

This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Ngumba, Elijah; Gachanja, Anthony; Tuhkanen, Tuula

Title: Removal of selected antibiotics and antiretroviral drugs during post-treatment of municipal wastewater with UV, UV/chlorine and UV/hydrogen peroxide

Year: 2020

Version: Published version

Copyright: © The Authors. Water and Environment Journal published by John Wiley & Sons Lt

Rights: CC BY 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Ngumba, E., Gachanja, A., & Tuhkanen, T. (2020). Removal of selected antibiotics and antiretroviral drugs during post-treatment of municipal wastewater with UV, UV/chlorine and UV/hydrogen peroxide. Water and Environment Journal, 34(4), 692-703. https://doi.org/10.1111/wej.12612

Water and Environment Journal. Print ISSN 1747-6585

Removal of selected antibiotics and antiretroviral drugs during post-treatment of municipal wastewater with UV, UV/chlorine and UV/hydrogen peroxide

Elijah Ngumba 1,2, Anthony Gachanja & Tuula Tuhkanen

Department of Biological and Environmental Science, University of Jyvaskyla, University of Jyvaskyla, Jyvaskyla, Finland; and Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Keywords

advanced oxidation process; antibiotics; antiretroviral drugs; chlorine; hydrogen peroxide; post-treatment; UV; wastewater.

Correspondence

Elijah Ngumba, Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland. Email: engumba@jkuat.ac.ke

doi:10.1111/wej.12612

Abstract

Active pharmaceutical ingredients (APIs) are only partially removed by convectional wastewater treatment plants. This study aimed at assessing the post-treatment degradation of selected antibiotics and antiretroviral drugs by direct UV photolysis and advanced oxidation processes (UV/H2O2 and UV/Cl2) using low-pressure mercury lamp. The rate of degradation largely followed pseudo first-order reaction kinetics. Amongst the six studied APIs, sulfamethoxazole, ciprofloxacin and zidovudine were readily degraded by more than 90% using direct UV photolysis. Addition of Cl₂ and H₂O₂ to the UV process led to an increase in the rate of degradation for all the compounds. The effectiveness UV/Cl, process was affected to a greater extent by the background effluent organic matter. This implies that higher electrical energy and oxidant would be required in the UV/Cl₂ process relative to UV/H₂O₂ process. Generally, electrical energy required to remove 90% of the target compounds increased in the order UV/H2O2 < UV/Cl2 < UV processes.

Introduction

The presence of active pharmaceutical ingredients (APIs) in water resources is increasingly becoming an issue of great concern due to the potential harm that they pose to human health and the environment (Jjemba, 2006). APIs are unregulated environmental contaminants whose environmental fate and effects are not yet well understood (Daughton and Jones-Lepp, 2001; Ellis, 2006; Segura et al., 2015). APIs are discharged into the environment from various sources, such as wastewater treatment plants (WWTPs), industrial effluents, direct discharge of untreated domestic wastes and agricultural activities (Jjemba, 2006; Chen et al., 2016). WWTPs are by far the most significant route of entry of APIs into the environment largely because the conventional WWTPs are not designed to remove pharmaceuticals and other micropollutants resulting in poor removal efficiencies (Daughton and Ternes, 1999; Kümmerer, 2003; 2009; Zhang & Li, 2011; Celle-Jeanton et al., 2014; Kosma et al., 2014; Tang et al., 2015).

With increasing global water scarcity in many regions of the world, reuse of municipal wastewater is becoming increasingly inevitable to meet the current water demand. However, the presence of organic micropollutants such as pharmaceuticals is of a major concern (Yang et al., 2014). As a result, several advanced post-treatment technologies have been developed in an attempt to completely remove or degrade the APIs. Such technologies include the use of advanced oxidation processes (AOPs) in degrading recalcitrant organic compounds (O'Shea and Dionysiou, 2012). AOPs rely on the generation and utilisation of highly reactive nonselective radicals, the most important being the hydroxyl radical (•OH) which has a high oxidation potential (2.8 V) only lower than that of fluorine (3.03 V) (Parsons, 2004). The UV-based AOPs have several benefits that are making them more popular. Some of these benefits include: (i) AOPs do not transfer pollutants into another phase as in chemical and biological processes. (ii) The UV-based APOs are very good in disinfecting any pathogens that might be present in water and (iii) UV AOPs have rapid reaction rates. Several UV-based AOPs have been studied for the degradation of recalcitrant organic micropollutants in water (Wang and Xu, 2012). However, full-scale applications of most of these AOPs are hampered by the high costs largely associated with electrical energy consumption and chemical oxidants (Comninellis et al., 2008). Though UV/H₂O₂ has been applied in the full-scale wastewater treatment (Kruithof et al., 2007), the low molar absorption coefficient of H₂O₂ at 254 nm (about 20 M⁻¹ cm⁻¹) implies that only a small fraction of incident light is utilized for the radical formation and thus an excess H2O2 must

 Table 1
 Names, structures and selected measured and literature properties

		Water colub	Water solubility		Decadic molar absorption coefficient (ε , $\lambda_{254\mathrm{nm.}}$ (M-1cm-1))	
Compound	Chemical structure	(mg/L) ^a	pKaª	This study	Literature	
Sulfamethoxazole (SMX)	H ₂ N	610	5.6, 1.83	14 950	7345–24 018 ^b	
Ciprofloxacin (CIP)	HN N OH	13 500	6.4, 8.2	13 470	12 899–14 911 ^c	
Trimethoprim (TMP	N NH2	400	7.2, 17.33	4300	3053-8430 ^d	
Zidovudine (ZDV)	HO NH ₂	20 100	9.7	7560	ndf	
Lamivudine (3TC)	N NH ₂	70 000	4.3, 14.29	8970	ndf	
Nevirapine (NVP)	HO O N	0.7046	2.8	7500	ndf	
	NH					

ndf, no data found.

be added for sufficient •OH radical formation (Muruganandham et al., 2014; Boal et al., 2015).

Recently, the use of aqueous chlorine and UV as an AOP has been investigated and suggested to be effective in the degradation of recalcitrant organic micropollutants (Watts et~al., 2007; Watts and Linden, 2007; Sichel et~al., 2011; Watts et~al., 2012; Boal et~al., 2015). The UV/Cl₂ process has been suggested as a possible alternative to

the UV/H $_2$ O $_2$ in the removal of organic micropollutants for several reasons including; (i) the higher UV absorbance and the lower scavenging of HOCl as compared to H $_2$ O $_2$ resulting in higher quantum yield (φ) during photolysis of aqueous chlorine (HOCl φ = 1.4 mol Es $^{-1}$ and H $_2$ O $_2$ φ = 1.0 mol Es $^{-1}$ at 254 nm) (Watts and Linden, 2007; Jin et al., 2011; Rosenfeldt et al., 2013; Fang et al., 2014; Kishimoto and Nishimura, 2015). (ii) The UV/Cl $_2$ AOP produces

^aWishart et al. (2006), Babić et al. (2007), USEPA (2012).

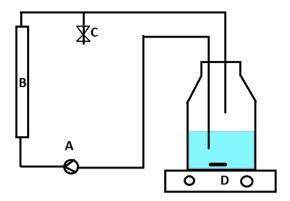
^bKim and Tanaka (2009), Batchu et al. (2014), Gerrity et al. (2014), Carlson et al. (2015), Lian et al. (2015), Yang et al. (2016).

^cAvisar et al. (2010), Guo et al. (2013), Batchu et al. (2014).

^dGerrity et al. (2014), Carlson et al. (2015), Yang et al. (2016).

three reactive radicals including hydroxyl, chlorine and oxygen radicals (Feng *et al.*, 2007; Jin *et al.*, 2011).

In the present study, the removal of three antibiotics (sulfamethoxazole, ciprofloxacin and trimethoprim) and three antiretroviral drugs (Nevirapine, zidovudine and lamivudine) from wastewater effluents by direct UV photolysis, UV/H2O2 and UV/Cl2 was evaluated. Though the removal of antibiotics by various AOPs has been reported by several authors, less attention has been paid to the antiretroviral drugs. The selected APIs are frequently used for the treatment of bacterial and viral infections and they are particularly useful in the management of HIV/AIDS (World Health Organization, 2016). The target compounds have been detected in various aquatic environments including surface water, groundwater and wastewater effluents at concentrations ranging from ng/L to hundreds of µg/L (Watkinson et al., 2007; Watkinson et al., 2009; Valcárcel et al., 2011; K'oreje et al., 2016; Ngumba et al., 2016a). The compounds have a wide range of physico-chemical properties (Table 1) that directly affect their rate of degradation by various wastewater treatment processes. The bulk of the expense in the operation of a UV-based AOPs can be attributed to electrical energy consumption. In the present study, energy requirement was estimated by calculating the electrical energy per order of compound removal (E_{FO}) using Eq. (1) (which is the energy required to remove or degrade 90% of the target compound) (Parsons, 2004).


$$E_{EO} \left(\text{kWh/order/10}^3 \text{L} \right) = \frac{P(\text{kW}) \times t \, (min) \times 1000}{V(L) \times 60 \times \log \, C_0 / C_f} \tag{1}$$

where P (kW) is the electrical power input into the reaction; C_0 and C_f are the initial and final API concentration, respectively; t (min) is the irradiation time in minutes; V is the volume of water in L.

Materials and methods

Chemicals and standards

Active chlorine and hydrogen peroxide solutions were prepared from sodium hypochlorite (EMPLURA® 6-14% active chlorine, Sigma-Aldrich) and hydrogen peroxide (30 wt. % Sigma-Aldrich), respectively. All the pharmaceutical standards (purity \geq 95%) were a kind donation from Universal Corporation Ltd, Kenya. Internal standards [2H_8]-ciprofloxacin, [2H_4]-sulfamethoxazole, [$^{13}C^2H_3$]-zidovudine, [2H_4]-nevirapine and [$^{13}C^2H_2$]-lamivudine (Alsachim, Illkirch, France), while [2H_9]-trimethoprim (Sigma-Aldrich, Steinheim, Germany). HPLC-grade methanol and acetonitrile (Merck, Darmstadt, Germany), formic acid 98% (Fluka, Darmstadt, Germany) were used in the preparation of chromatographic eluents. Ultrapure water was used throughout the study and was

Fig. 1. Scheme of AOP experimental set-up. (a) Recirculation pump, (b) UV reactor, (C) Sample valve and (d) Magnetic stirrer.

generated using Ultra Clear UV Plus and euRO 60 Reverse Osmosis unit (SG, Barsbuttel Germany). All other reagents used in this study were of analytical grade.

Composite 24 hours effluent samples were collected from the Jyväskylä wastewater treatment plant. The pH and dissolved organic carbon (DOC) for the wastewater effluent ranged from 7.7–8.1 to 11.1–15.5 mg/L, respectively.

Irradiation experiments

UV irradiation experiments were performed using a 670 mm 40 W low-pressure mercury lamp (Aquada 2 UV system, Wedeco, Germany) emitting at $\lambda_{\rm max}=254$ nm. The UV output was determined as 13.7 W using hydrogen peroxide actinometry as described by Nicole et~al. (1990) and had a UV intensity of 9.25 mW/cm² (details given in the Appendix A). The experiment was set-up as shown in Fig. 1. In brief, 3 L of water sample was added to the reservoir and reactor was run in a batch mode by recirculating the water at a flow rate of 0.5 L/min. Homogenisation of the sample was accomplished by the continuous recirculation of the water and use of magnetic stirrer.

To evaluate the degradation of individual APIs, the experiments were conducted based on the following experimental design: (i) Determination of target APIs degradation by direct UV photolysis, $\mathrm{UV/H_2O_2}$ and $\mathrm{UV/Cl_2}$ processes in spiked buffered ultrapure water and varying the sample pH, irradiation time and the initial oxidant concentrations; (ii) Determination of the target APIs degradation in biologically treated municipal wastewater effluent varying the initial oxidant concentrations and irradiation time. (iii) Determination of the target APIs degradation by $\mathrm{Cl_2}$ and $\mathrm{H_2O_2}$ in ultrapure water at pH 7.5 without UV irradiation (dark experiments). The irradiation experiments with wastewater were conducted without pH adjustment; however, the initial and final pHs of each batch were determined and overall the initial and final pHs for all the samples

were between 7.6 and 8.1 which are well within the typical municipal wastewater effluents. The injected doses for chlorine (as Cl_2) and hydrogen peroxide ranged between 8.52–85.2 and 4.1–41.2 mg/L, respectively, and were added at the beginning of the experiment. The initial concentration of the APIs was 20 μ M. Before oxidant addition, the first sample (C_0) was drawn directly from the reservoir. The oxidant was then injected and quickly homogenized with the magnetic stirrer after which the recirculation was started. Degradation samples (C_t) were periodically withdrawn from the sample valve/directly from the reservoir and residual oxidants quenched with sodium thiosulphate followed by the final APIs analysis.

Analytical methods

The SPE-LC-MS/MS procedures followed methods reported in previous studies with slight modifications (Ngumba et al., 2016a; 2016b). Briefly, water samples were filtered through 47 mm GF/D (2.7 μ m) and GF/F (0.7 μ m) glass microfibre filters (Whatman, Maidstone, England). Prior to SPE process corresponding isotopically labelled internal standards were added to 50 mL of filtered sample then loaded into Oasis HLB cartridges (3 cc, 60 mg Waters, Milford, USA) which had been conditioned with 3 mL of methanol (EMSURE, analytical grade) and 3 mL of distilled water, respectively. The cartridges were then dried in vacuum for 10 min and washed with 5 mL of ultrapure water followed by 5 mL of 2% methanol and then dried for further 10 min before elution with 4 mL of ACN/ MeOH, (1:1 v/v). The solvent was then evaporated in a stream of nitrogen at 40°C, re-constituted to 1 mL with acetonitrile/water (20:80 v/v) and then filtered through a 0.2 µm cellulose acetate syringe filter before injection into an LC-MS/MS system as previously reported (Ngumba et al., 2016b).

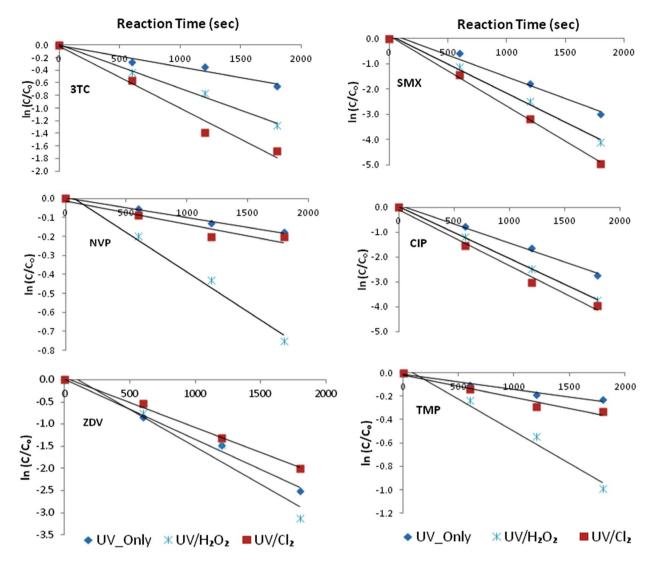
The concentration of free chlorine was determined by diethyl-p-phenylenediamine (DPD) ferrous iodometric titration method (American Public Health Association (APHA), 1999). Hydrogen peroxide concentration was standardized spectrophotometrically using a molar absorption coefficient of 43.6 M⁻¹ cm⁻¹ at 240 nm (Cohn *et al.*, 2005). Dissolved organic carbon (DOC) was measured with total TOC analyser (TOC-LCPH; Shimadzu, Japan). The UV absorbance of the samples was measured using the Hitachi U-1500 spectrophotometer (Hitachi Instruments, Inc. USA).

Results and discussion

Molar extinction coefficients for the target APIs

The degradation of an organic compound by UV is strongly dependent on the compound's ability to absorb UV

radiation expressed as a molar extinction coefficient. The presence of conjugated π system as well as aromatic rings and heteroatoms is some of the indicators of good UV chromophores that readily undergo direct photolysis. In this study, the molar extinction coefficients at 254 nm were determined from the slope of the linear plot of the UV absorbance against the concentration of individual API (5–40 μ M) dissolved in ultrapure water. The results are shown in Table 1. The molar extinction coefficients ranged from 4300 $M^{-1} cm^{-1}$ to 14 950 $M^{-1} cm^{-1}$ and increased in the order TMP < NVP < ZDV < 3TC < CIP < SMX. The molar extinction coefficients for TMP, CIP and SMX were within the range previously reported in the literature Table 1. However, no data were found for the antiretroviral drugs.


Determination of reaction rates

In order to compare the impact of selected UV-processes on the degradation of the target analytes, the reaction rates constants were determined in spiked wastewater effluents and ultrapure water. The rate of degradation of the APIs was evaluated by calculating the pseudo first-order rate constants as shown in Eq. (2)

$$\frac{-d[C]}{dt} = k_{\text{obs}}[C] \tag{2}$$

where $k_{\rm obs}$ (min^-1) is the time-based pseudo first-order rate constant for each compound with concentration C.

The direct UV photolysis, UV/H₂O₂ and UV/Cl₂ treatment linear plots of $\ln ([C_0]/[C])$ against time for each compound in wastewater effluent are shown in Fig. 2. Table 2 compares the Pseudo first-order rate constants at different oxidant concentrations in wastewater effluent and ultrapure water together with their corresponding coefficients of determination (R^2). The degradation of the compounds in wastewater effluents by the three UV-based processes followed a pseudo first-order kinetic model in the studied experimental conditions and the R2 for UV/ Cl₂, UV/H₂O₂ and UV photolysis ranged from 0.89 to 0.99, 0.95 to 1.0 and 0.96 to 0.99, respectively. The UV/Cl₂ showed some deviations from the curve as evidenced by the relatively lower R^2 values. The deviation can be attributed to the multiple degradation processes in the UV/Cl₂ such as UV photolysis, oxidation by free chlorine and radical attack. The degradation in ultrapure water similarly followed a pseudo first-order kinetic model under the experimental conditions with few exceptions. The R^2 calculated from the experimental results for UV/Cl₂, UV/ H₂O₂ and UV photolysis ranged from 0.87 to 0.98, 0.94 to 1.0 and 0.95 to 1.0, respectively. NVP and 3TC reacted instantaneously with chlorine and as a result, the rate

constants could not be approximated for the $\ensuremath{\mathsf{UV/Cl}}_2$ process.

The application of ${\rm UV/Cl}_2$ and ${\rm UV/H}_2{\rm O}_2$ AOPs resulted in increased degradation of the target APIs relative to direct photolysis both in the wastewater effluents and in ultrapure water. For instance, when 20.4 mg/L of hydrogen peroxide was added to wastewater effluent, the rate of degradation for TMP and NVP w was increased by a factor of 4.1 and 4.2, respectively.

Degradation of APIs with Cl_2 and H_2O_2 (dark experiments)

The degradation of the selected APIs by chlorination (dark experiments) is shown in Fig. 3. Based on the extent of degradation, the compounds could be put in three

categories: (i) APIs that reacted instantly with chlorine: - NVP and 3TC, (ii) APIs that remained less than 50% after 10 min of reaction time: - SMX, TMP and CIP and (iii) ZDV which reacted less than 10% with chlorine. The relatively fast reaction of a majority APIs with chlorine can be attributed to the presence of electron-rich moieties (Lee and von Gunten, 2010; Oulton et al., 2010). Oxidation reactions, addition reactions to unsaturated bonds and electrophilic substitution reactions at nucleophillic sites are possible reaction pathways of APIs with aqueous chlorine (Deborde and Von Gunten, 2007). This implies that the APIs may not be substantially oxidized but instead may be transformed into chlorinated addition and substitution products.

None of the APIs degraded in the dark experiments in presence of 8.2 mg/L of H_2O_2 . Direct reactions of hydrogen

Table 2 Direct UV photolysis, UV/H $_2$ O $_2$ and UV/Cl $_2$ pseudo first-order rate constants for 20 μ M of the selected antibiotics and antiretroviral drugs in wastewater effluent and ultrapure water


	Initial oxidant	Wastewater effluent		Ultrapure water	
	concentration	K_{obs} (s ⁻¹)	R ²	K_{obs} (s ⁻¹)	R^2
TMP	0	1.33E-04	0.971	1.67E-04	0.948
	20.4 mg/L_H ₂ O ₂	5.50E-04	0.98	1.47E-03	0.952
	40.8 mg/L_H ₂ O ₂	8.33E-04	0.997	nd	nd
	42.6 mg/L_Cl ₂	1.83E-04	0.955	2.43E-03	0.944
	85.2 mg/L_Cl ₂	3.00E-04	0.985	nd	nd
3 TC	0	3.33E-04	0.958	2.50E-04	0.976
	20.4 mg/L_H ₂ O ₂	7.00E-04	0.994	1.90E-03	0.98
	$40.8 \text{mg/L} - \text{H}_2 \text{O}_2$	1.08E-03	0.987	nd	nd
	42.6 mg/L_Cl ₂	7.00E-04	0.967	a	a
	$85.2 \mathrm{mg/L_Cl}_2$	1.08E-03	0.985	nd	
ZDV	0	1.37E-03	0.991	1.55E-03	0.995
	$20.4 \text{mg/L} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1.68E-03	0.952	2.08E-03	0.984
	$40.8 \text{mg/L} \text{H}_2 \text{O}_2$	2.07E-03	0.994	nd	nd
	42.6 mg/L_Cl ₂	1.13E-03	0.996	3.20E-03	0.975
	$85.2 \mathrm{mg/L_Cl}_2$	1.05E-03	0.968	nd	nd
CIP	0	1.52E-03	0.992	1.80E-03	0.996
	$20.4\mathrm{mg/L_H_2O_2}$	2.07E-03	1	3.27E-03	0.955
	$40.8~\mathrm{mg/L_H_2O_2}$	2.18E-03	0.997	nd	nd
	42.6 mg/L_Cl ₂	2.23E-03	0.989	4.30E-03	0.97
	$85.2 \mathrm{mg/L_Cl_2}$	2.77E-03	0.914	nd	nd
NVP	0	1.00E-04	0.993	8.33E-05	0.961
	$20.4 \text{mg/L_H}_2 \text{O}_2$	4.17E-04	0.987	1.32E-03	0.94
	$40.8 \text{ mg/L_H}_2\text{O}_2$	7.00E-04	0.997	nd	nd
	42.6 mg/L_Cl ₂	1.17E-04	0.89	a	a
	$85.2 \mathrm{mg/L_Cl}_2$	1.67E-04	0.989	nd	nd
SMX	0	1.70E-03	0.977	2.25E-03	0.996
	$20.4 \mathrm{mg/L_H_2O_2}$	2.28E-03	0.993	3.78E-03	0.997
	$40.8~\mathrm{mg/L_H_2O_2}$	2.45E-03	0.995	nd	nd
	42.6 mg/L_Cl ₂	2.78E-03	0.997	8.47E-03	0.87
	$85.2 \mathrm{mg/L_Cl_2}$	2.92E-03	0.996	nd	nd

nd, not done.

peroxide with most organic compounds are generally too slow and are not usually viewed as a significant pathway for the degradation of organic micropollutants (Watts and Teel, 2005; Petri *et al.*, 2011). The use of hydrogen peroxide in the presence of a catalyst or an activator resulting to the generation of highly reactive and non-selective hydroxyl radicals is the most significant application (Oppenländer, 2002; Boczkaj and Fernandes, 2017).

The effect of pH on the direct UV photolysis, UV/H_2O_2 and UV/CI_2 processes in ultrapure water

The effect of pH on degradation of the target compounds by the three treatment methods was evaluated at three pH levels in phosphate-buffered ultrapure water spiked with the analytes. An initial concentration of 8.2 and 17.0 mg/L for $\rm H_2O_2$ and $\rm Cl_2$, respectively, and an electrical energy dose of 2.2 kWh/10³L was used. The obtained results are shown in Fig. 4.

Fig. 3. Degradation of the target APIs spiked in ultrapure water by 17 mg/L of ${\rm Cl}_2$ after 10 min reaction in the dark.

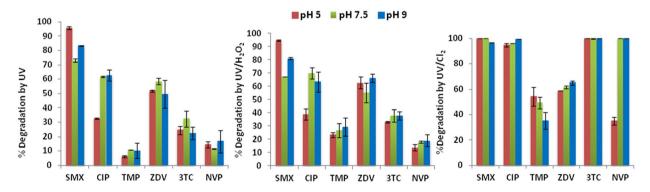


Fig. 4. Effect of the pH of the sample on the degradation of 20 μ M target compounds by direct UV photolysis, UV/H₂O₂ and UV/Cl₂ spiked in an ultrapure water electrical energy dose of 2.2 kWh/10³L and an initial oxidant concentration of 8.2 mg/L of H₂O₂ and 17.0 mg/L of Cl₂.

^aInstant reaction with chlorine.

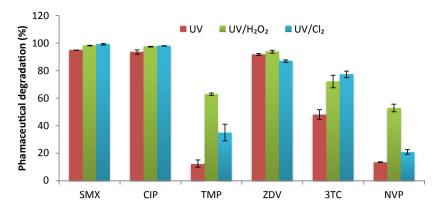


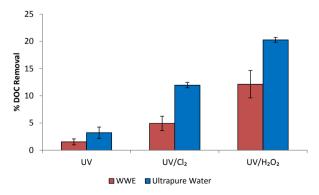
Fig. 5. The removal of 20 μ M target antibiotics and antiretroviral drugs in wastewater by direct UV photolysis, UV/H₂O₂ and UV/Cl₂ at an electrical energy dose of 6.67 kWh/10³L and 20.4 mg/L of H₂O₂ and 42.6 mg/L of Cl₂. The error bars present the standard deviation (n = 3).

For UV treatment, only SMX and CIP were significantly affected by the pH changes. Increasing the pH from 5 to 9 led to an increased rate of photolysis of CIP. A different trend was observed for SMX with a higher rate of photolysis pH 5 (>95% removal) which decreased at near neutral pH 7.5 (≈73% removal) and further increase to pH 9 resulted to an increase in the degradation rate (83% removal). The strong dependence on pH in the rates of photolysis for SMX and CIP can be largely attributed to their acid-base speciation properties in the aqueous solution that consequently affects the optical properties of the compounds (Avisar et al., 2010; Lian et al., 2015). The effect of pH on UV/H₂O₂ treatment was quite similar to direct UV photolysis where lower pH was favoured for SMX and higher pH for CIP, while no particular trend or significant influence of pH was observed in the other APIs. For UV/Cl₂, TMP degradation was favoured at lower pH values, while NVP was degraded to a greater extent at higher pH values. Previous studies show that UV/Cl₂ is less efficient at high pH due to the scavenging of •OH by OCI (Wang et al., 2016). However, in this case, the higher NVP degradation can be largely attributed to the direct attack by the free chlorine rather than the radical pathway.

Removal of APIs from wastewater by UV-based processes

The removal of target antibiotics and antiretroviral drugs spiked wastewater effluent by the selected UV-based processes (direct UV photolysis, $\rm UV/H_2O_2$ and $\rm UV/Cl_2$) is shown in Fig. 5. SMX, CIP and ZDV were efficiently removed by more than 90% by direct UV photolysis over an irradiation period of 30 min. However, the removal efficiency for TMP, NVP and 3TC was 12.2, 13.4 and 48.1%, respectively, which was majorly attributed to the relatively low molar absorption coefficients for the compounds (Table 1). Generally,

the removal of SMX, CIP and TMP by direct UV photolysis was consistent with what has been reported in the literature. Kim *et al.* (2009) reported a removal efficiency of >90 and 10% for the removal of SMX and TMP, respectively, by direct UV photolysis of wastewater effluent using a low-pressure mercury lamp (65 W) for 5 min. In another study, Yang *et al.* (2016) reported an approximately 50% reduction in CIP concentration in wastewater effluent when irradiated with a low-pressure mercury lamp (10 W) for 3 min. The removal efficiency by direct UV photolysis for ZDV was generally higher than for 3TC and NVP that have similar molar extinction coefficients. This can possibly be due to a higher quantum yield for ZDV which was not evaluated in this study.


The degradation of the compounds that were not readily removed by direct UV photolysis was significantly enhanced by UV/H₂O₂ and UV/Cl₂ processes. In the UV/ H₂O₂ process, the removal of TMP, 3TC and NVP was 62.9, 72.2 and 52.9%, respectively, due to the contribution of the radicals in the removal of the APIs. Several studies have reported efficient removal of SMP, TMP and CIP by UV/H₂O₂ AOP. De la Cruz et al. (2012) found that SMX, CIP and TMP were entirely degraded in wastewater effluents by low pressure 25W mercury lamp and 50 mg/L of H₂O₂ after 30 min irradiation. With the UV/Cl₂ process, the degradation of TMP, 3TC and NVP was 35, 77.4 and 20.8%, respectively. The removal of TMP and NVP was much lower than for UV/H2O2 but higher than that of direct UV photolysis. Yang et al. (2016) found higher removal efficiency of TMP >90% by UV/Cl₂ using lowpressure mercury lamp (10 W) for 3 min. The relatively lower removal efficiency in the present study can be largely attributed to the higher DOC content in the effluent waters which ranged between 11.1 and 15.5 mg/L as compared to effluents reported by Yang et al. (2016) of between 1.1 and 3.5 mg/L.

Though the UV/Cl₂ process has been touted by several authors (Sichel et al., 2011; Wang et al., 2015; Yang et al., 2016) as a possible alternative to UV/H2O2 AOP, several drawbacks arise when applied for post-treatment of wastewater effluents. First, the current study shows that large doses of chlorine are required for an effective removal of recalcitrant compounds in wastewater such as TMP and NVP. This is primarily because the electron-rich moieties in the effluent organic matter compete for chlorine with the APIs. In addition, the large quantities of chlorine will essentially lead to the need for the removal of residual chlorine after the treatment process before the wastewater is discharged into the environment. Second, there is a great potential of the formation of chlorinated electrophilic substitution products which can be more toxic or have similar antimicrobial activity as with the parent molecule (Aga, 2008).

The observations in the present study are in agreement with the findings by Jin et al. (2011) who compared the effectiveness of $\rm UV/Cl_2$ and $\rm UV/H_2O_2$ in the removal of cyclohexanoic acid in wastewater streams. In their study, the $\rm UV/Cl_2$ was found to be less efficient than $\rm UV/H_2O_2$ and thus not ideal for the degradation of cyclohexanoic acid in the studied wastewater stream.

Removal of DOC during direct UV photolysis, UV/H₂O₂ and UV/Cl₂

The removal of DOC by the selected UV-based treatment processes was evaluated for effluent wastewater and ultrapure water spiked with mixed APIs. The results are shown in Fig. 6. The removal in wastewater was 1.5, 4.9 and 12.1% by UV, UV/Cl $_2$ and UV/H $_2$ O $_2$, respectively. The removal of DOC in ultrapure water was significantly higher at 3.2, 11.9 and 20.3% for UV, UV/Cl $_2$ and UV/H $_2$ O $_2$, respectively. The removal of DOC by AOP processes showed a remarkable increase due to the synergetic effect of radical

Fig. 6. Comparison of the removal of DOC in wastewater and ultrapure water by direct UV photolysis, UV/H₂O₂ and UV/Cl₂.

reactions, direct photolysis and oxidation by chlorine. Similar studies (Goslan et~al., 2006; Kim et~al., 2009) have shown minimal DOC removal in water by direct UV photolysis. Whereas UV-based AOPs show an enhanced removal and very high doses of UV would be required for effective removal of DOC. The significantly lower DOC removal by the UV/Cl $_2$ process is an indicator that the majority of the APIs have undergone a minimal transformation. This implies that further studies need to be undertaken to investigate the nature of the transformation products.

Comparison of direct UV photolysis, UV/H_2O_2 and UV/CI_2 energy consumption

The energy consumption for the degradation of each compound was evaluated based on the electrical energy per order of compound removal ($E_{\rm EO}$, Eq. 1). Table 3 shows the E_{EO} in kWh/order/10³L for effluent wastewater at an initial oxidant concentration of 20.4 mg/L of $\rm H_2O_2$ and 42.6 mg/L of Cl_2 . For the direct UV photolysis, the E_{FO} ranged from 5.4 to 97.1 kWh/order/10 3 L. The $E_{\rm FO}$ for the target compounds increased in the following order SMX < CIP < ZDV << 3T C << NVP < TMP. The lower $E_{\rm EO}$ for SMX and CIP can be attributed to the relatively high molar extinction coefficients >10 000 M⁻¹cm⁻¹ at 254 nm and are hence readily degraded by direct UV photolysis. In contrast, TMP and NVP have relatively lower molar extinction coefficients and as a result, high electrical energy is required to achieve one order of compound degradation. UV/H_2O_2 treatment showed a significant reduction in the E_{FO} in comparison to direct UV photolysis and ranged between 4.1 and 23.5 kWh (1.1-5.4 times more efficient). TMP and NVP showed marked reduction in E_{EQ} from 97.1 to 17.8 and 96.7 to 23.5 kWh which translates to 81.6 and 75.7% electrical energy reduction, respectively. In the case UV/Cl₂, the E_{EQ} ranged between 3.3 and 61.2 kWh. Apart from ZDV which did not show EEO reduction in the UV/Cl₂ process relative to direct UV photolysis, the rest of the compounds showed 1.5-3.5 times reduction in EEO. Comparing the EEO for UV/Cl₂ and UV/ H_2O_2 , the UV/Cl₂ was 1.2–1.4 times more efficient in the

Table 3 The electrical energy per order of compound removal (EEO, kWh/order/ 10^3 L) for direct UV photolysis, UV/H₂O₂ (20.4 mg/L) and UV/Cl₂ (42.6 mg/L) in treated wastewater

Compound	UV	UV/H ₂ O ₂	UV/Cl ₂
SMX	5.4 (0.3) ^a	4.1 (0.4)	3.3 (0.3)
CIP	6.2 (0.5)	4.2 (0.1)	3.5 (0.3)
TMP	97.1 (9.1)	17.8 (2.4)	35.8 (0.4)
ZDV	6.4 (0.5)	5.8 (1.2)	7.8 (0.4)
3TC	30.5 (4.6)	12.7 (0.9)	8.9 (1.5)
NVP	96.7 (13.0)	23.5 (2.8)	58.1 (7.8)

 ${}^{a}Mean (\pm SD).$

degradation of SMX, CIP and 3TC. However, $\rm UV/H_2O_2$ was 2.6, 2.0 and 1.3 times more efficient in degrading of NVP, TMP and ZDV, respectively.

Conclusion

This study compared the bench-scale wastewater post-treatment removal of three antibiotics and three antiretroviral drugs in by direct UV photolysis, UV/H₂O₂ and UV/Cl₂ processes using low-pressure mercury lamp ($\lambda_{max}=254$ nm). The removal of the antiretroviral drugs has not been previously reported for any of the studied UV processes. Based on the experimental results, the following conclusions can be drawn:

- (1) The rate of degradation of the six compounds by direct UV photolysis, UV/H₂O₂ and UV/Cl₂ processes followed pseudo first-order reaction kinetics.
- (2) SMX, CIP and ZDV were readily removed by direct UV photolysis
- (3) The pseudo first-order rate constants for the UV/H_2O_2 process in wastewater were significantly higher than the UV/Cl_2 process, especially for NVP and TMP. This implies that the treatment efficiency UV/Cl_2 process is inferior to that of UV/H_2O_2 and much more electrical energy would be required to achieve similar removal efficiencies. However, due to the relatively low chemical costs, the UV/Cl_2 AOP process can be an alternative to UV/H_2O_2 in water with low DOC and after thorough suitability evaluation of each target water stream.

Acknowledgements

This work was financially supported by the University of Jyväskylä Doctoral Programme in Biological and Environmental Science and Maa-ja vesitekniikan tuki ry.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

To submit a comment on this article please go to http://mc.manuscriptcentral.com/wej. For further information please see the Author Guidelines at wileyonlinelibrary.com

References

American Public Health Association. (1999) 4500-Cl Chlorine. Standard Methods for the Examination of Water and Wastewater. (Greenberg, A.E., Clesceri, L.S. and Eaton, A.D. Eds.), 20th edition, 1–14. Washington, DC: American

- Public Health Association, American Water Works Association, Water Pollution Control Federation.
- Andreozzi, R. (1999) Advanced oxidation processes (AOP) for water purification and recovery. *Catalysis Today*, **53**(1), 51–59. https://doi.org/10.1016/S0920-5861(99)00102-9.
- Avisar, D., Lester, Y. and Mamane, H. (2010) pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water. *Journal of Hazardous Materials*, **175**, 1068–1074. https://doi.org/10.1016/j.jhazmat. 2009.10.122.
- Babić, S., Horvat, A.J.M.M., Mutavdžić Pavlović, D. and Kaštelan-Macan, M. (2007) Determination of pKa values of active pharmaceutical ingredients. *TrAC Trends in Analytical Chemistry*, **26**(11), 1043–1061. https://doi.org/10.1016/j.trac.2007.09.004.
- Batchu, S.R., Panditi, V.R., O'Shea, K.E. and Gardinali, P.R. (2014) Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. *Science of the Total Environment*, **470–471**, 299–310. https://doi.org/10.1016/j.scitotenv.2013.09.057.
- Boal, A.K., Rhodes, C. and Garcia, S. (2015) Pump-and-treat groundwater remediation using chlorine/ultraviolet advanced oxidation processes. *Groundwater Monitoring and Remediation*, **35**(2), 93–100. https://doi.org/10.1111/gwmr.12095.
- Boczkaj, G. and Fernandes, A. (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. *Chemical Engineering Journal*, **320**, 608–633. https://doi.org/10.1016/j.cej.2017.03.084.
- Carlson, J.C., Stefan, M.I., Parnis, J.M. and Metcalfe, C.D. (2015) Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. *Water Research*, **84**, 350–361. https://doi.org/10.1016/j.watres.2015.04.013.
- Celle-Jeanton, H., Schemberg, D., Mohammed, N., Huneau, F., Bertrand, G., Lavastre, V., et al. (2014) Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs. *Environment International*, **73**, 10–21. https://doi.org/10.1016/j.envint.2014.06.015.
- Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., et al. (2016) Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of the Total Environment, 566567, 1660–1669. https://doi.org/10.1016/j.scitotenv.2016.06.069.
- Cohn, C.A., Pak, A., Strongin, D. and Schoonen, M.A. (2005) Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. *Geochemical Transactions*, **6**(3), 47–51. https://doi.org/10.1063/1.1935449.
- Comninellis, C., Kapalka, A., Malato, S., Parsons, S.A., Poulios, I. and Mantzavinos, D. (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. *Journal of Chemical Technology & Biotechnology*, **83**(6), 769–776. https://doi.org/10.1002/jctb.1873.
- Daughton, C.G. and Jones-Lepp, T.L. (2001) Pharmaceuticals and Personal Care Products in the Environment:

- Scientific and Regulatory Issues. In: Daughton, C.G and Jones-Lepp, T.L. (Eds.), Vol. **791**. Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-2001-0791.
- Daughton, C. and Ternes, T. (1999) Special report: pharmaceuticals and personal care products in the enviornment: agents of subtle change? *Environmental Health Perspectives*, **107**(Supplement), 907–938. https://doi.org/10.2307/3434573.
- De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L.F. and Pulgarín, C. (2012) Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. *Water Research*, **46**(6), 1947–1957. https://doi.org/10.1016/j.watres.2012.01.014.
- Deborde, M. and Von Gunten, U. (2007) Reactions of chlorine with inorganic and organic compounds during water treatment kinetics and mechanisms: a critical review. *Water Research*, **42**(1-2), 13–51. https://doi.org/10.1016/j.watres.2007.07.025.
- Ellis, J.B. (2006) Pharmaceutical and personal care products (PPCPs) in urban receiving waters. *Environmental Pollution*, **144**(1), 184–189. https://doi.org/10.1016/j.envpol.2005.12.018.
- Fang, J., Fu, Y. and Shang, C. (2014) The roles of reactive species in micropollutant degradation in the UV/free chlorine system. *Environmental Science & Technology*, **48**(3), 1859–1868. https://doi.org/10.1021/es4036094.
- Feng, Y., Smith, D.W. and Bolton, J.R. (2007) Photolysis of aqueous free chlorine species (HOCl and OCl–) with 254 nm ultraviolet light. *Journal of Environmental Engineering* and Science, 6(3), 277–284. https://doi.org/10.1139/ s06-052.
- Gerrity, D., Lee, Y., Gamage, S., Lee, M., Pisarenko, A.N. and Trenholm, R.A., *et al.* (2014) Emerging investigators series: prediction of trace organic contaminant abatement with UV/H₂O₂: development and validation of semi-empirical models for municipal wastewater effluents. *Environmental Science: Water Research & Technology*, **2**, 460. https://doi.org/10.1039/c6ew00051g.
- Goslan, E.H., Gurses, F., Banks, J. and Parsons, S.A. (2006) An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. *Chemosphere*, **65**(7), 1113–1119. https://doi.org/10.1016/j.chemosphere.2006.04.041.
- Guo, H.-G., Gao, N.-Y., Chu, W.-H., Li, L., Zhang, Y.-J., Gu, J.-S., et al. (2013) Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products. *Environmental Science and Pollution Research*, **20**(5), 3202–3213. https://doi.org/10.1007/s11356-012-1229-x.
- Huang, C.-H., Dodd, M. and Shah, A. (2008) Reaction and Transformation of Antibacterial Agents with Aqueous Chlorine under Relevant Water Treatment Conditions. In: Aga, D. (Ed.). Fate of Pharmaceuticals in the Environment and in Water Treatment Systems. Boca Raton, FL: CRC Press, 261–285. https://doi.org/10.1201/9781420052336.

- Jin, J., El-Din, M.G. and Bolton, J.R. (2011) Assessment of the UV/Chlorine process as an advanced oxidation process. Water Research, 45(4), 1890–1896. https://doi. org/10.1016/j.watres.2010.12.008.
- Jjemba, P.K. (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. *Ecotoxicology and Environmental Safety*, 63(1), 113–130. https://doi.org/10.1016/j. ecoenv.2004.11.011.
- K'oreje, K., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., *et al.* (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. *Chemosphere*, **149**, 238–244. https://doi.org/10.1016/j.chemosphere.2016.01.095.
- Kim, I. and Tanaka, H. (2009) Photodegradation characteristics of PPCPs in water with UV treatment. *Environment International*, **35**(5), 793–802. https://doi.org/10.1016/j.envint.2009.01.003.
- Kim, I., Yamashita, N. and Tanaka, H. (2009) Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. *Journal of Hazardous Materials*, **166**(2–3), 1134–1140. https://doi.org/10.1016/j.jhazmat.2008.12.020.
- Kishimoto, N. and Nishimura, H. (2015) Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite. Environmental Technology, **36**(19), 2436–2442. https://doi.org/10.1080/09593330.2015.1034187.
- Kosma, C.I., Lambropoulou, D.A. and Albanis, T.A. (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. *Science of the Total Environment*, **466–467**, 421–438. https://doi.org/10.1016/i.scitotenv.2013.07.044.
- Kruithof, J.C., Kamp, P.C. and Martijn, B.J. (2007) UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. *Ozone-Science & Engineering*, **29**(4), 273–280. https://doi.org/10.1080/01919 510701459311.
- Kümmerer, K. (2003) Significance of antibiotics in the environment. *Journal of Antimicrobial Chemotherapy*, **52**(1), 5–7. https://doi.org/10.1093/jac/dkg293.
- Kümmerer, K. (2009) Antibiotics in the aquatic environment a review part I. *Chemosphere*, **75**(4), 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086.
- Lee, Y. and von Gunten, U. (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). *Water Research*, **44**(2), 555–566. https://doi.org/10.1016/j.watres.2009.11.045.
- Lian, J., Qiang, Z., Li, M., Bolton, J.R. and Qu, J. (2015) UV photolysis kinetics of sulfonamides in aqueous solution based on optimized fluence quantification. *Water Research*, **75**, 43–50. https://doi.org/10.1016/j.watres.2015.02.026.

- Muruganandham, M., Suri, R.P.S., Jafari, S., Sillanpaa, M., Lee, G.-J., Wu, J.J., *et al.* (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. *International Journal of Photoenergy*, **2014**, 1–21. https://doi.org/10.1155/2014/821674.
- Ngumba, E., Gachanja, A. and Tuhkanen, T. (2016a)
 Occurrence of selected antibiotics and antiretroviral
 drugs in Nairobi River Basin, Kenya. *Science of the Total Environment*, **539**, 206–213. https://doi.org/10.1016/j.scitotenv.2015.08.139.
- Ngumba, E., Kosunen, P., Gachanja, A. and Tuhkanen, T. (2016b) A multiresidue analytical method for trace level determination of antibiotics and antiretroviral drugs in wastewater and surface water using SPE-LC-MS/MS and matrix-matched standards. *Analytical Methods*, **8**(37), 6720–6729. https://doi.org/10.1039/C6AY01695B.
- Nicole, I., De Laat, J., Dore, M., Duguet, J. and Bonnel, C. (1990) Use of U.V. radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry. *Water Research*, **24**(2), 157–168. https://doi.org/10.1016/0043-1354(90)90098-Q.
- O'Shea, K.E. and Dionysiou, D.D. (2012) Advanced oxidation processes for water treatment. *The Journal of Physical Chemistry Letters*, **3**(15), 2112–2113. https://doi.org/10.1021/jz300929x.
- Oppenländer, T. (2002) *Photochemical Purification of Water and Air*. Weinheim, Germany: WILEY-VCH Verlag, 101–130. https://doi.org/10.1002/9783527610884.
- Oulton, R.L., Kohn, T., Cwiertny, D.M., Fernandez-Alba, A.R., Keating, K.A., Strathmann, T.J., et al. (2010)

 Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. *Journal of Environmental Monitoring*, 12(11), 1956. https://doi.org/10.1039/c0em00068j.
- Parsons, S. (2004) Advanced Oxidation Processes for Water and Wastewater Treatment. In: Parsons, S. (Ed.). London: IWA Publishing.1–109.
- Petri, B.G., Watts, R.J., Teel, A.L., Huling, S.G. and Brown, R.A. (2011) In situ chemical oxidation for groundwater remediation. In: Siegrist, R.L., Crimi, M. and Simpkin, T.J. (Eds.) Situ Chemical Oxidation for Groundwater Remediation, Vol. 3, 33–81. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-7826-4.
- Rosenfeldt, E., Boal, A.K., Springer, J., Stanford, B., Rivera, S., Kashinkunti, R.D., et al. (2013) Comparison of UV-mediated advanced oxidation. *Journal American Water Works Association*, **105**(7), 29–33.
- Segura, P.A., Takada, H., Correa, J.A., El Saadi, K., Koike, T., Onwona-Agyeman, S., et al. (2015) Global occurrence of anti-infectives in contaminated surface waters: impact of income inequality between countries. *Environment International*, **80**, 89–97. https://doi.org/10.1016/j.envint.2015.04.001.
- Sichel, C., Garcia, C. and Andre, K. (2011) Feasibility studies: UV/chlorine advanced oxidation treatment for the

- removal of emerging contaminants. *Water Research*, **45**(19), 6371–6380. https://doi.org/10.1016/i.watres.2011.09.025.
- Tang, J., Shi, T., Wu, X., Cao, H., Li, X., Hua, R., et al. (2015) The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment. *Chemosphere*, **122**, 154–161. https://doi.org/10.1016/j.chemosphere.2014.11.032.
- USEPA. (2012) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. Washington, DC: United States Environmental Protection Agency.
- Valcárcel, Y., González Alonso, S., Rodríguez-Gil, J., Gil, A. and Catalá, M. (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. *Chemosphere*, **84**(10), 1336–1348. https://doi.org/10.1016/j.chemosphere.2011.05.014.
- Wang, D., Bolton, J.R., Andrews, S.A. and Hofmann, R. (2015) UV/chlorine control of drinking water taste and odour at pilot and full-scale. *Chemosphere*, **136**, 239–244. https://doi.org/10.1016/j.chemo sphere.2015.05.049.
- Wang, J.L. and Xu, L.J. (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. *Critical Reviews in Environmental Science and Technology*, **42**(3), 251–325. https://doi.org/10.1080/10643389.2010.507698.
- Wang, W.-L., Wu, Q.-Y., Huang, N., Wang, T. and Hu, H.-Y. (2016) Synergistic effect between UV and chlorine (UV/ chlorine) on the degradation of carbamazepine: influence factors and radical species. *Water Research*, **98**, 190–198. https://doi.org/10.1016/j.watres.2016.04.015.
- Watkinson, A.J., Murby, E.J. and Costanzo, S.D. (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. *Water Research*, **41**(18), 4164–4176. https://doi.org/10.1016/ j.watres.2007.04.005.
- Watkinson, A.J., Murby, E.J., Kolpin, D.W. and Costanzo, S.D. (2009) The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. *Science of the Total Environment*, **407**(8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059.
- Watts, M.J., Hofmann, R. and Rosenfeldt, E.J. (2012) Low-pressure UV/CL2 for advanced oxidation of taste and odor. *Journal - American Water Works Association*, **104**(104), E58–E65. https://doi.org/10.5942/ jawwa.2012.104.0006.
- Watts, M.J. and Linden, K.G. (2007) Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. *Water Research*, **41**(13), 2871–2878. https://doi.org/10.1016/j.watres.2007.03.032.
- Watts, M.J., Rosenfeldt, E.J. and Linden, K.G. (2007)
 Comparative OH radical oxidation using UV-Cl and UV-HO processes. *Journal of Water Supply: Research and Technology*—AQUA, **56**(8), 469. https://doi.org/10.2166/aqua.2007.028.

Watts, R.J. and Teel, A.L. (2005) Chemistry of modified Fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. *Journal of Environmental Engineering-Asce*, **131**(4), 612–622. https://doi.org/10.1016/j.watres.2006.05.009.

Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., *et al.* (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. *Nucleic Acids Research*, **34**(90001), D668–D672. https://doi.org/10.1093/nar/gkj067.

World Health Organization. (2016) Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach, 2nd edition, 1–480. Geneva: World Health Organization.

Yang, W., Zhou, H. and Cicek, N. (2014) Treatment of organic micropollutants in water and wastewater by UV-based processes: a literature review. *Critical Reviews in Environmental Science and Technology*, **44**(13), 1443–1476. https://doi.org/10.1080/10643 389.2013.790745.

Yang, X., Sun, J., Fu, W., Shang, C., Li, Y., Chen, Y., et al. (2016) PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Research, 98, 309–318. https://doi.org/10.1016/j. watres.2016.04.011.

Zhang, T. and Li, B. (2011) Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. *Critical Reviews in Environmental Science and Technology*, **41**(11), 951–998. https://doi.org/10.1080/10643380903392692.

APPENDIX A Chemical actinometry

The determination of the intensity of the incident radiation I_0 was conducted using hydrogen peroxide as an actinometer as demonstrated by Nicole *et al.* (1990). In brief, the photochemical degradation of hydrogen

peroxide from the absorption of monochromatic radiation at 254 nm follows the Beer-Lambert's law as expressed in the Eq. (A1)

$$-\frac{d\left[{\rm H_{2}O_{2}}\right]}{dt} = \frac{\Phi_{{\rm H_{2}O_{2}}I_{o}}}{V}(1 - \exp\left(-2.303L\varepsilon_{{\rm H_{2}O_{2}}}\left[{\rm H_{2}O_{2}}\right]\right)^{(A1)}$$

where $\Phi_{\text{H}_2\text{O}_2}$, $\varepsilon_{\text{H}_2\text{O}_2}$, $[\text{H}_2\text{O}_2]$ and V are the quantum yield, molar extinction coefficient, concentration and volume of hydrogen peroxide, respectively, while L is the effective path of the radiation. When the exponential term $2.303L\varepsilon_{\text{H}_2\text{O}_2}$ $[\text{H}_2\text{O}_2] > 2$, the equation is simplified to Eq. (A2)

$$-\frac{d\left[\mathsf{H}_2\mathsf{O}_2\right]}{dt} = \frac{\Phi_{\mathsf{H}_2\mathsf{O}_2}I_o}{V} \tag{A2}$$

At 254 nm, the molar absorption coefficient and quantum yield for hydrogen peroxide are 18.6 M⁻¹cm⁻¹ and 1 mol/ Einstein, respectively (Andreozzi, 1999).

Integrating Eq. (A2)

$$[H_2O_2]_t = \frac{\Phi_{H_2O_2}I_o}{V}t + [H_2O_2]_o$$
 (A3)

A plot of $\left[\mathrm{H_2O_2}\right]_t$ against time gives $\frac{\Phi_{\mathrm{H_2O_2}/o}}{V}$ as the gradient enabling the computation of the I_o . In this study, photolysis of 3 L 0.1 M hydrogen peroxide in ultrapure water at pH 7.5 and samples were taken at various time intervals. A plot of the residual hydrogen peroxide after irradiation at UV 254 nm against time is shown in Figure A1. The concentration of hydrogen peroxide decreased linearly with an $R^2 > 0.99$ and gradient of 9.66×10^{-6} translating to a photon flux of 2.9×10^{-5} Einstein/s. Since the energy of a photons are 1.75×10^{19} photons/s results to total UV intensity of 13.6 W or 9.25 mW/cm².

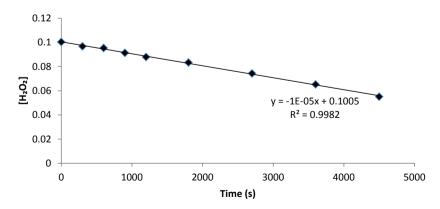


Fig. A1. Linear plot showing the degradation of hydrogen peroxide with UV at 254 nm.