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Assessment of nonnegative 
matrix factorization algorithms 
for electroencephalography spectral analysis
Guoqiang Hu1† , Tianyi Zhou1,2†, Siwen Luo3, Reza Mahini1, Jing Xu4*, Yi Chang4* and Fengyu Cong1,5,6,7*

Background
Nonnegative matrix factorization (NMF) is a low-rank approximation method where 
both the data and the estimated low-rank factors are constrained to be nonnegative [1]. 
The method has been widely applied for data analysis and signal processing [2–4]. NMF 
was first introduced as positive matrix factorization (PMF) by Paatero and Tapper [5] 
and it was popularized from the application of face recognition by Lee and Seung [6]. 
Since it was proposed in the 1990s, many adaptive algorithms have been developed [2, 7]. 
Among numerous algorithms of NMF, multiplicative updating rule-based algorithm [8] 
is the most popular one. Besides, more efficient algorithms based on hierarchical alter-
nating least squares (HALS) method and low-rank approximation were also proposed. 

Abstract 

Background: Nonnegative matrix factorization (NMF) has been successfully used for 
electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, 
many adaptive algorithms have been developed. However, the performance of their 
use in EEG data analysis has not been fully compared. Here, we provide a comparison 
of four NMF algorithms in terms of accuracy of estimation, stability (repeatability of the 
results) and time complexity of algorithms with simulated data. In the practical applica-
tion of NMF algorithms, stability plays an important role, which was an emphasis in 
the comparison. A Hierarchical clustering algorithm was implemented to evaluate the 
stability of NMF algorithms.

Results: In simulation-based comprehensive analysis of fit, stability, accuracy of 
estimation and time complexity, hierarchical alternating least squares (HALS) low-rank 
NMF algorithm (lraNMF_HALS) outperformed the other three NMF algorithms. In the 
application of lraNMF_HALS for real resting-state EEG data analysis, stable and inter-
pretable features were extracted.

Conclusion: Based on the results of assessment, our recommendation is to use 
lraNMF_HALS, providing the most accurate and robust estimation.
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However, the performance of NMF in the implementation of EEG analysis has not been 
fully compared.

Electroencephalography (EEG) spectral studies deepen the understanding of the neu-
rophysiological processes. It has been shown that the theta frequency band (3–8  Hz) 
reflects the general motor activity and the delta activity (0.5–3 Hz) has relationship with 
error-related processing [9, 10]. In working memory tasks, the global field theta synchro-
nization significantly correlated with the blood oxygen level dependent (BOLD) signal 
[11]. It is also shown that gamma power (60–80 Hz) of EEG positively correlated with 
BOLD fluctuation and alpha (8–13 Hz) and beta (14–30 Hz) power negatively correlated 
with BOLD fluctuation [12].

Insomnia is a clinically common and frequent disease. The patient complains of poor 
sleep and accompanied by impaired day time functions, such as fatigue, lack of energy, 
cognitive decline, and emotional disorders [13, 14]. Currently, researchers found that the 
factors that induce insomnia mainly include age, personality, anxious personality, family 
and personal history of insomnia, genetic factors, etc. [15–17]. The main pathophysi-
ological mechanism of patients with primary insomnia is excessive awakening [18–20]. 
In order to confirm the theory of excessive awakening, several studies were conducted 
on autonomic nerve activity, neuroendocrine, neuroimmunology, neuroelectrophysiol-
ogy, and neuroimaging in patients with insomnia [21–23]. The spectral EEG was used to 
analyze the sleep electroencephalogram of patients with primary insomnia [24, 25], and 
it was found that the high-frequency waves of patients with insomnia were more active 
than normal people, including the period pre-sleep [26, 27], the wake–sleep transition 
period [28], and the sleep period [27, 29, 30]. Studies have shown that high-frequency 
brain waves are related to sensory processing, memory formation, and consciousness 
perception, and the active response of high-frequency brain waves increases cortical 
arousal levels [31]. Therefore, this study conducted a spectral analysis of the EEG of 
insomnia patients at rest to further explore the pathophysiological mechanism of pri-
mary insomnia.

NMF has been successfully used in the analysis of EEG spectral analysis. The compo-
nents resulting from the NMF retain the spectral features hence they are interpretable 
from a physical or physiological point of view. For example, EEG large-scale network 
was constructed with NMF [32]. NMF was also used to estimate time and frequency 
components to predict epileptic seizures [33]. Both for static and dynamic functional 
connectivity, interpretable features also could be extracted with NMF [34, 35]. In the 
field of brain computer interface (BCI), NMF can obtain components with distinguish-
ing features [36–38]. Several studies used features extracted with NMF to improve the 
discrimination of different participants [39–42]. Gruve et al. used NMF to extract the 
weight of the EEG channels to improve the accuracy of motor imagery detection [43] 
and classification of eye states [44]. With the successful application of NMF algorithm 
on EEG data, more and more NMF algorithms are constantly emerging [45–48]. In these 
studies, researchers used different NMF algorithms to analyze EEG data. However, the 
performance of NMF algorithms has not been fully compared.

Compared with independent component analysis (ICA) [49] and principal compo-
nent analysis (PCA), NMF identified more meaningful and explainable components 
in practical application. Compared with PCA, the results of NMF have explicable 
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physical meaning and they are consistent with the brain intuitive perception [38]. 
Compared with ICA, some interesting components with higher distinguishing ratio 
were extracted by NMF [50].

The importance of stability of algorithms is self-evident for scalp EEG data analysis. 
Stability is a common problem of adaptive algorithms. Same to other blind sources 
separation (BSS) methods such as ICA, NMF also faces the same issue. Theoretically, 
just like the stability analysis of ICA [51, 52], the uniqueness of NMF could be verified 
by geometric interpretation [2, 49]. However, in the practical applications, algorithms 
may converge to local optima, which has been theoretically analysis with Lyapunov’s 
first and second methods [53]. Thus, the stability of algorithms would be the most 
important aspect in the assessment of NMF algorithms.

In this study, the performance of four NMF algorithms was compared in terms of 
accuracy of estimation, stability and time complexity of algorithms with simulated 
data. The algorithm with excellent performance in simulation data was applied to real 
resting-state EEG data analysis. Based on stability analysis method, stable and inter-
pretable features were extracted.

Simulation and results
Given a signal H ∈ R

10 × 1000
+  as component matrices shown in Fig.  1, we gener-

ated a mix matrix W ∈ R
10×64
+  . Then we constructed V ∗ = WTH ∈ R

64×1000
+  and 

V = V ∗ + E , where E denoted the independent noise and V  denoted 64-channel 
simulated time-series EEG data. Signal noise ratio (SNR) was used to quantitative 
describe the quality of data. In this simulation, compared the performance of four 
NMF algorithms (NMF_MU, HALS, lraNMF_MU, lraNMF_HALS) were compared. 
The number of extracted components r was chosen as 10. The same algorithm was 
run 50 times. 500 components in total were clustered. All four algorithms were run in 
Matlab under the Window 10 system (Intel Xeon CPU 3.5 GHz and 32 GB of Random 
Access Memory (RAM)).

Fig. 1 Waveforms of 10 time-series for H in the NMF model
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Simulated data with SNR = 20 dB

Simulated data with SNR of 20  dB was used for demonstrating the clustering related 
results. The 10 estimated sources and the clustering results of all 500 components esti-
mated with HALS and NMF_MU algorithms are shown in Fig. 2. Ideally, the number 
of components in each cluster equals to the number of times that NMF was run (50 
at here), under the condition that the number of clusters is same with the number of 
extracted components (10 at here). Obviously, HALS outperformed NMF_MU from the 
view of the stability of extracted components. In Fig. 2, the denser the cluster, the more 
stable of the components, extracted by an NMF algorithm, are. The purpose of the NMF 
algorithm is to accurately estimate the potential components in the data. Hence, it is 
necessary to check the accuracy of estimated sources. Here, readers are guided to have 
an intuitive feeling of the accuracy of estimation. The quantitative comparison in terms 
of estimation accuracy would be shown in the next section. The centroid of each clus-
ter was selected as the component extracted by NMF as ICASSO [54] applied. Figure 3 
shows the waveforms of 10 extracted components by two NMF algorithms. By visual 
inspection, HALS outperformed NMF_MU for estimating the sources.

Simulated data with multiple SNR
In order to test the performance of different NMF algorithms under different SNR, 

Fig. 4 illustrates the results with SNR ranging from z− 10 dB to 20 dB with the step of 

Fig. 2 Clustering 500 extracted components from 50 runs of NMF with 10 components in each run: a inner 
similarity of each cluster for HALS; b inner similarity of each cluster for NMF_MU; c stability index ( Iq ) and the 
number of components in each cluster for HALS; d stability index ( Iq ) and the number of components in each 
cluster for NMF_MU
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5  dB. Figure  4a shows that fits of four different NMF algorithms were very similar to 
one another. Figure 4b reveals the estimation accuracy of four algorithms. The estima-
tion accuracy is measured with average correlation coefficient (Pearson correlation was 
used in this study) cross-ground truth and estimated component. The four algorithms 
yielded different correlation coefficients, which mean the accuracy of the estimation of 
four algorithms is different. The situation is a little bit different across SNR. When SNR 
is lower than − 5 dB, the estimation accuracy is mainly dominated with signal quality, 
the accuracy of all four algorithms is very low. As the SNR increases, the accuracy of the 
estimated components also increases. When SNR large than 0 dB, the performance of 

Fig. 3 Illustration of 10 extracted components by two NMF algorithms. a Components extracted by HALS; b 
components extracted by NMF_MU

Fig. 4 Results of four NMF algorithms with different SNR: a fit of NMF model; b correlation coefficient 
between the estimated source and the real source; c stability of an extracted component by NMF using 
clustering
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four algorithm begins to differ in terms of estimation accuracy. By comparison, it can be 
found that the estimated component of lraNMF_HALS is the most accurate, followed 
by HALS, followed by lraNMF_MU, and MU is the worst. Figure 4c presents the mean 
over 10 Iq of 10 components extracted by algorithm for each SNR and the Iq indicates 
the stability of the components over multiple runs of NMF. The stability of the extracted 
components of four NMF algorithms was very different. Figure 4d illustrates the compu-
tation time of four algorithms for the same data. The difference in computational time 
mainly is decided by the difference of iteration between algorithms and time complexity 
of the algorithms, which would be introduced in “Methods” section. The result of com-
putation time shows that lraNMF_HALS needs less time to converge. Evidently, bigger 
correlation coefficient indicates better estimation of sources in Fig.  4b and the higher 
Iq implies better stability of extracted components in Fig. 4c. Based on comprehensive 
analysis of fit, stability, accuracy of estimation and time complexity, lraNMF_HALS out-
performed the other three NMF algorithms. The algorithm would be used in the applica-
tion of real EEG data analysis.

Real EEG results
In this section, the application of NMF algorithm to EEG data analysis was intro-
duced. The stability-validating method was extended used not only for algorithm sta-
bility evaluation, but also used for determination of number of extracted components. 
The flowchart of data processing is illustrated in Fig. 5. After EEG data were collected, 
standard EEG preprocessing procedure was applied. It includes data filtering and artifi-
cial removal. Then the EEG data were transformed into frequency domain, which would 
be fed into NMF algorithm. Performance of several NMF algorithms was then evalu-
ated in terms of algorithm stability and time complexity. Next, the model order of NMF 
algorithm was selected in terms of reproducibility of estimated components. Based on 
the above rigorous steps, repeatable and interpretable components were finally obtained. 
The specific process of each step will be described in the following content.

Fig. 5 Flowchart of application of NMF algorithm to EEG data analysis
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Data description

To evaluate the performance of four NMF algorithms, we tested it on EEG dataset which 
was recorded at The First Affiliated Hospital of Dalian Medical University. 16 primary 
insomnia patients and 17 normal sleepers were included in the study. Gender, age and 
education were matched between the two groups. All patients fit criteria for primary 
insomnia in DSM-IV. Patients and normal sleepers are required to complete the Pitts-
burgh Sleep Quality Index Scale (PSQI), Insomnia Severity Scale (ISI), Hyper-arousal 
Scale (HAS), Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale (HRSD-
17) for clinical assessment. Continuous EEG recordings were digitally obtained using a 
62-channel Neuroscan SynAmps2 brain electrical physiological instrument, EEG were 
recorded in a resting awake condition with the eyes closed for 20 min.

Data preprocessing

The EEG data were sampled at 1000 Hz for recording. Subsequently, the data were resa-
mpled at 500 Hz. DC drifts were removed using 0.5 Hz high-pass filter and 50 Hz notch 
filters were applied to minimize line noise artifacts. PCA was used to determine linear 
components associated with eye blinks and saccades. Epochs with strong eye movement 
or other movement artifacts were manually removed by inspection.

For all further analyses, EEG signals were processed with the method of discrete 
Fourier transform (DFT) which transform the time series into frequency domain. 
We cut 4–40  Hz of our interest frequency band. Thus, the sizes of preprocessed data 
are 73 (frequency bins) by 62 (channels) by 33 (2 groups with 16 primary insomnia 
patients and 17 health control). Then we transform the three-dimensional matrix from 
the EEG data of each subject into the matrix (channels × frequency bins by samples, 
62× 2409

(

73 by 33
)

 ) and used it as input to the space-by-frequency decomposition. 
Based on these processing, the elements in the matrix that would be fed into NMF are 
nonnegative.

Determination of the model order

Here, lraNMF_HALS was run 50 times with random initialization with the model order 
(number of extracted components) ranging from 2 to 30. Coefficient matrix was used to 
evaluate the stability of algorithms.

Figure  6a shows the stability (denoted by Iq ) of lraNMF_HALS decomposition for 
each component. Indeed, each Iq in Fig. 6a is the averaged Iq for different components. It 
could be found that when the number of extracted components equals 9, the algorithm 
will be the most stable. As mentioned earlier, except the stability index of NMF decom-
position, it is also necessary to check Fig. 6b, c and ensure whether the clustering result 
is good enough or not.

Different algorithms took different time finishing 50 times runs. NMF_MU took 
1157.007s. HALS took 1173.178s. lraNMF_MU took 106.010s. lraNMF_HALS took 
72.315s. Obviously, lraNMF_HALS took shortest time to complete the mission of 
decomposition. The stability indexes of four algorithms are also different. The stability 
index of NMF_MU is 0.760. The stability index of HALS is 0.717. The stability index of 
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lraNMF_MU is 0.622. The stability index of lraNMF_HALS is 0.833. Obviously, as the 
result of simulation data, lraNMF_HALS is the most stable algorithm for the data. So, in 
the following subsection only the results of lraNMF_HALS would be introduced.

Feature selection

After a matrix is decomposed by lraNMF_HALS with 9 components, the features need 
to be further filtrated. Usually, the criteria of feature selection are determined by the 
purpose of further feature analysis. As we know that the collected EEG data consist 
of brain activities of no interest, brain activities of interest, and interference as well as 
noise. Therefore, even though artifacts are removed in the data preprocessing phase, the 
features of interest and features of no interest may also be extracted by NMF. Therefore, 
feature selection step is necessary to choose the features of brain activities of interest for 
further analysis [55].

Fig. 6 a Stability of lraNMF_HALS decomposition for each component (the pink mark denoted by the 
averaged Iq and the red mark denoted by standard deviation of Iq ); b clustering 450 extracted components 
from 50 runs of NMF with 9 components in each run, stability index ( Iq ) and the number of components in 
each cluster for lraNMF_HALS; c inner similarity of each cluster for lraNMF_HALS
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The spectrum-domain features and corresponding spatial distribution are illustrated 
in Fig. 7. In Fig. 7a, the power spectrum values were log-transformed. Group difference 
was examined between insomnia and normal sleepers in absolute spectrum of 4–40 Hz 
for the component of interest. Insomnia group is noted by red line and normal sleeper 
group is noted by black line.

Furthermore, the nine features were statistic by two-way t test. We found that the fea-
ture#1 and #8 revealed a significant main effect in theta band (P < 0.05). From Fig. 7b, 
the #1 and #8 of brain map, the result indicated that the right occipital region has a main 
effect of group in theta band. The feature #4 also revealed that a significant main effect 
in low gamma band (30–40 Hz), P < 0.05. On the basis of the #4 of the brain maps in 
Fig. 7b, there was significant difference in low gamma band at frontal lobe. The feature 

Fig. 7 a Average of selected spectrum-domain extracted features; b their corresponding spatial components 
extracted by lraNMF_HALS
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#5 also revealed that a significant main effect in beta band, P < 0.05. In accordance with 
the #5 in the brain map in Fig. 7a, there was the significant difference in beta band at 
parietal lobe. The significant differences are shown in Fig. 8. For the other five features, 
no main effect of group was observed.

Discussion
In this study, we provide a comparison of four NMF algorithms in terms of accuracy of 
estimation, stability (repeatability of the results) and time complexity of algorithms with 
simulated data. In the practical application of NMF algorithms, stability plays an impor-
tant role, which was an emphasis in the comparison. A hierarchical clustering algorithm 
was implemented to evaluate the stability of NMF algorithms. In simulation, based on 
comprehensive analysis of fit, stability, accuracy of estimation and time complexity, hier-
archical alternating least squares (HALS) low-rank NMF algorithm (lraNMF_HALS) 
outperformed the other three NMF algorithms. In the application of lraNMF_HALS for 
real resting-state EEG data analysis, stable and interpretable features were extracted.

Based on our assessment, lraNMF_HALS is the most stable algorithm. In order to 
guarantee the reliability of estimated components, the model order is selected in terms 
of algorithm stability. With these strategies stable components were reconstructed. 
These results of lraNMF_HALS for scalp resting-state EEG data analysis are consistent 
with the previous findings and also provide more reasonable results in support of patho-
logical mechanisms of insomnia. Corsi-Cabrera et  al. found that patients with insom-
nia exhibited significantly higher gamma power at frontoparietal [28]. This is consistent 
with the result of Comp#4. Szelenberger et al. pointed out that theta band in insomniacs 

Fig. 8 Four components that show significant main effects between insomnia and control. *P < 0.05
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is lower than normal subjects, but beta band is higher than normal subjects [26]. This is 
in accordance with the result of the Comp#1 and Comp#5. The consistent results show 
that the proposed method is effective for spectrum analysis of EEG. In addition, we also 
found some results that were not found before, which provide support of pathological 
mechanisms of insomnia. The Comp#4 and Comp#5 with higher power can verify that 
the wakefulness of the insomniacs is higher than that of the normal subjects, which may 
lead to their insomnia. Based on the evaluation of algorithm stability, the repeatability of 
the results is guaranteed. This finding provides theoretical support for clinical treatment 
of insomnia.

When adaptive algorithm is applied in real-world application, more attention needs to 
be paid to its stability. Since initialization of adaptive algorithm may be different in dif-
ferent runs, it may converge to local optimum, which makes results different for different 
runs. It is vital for scientific research. The stability of algorithms could be evaluated with 
clustering analysis of components extracted from multiple runs of the same algorithm. 
The study of algorithm stability can not only quantitatively describe the reproducibility 
of the components, but also provide an effective criterion for the comparison of different 
algorithms and the selection of model order.

Conclusion
In this study, we proposed a method to compare different NMF algorithms so as to 
extract stable components. Specifically, we provide a comparison of four NMF algo-
rithms in terms of accuracy of estimation, stability of algorithms and time complexity 
with simulated data. The performance of NMF algorithms also evaluated scalp resting-
state EEG data analysis from aspects of stability and time complexity. In the application 
of lraNMF_HALS for real resting-state EEG data analysis, stable and interpretable fea-
tures were extracted. From both simulation and real-world application, lraNMF_HALS 
outperformed the other three NMF algorithms in terms of algorithm stability and com-
putational time. In simulation, the comparison is illustrated in Fig. 4. From simulation, 
we also find that lraNMF_HALS can estimate the most accurate potential components. 
In real-world application, in terms of computational time, lrNMF_HALS (72.315s) is 
faster than NMF_MU (1157.007s), HALS (1173.178s) and lraNMF_MU (106.010s) and 
in terms of algorithms stability, lrNMF_HALS (0.833) is more stable than NMF_MU 
(0.760), HALS (0.717) and lraNMF_MU (0.622). Based on the results of assessment, our 
recommendation is to use lraNMF_HALS, providing the most accurate and robust esti-
mation as well as offering an intuitive interpretation. In terms of reproducibility of the 
final estimated components, this work provides a useful pipeline that applied NMF to 
spectrum analysis of EEG data. The pipeline includes selection of algorithm, selection 
of model order and stability analysis of estimated components. Based on the novel pipe-
line, components related to the pathology of insomnia were extracted and provide new 
ideas for clinical diagnosis and treatment of insomnia. For further study, the method is 
worthy of being applied on some other EEG spectrum data and identify more reasonable 
features. When an investigator prepares to use NMF for subsequent analysis, NMF per-
formance needs to be considered in the experimental design to obtain stable and reliable 
results. Through this research, we found that different algorithms have a great impact on 
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the decomposition results. In the following research, it is necessary to propose an NMF 
algorithm specifically applied to EEG spectrum analysis.

Methods
NMF algorithms

For a given nonnegative data matrix V ∈ R
m×n and the number of extracted components 

r < min[m, n] , NMF attempts to find nonnegative matrices W ∈ R
m×r and H ∈ R

r×n 
which minimize the cost function as follows:

where H and W  are coefficient matrix and component matrix, respectively. Their prod-
uct is a rank-r approximate estimation of V  . In practical applications, the selection of r is 
critical and has great influence on the results. In this study, the model order, r, would be 
determined by checking the stability of the model with different values:

To optimize Eq. (1), Lee and Seung suggested a very popular multiplicative update rule 
with computational complexity of O(mnr) [6]. The iterative formulas are as follows:

In 1998, Rasmus Bro proposed another set of updated formula [56] which is a column-
wise method. And then it was extended with HALS algorithm and it can be computed in 
the complexity of O(mn) [2], where the columns of H and W  are updated sequentially:

where Vi = V −
∑

j �=i wjh
T
j  . wj and hj are the jth column of W  and H , respectively. Only 

one column of W  and H are updated in each iteration of HALS algorithm. Since r col-
umns included in W  and H , essentially, NMF_MU and HALS have equivalent space 
complexity and time complexity. However, in practical application, HALS is usually 
faster than NMF_MU [57].

Although HALS is faster than NMF_MU, the two algorithms still have a lot of room 
for improvement in computing speed. The common bottleneck of the computing speed 
is the size of matrix V  . In the process of updating W  and H , the large original data V  will 
be used for many times. This issue causes not only slow convergence, but also great con-
suming of computer memory. To address the issue is to replace the large matrix with a 

(1)fW ,H =
1

2
V −WH2

F ,

(2)Vm×n ≈ Wm×rHr×n,W ≥ 0,H ≥ 0.

(3)H ← H . ∗
VTW

HWTW
,

(4)W ← W . ∗
VH

WHTH
.

(5)hi ←
1

wT
i wi

[

VT
i wi

]

,

(6)wi ←
1

hTi hi
[Vihi],
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smaller one. Then the efficiency of HALS and NMF_MU could be improved. Motivated 
by the intuition, low-rank approximation (LRA) based NMF was proposed with compu-
tational complexity of O

(

nr2
)

 [57]:

where W ∈ R
m×r
+  , H ∈ R

r×n
+  , 

⌢

W ∈ R
m×l
+  , 

⌢

H ∈ R
N × l
+  , l = pr ≪ m , and p is a small 

positive constant. In order to solve Eq.  (7), the cost function 
min

⌢

W ,
⌢

H , W , H
� V −

⌢

W
⌢

H
T

�2F was used, where 
⌢

W  and ⌢

H
T are with the low-rank l , 

l ≪ m . Then, optimize �
⌢

W
⌢

H
T

− W HT �2F with fixed 
⌢

W  and ⌢
H

T .

The prototypical low-rank NMF algorithms originated by Guoxu Zhou and Andrzej 
Cichocki [57] are provided as follows:

This is lraNMF_MU that low-rank approximation-based multiplicative update (NMF_
MU). The initialization of 

⌢

W  and ⌢

H come from PCA singular value decomposition 
(tSVD). In the first step, suppose that the optimal 

⌢

W  and ⌢

H
T , i.e., V ≈

⌢

W
⌢

H
T

 . Then 

above function would be used to optimize the cost function min �
⌢

W
⌢

H
T

−WHT �2F . At 
first sight, there is no great difference between Eqs. (3) and (8). But note that the dimen-
sions of 

⌢

W  and ⌢

H
T are much smaller than that of V  . Under the present circum-

stances,l = pr ≪ m , lraNMF_MU has much lower space and time complexity.
Similar to the HALS algorithm, let Vi =

⌢

W
⌢

H
T

−
∑

j �=i wjh
T
j  and Eqs. (5, 6) become:

where W1 ∈ R
m×(r−1) and H1 ∈ R

n×r−1 are the submatrices of W  and H by removing 
their ith column. The low-rank approximation-based HALS is named as lraNMF_HALS, 
which could be computed in the complexity of O(nr) [57].

We also provide a summary of the comparison of different NMF algorithms that have 
been studied by the various published methods, as listed in Table 1, which may serve as a 
reference of method selection according to the available data types of the analyzers.

(7)

min
⌢

W ,
⌢

H , W , H
F

(

⌢

W ,
⌢

H , W , H

)

=
min

⌢

W ,
⌢

H , W , H

(

� V −
⌢

W
⌢

H

T

�2F + �
⌢

W
⌢

H

T

− WH
T �2F

)

,

(8)
H ← H . ∗

[

⌢

H

(

⌢

W
T

W

)]

H
(

WTW
) ,

(9)
W ← W . ∗

[

⌢

W

(

⌢

H
T

H

)]

W
(

HTH
) .

(10)hi ←
1

wT
i wi

[

⌢

H

(

⌢

W
T

wi

)

− H1

(

W1
T
wi

)

]

,

(11)wi ←
1

hTi hi

[

⌢

W

(

⌢

H
T

hi

)

− W1

(

H1
T
hi

)

]

,
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Fitness of the algorithm

The fit is defined as follows:

where 
⌢

V  is a reconstructed version of V by Eq. (2). Apparently, fit (V, 
⌢

V ) = 1 if and only if 
⌢

V = V  [57]. In the previous study, fit was used as the performance index of decomposi-
tion [2]. However, we find that even when the fits of two NMF decomposition are simi-
lar, the extracted components could be different. Hence the fit is not enough to evaluate 
the stability of the decomposition.

Hierarchical clustering

Hierarchical clustering is one of most popular clustering methods. In contrast to parti-
tioned clustering, which directly decomposes the features into a set of disjoint clusters, 
the hierarchical clustering method is the process for transforming a proximity matrix 
into a nested partition, which can be graphically represented by a tree called dendro-
gram. Cutting the tree at different selected heights will provide a partitioning cluster at 
selected precision. So the precision is the one that is “tuned” by the cut [58]. This algo-
rithm was applied to validate the stability of ICA components and it was named ICASSO 
[59].

Hierarchical clustering algorithms have two different types: agglomerative clustering 
(bottom-up) and divisive clustering (top-down). In this study, agglomerative clustering 
was used, and the dendrogram is formed from bottom to up. For this clustering method, 
at the first iteration, the number of clusters is same as the number of objects N. At the 
second iteration, the most similarity cluster will merge as a new cluster, so the number of 
clusters will become N-1. At the third iteration, the number of clusters will become N-2. 

(12)fit

(

V ,
⌢

V

)

= 1 −
� V −

⌢

VF �

� VF �
,

Table 1 Comparison of four NMF algorithms

Algorithms Cost function Iteration Advantages

NMF_MU fW ,H = 1
2
� V −WH �2

F H ← H. ∗ V
T
W

HWTW

W ← W . ∗ VH

WHT H

The original realization of 
NMF

HALS hi ←
1

w
T
i
wi

[

V
T
i
wi

]

wi ←
1

h
T
i
hi

[

V
i
hi

]

Iteration column by 
column, faster than 
NMF_MU in practical 
application

lraNMF_MU
F

(

⌢

W ,
⌢

H, W , H

)

= � V −
⌢

W
⌢

H

T

�2
F

+ �
⌢

W
⌢

H

T

− WH
T �2

F

H ← H. ∗

[

⌢
H

(

⌢
W

T

W

)]

H(WTW)

W ← W . ∗

[

⌢
W

(

⌢
H

T

H

)]

W(HT H)

Dimension reduction at 
the start of the algorithm. 
Fix the problem of the 
size of matrix to be 
decomposed. Faster than 
NMF_MU in theory and 
in practical application

lraNMF_HALS
hi ←

1

w
T
i
wi

[

⌢

H

(

⌢

W

T

wi

)

− Hi

(

Wi

T
wi

)

]

wi ←
1

h
T
i
hi

[

⌢

W

(

⌢

H

T

hi

)

− Wi

(

Hi

T
hi

)

]

Dimension reduction at 
the start of the algorithm. 
Faster than HALS in 
theory and practical 
application
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As the clustering goes forward, the number of clusters will become 1. By this way, the 
relation dendrogram of different objects could be established. In the stability algorithm, 
the cluster result is the dendrogram at the level that is the number of extracted features 
of NMF.

A conservative cluster quality index Iq in the previous study [59] was defined to reveal 
the compactness and isolation of a cluster. It is computed as the difference between the 
average intra-cluster similarities and average extra-cluster similarities:

where Cm means the features of mth cluster. σij is the similarity of the ith and jth fea-
tures. C−m = C − Cm represent the features that not belong to this cluster. Ideally, the 
same component from different runs will be clustered in the same cluster. The different 
components are in different clusters. The number of clusters equals to the number of 
extracted components. The number of features in each cluster is the number of runs of 
the algorithm. First term 1

|Cm|
2

∑

i,j∈Cm
σij is the average similarity of mth cluster (average 

intra-cluster similarities). This part is used to describe the similarity of the components 
in the same cluster. Second term 1

|Cm�C−m|

∑

i ∈ Cm

∑

j ∈ C−m

σij is the average similarity 

between the features that belong to mth cluster and not belong to mth cluster (average 
extra-cluster similarities). This part is used to describe the dissimilarity of the compo-
nents in different clusters. The range of Iq is from 0 to 1. The value closer to 1, the higher 
stability it is.

Evaluation of stability of NMF algorithms

Given a non-negative data matrix V ∈ R
m×n
+  , we used an NMF algorithm to decompose 

the data. In order to evaluate the stability and reliability of components decomposed by 
NMF, three steps are used, which is introduced in our previous study [60]. Three steps 
are as follows:

Step 1: An NMF algorithm was run K times. Each time with random initialization.
Step 2: All extracted components were clustered. According to their mutual similari-

ties, agglomerative clustering was used.
Step 3: The centroid of each cluster was selected as the component extracted by NMF. 

The cluster quality index Iq works as stability index for each component.
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