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The method of many-body Green’s functions is developed for arbitrary systems of electrons and nuclei starting
from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory
presented here resolves the problems arising from the translational and rotational invariance of this Hamiltonian
that afflict the existing many-body Green’s function theories. We derive a coupled set of exact equations for the
electronic and nuclear Green’s functions and provide a systematic way to approximately compute the properties
of arbitrary many-body systems of electrons and nuclei beyond the Born-Oppenheimer approximation. The case
of crystalline solids is discussed in detail.
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I. INTRODUCTION

The Born-Oppenheimer (BO) approximation [1,2] is
among the most fundamental ingredients of modern
condensed-matter theory. Much of our current understanding
of molecules and crystalline solids is heavily based on this
approximation and its validity. The BO approximation not
only makes calculations computationally feasible, the motion
of nuclear wave packets in the lowest BO potential energy
surface also provides us with an intuitive picture of many
chemical reactions.

The numerical efficiency of the BO approximation comes
from treating the electronic and nuclear problems separately
in such a way that the nuclear coordinates only enter as
parameters in the electronic many-body problem while the
nuclear Hamiltonian contains, as scalar potential, the total
electronic ground-state energy as a function of the nuclear
coordinates. Then the total wave function of the system is
a single product of a nuclear wave function (typically a
vibrational state) and the many-electron wave function which
parametrically depends on the nuclear coordinates.

To deal with the electronic-structure problem at fixed nu-
clear configuration, various approaches are available, such
as density functional theory [3–6] or the method of many-
body Green’s functions [7–14]. The nuclear many-body
Schrödinger equation is usually treated differently: One first
rewrites the nuclear Hamiltonian in terms of normal coordi-
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nates which represent the nuclear vibrational and rotational
degrees of freedom. In terms of these coordinates, the BO
surface (i.e., the scalar potential in the nuclear Schrödinger
equation) is expanded to second order around the equilibrium
positions, so that the solution can be written analytically as
a product of harmonic-oscillator wave functions (phonons).
Higher orders of the expansion appear as phonon-phonon
interactions in the nuclear Schrödinger equation and can be
dealt with using bosonic many-body Green’s functions [8,15–
19]. With this strategy, phonon spectra [20–23], thermal con-
ductivities, and other thermal properties [24–33] have been
successfully calculated. In most cases, especially in solids,
the results of such BO-based calculations are in very good
agreement with experiment. Somewhat surprisingly, this is
also true for metals. As there is no gap in metals, there is
no clear separation of electronic and nuclear energy scales in
the low-lying excitations, so the naive expectation would have
been that the validity of the BO approximation is questionable.
Still, BO-based calculations of phononic properties of metals
are usually very successful. There are only a few notable
exceptions such as MgB2 [34], graphene [35], and, possibly,
the recently discovered lanthanum hydride high-temperature
superconductors [36–38].

In spite of this tremendous success of the BO approxi-
mation, a number of fascinating phenomena in physics and
chemistry appear in the so-called nonadiabatic regime where
the coupled motion of electrons and nuclei beyond the Born-
Oppenheimer approximation is essential. Examples are the
process of vision [39], exciton dynamics in photovoltaic sys-
tems [40,41], the splitting of the nuclear wave packet in the
Zewail Nobel prize experiments [42–44], and the occurrence
of local electronic currents associated with nuclear motion
[45–47].

To go beyond the BO approximation is notoriously difficult
because one has to start from scratch, that is from the complete
many-body Hamiltonian of interacting electrons and nuclei. In
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the nonrelativistic regime, this Hamiltonian is given by

H = Tn + Te + Vee + Ven + Vnn, (1)

where, in position representation, the kinetic energies are

Tn = −
Nn∑

k=1

h̄2

2Mk
∇2

Rk
, Te = − h̄2

2me

Ne∑
i=1

∇2
ri
, (2)

while the potential energy contributions are of the form

Vee =
Ne∑

i,i′=1

′ve(ri, ri′ ), Ven =
Ne∑

i=1

Nn∑
k=1

ven(ri, Rk ),

Vnn =
Nn∑

k,k′=1

′vn(Rk, Rk′ ). (3)

Here the primed sums are over the values i �= i′, k �= k′ and
ven, ve, and vn are the bare Coulomb interactions

ven(ri, Rk ) = −Zkς

|ri − Rk| ,

ve(ri, ri′ ) = 1

2

ς

|ri − ri′ | ,

vn(Rk, Rk′ ) = 1

2

ZkZk′ς

|Rk − Rk′ | , (4)

where ς = e2/(4πε0). The system consists of Ne electrons
and Nn nuclei. The position coordinates of these particles

ri, i = 1, . . . , Ne, Rk, k = 1, . . . , Nn, (5)

as they appear in Eqs. (1)–(4), refer to the laboratory frame.
The Hamiltonian H given by Eq. (1) is translationally and
rotationally invariant. This has a number of important con-
sequences which will be discussed in the following. The
eigenstates in position representation of the Hamiltonian H
are the solutions of the stationary Schrödinger equation

H�s = Es�s, (6)

where s labels the eigenstates. The translational invari-
ance of the Hamiltonian implies that it commutes with
the total momentum operator. Hence the eigenstates �s =
�s(r1, . . . , rNe , R1, . . . , RNn ) can be chosen to be simultane-
ous eigenstates of the Hamiltonian and the total momentum
operator:

�s = eiPs·Rcm�s(r̃2, . . . , r̃Ne , R̃1, . . . , R̃Nn ), (7)

where Rcm is the center-of-mass position vector of the com-
plete system, and Ps is the total momentum of state �s. The
coordinates r̃i and R̃k are given by

r̃i = ri − Rcm, i = 2, . . . , Ne,

R̃k = Rk − Rcm, k = 1, . . . , Nn. (8)

We now calculate the standard probability density ns(r1) of
finding an electron at point r1 (in the laboratory frame) if the
system is in the eigenstate �s:

ns(r1) =
∫

dr2 · · ·
∫

drNe

∫
dR|�s(r1, . . . , rNe , R)|2, (9)

where we denote all the nuclear variables by R. Plugging
Eq. (7) into Eq. (9) and substituting the integration variables

r2, . . . , rNe , R1, . . . , RNn by the variables given by Eq. (8), we
immediately realize that the density ns(r1) does not depend on
r1. This is true for any atom, molecule, or solid and is perfectly
reasonable: The Hamiltonian H does not localize the system
anywhere in space and hence finding an electron is equally
likely everywhere. A similar feature appears for the electronic
one-body Green’s function when defined with respect to the
ground state �0 of the Hamiltonian H :

Ggs(rt, r′t ′) = − i

h̄
〈�0|T {ψ̂ (rt )ψ̂†(r′t ′)}|�0〉 . (10)

Here T is the usual time-ordering operator and
ψ̂†(r′t ′), ψ̂ (rt ) are electron creation and annihilation
operators in the Heisenberg picture, the latter referring to the
full Hamiltonian given by Eq. (1). It is easy to verify that
the so-defined Green’s function Ggs(rt, r′t ′) only depends on
r − r′. Again this feature holds true for all atoms, molecules,
and solids. This property of the Green’s function, and likewise
the constancy of the probability density, are consequences of
the translational invariance of the underlying Hamiltonian H
and are, as such, not at all surprising. If one wants to develop
a density functional theory or a Green’s-function-based
many-body theory for the complete system of electrons and
nuclei, then, clearly, the probability density of Eq. (9) and the
Green’s function of Eq. (10) are not useful quantities because
they do not reveal any features characteristic of the system,
for example the molecule, to be described. We need to find
other densities or Green’s functions on which the theory can
be built, densities or Green’s functions that reflect the internal
features of the molecule or crystal.

Eigenfunctions do not necessarily have the same symmetry
as the Hamiltonian they come from, they may have lower
symmetry. In our case, having the eigenstates �s to be si-
multaneous eigenstates of the total momentum was a choice
we made, and it is exactly this choice that produced the
constant density. However, it is important to realize that we
can always separate off the center-of-mass motion, and hence
the eigenstates of the Hamiltonian given by Eq. (1) can always
be written as

�s = �cm(Rcm)�s(r̃2, . . . , r̃Ne , R̃1, . . . , R̃Nn ), (11)

where �cm satisfies the equation

− h̄2

2M
∇2

Rcm
�cm(Rcm) = Ecm�cm(Rcm), (12)

where M is the total mass of electrons and nuclei. Equation (7)
was a particular solution of Eq. (12) that preserves the trans-
lational symmetry of the Hamiltonian. But other solutions can
be chosen, for instance angular-momentum eigenstates (i.e.,
partial waves) of the form

�cm(Rcm) = jl (Rcm)Ylm(ϑ, ϕ), (13)

as well as linear combinations of these functions with the
same absolute total momentum Ps, as these span the subspace
of degenerate eigenfunctions with energy Ecm = P2

cm/2M.
Clearly an eigenstate of the form (11) with �cm being of
the form (13) will not have a constant probability density
ns(r1). There will be a genuine r1 dependence. However, this
r1 dependence reflects the shape of the angular-momentum
eigenstate (13) of the center of mass but, again, will not be
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characteristic of the internal structure of the molecule. So,
for building a density functional theory or Green’s function
theory, such choice will not be helpful. Alternatively, one
might consider the possibility of localizing the whole system
with an external confining potential. While this will avoid a
constant density, the shape of ns(r1) will reflect the shape of
the confining potential but will not reveal the internal structure
of the molecule. So, once again, this choice is not suitable
for constructing a density functional or Green’s function
approach to the complete system of electrons and nuclei.

There are essentially two distinctly different choices one
can make for the density or Green’s function that are use-
ful in constructing a density-functional or Green’s function
approach: One either refers the coordinates on which the
density/Green’s function depends to a body-fixed coordinate
frame, or one works with conditional probabilities. The sec-
ond option, i.e., the choice of conditional probabilities, is
taken in the BO framework: The standard BO-based Green’s
function for electrons is defined in terms of an electronic
many-body wave function �R(r1, . . . , rNe ) which is a con-
ditional probability amplitude for finding the electrons at
r1, . . . , rNe , given the nuclei are at R. Likewise, the standard
Hohenberg-Kohn-Sham ground-state density functional the-
ory is based on the conditional probability density nR(r1) of
finding an electron at r1, given the nuclei are at R. Using
the framework of the exact factorization [48,49], a density
functional framework beyond the BO limit has been devel-
oped [50–53] on the basis of the exact (rather than BO)
conditional density. A Green’s function approach based on the
exact factorization has not been attempted so far.

In this article we follow the first option: Our goal is to
develop a Green’s function-based many-body theory for the
complete system of electrons and nuclei where the Green’s
functions are defined in terms of coordinates that refer to
a body-fixed coordinate frame. First steps in this direc-
tion were taken with the formulation of a multicomponent
density-functional theory [54–56] and with the derivation of a
Green’s-function framework [57]. In the latter, the electronic
degrees of freedom are treated in a fully consistent way. How-
ever, no determining equation for the nuclear Green’s function
was derived. A nuclear density-density correlation function
must be imported from outside the theory. Furthermore, the
earlier work considered only crystalline solids excluding some
important terms when the theory is imposed in the study of
molecules, for example. The purpose of the present article is
to deduce, from the general Hamiltonian of Eq. (1), a coupled
set of self-consistent equations for the electronic and nuclear
Green’s functions that does not require any input from outside.

This paper is organized as follows. In Sec. II we discuss in
detail the coordinate transformation to the body-fixed frame
and how the Hamiltonian looks when expressed in terms of
these coordinates. The equation of motion (EOM) for the
electronic Green’s functions are presented in Sec. III, and for
the nuclear Green’s function in Sec. IV. Hedin-like equations
for the electrons are deduced in Sec. V. We discuss how to
determine some parameters related to the coordinate trans-
formations in Sec. VI. The general normal mode frequencies
are derived in Sec. VII A and an expression for the nuclear
self-energy (SE) due to the Coulombic interactions to the

lowest order is given in Sec. VII B. The special case of
crystalline solids is considered in Sec. VIII. Phonons and their
interactions are discussed in Sec. VIII A.

II. COORDINATE TRANSFORMATION AND THE
TRANSFORMED HAMILTONIAN

A. Hamiltonian

As demonstrated above, the density ns(r1) is constant for
the wave function given by Eq. (7) if r1 denotes a coordinate
vector in the laboratory frame. By contrast, the density ns(r̃1)
with r̃1 being the position measured from the center of mass is
not a constant and reveals to some extent the internal structure
of the system. However, the density ns(r̃1) is not good enough
yet because it is spherical for all atoms, molecules, and solids.
Clearly we still need to deal with the rotational degrees of
freedom. This is achieved by the following transformation
[54,55,57–59]:

r′
i = R(θ)(ri − Rcmn), i = 1, . . . , Ne,

R′
k = Rk − Rcmn, k = 1, . . . , Nn − 1,

R′′
Nn

= Rcm, (14)

where R = R(θ) is a rotation matrix and θ = (θ1, θ2, θ3) is
the associated vector of Euler angles which, for now, are
assumed to be functions of all the Nn − 1 nuclear variables
denoted by R′. We used R′′

Nn
for one of the transformed

coordinates in order to keep our notation consistent in writing
the transformed Coulomb potential terms. Furthermore, Rcmn

is the nuclear center of mass given by

Rcmn = 1

Mnuc

Nn∑
k=1

MkRk, Mnuc ≡
Nn∑

k=1

Mk . (15)

We can think of the coordinate transformation given by
Eq. (14) as two sequential steps. First, the coordinates are
written relative to the nuclear center of mass and the center
of mass of the total system is separated. Second, the rotation
of the electronic coordinates shown in Eq. (14) is established
to fix an orientation of the electronic subsystem relative
to the nuclear center-of-mass frame. Such body-fixed-frame
transformations are also used in the BO approximation when
it is formulated for molecules [1,60]. In terms of the new
coordinates given by Eq. (14), the Hamiltonian reads

H = Tcm + T ′
e + T ′

n + T ′
mpe + T ′

mpn + Tcvr + T ′
cvr

+V ′
ee + V ′

en + V ′
nn + Vext. (16)

Here Vext is an external potential added to the Hamiltonian
(not originating from the coordinate transformation) which is
introduced in order to use the functional derivative techniques
[61] when we derive the EOM. We will specify its explicit
form later. After the EOM are obtained we put Vext ≡ 0. The
transformed kinetic energies in Eq. (16) are

Tcm = − h̄2

2M
∇2

Rcm
,

T ′
e = − h̄2

2me

Ne∑
i=1

∇2
r′

i
,
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T ′
n = −

Nn−1∑
k=1

h̄2

2Mk
∇2

R′
k
,

T ′
mpe = − h̄2

2Mnuc

Ne∑
i, j=1

∇r′
i
· ∇r′

j
,

T ′
mpn = h̄2

2Mnuc

Nn−1∑
k,k′=1

∇R′
k
· ∇R′

k′ , (17)

where the total mass is M = Mnuc + meNe and the transformed
Coulomb potential terms are

V ′
ee =

Ne∑
i, j=1

′ve(r′
i, r′

j ),

V ′
nn =

Nn∑
k,k′=1

′vn(R′
k, R′

k′ ),

V ′
en =

Ne∑
i=1

Nn∑
k=1

ven(r′
i,RR′

k ),

R′
Nn

≡ − 1

MNn

Nn−1∑
k=1

MkR′
k . (18)

In Eq. (16), Tcvr and T ′
cvr include the Coriolis and rotational-

vibrational coupling terms. The explicit form of these quanti-
ties is given in Appendix A. The center-of-mass kinetic energy
Tcm commutes with all the other terms in the Hamiltonian
and does not enter the EOM and, hence, can be disregarded
without loss of generality. There are only Nn − 1 primed nu-
clear coordinates appearing in the Hamiltonian. However, the
number of degrees of freedom is still the same as before since
one of the coordinates is the total center-of-mass coordinate
of the system. The potential terms V ′

nn and V ′
en involving R′

Nn

are no longer translation invariant in the new coordinates.
The mass-polarization terms T ′

mpe and T ′
mpn are expected to be

rather small in the case of crystals and larger molecules since
they are proportional to the inverse of the total nuclear mass.

Next we perform yet another transformation of the nuclear
coordinates and write the position coordinates as a sum of
reference positions xk (which act as parameters) and displace-
ments uk (quantum variables), namely

R′
k = xk + uk, k = 1, . . . , Nn − 1. (19)

We will consider the determination of the reference positions
xk in detail in Sec. VI. For now these are taken as arbitrary real
parameters. Depending on the situation, we use the following
notations interchangeably uk = u(k) for the displacements
and, analogously, for R′

k and xk . This allows us to denote
the αth Cartesian components of xk and uk by xα (k) and
uα (k). Furthermore, we sometimes denote all the Nn − 1
nuclear reference positions and displacements by x and u,
respectively. We emphasize that the theory is still exact after
the transformation given by Eq. (19). The position variables
in the Hamiltonian H transform as Eq. (19) shows and the
derivatives in the kinetic energy terms [Eq. (17)] transform
as ∇R′

k
→ ∇uk . We now have all the necessary prerequisites

in place to write our Hamiltonian. We choose to write the

electronic parts of the Hamiltonian in second quantization.
This can be done in a similar way as in the laboratory frame
formulation since the transformed Hamiltonian has the same
permutation symmetry with respect to the electronic variables
as the original one. With respect to the nuclear coordinates
R′, the transformed Hamiltonian does not necessarily have the
same permutation symmetry as the original one (for identical
nuclei). Therefore, the nuclear part is kept in first quantiza-
tion. Note that the transformed Hamiltonian only contains
Nn − 1 independent nuclear coordinate and the total (electron-
nuclear) center of mass. After using Eq. (19) and ignoring the
center-of-mass kinetic energy, we obtain the final form of the
Hamiltonian

Ĥ = T̂tot + V̂ ′
ee + V̂ ′

en + V̂ ′
nn + V̂ext, (20)

where

T̂tot = T̂ ′
e + T̂ ′

n + T̂ ′
mpe + T̂ ′

mpn + T̂cvr + T̂ ′
cvr. (21)

Here T̂cvr and T̂ ′
cvr are given in Appendix A and the other

kinetic energy terms are

T̂ ′
n =

Nn−1∑
k=1

p̂k · p̂k

2Mk
,

T̂ ′
mpn = −

Nn−1∑
k,k′=1

p̂k · p̂k′

2Mnuc
,

T̂ ′
e = − h̄2

2me

∫
drψ̂†(r)∇2

r ψ̂ (r),

T̂ ′
mpe = − h̄2

2Mnuc

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)∇r · ∇r′

× ψ̂ (r′)ψ̂ (r). (22)

The energy terms associated with the particle-particle interac-
tions are

V̂ ′
ee = 1

2

∫
dr

∫
dr′v(r, r′)ψ̂†(r)ψ̂†(r′)ψ̂ (r′)ψ̂ (r),

V̂ ′
en =

∫
dr

∫
dr′v(r, r′)n̂n(r′)n̂e(r)

=
∫

drV̂en(r)n̂e(r),

V̂ ′
nn =

Nn∑
k,k′=1

′vn(xk + ûk, xk′ + ûk′ ), (23)

and the external potential part is

V̂ext =
∫

drU (rt )[n̂e(r) + n̂n(r)]

+
∫

drU ′(rt )n̂n(r) +
Nn−1∑
k=1

J(kt ) · ûk

+
∫

drϕ(rt )n̂e(r), (24)

where we use n̂e(r) = ψ̂†(r)ψ̂ (r). Furthermore, the quantities
U (rt ), U ′(rt ), J(kt ), and ϕ(rt ) are time-dependent external
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potentials. In these equations v(r, r′) = ς/|r − r′| and

n̂n(r) ≡ −
Nn∑

k=1

Zkδ{r − R[θ(R̂′)]R̂′
k},

V̂en(r) =
Nn∑

k=1

−Zkς

|r − R[θ(R̂′)]R̂′
k|

. (25)

The operators ûα (k), p̂α′ (k′), ψ̂†(r), and ψ̂ (r) satisfy the
following commutation and anticommutation relations:

[ûα (k), p̂α′ (k′)]− = ih̄δαα′δkk′ ,

[ψ̂ (r), ψ̂†(r′)]+ = δ(r − r′). (26)

So far the Euler angles in Eq. (14) were assumed to be
generic functions of the nuclear coordinates R′. We have not
introduced any defining relations for them. There are many
ways to choose these angles. Without loss of generality we
assume that the Euler angles are defined through an implicit
equation of the form

F(θ, R′) = 0. (27)

For example, one possible form of Eq. (27) is the Eckart
condition which can be written as [57,58,62–64]

Nn−1∑
k=1

Mkxk × RR′
k = 0. (28)

The relations given by Eqs. (27) and (28) define the Euler
angles and thus the rotation matrix as a function of the
Nn − 1 nuclear variables R = R[θ(R′)]. Some implicit con-
ditions, like the Eckart condition, can change the permutation
symmetry present in the original Hamiltonian [57,58] with
respect to the old R and new nuclear variables R′ leading to
possible complications when (anti)symmetrizing the nuclear
subsystem(s) properly. However, the implicit condition does
not change the canonical commutation relations [Eq. (26)]
between the nuclear position and momentum operators. This
means that the EOM for the electron and nuclear Green’s
functions remain the same whether or not the implicit con-
dition changes the permutation symmetry of the Hamiltonian
with respect to the nuclear variables. In the case in which the
implicit condition changes the aforementioned permutation
symmetries and it turns out to be difficult to apply the theory
because of the complicated symmetry, we may assume, as in
the previous works [8,65], that the nuclei are distinguishable.
By doing so we avoid the problems potentially caused by
a more complicated permutation symmetry. There are few
physical effects in which the permutation symmetry of the
nuclei is crucial. Some implicit conditions are not suitable
for describing arbitrary systems, for example, in the case of
linear molecules, the Eckart conditions are not well defined
[62,66]. Thus, while our theory is general, the specific choice
of F(θ, R′) in Eq. (27) may restrict the range of applicability
of the theory.

Up to this point, we have not introduced any approxima-
tions. We have set up the Hamiltonian to work with and derive
the EOM for the electronic and nuclear Green’s functions by
using it in Secs. III and IV. Before that, we discuss in more

detail how to actually obtain the Euler angles appearing in the
Hamiltonian.

B. Euler angles

The condition given by Eq. (27) defines the Euler angles
by an implicit equation of the form F(θ, x + u) = 0. Explicit
solutions of such equations do not always exist [67–69], that
is, it may be impossible to write θ as an explicit function of
the nuclear variables x, u. However, for given x, u and given
nuclear masses, a numerical solution can always be obtained
[69]. We are particularly interested in how to obtain the
rotation matrix R[θ(x)] and its derivatives. These quantities
appear in the Hamiltonian when we do the Taylor expansions
of some parts of the Hamiltonian (see Appendix B) and thus
they will ultimately appear in the EOM.

The rotation matrix R[θ(x + u)] can be obtained from a
generic condition given by Eq. (27). In turn, R[θ(x)] can be
obtained by solving Eq. (27) with uk = 0 for all k. Thus,
R[θ(x)] is obtained from the implicit equation F(θ, x) =
0. For instance, in the case of Eckart conditions given by
Eq. (28),

Nn−1∑
k=1

Mkxk × R(θ)xk = 0, (29)

with the Euler angles θ(x), such that 0 < θβ (x) < 2π for
β = 1, 2, 3. What we need next are the derivatives of R[θ(x)]
appearing in the Hamiltonian [see Eqs. (B1) and (B2) of
Appendix B]. By the chain rule we write

∂R
∂xα (k)

=
3∑

β=1

∂R
∂θβ

∂θβ

∂xα (k)
,

∂2R
∂xβ (k′)∂xα (k)

=
3∑

β ′,β ′′=1

∂2R
∂θβ ′∂θβ ′′

∂θβ ′′

∂xβ (k′)
∂θβ ′

∂xα (k)

+
3∑

β ′=1

∂R
∂θβ ′

∂2θβ ′

∂xα (k)∂xβ (k′)
. (30)

Given the explicit form for the rotation matrix as function
of the Euler angles we can calculate the derivatives like
∂R/∂θβ ′ . Next we calculate the derivatives ∂θβ ′/∂xα (k) and
∂2θβ ′/∂xα (k)∂xβ (k′), etc. After taking the total derivative of
Fσ (θ, x, u) with respect to xα (k) we write

dFσ

dxα (k)
=

3∑
β ′=1

Aσβ ′
∂θβ ′

∂xα (k)
+ ∂Fσ

∂xα (k)
= 0, (31)

where Aσβ ′ ≡ ∂Fσ /∂θβ ′ . Suppose that the matrix A is invert-
ible such that

3∑
σ=1

A−1
γ σ Aσβ ′ = δγβ ′ . (32)

By multiplying Eq. (31) with A−1
γ σ , taking a sum over σ and

rearranging, we obtain

∂θγ

∂xα (k)
= −

3∑
σ=1

A−1
γ σ

∂Fσ

∂xα (k)
. (33)
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The result given by Eq. (33) is essentially included in the im-
plicit function theorem [70]. For the second-order derivative
we take the total derivative of Eq. (33) with respect to (w.r.t.)
xβ (k′) and after some algebra find that

∂2θγ

∂xα (k)∂xβ (k′)

= −
3∑

σ=1

A−1
γ σ

∂2Fσ

∂xα (k)∂xβ (k′)
−

3∑
β ′,σ=1

A−1
γ σ

∂θβ ′

∂xα (k)

×
⎡
⎣ 3∑

β ′′=1

∂2Fσ

∂θβ ′∂θβ ′′

∂θβ ′′

∂xβ (k′)
+ ∂2Fσ

∂θβ ′∂xβ (k′)

⎤
⎦

−
3∑

β ′′,σ=1

A−1
γ σ

∂2Fσ

∂xα (k)∂θβ ′′

∂θβ ′′

∂xβ (k′)
. (34)

All the quantities in Eqs. (33) and (34) are to be evaluated
at θ = θ(x), uk = 0 for all k when applied in solving the
relations of Eq. (30) aiming to evaluate R[θ(x)]. For instance,
when the condition Fσ (θ, x, u) is the Eckart condition given
by Eq. (28), we have

∂Fσ

∂θβ ′
=

Nn−1∑
k=1

Mk

3∑
η,ν=1

εσηνxη(k)
3∑

β=1

∂Rνβ

∂θβ ′
R′

β (k),

∂Fσ

∂xα (k)
= Mk

3∑
ν=1

εσαν

3∑
β=1

RνβR′
β (k)

+ Mk

3∑
η,ν=1

εσηνxη(k)Rνα, (35)

and analogously for the derivatives w.r.t. the other compo-
nents. Here εσην is the Levi-Civita symbol.

III. EQUATION OF MOTION FOR THE ELECTRONIC
GREEN’S FUNCTION

Here we derive the exact EOM for the electronic Green’s
function. We denote an ensemble average for an operator ô(t )
(in the Heisenberg picture) as

〈ô(t )〉 =
∑

n

〈φn|ρ̂ô(t )|φn〉 = Tr[ρ̂ô(t )], (36)

where {|φn〉} is an orthonormal basis of the electron-nuclear
Hilbert space. The density operator is the standard grand
canonical statistical operator

ρ̂ = e−βĤM

Z
, Z = Tr

[
e−βĤM ]

, (37)

where

ĤM = Ĥ − μeN̂e, N̂e =
∫

drn̂e(r), (38)

and μe is the chemical potential of the electrons. One has to
emphasize that the grand canonical Hamiltonian [Eq. (38)]
refers to a fixed number of nuclei, while for the electrons the
chemical potential is fixed (rather than the particle number)
[8]. Here the time variable t could be taken as a variable
on a general time contour such as the real time axis or on
a more general time contour such as the Keldysh contour
[13,71] allowing for a nonequilibrium formulation. This is

justifiable since in both cases the EOM are the same [13].
In the following, we assume that the time variables are on
the Keldysh contour γ and denote the time variables on the
contour with z.

We start by writing the EOM for the field operator ψ̂ (rz)
(in the Heisenberg picture, that refers to the full electron-
nuclear Hamiltonian), namely

ih̄
∂ψ̂ (rz)

∂z
= D̂(rz)ψ̂ (rz)

+
∫

dr′v(r, r′)ψ̂†(r′z)ψ̂ (r′z)ψ̂ (rz)

− h̄2

Mnuc

∫
dr′ψ̂†(r′z)∇r · ∇r′ψ̂ (r′z)ψ̂ (rz)

+ 2
∑

β,σ,γ ,γ ′
L̂(3)

γ σγ ′β

∫
dr′

× ψ̂†(r′z)rγ ′r′
γ

∂2

∂r′
σ ∂rβ

ψ̂ (r′z)ψ̂ (rz), (39)

where

D̂(rz) = − h̄2

2me
∇2

r + U (rz) + ϕ(rz)

+
∫

dr′v(r, r′)n̂n(r′z) +
∑
β,γ

L̂(1)
βγ rγ

∂

∂rβ

+
Nn−1∑
k=1

∑
α,β,γ

L̂(2)
αβγ (k) p̂α (kz)rγ

∂

∂rβ

(40)

and

L̂(1)
βγ ≡ T̂ (1)

βγ + M̂ (1)
βγ ,

L̂(2)
αβγ (k) ≡ T̂ (2)

αβγ (k) + M̂ (2)
αβγ (k),

L̂(3)
γ σγ ′β ≡ M̂ (3)

γ σγ ′β + T̂ (3)
γ σγ ′β. (41)

The quantities in Eq. (41) originate from the Coriolis and
vibrational-rotational coupling terms, see Appendix A. Next
we define the electron Green’s function as [7,10–13]

G(1, 2) ≡ − i

h̄

Tr
[
Tγ

{
e− i

h̄

∫
γ

dz′Ĥ (z′ )
ψ̂ (1)ψ̂†(2)

}]
Tr

[
Tγ

{
e− i

h̄

∫
γ

dz′Ĥ (z′ )}] , (42)

where Tγ is the contour time ordering operator such that

〈Tγ {ψ̂ (1)ψ̂†(2)}〉 = θ (1 − 2)〈ψ̂ (1)ψ̂†(2)〉
− θ (2 − 1)〈ψ̂†(2)ψ̂ (1)〉, (43)

and the Green’s function G(1, 2) satisfies the Kubo-Martin-
Schwinger boundary conditions [7,13]. Here and from now
on, whenever convenient, we use the following shorthand
notations:

i ≡ rizi,

θ (i − j) ≡ θ (zi − z j ),

δ(i − j) ≡ δ(zi − z j )δ(ri − r j ),

v(1, 2) ≡ δ(z1 − z2)v(r1, r2),∫
di ≡

∫
dri

∫
γ

dzi. (44)
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The EOM for the Green’s function reads

ih̄
∂

∂z1
G(1, 2) =

〈
Tγ

{[
∂

∂z1
ψ̂ (1)

]
ψ̂†(2)

}〉
+ δ(1 − 2). (45)

After using Eq. (39) in Eq. (45) we find that

δ(1 − 2) =
[

ih̄
∂

∂z1
− Y (1)

]
G(1, 2) − S(1, 2)

− S′(1, 2), (46)

where

S′(1, 2) ≡ 1

ih̄

∫
d3v(1, 3)〈Tγ {n̂(3)ψ̂ (1)ψ̂†(2)}〉,

Y (1) ≡ − h̄2

2me
∇2

r1
+ U (1) + ϕ(1), (47)

and the total density is defined by n̂(1) ≡ n̂e(1) + n̂n(1). All
the terms originating from the transformed kinetic energies
T̂ ′

mpe, T̂cvr, and T̂ ′
cvr are included in the quantity S(1, 2) given

by

S(1, 2) =
3∑

c=1

Sc(1, 2), (48)

where Sc(1, 2) for each c is given in Sec. V. By subtracting
the quantity ∫

d3v(1, 3)〈n̂(3)〉G(1, 2) (49)

from both sides of Eq. (46) we find[
ih̄

∂

∂z1
+ h̄2

2me
∇2

r1
− Vtot(1)

]
G(1, 2)

= δ(1 − 2) + S(1, 2) + S̃(1, 2), (50)

where

S̃(1, 2) ≡ S′(1, 2) −
∫

d3v(1, 3)〈n̂(3)〉G(1, 2),

Vtot(1) ≡ ϕ(1) + U (1) +
∫

d3v(1, 3)〈n̂(3)〉. (51)

Next we write the quantities S(1, 2) and S̃(1, 2) in terms of
the corresponding SEs, define (here c = 1, 2, 3)

�(1, 3) ≡
∫

d2S̃(1, 2)G−1(2, 3),

�c(1, 3) ≡
∫

d2Sc(1, 2)G−1(2, 3). (52)

By inverting (52) we find that

S̃(1, 2) =
∫

d3�(1, 3)G(3, 1),

Sc(1, 2) =
∫

d3�c(1, 3)G(3, 1). (53)

By using Eq. (53) in Eq. (50)

δ(1 − 2) =
[

ih̄
∂

∂z1
+ h̄2

2me
∇2

r1
− Vtot(1)

]
G(1, 2)

−
∫

d3�t (1, 3)G(3, 2), (54)

where

�t (1, 2) ≡ �(1, 2) +
3∑

c=1

�c(1, 2). (55)

We can also write Eq. (46) in the form of a Dyson equation

G(1, 2) = G0(1, 2) +
∫

d3
∫

d4G0(1, 3)�t (3, 4)G(4, 2),

(56)
the function G0(1, 2) being a solution of

[
ih̄

∂

∂z1
+ h̄2

2me
∇2

r1
− Vtot(1)

]
G0(1, 2) = δ(1 − 2). (57)

Most of the previous literature on the electron-nuclear many-
body problem employed the laboratory frame formulation
[8,65]. By contrast the present article works with a body-
fixed frame. This allows for an explicit inclusion of rotational
and vibrational degrees of freedom and their coupling, in a
consistent way. A first important step towards a consistent
body-fixed-frame formulation was taken in Ref. [57]. In the
present formulation, the self-energy �t also contains the
kinetic energy contributions T ′

mpe, Tcvr, and T ′
cvr. Neglecting

these contributions leads to Eqs. (54) and (56) with �c(1, 3) ≡
0 for c = 1, 2, 3 and thus �t (1, 3) = �(1, 3). The resulting
equations are analogous to those of Ref. [57]. All the rather
complicated kinetic energy terms, originating from the body-
fixed-frame transformation, are hidden in the SEs �c(1, 3).
We will give an explicit, approximate form of each �c(1, 3)
in Eqs. (86) and (87) of Sec. V. In the present chapter we have
obtained the necessary EOM for the electrons. We will deduce
the Hedin-like equations for the electrons in Sec. V.

IV. EQUATION OF MOTION FOR THE NUCLEAR
GREEN’S FUNCTION

Next we set out to derive the EOM for the nuclear Green’s
function. The connection of the nuclear and electronic equa-
tions will be addressed in more detail in Sec. V. We start by
writing the Heisenberg EOM for the displacements, namely

ih̄
∂

∂z
ûα (kz) = [ûα (kz), Ĥ (z)]−. (58)

After computing the commutators by using Eq. (20) [see also
Eq. (41)], we obtain

Mk
∂

∂z
ûα (kz) = p̂α (kz) − Mk

Mnuc

Nn−1∑
k′′=1

p̂α (k′′z)

+ Mk

∑
β,γ

∫
drrγ

∂

∂rβ

L̂(2)
αβγ

(k)n̂e(rz). (59)

Differentiating Eq. (59) with respect to time and taking an
ensemble average leads to

Mk
∂2

∂z2
〈ûα (kz)〉 = Kα (kz) +

4∑
c=1

K (c)
α (kz) − Jα (kz), (60)
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where (we use T̂ ′′
cvr ≡ T̂cvr + T̂ ′

cvr)

Kα (kz) ≡ 1

ih̄
〈[ p̂α (kz), V̂ ′

en + V̂ ′
nn]−〉 + · · · ,

K (1)
α (kz) ≡ iMk

h̄Mnuc

Nn−1∑
k′=1

〈[ p̂α (k′z), V̂ ′
en + V̂ ′

nn]−〉

+ · · · ,

K (2)
α (kz) ≡ 1

ih̄
〈[ p̂α (kz), T̂ ′′

cvr]−〉,

K (3)
α (kz) ≡ iMk

h̄Mnuc

Nn−1∑
k′=1

〈[ p̂α

(
k′z

)
, T̂ ′′

cvr]−〉,

K (4)
α (kz) ≡ 1

ih̄

∑
β,γ

∫
drrγ

∂

∂rβ

× 〈[
L̂(2)

αβγ
(k)n̂e(rz), Ĥ (z)

]
−
〉
. (61)

In the first two quantities of Eq. (61), all the other contri-
butions except those originating from the external potential
terms are explicitly shown.

In order to obtain the EOM for the nuclear Green’s function
Dαβ (kz, k′z′), we take a functional derivative of Eq. (59) with
respect to Jβ (k′z′) and write

Mk
∂2

∂z2
Dαβ (kz, k′z′)

= Kαβ (kz, k′z′) +
4∑

c=1

K (c)
αβ (kz, k′z′)

− δαβδkk′δ(z − z′), (62)

where

δ〈ûα (kz)〉
δJβ (k′z′)

= 1

ih̄
〈Tγ {ûα (kz)ûβ (k′z′)}〉

− 1

ih̄
〈ûα (kz)〉〈ûβ (k′z′)〉

≡ Dαβ (kz, k′z′),

Kαβ (kz, k′z′) ≡ δKα (kz)

δJβ (k′z′)
,

K (c)
αβ (kz, k′z′) ≡ δK (c)

α (kz)

δJβ (k′z′)
. (63)

We write Eq. (62) in yet another form by using the inverse
of Dαβ (kz, k′z′) that respects the Kubo-Martin-Schwinger
boundary conditions, namely, Eq. (62) can be written in terms
of the nuclear SEs

�αα′ (kz, k̄z̄) ≡ −
∑
k′,β

∫
γ

dz′Kαβ (kz, k′z′)

× D−1
βα′ (k′z′, k̄z̄),

�
(c)
αα′ (kz, k̄z̄) ≡ −

∑
k′,β

∫
γ

dz′K (c)
αβ (kz, k′z′)

× D−1
βα′ (k′z′, k̄z̄), (64)

as

Mk
∂2

∂z2
Dαβ (kz, k′z′)

= −
∑
k′′,α′

∫
γ

dz′′�t
αα′ (kz, k′′z′′)Dα′β (k′′z′′, k′z′)

− δαβδkk′δ(z − z′), (65)

where

�t
αα′ (kz, k′z′) ≡ �αα′ (kz, k′z′) +

4∑
c=1

�
(c)
αα′ (kz, k′z′). (66)

By neglecting the kinetic energy terms T̂ ′
mpn, T̂cvr, and T̂ ′

cvr
in the Hamiltonian given by Eq. (20) leads to Eq. (65)
with �

(c)
αα′ (kz, k′z′) = 0 for all c and thus �t

αα′ (kz, k′z′) =
�αα′ (kz, k′z′). In other words, all the effects of the mass-
polarization, Coriolis, and vibrational-rotational coupling
terms on the EOM of the function Dαβ (kz, k′z′) are hidden
in the SEs �

(c)
αα′ (kz, k′z′).

In the remaining part of this section we deduce the EOM
for the momentum-displacement and momentum-momentum
Green’s functions since these functions are required in the
calculation of the total energy, see Appendix B. In order to
use the functional derivative technique we add the following
potential to the external potential part of the Hamiltonian:

Nn−1∑
k=1

3∑
β=1

Pβ (kz) p̂β (kz). (67)

We note that this term would appear in the EOM of 〈ûα (kz)〉,
but would not appear in the corresponding equations of
Dαβ (kz, k′z′). We start by writing the EOM for momentum
ensemble average, namely

∂

∂z
〈p̂α (kz)〉 = Kα (kz) + K (2)

α (kz) − Jα (kz). (68)

By taking a functional derivative of Eq. (68) with respect to
Pβ (k′z′) we find that

∂

∂z
Dpp

αβ (kz, k′z′) = K ′
αβ (kz, k′z′) + K ′′

αβ (kz, k′z′), (69)

where

Dpp
αβ (kz, k′z′) ≡ δ〈p̂α (kz)〉

δPβ (k′z′)
,

K ′
αβ (kz, k′z′) ≡ δKα (kz)

δPβ (k′z′)
,

K ′′
αβ (kz, k′z′) ≡ δK (2)

α (kz)

δPβ (k′z′)
. (70)

Next we take a functional derivative of Eq. (68) with respect
to Jβ (k′z′) and write

∂

∂z
Dpu

αβ (kz, k′z′) = −δαβδkk′δ(z − z′) + Kαβ (kz, k′z′)

+ K (2)
αβ (kz, k′z′), (71)

where Eq. (63) was used and Dpu
αβ (kz, k′z′) ≡

δ〈p̂α (kz)〉/δJβ (k′z′). We can use Eq. (64) and write Eq. (71)
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as
∂

∂z
Dpu

αβ (kz, k′z′)

= −
∑
k′′,α′

∫
γ

dz′′�̃t
αα′ (kz, k′′z′′)Dα′β (k′′z′′, k′z′)

− δαβδkk′δ(z − z′), (72)

where

�̃t
αα′ (kz, k′z′) ≡ �αα′ (kz, k′z′) + �

(2)
αα′ (kz, k′z′). (73)

Furthermore, we have

Dpu
αβ (kz, k′z′) = δ〈p̂α (kz)〉

δJβ (k′z′)
= δ〈ûβ (k′z′)〉

δPα (kz)

≡ Dup
βα (k′z′, kz). (74)

From Eq. (72) we see that provided we have the necessary
SEs and the solution for Dαβ (kz, k′z′), then we can obtain
Dpu

αβ (kz, k′z′) without solving the EOM for it.
So far our derivation is exact. We have not made any

approximations or simplifying assumptions. We still use the
full Hamiltonian without restricting the expansion in displace-
ments û to some particular order, which is the usual procedure
in the existing formulations [8,9,65]. We can actually write
the exact total energy, defined as an ensemble average of the
Hamiltonian, in terms of the quantities appearing in the EOM
for the electrons and nuclei, see Appendix B. Hence we have
deduced a formally exact Green’s function theory for arbi-
trary systems of electrons and nuclei given the Hamiltonian
of kinetic energies and Coulombic interactions. Clearly the
full solution will be hard to obtain for real-world systems
and approximations are needed in practice. We discuss a
special case of crystalline solids in Sec. VIII and give an
explicit approximate expression for the Fourier transformed
SE �αα′ (k, k′, ω) in Sec. VII B.

V. HEDIN’S EQUATIONS

Hedin-like equations for the complete system of electrons
and nuclei can be derived in a similar way as has been done
earlier [57]. Namely, the equations can be written as

G(1, 2) = G0(1, 2)

+
∫

d3
∫

d4G0(1, 3)�t (3, 4)G(4, 2),

�(1, 2, 3) = δ(1 − 2)δ(1 − 3) +
∫

d4
∫

d5
∫

d6
∫

d7

× δ�t (1, 2)

δG(4, 5)
G(4, 6)G(7, 5)�(6, 7, 3),

W (1, 2) = We(1, 2) + Wph(1, 2),

Pe(1, 2) = −ih̄
∫

d3
∫

d4G(1, 3)G(4, 1+)�(3, 4, 2),

�(1, 4) = �e(1, 4) + �ph(1, 4). (75)

Here the vertex function �(1, 2, 3) is almost the same as
in Ref. [57], but contains contributions from the Coriolis,
vibrational-rotational coupling, and mass-polarization terms.
The electronic polarization Pe(1, 2) is formally of the same

form as in the earlier works, but also includes the afore-
mentioned additional terms through the vertex function. The
electronic part �e(1, 2) and the nuclear contribution �ph(1, 2)
to the SEs are

�e(1, 4) = ih̄
∫

d3
∫

d5We(1, 5)G(1, 3)�(3, 4, 5),

�ph(1, 4) = ih̄
∫

d3
∫

d5Wph(1, 5)G(1, 3)�(3, 4, 5). (76)

The contributions to the screened Coulomb interaction can be
written as

Wph(1, 2) =
∫

d3
∫

d4W̃e(1, 3)ρn(3, 4)We(4, 2) (77)

and

We(1, 2) =
∫

d3ε−1
e (2, 3)v(3, 1),

W̃e(1, 2) =
∫

d3v(1, 3)ε̃−1
e (3, 2), (78)

where

εe(1, 2) = δ(1 − 2) −
∫

d3v(1, 3)Pe(3, 2),

ε̃e(1, 2) = δ(1 − 2) −
∫

d3Pe(1, 3)v(3, 2). (79)

Furthermore, the nuclear density-density correlation function
appearing in Eq. (77) is

ρn(1, 2) = − i

h̄
〈Tγ {�n̂n(1)�n̂n(2)}〉, (80)

where �n̂n(1) = n̂n(1) − 〈n̂n(1)〉.
Formally, the present theory is similar to the conven-

tional ones [10,65] and thus many of the approximations,
like the GW approximation [10,72–75] or other suitable ap-
proximations [76], can be established in a similar way as
in the existing Green’s function theory for electrons within
the BO approximation. Namely, in the GW approxima-
tion �(1, 2, 3) ≈ δ(1 − 2)δ(1 − 3) and the electronic polar-
ization and SE become Pe(1, 2) ≈ −ih̄G(1, 2)G(2, 1+) and
�(1, 2) ≈ ih̄W (1, 2)G(1, 2). The nuclear problem enters to
the electronic equations, for instance, through the SEs and the
nuclear density-density correlation function ρn(1, 2). We can
write n̂n(1) and ρn(1, 2) by expanding them in a Taylor series
with respect to the displacements and taking into account
consistently all terms up to within a given order. It thus
follows that in order to evaluate the expanded 〈n̂n(1)〉 and
ρn(1, 2) we need to evaluate ensemble averages like 〈ûα (kz)〉,
〈ûα (kz)ûβ (k′z)〉, and so on. Similar terms appear if we expand
the nuclei terms included in the SEs �c(1, 2). In order to
determine these quantities, we can use the EOM for the
nuclear Green’s functions derived in Sec. IV.

Next we give exact and approximate expressions for the
SEs arising from the Coriolis, vibrational-rotational coupling,
and mass-polarization terms. The quantities Sc(rz, r′z′)
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appearing in Eq. (48) are defined as

S1(rz, r′z′) ≡ − 1

ih̄

h̄2

Mnuc

∫
dr′′∇r · ∇r′′

× 〈Tγ {n̂e(r′′z)ψ̂ (rz)ψ̂†(r′z′)}〉,

S2(rz, r′z′) ≡ 1

ih̄

∑
β,γ

rγ

∂

∂rβ

×〈Tγ {D̂′
βγ (z)ψ̂ (rz)ψ̂†(r′z′)}〉,

S3(rz, r′z′) ≡ 2

ih̄

∑
β,σ,γ ,γ ′

∫
dr′′rγ ′r′′

γ

∂2

∂r′′
σ ∂rβ

× 〈
Tγ

{
L̂(3)

γ σγ ′β n̂e(r′′z)ψ̂ (rz)ψ̂†(r′z′)
}〉

, (81)

where

D̂′
βγ (z) ≡ L̂(1)

βγ +
Nn−1∑
k=1

∑
α

L̂(2)
αβγ (k) p̂α (kz). (82)

The perhaps simplest approximation to the SEs �c(rz, r′z′) is
obtained by introducing a mean-field-like factorization of the
nuclear contributions:

S1(rz, r′z′) = −i
h̄3

Mnuc

∫
dr′′∇r · ∇r′′

× G2(r′′z, rz; r′z′, r′′z),

S2(rz, r′z′) ≈
∑
β,γ

rγ

∂

∂rβ

〈D̂′
βγ (z)〉G(rz, r′z′),

S3(rz, r′z′) ≈ −2
h̄

i

∑
β,σ,γ ,γ ′

∫
dr′′rγ ′r′′

γ

∂2

∂r′′
σ ∂rβ

× 〈
L̂(3)

γ σγ ′β

〉
G2(r′′z, rz; r′z′, r′′z), (83)

where

G2(1, 2; 1′, 2′) ≡ − 1

h̄2 〈Tγ {ψ̂ (1)ψ̂ (2)ψ̂†(2′)ψ̂†(1′)}〉. (84)

A similar approximation is introduced in Sec. VII B when
we approximate 〈ûα1 (k1z)n̂e(rz)〉 ≈ 〈ûα1 (k1z)〉〈n̂e(rz)〉. If we
further make the Hartree-Fock approximation [13]

G2(1, 2; 1′, 2′) ≈ G(1, 1′)G(2, 2′) − G(1, 2′)G(2, 1′), (85)

we find by using Eq. (52)

�1(rz, r′′z′′) = h̄3

iMnuc

∫
d r̄∇r · ∇r̄[δ(r̄ − r′′)G(rz, r̄z)

− G(r̄z, r̄z)δ(r − r′′)]δ(z − z′′),

�2(rz, r′′z′′) =
∑
β,γ

〈D̂′
βγ (z)〉rγ

∂

∂rβ

δ(r − r′′)δ(z − z′′), (86)

and

�3(rz, r′′z′′)

= 2ih̄
∑

β,σ,γ ,γ ′

〈
L̂(3)

γ σγ ′β

〉 ∫
d r̄rγ ′ r̄γ

∂2

∂ r̄σ ∂rβ

× [G(rz, r̄z)δ(r̄ − r′′)

− G(r̄z, r̄z)δ(r − r′′)]δ(z − z′′). (87)

After Taylor expanding D̂′
βγ (t ) and L̂(3)

γ σγ ′β in displace-
ments û, �2(1, 2) and �3(1, 2) become functions of 〈ûα (k)〉,
Dαβ (kz, k′z′), and so on. One has to emphasize that, although
derived in a BO-like manner, the terms in Eqs. (86) and (87)
represent physical effects beyond the BO approximation.

VI. CHOICE OF REFERENCE POSITIONS

We have not yet discussed in detail how to choose the
reference positions x and so far these quantities have been
considered as arbitrary parameters. Consider, for instance, the
total energy of the system Etot defined as

Etot ≡ 〈Ĥ〉. (88)

The value of Etot must be independent of x provided our
expansion (in displacements û) of the SEs, or the Hamiltonian
ensemble average itself, converges for a given x. However,
in practice we are not able to make such an expansion up
to arbitrary order in û and solve the exact equations. Conse-
quently, the value of Etot will become dependent on x due to
the approximations made. For instance, if the positions x are
chosen far away from the positions around which the nuclei
would vibrate, then in order to calculate Etot accurately, the
displacements u would be rather large. This implies that we
would need a rather high order nuclear Green’s functions in
order to describe the system properly and this is expected
to be extremely difficult. If we choose the positions x rather
poorly, i.e., far away from the equilibrium positions, and at
the same time take only the lowest order quantities in û
into account, we expect to find rather unrealistic results. Our
theory is formally exact and hence it also describes situations
where the nuclei do not vibrate around some particular regions
of space (like close to the melting point of a crystal, or
beyond it in the liquid phase). However, it is beneficial to
have a consistent strategy to obtain the parameters x such that
those systems in which the nuclei perform such rather small
vibrations, can be described with reasonable accuracy by
using the approximations of lowest orders in û. We note that
in these cases, the (anti)symmetrization with respect to those
variables R̂′ that refer to identical nuclei may not be necessary
to obtain accurate results. If the lowest order approximations
in û describe the system in sufficient detail, the nuclei are
well localized near the positions x, which also means that
the effects of the (anti)symmetrization on the observables are
expected to be rather small.

For the aforementioned systems, like some stable crys-
tal lattices, we use the following method to determine the
positions x. The initial value of x is obtained in the same
way as within the BO approximation, that is, either from
experimental data of known structures or in the case of
hypothetical structures by using the methods of structural
chemistry [77,78]. After the initial guess, which serves as
starting point of an iteration, we aim to find the positions
x such that they are equal to the expectation values of the
nuclear positions (in the body-fixed frame), that is, we seek
the positions such that

xk = 〈R̂′
k〉 = xk + 〈ûk〉. (89)
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We note that 〈ûk〉 is a function of x since the Hamiltonian is
as a consequence of truncating the Taylor expansion in û at a
finite order. In the absence of the external potential terms, 〈R̂′

k〉
is independent of time, and hence the equation determining
the reference positions x becomes

〈ûk〉 = 0. (90)

That is, if we are able to choose the positions x such that
Eq. (89) holds, then the expectation values of the displace-
ments vanish. Next we seek a way how to find the displace-
ments satisfying Eq. (90) and thus the reference positions x
satisfying Eq. (89). The determining equation for 〈ûk〉 is given
by Eq. (60). If we put the external potential terms to zero,
truncate the Taylor expansion (w.r.t. û) of the Hamiltonian at
a finite order, and choose as initial condition the equilibrium
ensemble associated with this truncated Hamiltonian, then
〈ûα (kz)〉 = 〈ûα (k)〉 and thus

Mk
∂2

∂z2
〈ûα (kz)〉 = 0, (91)

meaning that the expectation value of the total force on
each nucleus k vanishes. Thus, if the external potential terms
vanish, Eq. (60) becomes

0 = Kα (kz) +
4∑

c=1

K (c)
α (kz). (92)

The quantities Kα (kz) and K (c)
α (kz) are given by Eq. (61) (here

without the external potential terms). We define the total force

Fα (kz) ≡ Kα (kz) +
4∑

c=1

K (c)
α (kz), (93)

and decompose it further as Fα (kz) = F ′
α (kz) + F ′′

α (kz), where
F ′

α (kz) is the part of Fα (kz) which is a function of 〈ûα (k)〉 and
F ′′

α (kz) is the remaining part [not a function of 〈ûα (k)〉]. We
can therefore write Eq. (92) as

0 = F ′
α (kz) + F ′′

α (kz). (94)

This is the determining equation for 〈ûα (k)〉. If we now want
to find x such that 〈ûα (k)〉 = 0, then Eq. (94) becomes

0 = F ′′
α (kz). (95)

We now give an example where an explicit and approxi-
mate form of Eq. (95) is given. Suppose that the only nonzero
term in Eq. (92) is Kα (kz), meaning that we take into account
terms which originate from the Coulomb interactions and
neglect all the other terms. This is expected to be a relatively
good approximation for most crystalline solids provided we
define the Euler angles such that the Coriolios and vibrational-
rotational terms in the Hamiltonian are small, see Sec. VIII.
We approximate Kα (kz) by expanding V̂ ′

en and V̂ ′
nn in displace-

ments (see Appendix B) and retain only the lowest orders.
After calculating the commutators, we obtain to the lowest

orders in displacements

Kα (kz) ≈ −∂Vnn(x)

∂xα (k)
−

∫
dr

∂Ven(r, x)

∂xα (k)
〈n̂e(rz)〉

−
∑
k2,α2

∫
dr

∂2Ven(r, x)

∂xα (k)∂xα2 (k2)

×〈
ûα2 (k2z)n̂e(rz)

〉

−
∑
k2,α2

∂2Vnn(x)

∂xα (k)∂xα2 (k2)
〈ûα2 (k2z)〉. (96)

Next we use the following result:

δ〈n̂e(rz)〉
δJβ (k′z′)

=
∫

dr2

∫
γ

dz2

∫
dr3

∫
γ

dz3Pe(rz, r3z3)

×W̃e(r3z3, r2z2)
δ〈n̂n(r2z2)〉
δJβ (k′z′)

, (97)

where W̃e(r3z3, r2z2) and ε̃e(r1z1, r2z2) are given by Eqs. (78)
and (79), respectively. These quantities are obtained from the
solution of Hedin’s equations. By using Eq. (97) we find that

〈Tγ {ûβ (k′z′)n̂e(rz)}〉

≈ 〈n̂e(rz)〉〈ûβ (k′z′)〉 + ih̄
∫

dr2

∫
γ

dz2

×
∫

dr3

∫
γ

dz3Pe(rz, r3z3)W̃e(r3z3, r2z2)

×
∑
k1,α1

∂n(0)
n (x, r2)

∂xα1 (k1)
Dα1β (k1z2, k′z′). (98)

Here the quantity n(0)
n (x, r) is given by Eq. (B2) and related to

this we consider how to obtain the rotation matrix R[θ(x)] and
its derivatives in Sec. II B. When we use Eq. (98) in Eq. (96)
to approximate 〈ûα (kz)n̂e(rz)〉, it can be seen that if we seek
the solution such that 〈ûk〉 = 0, meaning that F ′

α (kz) vanishes,
Eq. (95) is of the following form:

0 ≈ ∂Vnn(x)

∂xα (k)
+

∫
dr

∂Ven(r, x)

∂xα (k)
〈n̂e(rz)〉

+ ih̄
∑
k2,α2

∫
dr

∂2Ven(r, x)

∂xα (k)∂xα2 (k2)

∫
dr2

∫
γ

dz2

×
∫

dr3

∫
γ

dz3Pe(rz, r3z3)W̃e(r3z3, r2z2)

×
∑
k1,α1

∂n(0)
n (x, r2)

∂xα1 (k1)
DT

α1β
(k1z2, k2z), (99)

where [Eq. (63)]

DT
αβ (kz, k′z′) ≡ 1

ih̄
〈Tγ {ûα (kz)ûβ (k′z′)}〉. (100)

If we further approximate and neglect the last term of Eq. (99)
we obtain

0 = ∂Vnn(x)

∂xα (k)
+

∫
dr

∂Ven(r, x)

∂xα (k)
〈n̂e(r)〉. (101)

Equations (99) and (101) are examples of approximate con-
ditions for choosing the parameters x such that Eq. (89) holds.
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We call the positions x the nuclear equilibrium positions. The
approximate condition given by Eq. (101) certainly makes
a lot of sense: The equilibrium position of the kth nucleus
is the location where the total electrostatic force on this
nucleus (coming from the other nuclei and the electron cloud)
vanishes. This is formally the same condition as in the BO
approximation [21], when the Hellmann-Feynman theorem
[79,80] is used to calculate the total force. The difference
is that our parameters x refer to the body-fixed frame. Fur-
thermore, the electron density 〈n̂e(r)〉 is an ensemble average
taken with respect to the full electron-nuclear Hamiltonian
rather than an expectation value with respect to an eigenstate
of the electronic BO Hamiltonian. The electron density can
be obtained from the electron Green’s function as 〈n̂e(rz)〉 =
−ih̄G(rz, rz+). Thus, for a given x one solves the coupled
set of equations for the electrons and nuclei and from the
solutions of these equations we obtain the quantities like
G(rz, r′z′), Pe(rz, r′z′), W̃e(rz, r′z′), and DT

αβ (kz, k′z′) and we
can check whether or not Eq. (99), or the corresponding
general expression given by Eq. (95), holds and indicates that
we have found the positions such that Eq. (89) is satisfied.

Next we give an overview of the workflow on how the
coupled set of equations for the electrons and nuclei could
be solved. The procedure is summarized in Fig. 1. First we
give an initial guess for the reference positions x and solve θ

from Eq. (27) with uk = 0, see Sec. II B. Given the reference
positions we expand all the quantities in Hedin’s equations,
which are functions of the nuclear variables, into a Taylor
series in û. In the first iteration we retain only the zeroth-order
terms meaning that Wph(1, 2) = 0 from which it follows that
W (1, 2) = We(1, 2) and �(1, 2) = �e(1, 2) [see Eq. (75)].
With the preceding choices, Hedin’s equations are actually
similar to those in the BO approximation apart from the SEs
�c(1, 2), but here all quantities refer to the body-fixed frame.
The zeroth-order approximations for the SEs �c(1, 2) can
be obtained by using the relations given by Eqs. (52) and
(83). After the Hedin equations are solved, we calculate the
nuclear SE, see for example Sec. VII B. Given the nuclear
SE, the EOM for the nuclear Green’s function can be solved.
Once we have obtained the nuclear Green’s function, we can
write Hedin’s equations with nonzero Wph(1, 2), solve these
equations with the SE �(1, 2) = �e(1, 2) + �ph(1, 2), and by
including the nuclear contributions beyond the zeroth order in
û to the SEs �c(1, 2). We iterate the electronic and nuclear
equations in order to minimize the grand potential, or in the
case of zero temperature formalism, the total energy Etot (see
Appendix B). After the convergence we test whether or not
the reference positions x are the equilibrium positions by
checking if Eq. (95) is satisfied. We iterate this whole process
until we have found the equilibrium positions.

VII. NUCLEAR VIBRATIONS AND SELF-ENERGY

A. Nuclear vibrations

We start by writing the nuclear EOM in frequency space,
but before Fourier transforming, all the external potential
terms are set equal to zero. It follows that the nuclear Green’s
function and the nuclear SEs are then functions of time
differences only and we can write Eq. (65) in terms of the

FIG. 1. Example flowchart for solving the coupled equations for
the electronic and nuclear Green’s functions. Here the ground-state
total energy is denoted by E0.

Fourier transformed quantities as

δαβδkk′ =
∑
k′′,α′

[
Mkω

2δαα′δkk′′ − �t
αα′ (k, k′′, ω)

]

× Dα′β (k′′, k′, ω). (102)
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Here the reader is free to choose, for example, the time-
ordered or retarded components of these functions as the
Eq. (65) is defined on a general time contour. We write
Eq. (102) in matrix form and rearrange such that

D̃(ω) = [ω2I − Ct (ω)]−1, (103)

where D̃(ω) ≡ M1/2D(ω)M1/2 and Ct (ω) ≡
M−1/2�t (ω)M−1/2. The components of these matrices
are denoted by αk and so on. Next we write the SE as
Ct (ω) = CA + CNA(ω) where we choose the “adiabatic
part” CA as the zero-frequency-limit CA = Ct (0).
The “nonadiabatic” part CNA is the remainder, i.e.,
CNA(ω) = Ct (ω) − Ct (0). It is easy to see that CA is
a Hermitian matrix. Hence we can find a complete and
orthonormal set of eigenvectors satisfying

ω̃2
jvα (k| j) =

∑
k′,β

CA
αβ (kk′)vβ (k′| j),

δ j j′ =
∑
k,α

vα (k| j′)v∗
α (k| j),

δαβδkk′ =
∑

j

vα (k| j)v∗
β (k′| j). (104)

We call the quantities ω̃ j the adiabatic normal mode frequen-
cies. The eigenvalues ω̃2

j are real since CA is Hermitian and
ω̃ j are real if CA is positive definite. We transform Eq. (103)
by using the eigenvectors of CA such that

D(ω) = [ω2I − ω̃2 − CNA(ω)]−1, (105)

where D(ω) ≡ v†D̃(ω)v and CNA(ω) ≡ v†CNA(ω)v. If
CNA(ω) is sufficiently small, the quasiparticle picture holds
and CNA(ω) can be pictured in generating interactions be-
tween adiabatic normal modes by shifts of their values and
finite lifetimes [imaginary part of CNA(ω)]. We can ob-
tain the Green’s function of complex frequency by just re-
placing the real frequency ω by the complex one [81] in
Eq. (105). The usual procedure is to consider the Matsubara
Green’s functions continued to the complex frequency plane
[8,15,19,82,83]. We point out that the present discussion is
still completely general. In Sec. VIII A we will deduce a rep-
resentation of D(ω) in terms of the phonon basis of crystalline
solids.

B. Nuclear self-energy

In order to derive an approximate form for the SE
�αα′ (k, k′, ω), we start from the explicit form of the terms
included in Kαβ ′ (kz, k′z′) [see Eq. (63)]. We have already
calculated the commutators included to the lowest orders in
ûα (kz) and we can obtain Kαβ ′ (kz, k′z′) by taking a functional
derivative of Kα (kz) given by Eq. (96) with respect to Jβ (k′z′),
namely

Kαβ (kz, k′z′)

= −
∑
k′′,α′′

∂2Vnn(x)

∂xα (k)∂xα′′ (k′′)
Dα′′β (k′′z, k′z′)

−
∑
k1,α1

∫
dr

∂2Ven(r, x)

∂xα (k)∂xα1 (k1)

δ〈ûα1 (k1z)n̂e(rz)〉
δJβ (k′z′)

−
∫

dr
∂Ven(r, x)

∂xα (k)

δ〈n̂e(rz)〉
δJβ (k′z′)

+ O(û2). (106)

The terms visible in Eq. (106) are all the terms included in
Kαβ ′ (kz, k′z′) if the Hamiltonian is expanded in displacements
up to second order before writing the EOM. This is the usual
procedure in the earlier laboratory frame formulations [8,65].
We further evaluate the quantity in the second term on the
right-hand side of Eq. (106),

δ
〈
ûα1 (k1z)n̂e(rz)

〉
δJβ (k′z′)

= ih̄
δ2〈n̂e(rz)〉

δJβ (k′z′)δJα1 (k1z)

+〈ûα1 (k1z)〉δ〈n̂e(rz)〉
δJβ (k′z′)

+〈n̂e(rz)〉Dα1β (k1z, k′z′). (107)

Finally, by using Eqs. (97), (106), and (107) in Eq. (64), we
can write the nuclear SE in frequency space as

�αβ

(
k, k′, ω

)

= ∂2Vnn(x)

∂xα (k)∂xβ (k′)
+

∫
dr

∂2Ven(r, x)

∂xα (k)∂xβ (k′)
〈n̂e(r)〉

+
∫

dr
∫

dr′ ∂n(0)
n (x, r)

∂xα (k)
[W̃e(r, r′, ω) − v(r, r′)]

×
⎡
⎣∂n(0)

n (x, r′)
∂xβ (k′)

+
∑
k1,α1

∂2n(0)
n (x, r′)

∂xα1 (k1)∂xβ (k′)
〈uα1 (k1)〉

⎤
⎦

+
∑
k1,α1

∫
dr

∫
dr′ ∂2n(0)

n (x, r)

∂xα (k)∂xα1 (k1)

×[W̃e(r, r′, ω) − v(r, r′)]
〈
ûα1 (k1)

〉

×
⎡
⎣∂n(0)

n (x, r′)
∂xβ (k′)

+
∑
k2,α2

∂2n(0)
n (x, r′)

∂xα2 (k2)∂xβ (k′)
〈
uα2 (k2)

〉⎤⎦

+ · · · . (108)

In Eq. (108) W̃e(r, r′, ω) is obtained by Fourier transforming
W̃e(rz, r′z′) [Eq. (78)] in the relative time variable z − z′.
Terms explicitly shown in Eq. (108) are already included in
the harmonic approximation, which means that the Hamilto-
nian is expanded up to second order in displacements (before
writing the EOM). Actually not all the terms found in the
harmonic approximation appear in Eq. (108). Namely, the
first term on the right-hand side of Eq. (107) does not appear
because we have made the approximation 〈ûα (kz)n̂e(rz)〉 ≈
〈ûα (kz)〉〈n̂e(rz)〉. Furthermore, only some of the second-order
terms of the right-hand side of Eq. (97) are included. The
validity of this approximation, i.e., of making ûα (kz) and
n̂e(rz) uncorrelated in the sense that the expectation value of
their product is the product of their expectation values, has to
be assessed carefully when the states with respect to which we
define the Green’s functions are not the BO eigenstates.

Sometimes it is convenient to write [65] �αβ (k, k′, ω) =
�A

αβ (k, k′) + �NA
αβ (k, k′, ω) where the adiabatic SE
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�A
αβ (k, k′) = �αβ (k, k′, 0) is Hermitian while the nona-

diabatic part �NA
αβ (k, k′, ω) = �αβ (k, k′, ω) − �αβ (k, k′, 0)

is non-Hermitian, in general. In the present case [Eq. (108)],
the contribution from the Coulombic nuclei-nuclei interaction
to the SE is ∂2Vnn(x)/∂xα (k)∂xβ (k′), while the rest of the
terms visible in Eq. (108) originates from the Coulomb
electron-nuclei interaction. For a better comparison with
existing theories, we use Eq. (108) to write the nonadiabatic
contribution as

�NA
αβ (k, k′, ω) =

∫
dr

∫
dr′ ∂n(0)

n (x, r)

∂xα (k)

×[W̃e(r, r′, ω) − W̃e(r, r′, 0)]

×∂n(0)
n (x, r′)
∂xβ (k′)

+ · · · , (109)

where terms including the quantity 〈ûα (k)〉 are not explicitly
shown. Provided we can choose the parameters x such that
Eq. (89) holds, then terms involving the quantities 〈ûα (k)〉
vanish, see Sec. VI. The relation given by Eq. (109) is
formally analogous with the result obtained earlier [65].
However, the difference is in the densities n(0)

n (x, r′) [see
Eq. (B2) of Appendix B] and here all the variables refer to
the body-fixed frame. We note that if necessary, the higher
order expressions for the nuclear and phonon SEs can be
obtained by systematically including higher order terms in
the expansion of Kαβ (kz, k′z′). Related to this, some results
of a recent study [84] on generic electron-boson Hamiltonians
may be useful within the present theory as well.

While we do not give explicit expressions for the SEs
�

(c)
αα′ (kz, k′z′), it is obvious that these quantities can be

obtained with the same procedure as established here for
�αα′ (kz, k′z′). Namely, calculate the commutators contained
in K (c)

α (kz) [Eq. (61)] by expanding the quantities involved
in û, take the functional derivative with respect to Jβ (k′z′) in
order to obtain K (c)

αβ (kz, k′z′), and then use Eq. (64) to calculate

�
(c)
αα′ (kz, k′z′). In obtaining these expressions, similar approx-

imations can be made as we did in the case of �αα′ (kz, k′z′).
We leave a more detailed discussions of these terms for future
work.

VIII. CRYSTALLINE SOLIDS

In this section we apply the general theory to crystalline
solids. First of all, the electronic and nuclear mass polarization
terms T̂ ′

mpe, T̂ ′
mpn, and T̂ ′

cvr appearing in the transformed kinetic
energy are proportional to the inverse of the total nuclear mass
and are thus small for crystals. Furthermore, we assume that
one can find an implicit condition of the form [Eq. (27)] such
that the contributions from the kinetic energy T̂cvr become
small. Some justifications for their neglect have been given
[57], when the implicit condition is chosen to be the Eckart
condition given by Eq. (28). By neglecting the aforementioned
terms the EOM for electrons remain otherwise the same,
except that we have �t (1, 3) = �(1, 3) in Eqs. (54) and (56)
and in the Hedin’s equations given by Eq. (75). In turn, the
nuclear EOM remains otherwise the same, but in Eq. (65) the
SE is �t

αα′ (kz, k′z′) = �αα′ (kz, k′z′).

A. Phonons and their interactions

Here we use a notation suitable for the description of
crystalline solids and impose periodic boundary conditions
[2,18,85]. We label the nucleus by k = lκ , and write xk =
xlκ = xl + xκ , where xκ is the position vector of the nuclei
κ within the unit cell and

xl ≡ xl1l2l3 = l1a1 + l2a2 + l3a3 (110)

is the lattice translational vector of the lth unit cell with
integers l1, l2, l3, and the vectors a j being the primitive
translational vectors of the lattice. With this notation we write
R′

k = R′
lκ = xlκ + ulκ , where lκ goes over Nn − 1 values in

total.
Our aim is to define phonon frequencies beyond the

BO approximation as has been established earlier by using
the Green’s function approach [8,65]. However, we do not
assume the harmonic approximation. In the present case,
Eq. (102) can be written otherwise the same, but with
�t

αα′ (lκ, l ′′κ ′′, ω) = �αα′ (lκ, l ′′κ ′′, ω). We also note that the
quantities like Dαβ (lκ, l ′κ ′, ω) and �αβ (lκ, l ′κ ′, ω) are de-
pendent only on the difference of the cell indices l − l ′.
Therefore, we write Dαβ (lκ, l ′κ ′, ω) as a discrete Fourier
transform in the relative coordinate allowed by the periodic
boundary conditions [2], namely

Dαα′ (κκ ′, l, ω) = 1

N

N∑
q

Dαα′ (κκ ′, q, ω)eiq·xl , (111)

and in a similar way for �αα′ (κκ ′, l, ω). In Eq. (111), N is
the number of q points and thus the number of unit cells in
the Born–von Karman cell [2,85]. By using Eq. (111) and
the analogous expression for �αα′ (κκ ′, l ′′, ω) in Eq. (102), we
obtain ∑

κ ′′,α′
[Mκω

2δαα′δκκ ′′ − �αα′ (κκ ′′, q, ω)]

×Dα′β (κ ′′κ ′, q, ω) = δαβδκκ ′ , (112)

and after some rearranging and by using matrix notation

D̃(q, ω) = [ω2I − C(q, ω)]−1, (113)

where C(q, ω) ≡ M−1/2�(q, ω)M−1/2 and D̃(q, ω) ≡
M1/2D(q, ω)M1/2. The components of the matrix like
C(q, ω) are labeled by ακ and βκ ′, etc. Following the
procedure of Sec. VII A, namely, we write the SE as
C(q, ω) = CA(q) + CNA(q, ω), where CA(q) = C(q, 0) and
CNA(q, ω) = C(q, ω) − C(q, 0). The eigenvalue equation for
CA(q) can be written as

ω2
q jeα (κ|q j) =

∑
κ ′,β

CA
αβ (κκ ′|q)eβ (κ ′|q j). (114)

We call the quantities ωq j the adiabatic phonon frequencies.
The eigenvalue equation given by Eq. (114) is analogous to
the eigenvalue equation written for the dynamical matrix in
the conventional theory of lattice dynamics [2,85]. As the
adiabatic phonon frequencies ωq j are defined by Eq. (114), in
contrast to the conventional theory and existing theories be-
yond the BO approximation [8,65], already the noninteracting
phonons potentially contain terms up to arbitrary order in û. In
order for ω2

q j to be positive and thus ωq j to be real, the matrix
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CA(q) has to be positive definite, which is not in general the
case for a given x. This is also the case in the BO theory of
lattice dynamics [2], where the positive definiteness of the
dynamical matrix implies the minimum of the BO energy
surface and the stability of the crystal lattice [86]. Provided the
matrix CA(q) is Hermitian [as it is, for example, if Eq. (108)
is used], the components of the eigenvector eα (κ|q j) can
be chosen to satisfy the orthonormality and completeness
conditions ∑

κ,α

eα (κ|q j′)e∗
α (κ|q j) = δ j j′ ,

∑
j

eα (κ|q j)e∗
β (κ ′|q j) = δαβδκκ ′ . (115)

We use the eigenvectors of the adiabatic SE to rewrite
Eq. (113) in terms of the adiabatic phonon basis. After the
transformation we obtain

D(q, ξ ) = [(
ξ 2 − ω2

q

)
I − CNA(q, ξ )

]−1
, (116)

where D(q, ξ ) ≡ e†(q)D̃(q, ξ )e(q) and CNA(q, ξ ) ≡
e†(q)CNA(q, ξ )e(q). We call D(q, ξ ) the phonon Green’s
function and CNA(q, ξ ) the nonadiabatic phonon SE. Here ξ

denotes a complex frequency variable [81]. If the nonadiabatic
SE vanishes, we recover the adiabatic phonon Green’s
function DA

j j (q, ω) = 1/(ω2 − ω2
q j ) which is of the usual

form and appears also in the BO theory of lattice dynamics
[15]. The adiabatic phonons have infinite lifetimes if the
nonadiabatic SE vanishes. The nonadiabatic part can be
pictured in generating interactions between the adiabatic
phonons which appear as shifts to the adiabatic eigenvalues
and finite lifetimes of these quasiparticles. This picture is valid
if the nonadiabatic SE is sufficiently small in comparison
to the adiabatic part. The shifts to the adiabatic phonon
frequencies and finite lifetimes of adiabatic phonons can be
obtained as in the laboratory frame formulation [65,87,88].

By using Eqs. (78) and (79) in Eq. (109) and then Fourier
transforming and changing the representation, we obtain the
following approximate form for the nonadiabatic phonon SE:

CNA
j j′ (q, ξ ) = 1

N

∫
dr

∫
dr′[gq j (r, ξ )Pe(r, r′, ξ )g̃∗

q j′ (r
′)

−gq j (r, 0)Pe(r, r′, 0)g̃∗
q j′ (r

′)]. (117)

In Eq. (117)

g̃∗
q j (r) =

∑
l,κ,α

M−1/2
κ eα (κ|q j)eiq·xl

∂Ven(x, r)

∂xα (κl )
,

gq j (r, ξ ) =
∫

dr′g̃q j (r′)ε̃−1
e (r′, r, ξ ), (118)

where g̃q j (r) is the complex conjugate of g̃∗
q j (r). The dia-

grams corresponding to D(q, ξ ), CNA(q, ξ ) are of a similar
form as in the laboratory frame formulation [65,89].

B. Momentum functions

By making the approximations discussed at the beginning
of this section and then comparing Eqs. (65) and (72) we see

that

∂

∂z
Dpu

αβ (kz, k′z′) = Mk
∂2

∂z2
Dαβ (kz, k′z′), (119)

and thus for the Fourier transforms

Dpu
αβ (k, k′, ω) = −iMkωDαβ (k, k′, ω). (120)

Therefore, after we have obtained a solution for
Dαβ (lκ, l ′κ ′, ω), we can also obtain Dpu

αβ (lκ, l ′κ ′, ω). The
last function we need is the momentum-momentum Green’s
function Dpp

αβ (kz, k′z′) and in the present case Eq. (69)
becomes

∂

∂z
Dpp

αβ (kz, k′z′) = K ′
αβ (kz, k′z′), (121)

where we approximate

K ′
αβ

(
kz, k′z′) ≈ −

∑
k2,α2

∂2Vnn(x)

∂xα (k)∂xα2 (k2)

δ
〈
ûα2 (k2z)

〉
δPβ (k′z′)

−
∫

dr
∂Ven(r, x)

∂xα (k)

δ〈n̂e(rz)〉
δPβ (k′z′)

−
∑
k2,α2

∫
dr

∂2Ven(r, x)

∂xα (k)∂xα2 (k2)

×δ
〈
ûα2 (k2z)n̂e(rz)

〉
δPβ (k′z′)

+ O(û2), (122)

which can be obtained directly from Eq. (96). By employ-
ing the same approximations for K ′

αβ (kz, k′z′), as used in
Sec. VII B in writing Kαβ (kz, k′z′), we find that Eq. (121) can
be written as

∂

∂z
Dpp

αβ (kz, k′z′) = −
∑
k′′,α′

∫
γ

dz′′�αα′ (kz, k′′z′′)

×Dup
α′β (k′′z′′, k′z′). (123)

The Fourier transform of this equation is

iωDpp
αβ (k, k′, ω) =

∑
k′′,α′

�αα′ (k, k′′, ω)Dup
α′β (k′′, k′, ω). (124)

Since by Eq. (74), Dup
βα (k′z′, kz) = Dpu

αβ (kz, k′z′), we can write

Dpp
αβ (k, k′, ω) = −Mk

∑
k′′,α′

�αα′ (k, k′′, ω)

×Dβα′ (k′, k′′,−ω), (125)

where Eq. (120) was used. Now we have all the necessary
equations in place to calculate the total energy of the system.

IX. CONCLUSIONS

In this work we have derived a coupled and self-consistent
set of exact equations for the electronic and nuclear Green’s
functions following from the Hamiltonian of Coulomb inter-
actions and kinetic energies as a starting point. The present
theory, when applied to crystalline solids, resembles in some
aspects the previous ones [8,9,65]. However, we resolve an
issue arising from the translational and rotational symmetry
of the Hamiltonian. This symmetry prevents the use of the
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existing many-body Green’s function theories beyond the BO
approximation in describing systems other than those with
constant density eigenstates. The present theory is formally
exact and it is not limited to the harmonic approximation. The
complexity of our system of EOM is of the same order as the
existing ones when applied to crystalline solids.

In addition to the general EOM, we specifically consider
the normal modes. For the special case of crystalline solids,
phonons and their interactions beyond the BO approximation
are rigorously defined and discussed in detail. While it is
probably not a realistic goal to obtain the solution of the EOM
in general form in arbitrary systems, there is some work left to
derive computationally accessible approximations to be used
in the actual calculations. For instance, numerically tractable
approximations to some parts of the nuclear SE originating
from the Coriolis and vibrational-rotational couplings are
yet to be derived. Our main emphasis in this work was on
crystalline solids and we leave a more detailed treatment of
molecules for future work. The practical implementations of
the present method are under preparation.

To summarize, the present theory allows one to go beyond
the BO approximation in a systematic and formally exact way
by using the method of many-body Green’s functions. We
expect it will become a useful tool in treating beyond-Born-
Oppenheimer effects in solids and molecules.
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APPENDIX A: CORIOLIS AND
VIBRATIONAL-ROTATIONAL COUPLING TERMS

The kinetic energy contributions T̂cvr and T̂ ′
cvr are

T̂cvr =
∑
β,γ

T̂ (1)
βγ

∫
drψ̂†(r)rγ

∂

∂rβ

ψ̂ (r)

+
Nn−1∑
k=1

∑
α,β,γ

T̂ (2)
αβγ

(k) p̂α (k)

×
∫

drψ̂†(r)rγ

∂

∂rβ

ψ̂ (r)

+
∑

β,σ,γ ,γ ′
T̂ (3)

γ σγ ′β

∫
dr

∫
dr′

×ψ̂†(r)ψ̂†(r′)rγ ′r′
γ

∂2

∂r′
σ ∂rβ

ψ̂ (r′)ψ̂ (r),

T̂ ′
cvr =

∑
σ,γ

M̂ (1)
σγ

∫
drψ̂†(r)rγ

∂

∂rσ

ψ̂ (r)

+
Nn−1∑
k=1

∑
α,σ,γ

M̂ (2)
ασγ (k) p̂α (k)

×
∫

drψ̂†(r)rγ

∂

∂rσ

ψ̂ (r)

+
∑

β,σ,γ ,γ ′
M̂ (3)

γ σγ ′β

∫
dr

∫
dr′

×ψ̂†(r)ψ̂†(r′)rγ ′r′
γ

∂2

∂r′
σ ∂rβ

ψ̂ (r′)ψ̂ (r). (A1)

In Eq. (A1)

T̂ (1)
βγ ≡ −

Nn−1∑
k=1

h̄2

2Mk

3∑
α,β ′=1

∂2R̂ββ ′

∂u2
α (k)

R̂T
β ′γ ,

T̂ (2)
αβγ

(k) ≡ − ih̄

Mk

3∑
β ′=1

∂R̂ββ ′

∂uα (k)
R̂T

β ′γ ,

T̂ (3)
γ σγ ′β ≡ −

Nn−1∑
k=1

h̄2

2Mk

3∑
α,β ′,σ ′=1

∂R̂σσ ′

∂uα (k)
R̂T

σ ′γ

× ∂R̂ββ ′

∂uα (k)
R̂T

β ′γ ′ , (A2)

and

M̂ (1)
σγ ≡ h̄2

2Mnuc

Nn−1∑
k,k′=1

3∑
α,σ ′=1

∂2R̂σσ ′

∂uα (k)∂uα (k′)
R̂T

σ ′γ ,

M̂ (2)
ασγ (k) ≡ ih̄

Mnuc

Nn−1∑
k′=1

3∑
σ ′=1

∂R̂σσ ′

∂uα (k′)
R̂T

σ ′γ ,

M̂ (3)
γ σγ ′β ≡ h̄2

2Mnuc

Nn−1∑
k,k′=1

3∑
α,β ′,σ ′=1

∂R̂σσ ′

∂uα (k′)
R̂T

σ ′γ

× ∂R̂ββ ′

∂uα (k)
R̂T

β ′γ ′ . (A3)

Here we divided the Coriolis and vibrational-rotational cou-
pling terms into two parts: one part, T̂ ′

cvr, is proportional to
the inverse of the total nuclear mass while the other, T̂cvr,
is not. All the quantities defined by Eqs. (A2) and (A3)
are functions of x and û. Strictly speaking, the derivatives
like ∂R̂σσ ′/∂uα (k′) are not so well defined objects from
a notational point of view. By this notation we mean that
the quantities like ∂Rσσ ′/∂uα (k′) and ∂2Rσσ ′/∂uα (k)∂uα (k′)
are some functions of x, u after differentiation and we can
then find the corresponding functions of operators û. For
example, if ∂R/∂uα (k) = Gα (k, x, u), then in our notation
∂R̂/∂uα (k) = Gα (k, x, û).

We also use the following form of the Coriolis and
vibrational-rotational coupling terms:

T̂cvr + T̂ ′
cvr =

3∑
c=1

T̂ (c)
cvr , (A4)

where

T̂ (1)
cvr ≡

∑
β,γ

∫
drrγ

∂

∂rβ

L̂(1)
βγ n̂e(r),

T̂ (2)
cvr ≡

Nn−1∑
k=1

∑
α,β,γ

∫
drrγ

∂

∂rβ

L̂(2)
αβγ

(k) p̂α (k)n̂e(r),
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T̂ (3)
cvr ≡

∑
β,σ,γ ,γ ′

∫
dr

∫
dr′rγ ′r′

γ

∂2

∂r′
σ ∂rβ

×L̂(3)
γ σγ ′βψ̂†(r)ψ̂†(r′)ψ̂ (r′)ψ̂ (r), (A5)

and the quantities L̂(1)
βγ , L̂(2)

αβγ (k) and L̂(3)
γ σγ ′β are defined by

Eq. (41).

APPENDIX B: TOTAL ENERGY

We expand n̂n(r), V̂en(r), and V̂ ′
nn into Taylor series with

respect to the displacements:

V̂ ′
nn =

∞∑
m=0

1

m!

∑
km̄,αm̄

∂mVnn(x)

∂xαm̄ (km̄)
ûαm̄ (km̄),

Vnn(x) =
Nn∑

k,k′=1

′v(xk, xk′ ),

xNn ≡ − 1

MNn

Nn−1∑
k=1

Mkxk,

V̂en(r) =
∞∑

m=0

1

m!

∑
km̄,αm̄

∂mVen(r, x)

∂xαm̄ (km̄)
ûαm̄ (km̄),

Ven(r, x) =
Nn∑

k=1

−Zkς

|r − R[θ(x)]xk| , (B1)

and

n̂n(r) =
∞∑

m=0

1

m!

∑
km̄,αm̄

∂mn(0)
n (x, r)

∂xαm̄ (km̄)
ûαm̄ (km̄),

n(0)
n (x, r) ≡ −

Nn∑
k=1

Zkδ(r − R[θ(x)]xk ). (B2)

Here the following notations are used:

ûαm̄ (km̄) ≡ ûα1 (k1) · · · ûαm (km),∑
km̄,αm̄

=
∑
k1,α1

· · ·
∑

km,αm

, (B3)

and so on. In Sec. II B we discuss how to actually obtain the
rotation matrix R[θ(x)] and the necessary derivatives of it.

Next we deduce an exact form of the total energy of the
system. We start by writing

V̂ ′
nn =

∞∑
m=0

V̂ (m)
nn , V̂en(r) =

∞∑
m=0

V̂ (m)
en (r), (B4)

where

V̂ (m)
nn ≡ 1

m!

∑
km̄,αm̄

∂mVnn(x)

∂xαm̄ (km̄)
ûαm̄ (km̄),

V̂ (m)
en ≡ 1

m!

∑
km̄,αm̄

∂mVen(r, x)

∂xαm̄ (km̄)
ûαm̄ (km̄), (B5)

such that

V̂ ′
en =

∫
dr

∞∑
m=0

V̂ (m)
en (r)n̂e(r). (B6)

We note that from these expansions it follows that

〈V̂ ′
en〉 = −ih̄

∫
drVen(r, x)G(rz, rz+)

− 1

ih̄

∞∑
m=1

1

m

∑
k,α

∫
dr

×〈[
p̂α (k), V̂ (m)

en (r)
]
−ûα (k)n̂e(r)

〉
(B7)

and

〈V̂ ′
nn〉 = Vnn(x) − 1

ih̄

∞∑
m=1

1

m

∑
k,α

〈[
p̂α (k), V̂ (m)

nn

]
−ûα (k)

〉
, (B8)

where we used 〈n̂e(rz)〉 = −ih̄G(rz, rz+). We write the quan-
tity defined by Eq. (61) as Kα (kz) = Ken

α (kz) + Knn
α (kz) such

that

Ky
α (kz) ≡ 1

ih̄
〈[ p̂α (kz), V̂ ′

y ]−〉, (B9)

where y = en, nn. In a similar way we write the quan-
tity defined by Eq. (63) as Kαβ (kz, k′z′) = Ken

αβ (kz, k′z′) +
Knn

αβ (kz, k′z′), where

Ky
αβ (kz, k′z′) ≡ δKy

α (kz)

δJβ (k′z′)
. (B10)

We define

�
y
αα′ (kz, k̄z̄) ≡ −

∑
k′,β

∫
γ

dz′Ky
αβ (kz, k′z′)

×D−1
βα′ (k′z′, k̄z̄). (B11)

Next we use Eq. (B4) and write Ken
α (kz) and Knn

α (kz) such that

Ky
α (kz) =

∞∑
m=1

Ky,(m)
α (kz), (B12)

and in a similar way for all the quantities derived by using
Ken

α (kz) and Knn
α (kz). By using Eq. (B12) in Eqs. (B10) and

(B11) and these results with Eqs. (B7) and (B8) we eventually
find that

〈V̂ ′
nn〉 = Vnn(x) −

∞∑
m=1

1

m

∑
k,α

Knn,(m)
α (kz)〈ûα (kz)〉

+ih̄
∞∑

m=1

1

m

∑
k,α

∑
k′′,α′

∫
γ

dz′′�nn,(m)
αα′ (kz, k′′z′′)

×Dα′α (k′′z′′, kz) (B13)

and

〈V̂ ′
en〉 = −ih̄

∫
drVen(r, x)G(rz, rz+)

−
∞∑

m=1

1

m

∑
k,α

Ken,(m)
α (kz)〈ûα (kz)〉
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+ ih̄
∞∑

m=1

1

m

∑
k,α

∑
k′′,α′

∫
γ

dz′′�en,(m)
αα′ (kz, k′′z′′)

× Dα′α (k′′z′′, kz). (B14)

We use these results to write the total energy Etot in terms of
the Green’s functions and related quantities as

Etot = 〈T̂tot〉 + 〈V̂ ′
ee〉 + 〈V̂ ′

en〉 + 〈V̂ ′
nn〉, (B15)

where the external potential terms are put to zero and T̂tot is
given by Eq. (21). We have

〈T̂ ′
e 〉 = i

h̄3

2me

∫
dr∇2

r G(rz, rz+),

〈T̂ ′
n 〉 =

Nn−1∑
k=1

3∑
α=1

ih̄

2Mk
Dpp,T

αα (kz, kz+),

〈T̂ ′
mpn〉 = − ih̄

2Mnuc

Nn−1∑
k=1

3∑
α=1

Dpp,T
αα (kz, k′z+). (B16)

Here

Dpp,T
αβ (kz, k′z′) ≡ 1

ih̄
〈Tγ { p̂α (kz) p̂β (k′z′)}〉, (B17)

and this function can be obtained from the solution of Eq. (69)
since with the external potentials put to zero 〈p̂α (kz)〉 =
〈p̂α (k)〉. By using the EOM for the field operator given by
Eq. (39) without the external potentials we find that

ih̄

2

∫
dr

[
−ih̄

∂

∂z
− h̄2

2me
∇2

r

]
G(rz, rz+)

= 1

2

[〈V̂ ′
en〉 + 〈

T̂ (1)
cvr

〉 + 〈
T̂ (2)

cvr

〉] + 〈
T̂ (3)

cvr

〉
+〈V̂ ′

ee〉 + 〈T̂ ′
mpe〉, (B18)

where T̂ (c)
cvr are given by Eqs. (A4) and (A5). This result can

be found [90] by multiplying Eq. (39) from the left with

ψ̂†(rz)/2, integrating over r, taking an ensemble average and
then establishing some rearranging. From Eqs. (52), (81), and
(A5), it follows that

〈
T̂ (1)

cvr

〉 + 〈
T̂ (2)

cvr

〉 = −ih̄
∫

dr
∫

dr′
∫

γ

dz′�2(rz, r′z′)

×G(r′z′, rz). (B19)

Now we have all the necessary ingredients in place to express
the exact total energy in terms of the Green’s functions and
SEs. By using Eqs. (B13), (B14), (B18), and (B19), the total
energy can be written as

Etot = ih̄

2

Nn−1∑
k,k′=1

3∑
α=1

(
M−1

k δkk′ − M−1
nuc

)
Dpp,T

αα (kz, k′z+)

−1

2

∞∑
m=1

1

m

∑
k,α

[
Ken,(m)

α (kz) + 2Knn,(m)
α (kz)

]〈ûα (kz)〉

+Vnn(x) + ih̄

2

∞∑
m=1

1

m

∑
k,α

∑
k′′,α′

∫
γ

dz′′

×[
�

en,(m)
αα′ (kz, k′′z′′) + 2�

nn,(m)
αα′ (kz, k′′z′′)

]
×Dα′α (k′′z′′, kz)

− ih̄

2

∫
dr

[
ih̄

∂

∂z
− h̄2

2me
∇2

r + Ven(r, x)

]
G(rz, rz+)

− ih̄

2

∫
dr

∫
dr′

∫
γ

dz′�2(rz, r′z′)G(r′z′, rz). (B20)

This is an exact form of Etot. Provided x are the equilib-
rium positions, the second term on the right-hand side of
Eq. (B20) involving 〈ûα (kz)〉 vanishes and Dβα (k′z′, kz) =
DT

βα (k′z′, kz).
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