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1. Introduction

Microlocal analysis originated in the 1950s, and by now it is a substantial mathematical theory
with many different facets and applications. One might view microlocal analysis as

• a kind of “variable coefficient Fourier analysis” for solving variable coefficient PDEs ; or
• as a theory of pseudodifferential operators (ΨDOs) and Fourier integral operators (FIOs); or
• as a phase space (or time-frequency) approach to studying functions, operators and their

singularities (wave front sets).

ΨDOs were introduced by Kohn and Nirenberg [1], and FIOs and wave front sets were studied
systematically by Hörmander [2]. Much of the theory up to the early 1980s is summarized in the four
volume treatise of Hörmander [3]. There are remarkable applications of microlocal analysis and related
ideas in many fields of mathematics. Classical examples include spectral theory and the Atiyah-Singer
index theorem, and more recent examples include scattering theory [4], behavior of chaotic systems [5],
general relativity [6], and inverse problems.

In this note we will describe certain classical applications of microlocal analysis in inverse
problems, together with a very rough non-technical overview of relevant parts of microlocal analysis
(intended for readers who may not be previously familiar with microlocal analysis). In a nutshell,
here are a few typical applications:

1. Computed tomography/X-ray transform—the X-ray transform is an FIO, and under certain
conditions its normal operator is an elliptic ΨDO. Microlocal analysis can be used to predict
which sharp features (singularities) of the image can be reconstructed in a stable way from limited
data measurements. Microlocal analysis is also a powerful tool in the study of geodesic X-ray
transforms related to seismic imaging applications.

2. Calderón problem/Electrical Impedance Tomography—the boundary measurement map
(Dirichlet-to-Neumann map) is a ΨDO, and the boundary values of the conductivity as well
as its derivatives can be computed from the symbol of this ΨDO.

3. Gel’fand problem/seismic imaging—the boundary measurement operator (hyperbolic
Dirichlet-to-Neumann map) is an FIO, and the scattering relation of the sound speed as well as
certain X-ray transforms of the coefficients can be computed from the canonical relation and the
symbol of this FIO.
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This note is organized as follows—in Section 2, we will motivate the theory of ΨDOs and discuss
some of its properties without giving proofs. Section 3 will continue with a brief introduction to wave
front sets and FIOs (again with no proofs). The rest of the note is concerned with applications to inverse
problems. Section 4 considers the Radon transform in R2 and its normal operator, and describes what
kind of information about the singularities of f can be stably recovered from the Radon transform.
Sections 5 and 6 discuss the Gel’fand and Calderón problems, and prove results related to recovering
X-ray transforms or boundary determination. The treatment is motivated by ΨDO and FIO theory,
but we give direct and (in principle) elementary proofs based on quasimode constructions.

The results discussed in this note are classical. For more recent results and for further references,
we refer to the surveys [7,8] on X-ray type transforms, survey [9] on inverse problems for hyperbolic
equations, and survey [10] on inverse problems for elliptic equations. We also mention the article [11]
that studies inverse problems in rather general settings by using constructions like the ones in Sections 5
and 6.

Notation

We will use multi-index notation. Let N0 = {0, 1, 2, . . .} be the set natural numbers. Then Nn
0

consists of all n-tuples α = (α1, . . . , αn) where the αj are nonnegative integers. Such an n-tuple α

is called a multi-index. We write |α| = α1 + . . . + αn and ξα = ξα1
1 · · · ξ

αn
n for ξ ∈ Rn. For partial

derivatives, we will write

∂j =
∂

∂xj
, Dj =

1
i

∂j, D =
1
i
∇, Dα = Dα1

1 · · ·D
αn
n .

If Ω ⊂ Rn is a bounded domain with C∞ boundary, we denote by C∞(Ω) the set of infinitely
differentiable functions in Ω whose all derivatives extend continuously to Ω. The space C∞

c (Ω) consists
of C∞ functions having compact support in Ω. The standard L2 based Sobolev spaces are denoted
by Hs(Rn) with norm ‖ f ‖Hs(Rn) = ‖(1 + |ξ|2)s/2 f̂ ‖L2(Rn), with f̂ denoting the Fourier transform.
We also write ‖ f ‖Wk,∞ = ∑|α|≤k‖Dα f ‖L∞ . The notation A . B means that A ≤ CB for some uniform
(with respect to the relevant parameters) constant C. In general, all coefficients, boundaries and so
forth are assumed to be C∞ for ease of presentation.

2. Pseudodifferential Operators

In this note we will give a very brief idea of the different points of view to microlocal analysis
mentioned in the introduction (and repeated below), as

(1) a kind of “variable coefficient Fourier analysis” for solving variable coefficient PDEs; or
(2) a theory of ΨDOs and FIOs; or
(3) a phase space (or time-frequency) approach to studying functions, operators and their

singularities (wave front sets).

In this section we will discuss (1) and (2) in the context of ΨDOs. We will continue with (2) and
(3) in the context of FIOs in Section 3. The treatment is mostly formal and we will give no proofs
whatsoever. A complete reference for the results in this section is ([3], Section 18.1).

2.1. Constant Coefficient PDEs

We recall the following facts about the Fourier transform (valid for sufficiently nice functions):

1. If u is a function in Rn, its Fourier transform û = F u is the function

û(ξ) :=
∫
Rn

e−ix·ξ u(x) dx, ξ ∈ Rn.



Mathematics 2020, 8, 1184 3 of 27

2. The Fourier transform converts derivatives to polynomials (this is why it is useful for solving PDEs):

(Dju)ˆ(ξ) = ξ jû(ξ).

3. A function u can be recovered from û by the Fourier inversion formula u = F−1û, where

F−1v(x) := (2π)−n
∫
Rn

eix·ξv(ξ) dξ

is the inverse Fourier transform.

As a motivating example, let us solve formally (i.e., without worrying about how to precisely
justify each step) the equation

−∆u = f in Rn.

This is a constant coefficient PDE, and such equations can be studied with the help of the Fourier
transform. We formally compute

−∆u = f ⇐⇒ |ξ|2û(ξ) = f̂ (ξ)

⇐⇒ û(ξ) =
1
|ξ|2 f̂ (ξ)

⇐⇒ u(x) = F−1
{

1
|ξ|2 f̂ (ξ)

}
= (2π)−n

∫
Rn

eix·ξ 1
|ξ|2 f̂ (ξ) dξ. (1)

The same formal argument applies to a general constant coefficient PDE

a(D)u = f in Rn, a(D) = ∑
|α|≤m

aαDα,

where aα ∈ C. Then (a(D)u)ˆ(ξ) = a(ξ)û(ξ) where a(ξ) = ∑|α|≤m aαξα is the symbol of a(D).
Moreover, one has

a(D)u(x) = F−1 {a(ξ)û(ξ)} = (2π)−n
∫
Rn

eix·ξ a(ξ) f̂ (ξ) dξ. (2)

The argument leading to (1) gives a formal solution of a(D)u = f :

u(x) = F−1
{

1
a(ξ)

û(ξ)
}

= (2π)−n
∫
Rn

eix·ξ 1
a(ξ)

f̂ (ξ) dξ. (3)

Thus, formally a(D)u = f can be solved by dividing by the symbol a(ξ) on the Fourier side.
Of course, to make this precise one would need to show that the division by a(ξ) (which may have
zeros) is somehow justified. This can indeed be done, and the basic result in this direction is the
Malgrange-Ehrenpreis theorem ([3], Theorem 7.3.10).

2.2. Variable Coefficient PDEs

We now try to use a similar idea to solve the variable coefficient PDE

Au = f in Rn, A = a(x, D) = ∑
|α|≤m

aα(x)Dα,

where aα(x) ∈ C∞(Rn) and Dβaα ∈ L∞(Rn) for all multi-indices α, β. Since the coefficients aα depend
on x, Fourier transforming the equation Au = f is not immediately helpful. However, we can compute
an analogue of (2):
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Au(x) = A
[
F−1{û(ξ)}

]
= ∑
|α|≤m

aα(x)Dα

[
(2π)−n

∫
Rn

eix·ξ û(ξ) dξ

]

= (2π)−n
∫
Rn

eix·ξ

 ∑
|α|≤m

aα(x)ξα

 û(ξ) dξ

= (2π)−n
∫
Rn

eix·ξ a(x, ξ)û(ξ) dξ, (4)

where
a(x, ξ) := ∑

|α|≤m
aα(x)ξα (5)

is the (full) symbol of A = a(x, D).
Now, we could try to obtain a solution to a(x, D)u = f in Rn by dividing by the symbol a(x, ξ) as

in (3):

u(x) = (2π)−n
∫
Rn

eix·ξ 1
a(x, ξ)

f̂ (ξ) dξ.

Again, this is only formal since the division by a(x, ξ) needs to be justified. However, this can be
done in a certain sense if A is elliptic:

Definition 1. The principal symbol (i.e., the part containing the highest order derivatives) of the differential
operator A = a(x, D) is

σpr(A) := ∑
|α|=m

aα(x)ξα.

We say that A is elliptic if its principal symbol is nonvanishing for ξ 6= 0.

A basic result of microlocal analysis states that the function

u1(x) := (2π)−n
∫
Rn

eix·ξ b(x, ξ) f̂ (ξ) dξ

with

b(x, ξ) :=
1− ψ(ξ)

a(x, ξ)
, (6)

where ψ ∈ C∞
c (Rn) is a cutoff with ψ(ξ) = 1 in a sufficiently large neighborhood of ξ = 0 (so that

a(x, ξ) does not vanish outside this neighborhood), is an approximate solution of Au = f in the sense that

Au1 = f + f1,

where f1 is one derivative smoother than f . Applying this construction iteratively to the error
term—thus to f1 in the first step above—it is possible to construct an approximate solution uapp so that

Auapp = f + r, r ∈ C∞(Rn).

2.3. Pseudodifferential Operators

In analogy with the formula (4), a pseudodifferential operator (ΨDO) is an operator A of the form

Au(x) = (2π)−n
∫
Rn

eix·ξ a(x, ξ)û(ξ) dξ, (7)

where a(x, ξ) is a symbol with certain properties. The most standard symbol class Sm = Sm
1,0(Rn) is

defined as follows:
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Definition 2. The symbol class Sm consists of functions a ∈ C∞(Rn ×Rn) such that for any α, β ∈ Nn
0 there

is Cα,β > 0 with

|∂α
x∂

β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|, ξ ∈ Rn.

If a ∈ Sm, the corresponding ΨDO A = Op(a) is defined by (7). We denote by Ψm the set of ΨDOs
corresponding to Sm.

Note that symbols in Sm behave roughly like polynomials of order m in the ξ-variable. In particular,
the symbols a(x, ξ) in (5) belong to Sm and the corresponding differential operators a(x, D) belong to
Ψm. Moreover, if a(x, D) is elliptic, then the symbol b(x, ξ) = 1−ψ(ξ)

a(x,ξ) as in (6) belongs to S−m. Thus the
class of ΨDOs is large enough to include differential operators as well as approximate inverses of
elliptic operators. Also normal operators of the X-ray transform or Radon transform in Rn are ΨDOs
(see Section 4 and ([12], Appendix A)).

Remark 1 (Homogeneous symbols). We saw in Section 2.1 that the elliptic operator −∆ has the inverse

G : f 7→ F−1
{

1
|ξ|2 f̂ (ξ)

}
.

The symbol 1
|ξ|2 is not in S−2, since it is not smooth near 0. However, G is still considered to be a ΨDO.

In fact, one can write

G = G1 + G2, G1 := F−1
{

1− ψ(ξ)

|ξ|2 f̂ (ξ)
}

, G2 := F−1
{

ψ(ξ)

|ξ|2 f̂ (ξ)
}

,

where ψ ∈ C∞
c (Rn) satisfies ψ = 1 near 0. Now G1 is a ΨDO in Ψ−2, since 1−ψ(ξ)

|ξ|2 ∈ S−2, and G2 is

smoothing in the sense that it maps any L1 function into a C∞ function (at least if n ≥ 3).
In general, in ΨDO theory smoothing operators are considered to be negligible (since at least they do not

introduce new singularities), and many computations in ΨDO calculus are made only modulo smoothing error
terms. In this sense one often views G as a ΨDO by identifying it with G1. The same kind of identification is
done for operators whose symbol a(x, ξ) is homogeneous of some order m in ξ, i.e., a(x, λξ) = λma(x, ξ) for
λ > 0. More generally one can consider (step one) polyhomogeneous symbols b ∈ Sm having the form

b(x, ξ) ∼
∞

∑
j=0

bm−j(x, ξ),

where each bm−j ∈ Sm−j is homogeneous of order m− j in ξ for |ξ| ≥ 1, and ∼ denotes asymptotic summation
meaning that b−∑N

j=0 bm−j ∈ Sm−N−1 for any N ≥ 0. Corresponding ΨDOs are called classical ΨDOs.

It is very important that one can compute with ΨDOs in much the same way as with differential
operators. One often says that ΨDOs have a calculus, and in fact the ΨDOs defined above form an
algebra with respect to composition. The following theorem lists typical rules of computation (it is
instructive to think first why such rules are valid for differential operators):

Theorem 1 (ΨDO calculus).

(a) (Principal symbol) There is a one-to-one correspondence between operators in Ψm and (full) symbols in
Sm, and each operator A ∈ Ψm has a well defined principal symbol σpr(A). The principal symbol may be
computed by testing A against highly oscillatory functions (this is valid if A is a classical ΨDO):

σpr(A)(x0, ξ0) = lim
λ→∞

λ−me−iλx·ξ0 A(eiλx·ξ0)
∣∣∣
x=x0

; (8)
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(b) (Composition) If A ∈ Ψm and B ∈ Ψm′ , then AB ∈ Ψm+m′ and σpr(AB) = σpr(A)σpr(B);
(c) (Sobolev mapping properties) Each A ∈ Ψm is a bounded operator Hs(Rn)→ Hs−m(Rn) for any s ∈ R;
(d) (Elliptic operators have approximate inverses) If A ∈ Ψm is elliptic, there is B ∈ Ψ−m so that

AB = Id + K and BA = Id + L where K, L ∈ Ψ−∞, i.e., K, L are smoothing (they map any H−s

function to Ht for any t, hence also to C∞ by Sobolev embedding).

The above properties are valid in the standard ΨDO calculus in Rn. However, motivated by
different applications, ΨDOs have been considered in various other settings. Each of these settings
comes with an associated calculus whose rules of computation are similar but adapted to the situation
at hand (for instance, one may need extra conditions for compositions to be well defined). Examples of
different settings for ΨDOs include

1. open sets in Rn (local setting) ([3], Section 18.1);
2. compact manifolds without boundary, possibly acting on sections of vector bundles ([3], Section 18.1);
3. compact manifolds with boundary (transmission condition/Boutet de Monvel calculus) [13];
4. non-compact manifolds (e.g., Melrose scattering calculus) [14];
5. operators with a small or large parameter (semiclassical calculus) [15]; and
6. operators with real-analytic coefficients (analytic microlocal analysis) [16,17].

3. Wave Front Sets and Fourier Integral Operators

For a reference to wave front sets, see Reference ([3], Chapter 8). Sobolev wave front sets are
considered in Reference ([3], Section 18.1). FIOs are discussed in Reference ([3], Chapter 25). We
mention that FIO type methods were independently developed by Maslov [18].

3.1. The Role of Singularities

We first discuss the singular support of u, which consists of those points x0 such that u is not a
smooth function in any neighborhood of x0. We also consider the Sobolev singular support, which also
measures the “strength” of the singularity (in the L2 Sobolev scale).

Definition 3 (Singular support). We say that a function or distribution u is C∞ (resp. Hα) near x0 if there
is ϕ ∈ C∞

c (Rn) with ϕ = 1 near x0 such that ϕu is in C∞(Rn) (resp. in Hα(Rn)). We define

sing supp(u) = Rn \ {x0 ∈ Rn ; u is C∞ near x0},
sing suppα(u) = Rn \ {x0 ∈ Rn ; u is Hα near x0}.

Example 1. Let D1, . . . , DN be bounded domains with C∞ boundary in Rn so that Dj ∩ Dk = ∅ for j 6= k,
and define

u =
N

∑
j=1

cjχDj ,

where cj 6= 0 are constants, and χDj is the characteristic function of Dj. Then

sing suppα(u) = ∅ for α < 1/2,

since u ∈ Hα for α < 1/2, but

sing suppα(u) =
N⋃

j=1

∂Dj for α ≥ 1/2

since u is not H1/2 near any boundary point. Thus in this case the singularities of u are exactly at the points
where u has a jump discontinuity, and their strength is precisely H1/2. Knowing the singularities of u can
already be useful in applications. For instance, if u represents some internal medium properties in medical
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imaging, the singularities of u could determine the location of interfaces between different tissues. On the other
hand, if u represents an image, then the singularities in some sense determine the “sharp features” of the image.

Next we discuss the wave front set which is a more refined notion of a singularity. For example,
if f = χD is the characteristic function of a bounded strictly convex C∞ domain D and if x0 ∈ ∂D,
one could think that f is in some sense smooth in tangential directions at x0 (since f restricted to
a tangent hyperplane is identically zero, except possibly at x0), but that f is not smooth in normal
directions at x0 since in these directions there is a jump. The wave front set is a subset of T∗Rn \ 0,
the cotangent space with the zero section removed:

T∗Rn \ 0 := {(x, ξ) ; x, ξ ∈ Rn, ξ 6= 0}.

Definition 4 (Wave front set). Let u be a distribution in Rn. We say that u is (microlocally) C∞ (resp. Hα)
near (x0, ξ0) if there exist ϕ ∈ C∞

c (Rn) with ϕ = 1 near x0 and ψ ∈ C∞(Rn \ {0}) so that ψ = 1 near ξ0

and ψ is homogeneous of degree 0, such that

for any N there is CN > 0 so that ψ(ξ)(ϕu)ˆ(ξ) ≤ CN(1 + |ξ|)−N

(resp. F−1{ψ(ξ)(ϕu)ˆ(ξ)} ∈ Hα(Rn)). The wave front set WF(u) (resp. Hα wave front set WFα(u))
consists of those points (x0, ξ0) where u is not microlocally C∞ (resp. Hα).

Example 2. The wave front set of the function u in Example 1 is

WF(u) =
N⋃

j=1

N∗(Dj),

where N∗(Dj) is the conormal bundle of Dj,

N∗(Dj) := {(x, ξ) ; x ∈ ∂Dj and ξ 6= 0 is normal to ∂Dj at x}.

The wave front set describes singularities more precisely than the singular support, since one
always has

π(WF(u)) = sing supp(u) (9)

where π : (x, ξ) 7→ x is the projection to x-space.
It is an important fact that applying a ΨDO to a function or distribution never creates new

singularities:

Theorem 2 (Pseudolocal/microlocal property of ΨDOs). Any A ∈ Ψm has the pseudolocal property

sing supp(Au) ⊂ sing supp(u),

sing suppα−m(Au) ⊂ sing suppα(u)

and the microlocal property

WF(Au) ⊂WF(u),

WFα−m(Au) ⊂WFα(u).

Elliptic operators are those that completely preserve singularities:
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Theorem 3 (Elliptic regularity). Let A ∈ Ψm be elliptic. Then, for any u,

sing supp(Au) = sing supp(u),

WF(Au) = WF(u).

Thus any solution u of Au = f is singular precisely at those points where f is singular. There are
corresponding statements for Sobolev singularities.

Proof. First note that by Theorem 2,

WF(Au) ⊂WF(u).

Conversely, since A ∈ Ψm is elliptic, by Theorem 1(d) there is B ∈ Ψ−m so that

BA = Id + L, L ∈ Ψ−∞.

Thus for any u one has
u + Lu = BAu.

Since L is smoothing, Lu ∈ C∞, which implies that u = BAu modulo C∞. Thus it follows that

WF(u) = WF(BAu) ⊂WF(Au).

Thus WF(Au) = WF(u). The claim for singular supports follows by (9).

3.2. Fourier Integral Operators

We have seen in Section 2.3 that the class of pseudodifferential operators includes approximate
inverses of elliptic operators. In order to handle approximate inverses for hyperbolic and transport
equations, it is required to work with a larger class of operators.

Motivation 1. Consider the initial value problem for the wave equation,

(∂2
t − ∆)u(x, t) = 0 in Rn × (0, ∞),

u(x, 0) = f (x), ∂tu(x, 0) = 0.

This is again a constant coefficient PDE, and we will solve this formally by taking the Fourier transform
in space,

ũ(ξ, t) :=
∫
Rn

e−ix·ξu(x, t) dx, ξ ∈ Rn.

After taking Fourier transforms in space, the above equation becomes

(∂2
t + |ξ|2)ũ(ξ, t) = 0 in Rn × (0, ∞),

ũ(ξ, 0) = f̂ (ξ), ∂tũ(ξ, 0) = 0.

For each fixed ξ this is an ODE in t, and the solution is

ũ(ξ, t) = cos(t|ξ|) f̂ (ξ) =
1
2
(eit|ξ| + e−it|ξ|) f̂ (ξ).

Taking inverse Fourier transforms in space, we obtain

u(x, t) =
1
2 ∑
±
(2π)−n

∫
Rn

ei(x·ξ±t|ξ|) f̂ (ξ) dξ. (10)
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Generalizing (10), we can consider operators of the form

Au(x) = (2π)−n
∫
Rn

eiϕ(x,ξ)a(x, ξ)û(ξ) dξ, (11)

where a(x, ξ) is a symbol (for instance in Sm), and ϕ(x, ξ) is a real valued phase function. Such operators
are examples of Fourier integral operators (more precisely, FIOs whose canonical relation is locally the
graph of a canonical transformation, see ([3], Section 25.3)). For ΨDOs the phase function is always
ϕ(x, ξ) = x · ξ, but for FIOs the phase function can be quite general, though it is usually required to be
homogeneous of degree 1 in ξ, and to satisfy the non-degeneracy condition det(∂xjξk ϕ) 6= 0.

We will not go into precise definitions, but only remark that the class of FIOs includes
pseudodifferential operators as well as approximate inverses of hyperbolic and transport operators
(or more generally real principal type operators). There is a calculus for FIOs, analogous to the
pseudodifferential calculus, under certain conditions in various settings. An important property of
FIOs is that they, unlike pseudodifferential operators, can move singularities. This aspect will be
discussed next.

3.3. Propagation of Singularities

Example 3. Let t > 0 be fixed, and consider the operators from (10),

A±t f (x) = (2π)−n
∫
Rn

ei(x·ξ∓t|ξ|) f̂ (ξ) dξ.

Then
u(x, t) =

1
2
(A+t f (x) + A−t f (x)).

Using FIO theory, since the phase functions are ϕ(x, ξ) = x · ξ ∓ t|ξ|, it follows that

WF(A±t f ) ⊂ χ±t(WF( f )), (12)

where χ±t is the canonical transformation (i.e., diffeomorphism of T∗Rn \ 0 that preserves the symplectic
structure) given by

χ±t(x, ξ) = (x± tξ/|ξ|, ξ).

This means that the FIO A±t takes a singularity (x, ξ) of the initial data f and moves it along the line
through x in direction ±ξ/|ξ| to (x± tξ/|ξ|, ξ). In fact one has equality in (12) since A±t has inverse A∓t

and χ±t has inverse χ∓t. Thus singularities of solutions of the wave equation (∂2
t − ∆)u = 0 propagate along

straight lines with constant speed one.

Remark 2. In general, any FIO has an associated canonical relation that describes what the FIO does to
singularities. The canonical relation of the FIO A defined in (11) is (see ([3], Section 25.3))

C = {(x,∇x ϕ(x, ξ),∇ξ ϕ(x, ξ), ξ) ; (x, ξ) ∈ T∗Rn \ 0},

and A moves singularities according to the rule

WF(Au) ⊂ C(WF(u)),

where
C(WF(u)) := {(x, ξ) ; (x, ξ, y, η) ∈ C for some (y, η) ∈WF(u)}.

Using these formulas, it is easy to check that the canonical relation C± of A±t in Example 3 is the graph of
χ±t in the sense that

C± = {(χ±t(y, η), y, η) ; (y, η) ∈ T∗Rn \ 0}
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and one indeed has WF(A±tu) ⊂ C±(WF(u)) = χ±t(WF(u)).

There is a far reaching extension of Example 3, which shows that the singularities of a solution of
Pu = 0 propagate along certain curves in phase space (so called null bicharacteristic curves) as long as P
has real valued principal symbol.

Theorem 4 (Propagation of singularities, ([3], Theorem 26.1.1)). Let P ∈ Ψm have real principal symbol
pm that is homogeneous of degree m in ξ. If

Pu = f ,

then WF(u) \WF( f ) is contained in the characteristic set p−1
m (0). Moreover, if (x0, ξ0) ∈WF(u) \WF( f ),

then the whole null bicharacteristic curve (x(t), ξ(t)) through (x0, ξ0) is in WF(u) as long as it remains in
p−1

m (0) \WF( f ). Here (x(t), ξ(t)) is the solution of the Hamilton equations

ẋ(t) = ∇ξ pm(x(t), ξ(t)),

ξ̇(t) = −∇x pm(x(t), ξ(t)).

Example 4. We compute the null bicharacteristic curves for the wave operator P = 1
2 (∆− ∂2

t ). The principal
symbol of P is

p2(x, t, ξ, τ) =
1
2
(τ2 − |ξ|2).

The characteristic set is
p−1

2 (0) = {(x, t, ξ, τ) ; τ = ±|ξ|}

which consists of light-like cotangent vectors on Rn+1
x,t . The equations for the null bicharacteristic curves are

ẋ(s) = −ξ(s),

ṫ(s) = τ(s),

ξ̇(s) = 0,

τ̇(s) = 0.

Thus, if |ξ0| = 1, then the null bicharacteristic curve through (x0, t0, ξ0,±1) is

s 7→ (x0 − sξ0, t0 ± s, ξ0,±1).

The result of Example 3 may thus be interpreted so that singularities of solutions of the wave equation
propagate along null bicharacteristic curves for the wave operator.

4. The Radon Transform in the Plane

In this section we outline some applications of microlocal analysis to the study of the Radon
transform in the plane. Similar ideas apply to X-ray and Radon transforms in higher dimensions and
Riemannian manifolds as well. The microlocal approach to Radon transforms was introduced by
Guillemin [19]. We refer to [8,12] and references therein for a more detailed treatment of the material
in this section.

4.1. Basic Properties of the Radon Transform

The X-ray transform I f of a function f in Rn encodes the integrals of f over all straight lines,
whereas the Radon transform R f encodes the integrals of f over (n− 1)-dimensional planes. We will
focus on the case n = 2, where the two transforms coincide. There are many ways to parametrize the
set of lines in R2. We will parametrize lines by their direction vector ω and distance s from the origin.
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Definition 5. If f ∈ C∞
c (R2), the Radon transform of f is the function

R f (s, ω) :=
∫ ∞

−∞
f (sω⊥ + tω) dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the vector in S1 obtained by rotating ω counterclockwise by 90◦.

There is a well-known relation between R f and the Fourier transform f̂ . We denote by (R f )˜( · , ω)

the Fourier transform of R f with respect to s.

Theorem 5 (Fourier slice theorem).

(R f )˜(σ, ω) = f̂ (σω⊥).

Proof. Parametrizing R2 by y = sω⊥ + tω, we have

(R f )˜(σ, ω) =
∫ ∞

−∞
e−iσs

[∫ ∞

−∞
f (sω⊥ + tω) dt

]
ds =

∫
R2

e−iσy·ω⊥ f (y) dy

= f̂ (σω⊥).

This result gives the first proof of injectivity of the Radon transform:

Corollary 1. If f ∈ C∞
c (R2) is such that R f ≡ 0, then f ≡ 0.

Proof. If R f ≡ 0, then f̂ ≡ 0 by Theorem 5 and consequently f ≡ 0.

To obtain a different inversion method, and for later purposes, we will consider the adjoint of R.
The formal adjoint of R is the backprojection operator R∗. The formula for R∗ is obtained as follows: if
f ∈ C∞

c (R2), h ∈ C∞(R× S1) one has

(R f , h)L2(R×S1) =
∫ ∞

−∞

∫
S1

R f (s, ω)h(s, ω) dω ds

=
∫ ∞

−∞

∫
S1

∫ ∞

−∞
f (sω⊥ + tω)h(s, ω) dt dω ds

=
∫
R2

f (y)
(∫

S1
h(y ·ω⊥, ω) dω

)
dy.

Thus we have

R∗ : C∞(R× S1)→ C∞(R2), R∗h(y) =
∫

S1
h(y ·ω⊥, ω) dω.

The following result shows that the normal operator R∗R is a classical ΨDO of order −1 in R2,
and also gives an inversion formula.

Theorem 6 (Normal operator). One has

R∗R = 4π|D|−1 = F−1
{

4π

|ξ|F ( · )
}

,

and f can be recovered from R f by the formula

f =
1

4π
|D|R∗R f .
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Remark 3. Above we have written, for α ∈ R,

|D|α f := F−1{|ξ|α f̂ (ξ)}.

The notation (−∆)α/2 = |D|α is also used.

Proof. The proof is based on computing (R f , Rg)L2(R×S1) using the Parseval identity, Fourier slice
theorem, symmetry and polar coordinates:

(R∗R f , g)L2(R2) = (R f , Rg)L2(R×S1)

=
∫

S1

[∫ ∞

−∞
(R f )(s, ω)(Rg)(s, ω) ds

]
dω

=
1

2π

∫
S1

[∫ ∞

−∞
(R f )˜(σ, ω)(Rg)˜(σ, ω)

]
dσ dω

=
1

2π

∫
S1

[∫ ∞

−∞
f̂ (σω⊥)ĝ(σω⊥)

]
dσ dω

=
2

2π

∫
S1

[∫ ∞

0
f̂ (σω⊥)ĝ(σω⊥)

]
dσ dω

=
2

2π

∫
R2

1
|ξ| f̂ (ξ)ĝ(ξ) dξ

= (4πF−1
{

1
|ξ| f̂ (ξ)

}
, g)L2(R2).

The same argument, based on computing (|Ds|1/2R f , |Ds|1/2Rg)L2(R×S1) instead of
(R f , Rg)L2(R×S1), leads to the famous filtered backprojection (FBP) inversion formula:

f =
1

4π
R∗|Ds|R f ,

where |Ds|R f = F−1{|σ|(R f )˜}. This formula is efficient to implement and gives good reconstructions
when one has complete X-ray data and relatively small noise, and hence FBP (together with its variants)
has been commonly used in X-ray CT scanners.

However, if one is mainly interested in the singularities (i.e., jumps or sharp features) of the image,
it is possible to use the even simpler backprojection method: just apply the backprojection operator R∗ to
the data R f . Since R∗R is an elliptic ΨDO, Theorem 3 guarantees that the singularities are recovered:

sing supp(R∗R f ) = sing supp( f ).

Moreover, since R∗R is a ΨDO of order −1, hence smoothing of order 1, one expects that R∗R f
gives a slightly blurred version of f where the main singularities should still be visible. The ellipticity
of the normal operator is also important in the analysis of statistical methods for recovering f from
R f [20].

4.2. Visible Singularities

There are various imaging situations where complete X-ray data (i.e., the function R f (s, ω)

for all s and ω) is not available. This is the case for limited angle tomography (e.g., in luggage
scanners at airports, or dental applications), region of interest tomography, or exterior data tomography.
In such cases explicit inversion formulas such as FBP are usually not available, but microlocal analysis
(for related normal operators or FIOs) still provides a powerful paradigm for predicting which
singularities can be recovered stably from the measurements.

We will try to explain this paradigm a little bit more, starting with an example:
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Example 5. Let f be the characteristic function of the unit disc D, i.e., f (x) = 1 if |x| ≤ 1 and f (x) = 0 for
|x| > 1. Then f is singular precisely on the unit circle (in normal directions). We have

R f (s, ω) =

{
2
√

1− s2, s ≤ 1,

0, s > 1.

Thus R f is singular precisely at those points (s, ω) with |s| = 1, which correspond to those lines that are
tangent to the unit circle.

There is a similar relation between the singularities of f and R f in general, and this is explained
by microlocal analysis:

Theorem 7. The operator R is an elliptic FIO of order −1/2. There is a precise relationship between the
singularities of f and singularities of R f .

We will not spell out the precise relationship here, but only give some consequences. It will be
useful to think of the Radon transform as defined on the set of (non-oriented) lines in R2. If A is an
open subset of lines in R2, we consider the Radon transform R f |A restricted to lines in A. Recovering
f (or some properties of f ) from R f |A is a limited data tomography problem. Examples:

• If A = {lines not meeting D}, then R f |A is called exterior data.
• If 0 < a < π/2 and A = {lines whose angle with x-axis is < a}, then R f |A is called limited angle

data.

It is known that any f ∈ C∞
c (R2 \D) is uniquely determined by exterior data (Helgason support

theorem ([21], Theorem 2.6)), and any f ∈ C∞
c (R2) is uniquely determined by limited angle data (Fourier

slice and Paley-Wiener theorems). However, both inverse problems are very unstable (inversion is not
Lipschitz continuous in any Sobolev norms, but one has conditional logarithmic stability).

Definition 6. A singularity at (x0, ξ0) is called visible from A if the line through x0 in direction ξ⊥0 is in A.

One has the following dichotomy:

• If (x0, ξ0) is visible from A, then from the singularities of R f |A one can determine for any α

whether or not (x0, ξ0) ∈WFα( f ). If R f |A uniquely determines f , one expects the reconstruction
of visible singularities to be stable.

• If (x0, ξ0) is not visible from A, then this singularity is smoothed out in the measurement
R f |A. Even if R f |A would determine f uniquely, the inversion is not Lipschitz stable in any
Sobolev norms.

5. Gel’fand Problem

Seismic imaging gives rise to various inverse problems related to determining interior properties,
for example, oil deposits or deep structure, of the Earth. Often this is done by using acoustic or elastic
waves. We will consider the following problem, also known as the inverse boundary spectral problem (see
the monograph [22]):

Gel’fand problem: Is it possible to determine the interior structure of Earth by controlling
acoustic waves and measuring vibrations at the surface?

In seismic imaging one often tries to recover an unknown sound speed. However, in this
presentation we consider the simpler case where the sound speed is constant (equal to one) and
one attempts to recover an unknown potential q ∈ C∞

c (Ω) at each point x ∈ Ω, where Ω is a ball in Rn.
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Consider the free wave operator
� := ∂2

t − ∆.

We assume that the medium is at rest at time t = 0 and that we take measurements until time
T > 0. If we prescribe the amplitude of the wave to be f (x, t) on ∂Ω× (0, T), this leads to a solution u
of the wave equation 

(�+ q)u = 0 in Ω× (0, T),
u = f on ∂Ω× (0, T),

u = ∂tu = 0 on {t = 0}.
(13)

Given any f ∈ C∞
c (∂Ω × (0, T)), there is a unique solution u ∈ C∞(Ω × [0, T]) (see ([23],

Theorem 7 in §7.2.3)). We assume that we can measure the normal derivative ∂νu|∂Ω×(0,T),
where ∂νu(x, t) = ∇xu(x, t) · ν(x) and ν is the outer unit normal to ∂Ω. Doing such measurements
for many different functions f , the ideal boundary measurements are encoded by the hyperbolic
Dirichlet-to-Neumann map (DN map for short)

Λq : C∞
c (∂Ω× (0, T))→ C∞(∂Ω× (0, T)), Λq( f ) = ∂νu|∂Ω×(0,T).

The Gel’fand problem for this model amounts to recovering q(x) from the knowledge of the map
Λq. We will prove the following result due to [24].

Theorem 8 (Recovering the X-ray transform). Let T > 0 and assume that q1, q2 ∈ C∞
c (Ω). If

Λq1 = Λq2 ,

then q1 and q2 satisfy ∫
γ

q1 ds =
∫

γ
q2 ds

whenever γ is a maximal line segment in Ω with length < T.

It is natural that the region where one can recover information depends on T. By finite propagation
speed the map Λq is unaffected if one changes q outside the set

{x ∈ Ω ; dist(x, ∂Ω) < T/2}.

Indeed, if u and ũ solve (13) for potentials q and q̃ with the same Dirichlet data f , and if q = q̃
in U := {x ∈ Ω ; dist(x, ∂Ω) < T/2}, then w := u− ũ solves (�+ q)w = F where F := −(q− q̃)ũ
vanishes in U× (0, T) and in (Ω \U)× (0, T/2). Moreover, w = ∂tw = 0 on {t = 0} and w|∂Ω×(0,T) =

0. By finite speed of propagation ∂νw|∂Ω×(0,T) = 0. This proves that Λq = Λq̃.
For T large enough, one can recover everything:

Corollary 2. If T > diam(Ω), then Λq1 = Λq2 implies q1 ≡ q2.

Proof. If T > diam(Ω), then by Theorem 8 one has∫
γ

q1 ds =
∫

γ
q2 ds

for any maximal line segment γ in Ω. Thus q1 and q2 have the same X-ray transform in Rn.
This transform is injective by Corollary 1 when n = 2. Tiling Rn by two-planes gives injectivity
when n ≥ 3. Thus q1 = q2.
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Theorem 8 could be proved based on the following facts, see e.g., [25]:

1. The map Λq is an FIO of order 1 on ∂Ω× (0, T).
2. The X-ray transform of q can be read off from the symbol of Λq (more precisely, from the principal

symbol of Λq −Λ0).

We will give an elementary proof that is based on testing Λq against highly oscillatory boundary
data (compare with (8)).

The first step is an integral identity.

Lemma 1 (Integral identity). Assume that q1, q2 ∈ C∞
c (Ω). For any f1, f2 ∈ C∞

c (∂Ω× (0, T)), one has

((Λq1 −Λq2) f1, f2)L2(∂Ω×(0,T)) =
∫

Ω

∫ T

0
(q1 − q2)u1ū2 dt dx,

where u1 solves (13) with q = q1 and f = f1, and u2 solves an analogous problem with vanishing Cauchy data
on {t = T}: 

(�+ q2)u2 = 0 in Ω× (0, T),
u2 = f2 on ∂Ω× (0, T),

u2 = ∂tu2 = 0 on {t = T}.
(14)

Proof. We first compute the adjoint of the DN map: one has

(Λq f , g)L2(∂Ω×(0,T)) = ( f , ΛT
q g)L2(∂Ω×(0,T))

where ΛT
q g = ∂νv|∂Ω×(0,T) with v solving (�+ q)v = 0 so that v|∂Ω×(0,T) = g and v = ∂tv = 0 on

{t = T}. To prove this, we let u be the solution of (13) and integrate by parts:

(Λq f , g)L2(∂Ω×(0,T)) =
∫

∂Ω

∫ T

0
(∂νu)v̄ dt dS

=
∫

Ω

∫ T

0
(∇u · ∇v̄ + (∆u)v̄) dt dx

=
∫

Ω

∫ T

0
(∇u · ∇v̄ + (∂2

t u + qu)v̄) dt dx

=
∫

Ω

∫ T

0
(∇u · ∇v̄− ∂tu∂tv̄ + quv̄) dt dx

=
∫

Ω

∫ T

0
(∇u · ∇v̄ + u(∂2

t v + qv)) dt dx

=
∫

Ω

∫ T

0
(∇u · ∇v̄ + u∆v) dt dx

=
∫

∂Ω

∫ T

0
u∂νv̄ dt dS

= ( f , ΛT
q g)L2(∂Ω×(0,T)).

Now, if u1 and u2 are as stated, the computation above gives

(Λq1 f1, f2)L2(∂Ω×(0,T)) =
∫

Ω

∫ T

0
(∇u1 · ∇ū2 − ∂tu1∂tū2 + q1u1ū2) dt dx

and

(Λq2 f1, f2)L2(∂Ω×(0,T)) = ( f1, ΛT
q2

f2)L2(∂Ω×(0,T))

=
∫

Ω

∫ T

0
(∇u1 · ∇ū2 − ∂tu1∂tū2 + q2u1ū2) dt dx.
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The result follows by subtracting these two identities.

The second step is to construct special solutions to the wave equation that concentrate near
curves s 7→ (γ(s), s) where γ is a line segment. These curves are projections to the (x, t) variables of
null bicharacteristic curves for � (see Example 4). These solutions are closely related to Theorem 4
concerning propagation of singularities. In fact, similar methods can be used to prove that Theorem 4
is sharp in the sense that there are approximate solutions whose wave front set is precisely on a given
null bicharacteristic curve ([3], Theorem 26.1.5). One can also go in the other direction and use suitable
concentrating solutions to prove Theorem 4, see Reference [26].

The proof is based on a standard geometrical optics/WKB quasimode construction.

Proposition 1 (Concentrating solutions). Assume that q ∈ C∞
c (Ω), and let γ : [δ, L] → Ω be a maximal

line segment in Ω with 0 < δ < L < T. For any λ ≥ 1 there is a solution u = uλ of (�+ q)u = 0 in
Ω× (0, T) with u = ∂tu = 0 on {t = 0}, such that for any ψ ∈ C∞

c (Ω× [0, T]) one has

lim
λ→∞

∫
Ω

∫ T

0
ψ|u|2 dx dt =

∫ L

δ
ψ(γ(s), s) ds. (15)

Moreover, if q̃ ∈ C∞
c (Ω), there is a solution ũ = ũλ of (�+ q̃)ũ = 0 in Ω× (0, T) with ũ = ∂tũ = 0 on

{t = T}, such that for any ψ ∈ C∞
c (Ω× [0, T]) one has

lim
λ→∞

∫
Ω

∫ T

0
ψuũ dt dx =

∫ L

δ
ψ(γ(s), s) ds. (16)

At this point it is easy to prove the main result:

Proof of Theorem 8. Using the assumption Λq1 = Λq2 and Lemma 1, we have

∫
Ω

∫ T

0
(q1 − q2)u1u2 dt dx = 0 (17)

for any solutions uj of (�+ qj)uj = 0 in Ω× (0, T) so that u1 = ∂tu1 = 0 on {t = 0}, and u2 = ∂tu2 = 0
on {t = T}.

Let γ : [δ, L] → Ω be a maximal unit speed line segment in Ω with L < T, and let u1 = u1,λ
be the solution constructed in Proposition 1 for the potential q1 with u1 = ∂tu1 = 0 on {t = 0}.
Moreover, let u2 = u2,λ be the solution constructed in the end of Proposition 1 for the potential q2 with
u2 = ∂tu2 = 0 on {t = T}. Taking the limit as λ→ ∞ in (17) and using (16) with ψ(x, t) = (q1− q2)(x),
we obtain that ∫ L

δ
(q1 − q2)(γ(s)) ds = 0.

Thus the integrals of q1 and q2 over maximal line segments of length < T in Ω are the same.

Proof of Proposition 1. Let γ : [δ, L] → Ω be a maximal unit speed line segment in Ω with L < T,
and let η : R → Rn be the unit speed line so that η(s) = γ(s) for s ∈ [δ, L]. Write x0 := η(0) and
ξ0 := η̇(0), so that x0 /∈ Ω and γ(s) = x0 + sξ0. After a translation and rotation, we may assume that
x0 = 0 and ξ0 = en.

We first construct an approximate solution v = vλ for the operator �+ q, having the form

v(x, t) = eiλϕ(x,t)a(x, t),

where ϕ is a real phase function, and a is an amplitude supported near the curve s 7→ (η(s), s).
Note that
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∂t(eiλϕu) = eiλϕ(∂t + iλ∂t ϕ)u,

∂2
t (e

iλϕu) = eiλϕ(∂t + iλ∂t ϕ)2u.

Using a similar expression for ∂2
xj

, we compute

(�+ q)(eiλϕa) = eiλϕ((∂t + iλ∂t ϕ)2 − (∇x + iλ∇x ϕ)2 + q)a

= eiλϕ
[
λ2
[
|∇x ϕ|2 − (∂t ϕ)2

]
a

+ iλ [2∂t ϕ∂ta− 2∇x ϕ · ∇xa + (�ϕ)a] + (�+ q)a
]
. (18)

We would like to have (�+ q)(eiλϕa) = O(λ−1). To this end, we first choose ϕ so that the λ2

term in (18) vanishes. This will be true if ϕ solves the eikonal equation

|∇x ϕ|2 − (∂t ϕ)2 = 0.

There are many possible solutions, but we make the simple choice

ϕ(x, t) := t− xn.

With this choice, (18) becomes

(�+ q)(eiλϕa) = eiλϕ [iλ(La) + (�+ q)a] , (19)

where L is the constant vector field
L := 2(∂t + ∂xn).

It is convenient to consider new coordinates (x′, z, w) in Rn+1, where

z =
t + xn

2
, w =

t− xn

2
. (20)

Then L corresponds to 2∂z in the sense that

LF(x, t) = 2∂z F̆(x′,
t + xn

2
,

t− xn

2
),

where F̆ corresponds to F in the new coordinates:

F̆(x′, z, w) := F(x′, z− w, z + w).

We next look for the amplitude a in the form

a = a0 + λ−1a−1.

Inserting this to (18) and equating like powers of λ, we get

(�+ q)(eiλϕa) = eiλϕ
[
iλ(La0) + [iLa−1 + (�+ q)a0] + λ−1(�+ q)a−1

]
. (21)

We would like the last expression to be O(λ−1). This will hold if a0 and a−1 satisfy the transport
equations {

La0 = 0,

La−1 = i(�+ q)a0.
(22)



Mathematics 2020, 8, 1184 18 of 27

Let χ ∈ C∞
c (Rn) be supported near 0, and choose

ă0(x′, z, w) := χ(x′, w).

We will later choose χ to depend on λ. Next we choose

ă−1(x′, z, w) := − 1
2i

∫ z

0
((�+ q)a0)˘(x′, s, w) ds.

These functions satisfy (22), and they vanish unless w is small (i.e., xn is close to t). Then (21) becomes

(�+ q)(eiλϕa) = Fλ,

where
Fλ := λ−1eiλϕ(�+ q)a−1.

Using the Cauchy-Schwarz inequality, one can check that

‖Fλ‖L∞(Ω×(0,T)) ≤ λ−1‖(�+ q)a−1‖L∞(Ω×(0,T))

. λ−1‖χ‖W4,∞(Rn)

uniformly over λ ≥ 1. This concludes the construction of the approximate solution v = eiλϕa.
We next find an exact solution u = uλ of (13) having the form

u = v + r

where r is a correction term. Note that for t close to 0, v( · , t) is supported near x0 /∈ Ω and hence
v = ∂tv = 0 on {t = 0}. Note also that (�+ q)v = Fλ. Thus u will solve (13) for f = v|∂Ω×(0,T) if r solves

(�+ q)r = −Fλ in Ω× (0, T),
r = 0 on ∂Ω× (0, T),

r = ∂tr = 0 on {t = 0}.
(23)

By the wellposedness of this problem [23, Theorem 5 in §7.2.3], there is a unique solution r with

‖r‖L∞((0,T);H1(Ω)) . ‖Fλ‖L2((0,T);L2(Ω)) . λ−1‖χ‖W4,∞ .

We now fix the choice of χ so that (15) will hold. Let ζ ∈ C∞
c (Rn) satisfy ζ = 1 near 0 and

‖ζ‖L2(Rn) = 1, and choose

χ(y) := ε−n/2ζ(y/ε),

where
ε = ε(λ) = λ−

1
n+8 .

With this choice
‖χ‖L2(Rn) = 1, ‖χ‖W4,∞(Rn) . ε−n/2−4 . λ1/2.

It follows that
‖v‖L2(Ω×(0,T)) . 1, ‖r‖L2(Ω×(0,T)) . λ−1/2.

Since u = v + r, the integral in (15) has the form
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∫
Ω

∫ T

0
ψ|u|2 dx dt =

∫
Ω

∫ T

0
ψ|v|2 dx dt + O(λ−1/2)

=
∫

Ω

∫ T

0
ψ|a0|2 dx dt + O(λ−1/2).

Using that ψ|a0|2 is compactly supported in Ω× (0, T), we have

∫
Ω

∫ T

0
ψ|u|2 dx dt =

∫
Rn+1

ψ(x, t)ε−nζ(
x′

ε
,

t− xn

2ε
)2 dx dt + O(λ−1/2)

=
∫
Rn+1

ψ(x′, z− w, z + w)ε−nζ(x′/ε, w/ε)2 dx′ dz dw + O(λ−1/2)

by changing variables as in (20). Finally, changing x′ to εx′ and w to εw and letting λ→ ∞ (so ε→ 0) yields

lim
λ→∞

∫
Ω

∫ T

0
ψ|u|2 dx dt =

∫
Rn+1

ψ(0′, z, z)ζ(x′, w)2 dx′ dz dw

=
∫ ∞

−∞
ψ(0′, z, z) dz =

∫ L

δ
ψ(x0 + sen, s) ds

by the normalization ‖ζ‖L2(Rn) = 1 and the fact that ψ ∈ C∞
c (Ω× [0, T]). This proves (15).

It remains to prove (16). Since η(T) /∈ Ω, we have v = ∂tv = 0 on {t = T}, and we may
alternatively arrange that r solves (23) with r = ∂tr = 0 on {t = T} instead of {t = 0}. We can do such
a construction for the potential q̃ instead of q. Since ϕ and a0 are independent of q, the same argument
as above proves (16).

6. Calderón Problem: Boundary Determination

Electrical Impedance Tomography (EIT) is an imaging method with potential applications in
medical imaging and nondestructive testing. The method is based on the following important inverse
problem.

Calderón problem: Is it possible to determine the electrical conductivity of a medium by
making voltage and current measurements on its boundary?

The treatment in this section follows [27].
Let us begin by recalling the mathematical model of EIT. The purpose is to determine the electrical

conductivity γ(x) at each point x ∈ Ω, where Ω ⊂ Rn represents the body which is imaged (in practice
n = 3). We assume that Ω ⊂ Rn is a bounded open set with C∞ boundary, and that γ ∈ C∞(Ω)

is positive.
Under the assumption of no sources or sinks of current in Ω, a voltage potential f at the boundary

∂Ω induces a voltage potential u in Ω, which solves the Dirichlet problem for the conductivity equation,{
∇ · γ∇u = 0 in Ω,

u = f on ∂Ω.
(24)

Since γ ∈ C∞(Ω) is positive, the equation is uniformly elliptic, and there is a unique solution
u ∈ C∞(Ω) for any boundary value f ∈ C∞(∂Ω). One can define the Dirichlet-to-Neumann map (DN
map) as

Λγ : C∞(∂Ω)→ C∞(∂Ω), f 7→ γ∂νu|∂Ω.

Here ν is the outer unit normal to ∂Ω and ∂νu|∂Ω = ∇u · ν|∂Ω is the normal derivative of u.
Physically, Λγ f is the current flowing through the boundary.

The Calderón problem (also called the inverse conductivity problem) is to determine the
conductivity function γ from the knowledge of the map Λγ. That is, if the measured current Λγ f is
known for all boundary voltages f ∈ C∞(∂Ω), one would like to determine the conductivity γ.
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We will prove the following theorem.

Theorem 9 (Boundary determination). Let γ1, γ2 ∈ C∞(Ω) be positive. If

Λγ1 = Λγ2 ,

then the Taylor series of γ1 and γ2 coincide at any point of ∂Ω.

This result was proved in Reference[28], and it in particular implies that any real-analytic
conductivity is uniquely determined by the DN map. The argument extends to piecewise real-analytic
conductivities. A different proof was given in [29], based on two facts:

1. The DN map Λγ is an elliptic ΨDO of order 1 on ∂Ω.
2. The Taylor series of γ at a boundary point can be read off from the symbol of Λγ computed in

suitable coordinates. The symbol of Λγ can be computed by testing against highly oscillatory
boundary data (compare with (8)).

Remark 4. The above argument is based on studying the singularities of the integral kernel of the DN map,
and it only determines the Taylor series of the conductivity at the boundary. The values of the conductivity in the
interior are encoded in the C∞ part of the kernel, and different methods (based on complex geometrical optics
solutions) are required for interior determination.

Let us start with a simple example:

Example 6 (DN map in half space is a ΨDO). Let Ω = Rn
+ = {xn > 0}, so ∂Ω = Rn−1 = {xn = 0}.

We wish to compute the DN map for the Laplace equation (i.e., γ ≡ 1) in Ω. Consider{
∆u = 0 in Rn

+,
u = f on {xn = 0}.

Writing x = (x′, xn) and taking Fourier transforms in x′ gives{
(∂2

n − |ξ ′|2)û(ξ ′, xn) = 0 in Rn
+,

û(ξ ′, 0) = f̂ (ξ ′).

Solving this ODE for fixed ξ ′ and choosing the solution that decays for xn > 0 gives

û(ξ ′, xn) = e−xn |ξ ′ | f̂ (ξ ′)

=⇒ u(x′, xn) = F−1
ξ ′

{
e−xn |ξ ′ | f̂ (ξ ′)

}
.

We may now compute the DN map:

Λ1 f = −∂nu|xn=0 = F−1
ξ ′

{
|ξ ′| f̂ (ξ ′)

}
.

Thus the DN map on the boundary ∂Ω = Rn−1 is just Λ1 = |Dx′ | corresponding to the Fourier multiplier
|ξ ′|. This shows that at least in this simple case, the DN map is an elliptic ΨDO of order 1.

We will now prove Theorem 9 by an argument that avoids showing that the DN map is a ΨDO,
but is rather based on directly testing the DN map against oscillatory boundary data. The first step is a
basic integral identity (sometimes called Alessandrini identity) for the DN map.
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Lemma 2 (Integral identity). Let γ1, γ2 ∈ C∞(Ω). If f1, f2 ∈ C∞(∂Ω), then

((Λγ1 −Λγ2) f1, f2)L2(∂Ω) =
∫

Ω
(γ1 − γ2)∇u1 · ∇ū2 dx

where uj ∈ C∞(Ω) solves div(γj∇uj) = 0 in Ω with uj|∂Ω = f j.

Proof. We first observe that the DN map is symmetric: if γ ∈ C∞(Ω) is positive and if u f solves
∇ · (γ∇u f ) = 0 in Ω with u f |∂Ω = f , then an integration by parts shows that

(Λγ f , g)L2(∂Ω) =
∫

∂Ω
(γ∂νu f )ug dS =

∫
Ω

γ∇u f · ∇ug dx

=
∫

∂Ω
u f (γ∂νug) dS = ( f , Λγg)L2(∂Ω).

Thus

(Λγ1 f1, f2)L2(∂Ω) =
∫

Ω
γ1∇u1 · ∇u2 dx,

(Λγ2 f1, f2)L2(∂Ω) = ( f1, Λγ2 f2)L2(∂Ω) =
∫

Ω
γ2∇u1 · ∇u2 dx.

The result follows by subtracting the above two identities.

Next we show that if x0 is a boundary point, there is an approximate solution of the conductivity
equation that concentrates near x0, has highly oscillatory boundary data, and decays exponentially in
the interior. As a simple example, the solution of{

∆u = 0 in Rn
+,

u(x′, 0) = eiλx′ ·ξ ′

that decays for xn > 0 is given by u = e−λxn eiλx′ ·ξ ′ , which concentrates near {xn = 0} and decays
exponentially when xn > 0 if λ is large. Roughly, this means that the solution of a Laplace type
equation with highly oscillatory boundary data concentrates near the boundary. Note also that in a
region like {xn > |x′|2}, the function u is harmonic and concentrates near the origin.

Proposition 2. (Concentrating approximate solutions) Let γ ∈ C∞(Ω) be positive, let x0 ∈ ∂Ω, let ξ0 be a
unit tangent vector to ∂Ω at x0, and let χ ∈ C∞

c (∂Ω) be supported near x0. Let also N ≥ 1. For any λ ≥ 1
there exists v = vλ ∈ C∞(Ω) having the form

v = λ−1/2eiλΦa

such that

∇Φ(x0) = ξ0 − iν(x0),

a is supported near x0 with a|∂Ω = χ,

and as λ→ ∞
‖v‖H1(Ω) ∼ 1, ‖div(γ∇v)‖L2(Ω) = O(λ−N).

Moreover, if γ̃ ∈ C∞(Ω) is positive and ṽ = ṽλ is the corresponding approximate solution constructed for
γ̃, then for any f ∈ C(Ω) and k ≥ 0 one has

lim
λ→∞

λk
∫

Ω
dist(x, ∂Ω)k f∇v · ∇ṽ dx = ck

∫
∂Ω

f |χ|2 dS (25)
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for some ck 6= 0.

We can now give the proof of the boundary determination result.

Proof of Theorem 9. Using the assumption that Λγ1 = Λγ2 together with the integral identity in
Lemma 2, we have that ∫

Ω
(γ1 − γ2)∇u1 · ∇ū2 dx = 0, (26)

whenever uj solves div(γj∇uj) = 0 in Ω.
Let x0 ∈ ∂Ω, let ξ0 be a unit tangent vector to ∂Ω at x0, and let χ ∈ C∞

c (∂Ω) satisfy χ = 1 near x0.
We use Proposition 2 to construct functions

vj = vj,λ = λ−1/2eiλΦaj

so that
‖vj‖H1(Ω) ∼ 1, ‖div(γj∇vj)‖L2(Ω) = O(λ−N). (27)

We obtain exact solutions uj of div(γj∇uj) = 0 by setting

uj := vj + rj,

where the correction terms rj are the unique solutions of

div(γj∇rj) = −div(γj∇vj) in Ω, rj|∂Ω = 0.

By standard energy estimates ([23], Section 6.2) and by (27), the solutions rj satisfy

‖rj‖H1(Ω) . ‖div(γj∇vj)‖H−1(Ω) = O(λ−N). (28)

We now insert the solutions uj = vj + rj into (26). Using (28) and (27), it follows that∫
Ω
(γ1 − γ2)∇v1 · ∇v̄2 dx = O(λ−N), (29)

as λ→ ∞. Letting λ→ ∞, the formula (25) yields∫
∂Ω

(γ1 − γ2)|χ|2 dS = 0.

In particular, γ1(x0) = γ2(x0).
We will prove by induction that

∂
j
νγ1|∂Ω = ∂

j
νγ2|∂Ω near x0 for any j ≥ 0. (30)

The case j = 0 was proved above (here we may vary x0 slightly). We make the induction
hypothesis that (30) holds for j ≤ k − 1. Let (x′, xn) be boundary normal coordinates so that x0

corresponds to 0, and ∂Ω near x0 corresponds to {xn = 0}. The induction hypothesis states that

∂
j
nγ1(x′, 0) = ∂

j
nγ2(x′, 0), j ≤ k− 1.

Considering the Taylor expansion of (γ1 − γ2)(x′, xn) with respect to xn gives that

(γ1 − γ2)(x′, xn) = xk
n f (x′, xn) near 0 in {xn ≥ 0}
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for some smooth function f with f (x′, 0) = ∂k
n(γ1−γ2)(x′ ,0)

k! . Inserting this formula in (29), we obtain that

λk
∫

Ω
xk

n f∇v1 · ∇v̄2 dx = O(λk−N).

Now xn = dist(x, ∂Ω) in boundary normal coordinates. Assuming that N was chosen larger than
k, we may take the limit as λ→ ∞ and use (25) to obtain that∫

∂Ω
f (x′, 0)|χ(x′, 0)|2 dS(x′) = 0.

This shows that ∂k
n(γ1 − γ2)(x′, 0) = 0 for x′ near 0, which concludes the induction.

It remains to prove Proposition 2, which constructs approximate solutions (also called quasimodes)
concentrating near a boundary point. This is a typical geometrical optics/WKB type construction
for quasimodes with complex phase. The proof is elementary, although a bit long. The argument
is simplified slightly by using the Borel summation lemma, which is used frequently in microlocal
analysis in various different forms.

Lemma 3 (Borel summation, [3, Theorem 1.2.6]). Let f j ∈ C∞
c (Rn−1) for j = 0, 1, 2, . . .. There exists

f ∈ C∞
c (Rn) such that

∂
j
n f (x′, 0) = f j(x′), j = 0, 1, 2, . . . .

Proof of Proposition 2. We will first carry out the proof in the case where x0 = 0 and ∂Ω is flat near 0,
i.e., Ω ∩ B(0, r) = {xn > 0} ∩ B(0, r) for some r > 0 (the general case will be considered in the end of
the proof). We also assume ξ0 = (ξ ′0, 0) where |ξ ′0| = 1.

We look for v in the form
v = eiλΦb.

Write Pu = D · (γDu) = γD2u + Dγ · Du. The principal symbol of P is

p2(x, ξ) := γ(x)ξ · ξ. (31)

Since e−iλΦDj(eiλΦb) = (Dj + λ∂jΦ)b, we compute

P(eiλΦb) = eiλΦ(D + λ∇Φ) · (γ(D + λ∇Φ)b)

= eiλΦ

λ2 p2(x,∇Φ)b + λ
1
i

2γ∇Φ · ∇b +∇ · (γ∇Φ)b︸ ︷︷ ︸
=:Lb

+ Pb

 . (32)

We want to choose Φ and b so that P(eiλΦb) = OL2(Ω)(λ
−N). Looking at the λ2 term in (32),

we first choose Φ so that
p2(x,∇Φ) = 0 in Ω. (33)

We additionally want that Φ(x′, 0) = x′ · ξ ′0 and ∂nΦ(x′, 0) = i (this will imply that ∇Φ(0) =

ξ0 + ien). In fact, using (31) we can just choose

Φ(x′, xn) := x′ · ξ ′0 + ixn

and then p2(x,∇Φ) = γ(ξ0 + ien) · (ξ0 + ien) ≡ 0 in Ω.
We next look for b in the form

b =
N

∑
j=0

λ−jb−j.
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Since p2(x,∇Φ) ≡ 0, (32) implies that

P(eiλΦb) = eiλΦ
[
λ[

1
i

Lb0] + [
1
i

Lb−1 + Pb0] + λ−1[
1
i

Lb−2 + Pb−1] + . . .

+ λ−(N−1)[
1
i

Lb−N + Pb−(N−1)] + λ−N Pb−N

]
. (34)

We will choose the functions b−j so that

Lb0 = 0 to infinite order at {xn = 0},
1
i Lb−1 + Pb0 = 0 to infinite order at {xn = 0},

...
1
i Lb−N + Pb−(N−1) = 0 to infinite order at {xn = 0}.

(35)

We will additionally arrange that{
b0(x′, 0) = χ(x′),

b−j(x′, 0) = 0 for 1 ≤ j ≤ N,
(36)

and that each b−j is compactly supported so that

supp(b−j) ⊂ Qε := {|x′| < ε, 0 ≤ xn < ε} (37)

for some fixed ε > 0.
To find b0, we prescribe b0(x′, 0), ∂nb0(x′, 0), ∂2

nb0(x′, 0), . . . successively and use the Borel
summation lemma to construct b0 with this Taylor series at {xn = 0}. We first set b0(x′, 0) = χ(x′).
Writing η := ∇ · (γ∇Φ), we observe that

Lb0|xn=0 = 2γ(ξ ′0 · ∇x′b0 + i∂nb0) + ηb0|xn=0.

Thus, in order to have Lb0|xn=0 = 0 we must have

∂nb0(x′, 0) = − 1
2iγ(x′, 0)

[
2γ(x′, 0)ξ ′0 · ∇x′b0 + ηb0

] ∣∣∣
xn=0

.

We prescribe ∂nb0(x′, 0) to have the above value (which depends on the already prescribed
quantity b0(x′, 0)). Next we compute

∂n(Lb0)|xn=0 = 2γi∂2
nb0 + Q(x′, b0(x′, 0), ∂nb0(x′, 0)),

where Q depends on the already prescribed quantities b0(x′, 0) and ∂nb0(x′, 0). We thus set

∂2
nb0(x′, 0) = − 1

2iγ(x′, 0)
Q(x′, b0(x′, 0), ∂nb0(x′, 0)),

which ensures that ∂n(Lb0)|xn=0 = 0. Continuing in this way and using Borel summation, we obtain a
function b0 so that Lb0 = 0 to infinite order at {xn = 0}. The other equations in (35) are solved in a
similar way, which gives the required functions b−1, . . . , b−N . In the construction, we may arrange so
that (36) and (37) are valid.
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If Φ and b−j are chosen in the above way, then (34) implies that

P(eiλΦb) = eiλΦ

[
λq1(x) +

N

∑
j=0

λ−jq−j(x) + λ−N Pb−N

]

where each qj(x) vanishes to infinite order at xn = 0 and is compactly supported in Qε. Thus, for any
k ≥ 0 there is Ck > 0 so that |qj| ≤ Ckxk

n in Qε, and consequently

|P(eiλΦb)| ≤ e−λIm(Φ)
[
λCkxk

n + Cλ−N
]

.

Since Im(Φ) = xn in Qε we have

‖P(eiλΦb)‖2
L2(Ω) ≤ Ck

∫
Qε

e−2λxn
[
λ2x2k

n + λ−2N
]

dx

≤ Ck

∫
|x′ |<ε

∫ ∞

0
e−2xn

[
λ1−2kx2k

n + λ−1−2N
]

dxn dx′.

Choosing k = N + 1 and computing the integrals over xn, we get that

‖P(eiλΦb)‖2
L2(Ω) ≤ CNλ−2N−1.

It is also easy to compute that
‖eiλΦb‖H1(Ω) ∼ λ1/2.

Thus, choosing a = λ−1/2b, we have proved all the claims except (25).
To show (25), we observe that

∇v = eiλΦ [iλ(∇Φ)a +∇a] .

Using a similar formula for ṽ = eiλΦ ã (where Φ is independent of the conductivity), we have

dist(x, ∂Ω)k f∇v · ∇ṽ = xk
n f e−2λxn

[
λ2|∇Φ|2aã + λ1[· · · ] + λ0[· · · ]

]
.

Now |∇Φ|2 = 2 and a = λ−1/2b where |b| . 1, and similarly for ã. Hence

λk
∫

Ω
dist(x, ∂Ω)k f∇v · ∇ṽ dx

= λk+1
∫
Rn−1

∫ ∞

0
xk

ne−2λxn f
[
2bb̃ + OL∞(λ−1)

]
dxn dx′.

We can change variables xn → xn/λ and use dominated convergence to take the limit as λ→ ∞.
The limit is

ck

∫
Rn−1

f (x′, 0)b0(x′, 0)b̃0(x′, 0) dx′ = ck

∫
Rn−1

f (x′, 0)|χ(x′)|2 dx′,

where ck = 2
∫ ∞

0 xk
ne−2xn dxn 6= 0.

The proof is complete in the case when x0 = 0 and ∂Ω is flat near 0. In the general case, we choose
boundary normal coordinates (x′, xn) so that x0 corresponds to 0 and Ω near x0 locally corresponds to
{xn > 0}. The equation ∇ · (γ∇u) = 0 in the new coordinates becomes an equation

∇ · (γA∇u) = 0 in {xn > 0},

where A is a smooth positive matrix only depending on the geometry of Ω near x0. The construction
of v now proceeds in a similar way as above, except that the equation (33) for the phase function Φ can
only be solved to infinite order on {xn = 0} instead of solving it globally in Ω.
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