line defect networks were investigated with 10, 20, and 30
separate line defects with both uniform and linear length

distributions, in order to mimic the type of networks proposed
in Ref. [38] [Fig. 3(b)]. It turned out that neither the number
of line defects nor the type of their length distribution made
noticeable difference in the trends; below we show results for
all defect numbers and distributions.

As in the previous section, both hexagonal and random
scenarios are simulated for three values of bending moduli.
We used ε0 = 10% with kb = 13 and 26 eV and ε0 = 20%
with kb = 52 eV. Larger ε0 for the largest kb was necessary
because a stiff sheet made it difficult to discern reliable trends
in those situations when a small ε0 was supplemented by
small lLD.

As a clear trend for both scenarios, the rippling intensifies
steadily upon increasing cumulative length of line defects.
The intensifying is evident in the increase of the standard
deviation in the height distribution [Fig. 3(c)]. Standard de-
viation is a robust quantity easy to obtain from the model
and determinable also from experiments, unlike peak-to-peak
amplitudes that are subject to wild fluctuations. Especially the
hexagonal scenario shows peaked corners, while other areas
remain only modestly rippled [Fig. 3(a)]. For both scenar-
ios the standard height deviation increases roughly linearly
with increasing lLD, although for the hexagonal scenario it
is noticeably smaller, visible around lLD/lcell ≈ 3 where the
data from the two scenarios overlap. This difference arises
presumably because in the hexagonal scenario the line defects
with given lLD have maximal spatial separation and are conse-
quently less prone to spread ripples effectively throughout the
sheet.

When lLD increases, also the total surface area of the sheet
expands. This area is sometimes referred to as the hidden area,
as it does not necessarily result it actual lateral expansion [10].
Indeed, as a consequence of the very low bending stiffness
compared to strain modulus, the sheet prefers rippling over
lateral expansion. A similar phenomenology is responsible for
the negative thermal expansion coefficient of graphene [70].
However, with the given material parameters the changes in
lateral cell dimensions were small enough to render the nature
of lateral behavior inconclusive.

Finally, we proceed to the main results, which discuss how
line defect networks—through rippling—affect 2D materials’
effective elastic properties.

Among the most notable results is the highly nonlinear
elastic behavior of strained sheets. This nonlinearity can be
seen as a strongly strain-dependent effective strain modulus
keff

s [Fig. 4(a)] [10]. The modulus at strains around 0.5%
is tens of percent smaller than at strains around 4%. This
trend can be understood in geometric terms: small strains
involve the flattening of the initial ripples and concerns mostly
(cheap) bending energy, while large strains involve the further
stretching of the already flattened sheet and concern mostly
(expensive) stretching energy. Thus, at the limit of large strain,
the effective strain modulus necessarily approaches ks. This
geometrical picture is consistent with the decrease of keff

s /ks

upon increasing lLD [compare Figs. 3(c) and 4(a)].
In contrast to the nonlinear behavior of the effective strain

modulus, the effective bending modulus turned out to be
a well-defined quantity, independent of the applied bend-
ing radius. The effective bending modulus shows a clear
increasing trend upon increasing lLD [Fig. 4(b)]. This trend
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FIG. 4. Effective elastic moduli of elastic sheets with line defect
networks. (a) Relative changes in effective strain moduli (keff

s /ks) of
rippled sheets as a function of the cumulative line defect length lLD

for random line defect networks, demonstrating nonlinear elasticity.
The effect of kb on keff

s was small, whereby the values were averaged
over different kb. (b) Relative changes in effective bending moduli
(keff

b /kb) of rippled sheets as a function of the cumulative line
defect length, for different kb and scenarios of line defect networks.
(c) The relative change in the effective bending modulus (keff

b /kb)
as a function of rippling intensity measured by the standard height
deviation. The dashed curves are given by Eq. (6).

is much expected, in view of the well-known stiffening ef-
fect of ripplings in thin membranes [39]. Interestingly, the
slope between keff

b /kb and lLD/lcell is roughly 1, although
for larger kb the stiffening is more pronounced. Moreover,
around lLD/lcell ≈ 3, the effective bending modulus is larger

with random line defects than with hexagonal line defects, in
line with a corroborating trend in standard height deviation
[Fig. 3(c)].

The origin for the trend in the effective bending modulus is
illustrated particularly well when keff

b is plotted as a function
of the standard deviation �hstd of the sheet height [Fig. 4(c)].
The relation between keff

b /kb and �hstd fits well with the
quadratic expression

keff
b

kb
= 1 + 1

2

ks

kb
�h2

std. (6)

The expression can be justified by a simple dimensional
analysis and the limit keff

b → kb as �hstd → 0; the factor 1
2

is a (convenient) fit parameter. This expression is consistent
with the small ripple amplitude result from Ref. [39], but
inconsistent with the asymptotic scaling for large ripples
predicted in the same paper. We therefore expect relation (6)
to become invalid at larger scales. Nevertheless, the spatial
character of rippling caused by line defects, even if randomly
displaced, may differ from the spatial character underlying
random rippling assumed in Ref. [39]. Relation (6), the spatial
character of rippling, and the nature of rigidification thus
deserve further investigation.

IV. SUMMARY AND CONCLUSIONS

In this work we used sequential multiscale modeling
to investigate the influence of line defects on the meso-
scopic elastic properties of two-dimensional materials. In-
spired by recent experiments, we used arrays of Stone-Wales
defects as the prototypical models of nontopological, atomic-
scale line defects [38]. Density-functional tight-binding cal-
culations were used to obtain reasonable parameters for
mesoscale continuum modeling by using the scaling law
of Eq. (1). The mesoscale modeling was then framed at
a couple of orders of magnitude larger length scales and
with parameters that reflected our attempt to obtain generic
results for the elastic properties representing various 2D
materials.

The modeling showed that sheets ripple predictably as
the number, the intrinsic strain ε0, and the cumulative length
of line defects, lLD, increase (Figs. 2 and 3). The increased
rippling consequently reduces the effective elastic modulus
and substantially increases the effective bending modulus of
the sheet (Fig. 4), in line with findings in earlier reports. These
results are well in line with the experimentally observed dis-
parity between atomic and mesoscale elastic properties of 2D
materials [7]. We also provided a useful relationship [Eq. (6)]
between the rigidification of the sheet and the magnitude of
its ripples due to the presence of line defects.

In conclusion, the multiscale model has turned out useful
in bridging the gap between the atomic and mesoscale elastic
properties of 2D materials. While the atomic models were
specific to graphene, the results were made generic for various
atomically thin materials with comparable parameters. Should
experiments discover mechanisms to create line defects in
materials other than graphene, the multiscale formalism could
readily be used to explore their quantitative influence on
mesoscale mechanical properties. However, we hope that
already the results above will give insight into the influence
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of rippling by line defects and thereby further guide exper-
imental attempts to modify the mechanical properties of 2D
materials.
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