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abstract: Understanding how nutrients flow through food webs is
central in ecosystem ecology. Tracer addition experiments are power-
ful tools to reconstruct nutrient flows by adding an isotopically en-
riched element into an ecosystem and tracking its fate through time.
Historically, the design and analysis of tracer studies have varied
widely, ranging from descriptive studies to modeling approaches of
varying complexity. Increasingly, isotope tracer data are being used
to compare ecosystems and analyze experimentalmanipulations. Cur-
rently, a formal statistical framework for analyzing such experiments
is lacking, making it impossible to calculate the estimation errors asso-
ciated with the model fit, the interdependence of compartments, and
the uncertainty in the diet of consumers. In this article we develop a
method based on Bayesian hidden Markov models and apply it to
the analysis of 15N‐NH4

1 tracer additions in two Trinidadian streams
in which light was experimentally manipulated. Through this case
study, we illustrate how to estimate N fluxes between ecosystem com-
partments, turnover rates of N within those compartments, and the
associated uncertainty. We also show how the method can be used
to compare alternativemodels of food web structure, calculate the er-
ror around derived parameters, and make statistical comparisons be-
tween sites or treatments.

Keywords: food webs, hidden Markov model (HMM), isotope tracer
addition, model selection, nutrient uptake, state-space models.

Introduction

Food webs are the cornerstone of community and ecosys-
tem ecology because they describe the flow of matter and
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energy among organisms, thus defining important prop-
erties of an ecosystem, such as stability and productivity
(Paine 1980; Newbold et al. 1983; Carpenter et al. 2005;
Rooney andMcCann 2012). They provide the rawmaterial
for many ecological questions, including the study of tro-
phic cascades, nutrient cycling, and ecosystem productiv-
ity. Foodweb studies have been amajor theme in ecological
research for more than a century, beginning with early
work that identified trophic linkages (Elton 1927). More
recent studies have attempted to quantitatively track the
movement of energy andmaterials through food web com-
partments, which remains particularly challenging because
of complex methods for both data collection and analysis
(Dodds et al. 2014).
While interaction strength has been defined in a variety

of ways throughout the literature, ecosystem scientists are
often interested in the biomass flux of a given nutrient be-
tween two species or compartments (Berlow et al. 2004).
Researchers have used a variety of approaches to estimate
trophic fluxes in the past, including gut-content analysis
(Ledger et al. 2013) and analysis of egested material (such
as feces or pellets; Lima et al. 2002; Roslin and Majaneva
2016). These methods, however, are sensitive to sampling
effects (Banašek-Richter et al. 2004) and only consider
what is ingested, rarely accounting for what is assimilated
into tissue, and therefore they may not provide accurate
estimates of how matter and energy flows through an eco-
system. Another approach is stable isotope analysis, which
uses natural variation in the abundance of stable isotopes
(most often 13C, 15N, or 2H) across organisms to infer tro-
phic relations (Peterson and Fry 1987; Boecklen et al. 2011).
While these natural abundance isotope webs offer a more
integrative picture of diet and directly target assimilated
nutrients, they are often descriptive and unable to quantify
34.241.020 on June 23, 2020 00:14:09 AM
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Analysis of Nutrient Tracer Additions 965
fluxes.Moreover, results are sensitive to the assumptions of
diet-mixing models (Post 2002; Bond and Diamond 2011)
and often fail to differentiate carbon sources in freshwater
ecosystems (Jardine et al. 2014). A powerful alternative is
using whole-ecosystem isotope addition experiments to es-
timate fluxes across trophic compartments and character-
ize nutrient cycles (Newbold et al. 1983; Kling 1994; Car-
penter et al. 2005).
Isotope tracer additions use small amounts of isotopi-

cally enriched nutrients to track the movement of nutrient
tracers among different ecosystem compartments through
time. Depending on the properties of the ecosystem, iso-
topes are added all at once (pulse design) or at a constant
rate over a period of time (press design). The pulse design
was used in early additions of radioisotopes to lakes (Hutch-
inson and Bowen 1950; Rigler 1956), streams (Ball and
Hooper 1963; Elwood and Nelson, 1972; Newbold et al.
1983), andmeso- andmicrocosms (Whittaker 1961; Patten
and Witkamp 1967). Whittaker (1961) pioneered the use
of a linear donor-controlled compartment model to quan-
tify transfers of the tracer through the food web, an ap-
proach also applied by Patten and Witkamp (1967) and
by Newbold et al. (1983). For their whole-stream addition
of 32P, Newbold et al. (1983) calculated transfer fluxes of
the naturally occurring phosphorus from the steady-state
solution of the compartment model. In press additions,
the tracer accumulates in specific ecosystem compartments
until an equilibrium state is achieved or the addition ends.
Once the addition stops, the tracer begins to clear from
basal compartments (e.g., algae) and, progressively after,
from higher trophic levels. This design has been used ex-
tensively in stream ecosystems to estimate nutrient uptake
and turnover (Dodds et al. 2000; Mulholland et al. 2000).
Complemented with estimates of compartment sizes

(biomasses), isotopic additions allow for the estimation
of nutrient uptake and turnover rates for all ecosystem
compartments as well as quantification of the fluxes be-
tween them (Dodds et al. 2000; Mulholland et al. 2000).
This tracer addition approach has been used to character-
ize a variety of systems, including nitrogen (15N) in streams
(summarized by Dodds et al. 2014) and forests (Goodale
et al. 2015), carbon (13C) in marine and lake ecosystems
(Middelburg et al. 2000; Cole et al. 2002; Pace et al. 2004),
and deuterium-labeled water (2H2O) in terrestrial ecosys-
tems (Kulmatiski et al. 2010).
Despite the increase in their use, there is no formal sta-

tistical framework to analyze whole-ecosystem data from
tracer addition experiments. Instead, each trophic linkage
is analyzed separately, solving for a mass balance between
tracer uptake and turnover under the following assump-
tions: (1) the source pools from which a consumer obtains
nutrients are known; (2) if there is more than one source,
the proportional contribution of each source is known;
This content downloaded from 130.2
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(3) the added isotope is instantaneously and perfectlymixed
within a compartment; and (4) consumers do not prey se-
lectively within a source compartment (i.e., the isotopic
signature of the matter taken up reflects the signature of
the source; Dodds et al. 2000;Mulholland et al. 2000). Some
of these assumptions can be problematic. First, trophic links
can be uncertain, and even when every consumer’s source
compartment is known, estimates of their proportional
contribution tend to be crude approximations (Ainsworth
et al. 2010). Second, consumers often differentially assim-
ilate components of their diet or selectively feed on specific
portions of a sampled compartment. If not accounted for,
this can cause seemingly paradoxical results, where con-
sumers aremore enriched with the tracer than the resource
they feed on (Dodds et al. 2014). Regardless of their as-
sumptions, neither of these approaches allows error in the
inferences of parameters at lower trophic levels to propa-
gate into flux estimates at higher trophic levels. Nor can
they estimate and incorporate the error associated with un-
certainty in trophic relationships or diet proportions. With
the increase in the use of isotope tracer additions in com-
parative studies (Dodds et al. 2014; Norman et al. 2017;
Tank et al. 2018) and ecosystem-scale experiments (Whiles
et al. 2013; Collins et al. 2016), it has become imperative to
develop a statistical framework that allows rigorous com-
parisons among systems and treatments.
Tomeet this need, we developed a novel approach to the

statistical analysis of isotope tracer data based on Bayes-
ian hidden Markov models (HMMs; Zucchini and Mac-
Donald 2009; King 2014). Our approach allows for simul-
taneous modeling of nutrient transfers among all measured
ecosystem compartments, providing estimations of param-
eter uncertainty that account for both observation and pro-
cess error propagating across compartments. For omni-
vores, our method does not require a priori assumptions
on the proportion of different prey constituting the diet
but rather estimates the proportion as a model parameter.
It also allows the modeling of nonhomogeneous compart-
ments by estimating actively cycling versus refractionary
proportions, thus accounting for overenriched signatures
in consumers. Moreover, when there are doubts in the to-
pology of the food web (e.g., whether a particular predator
eats a specific prey or not), model comparison tools can be
used to choose between the most parsimonious structure
according to the data.
We first present the mathematical and statistical frame-

work, framed as a HMM (Zucchini andMacDonald 2009),
and then demonstrate its application with a case study
on two Trinidadian montane streams differing in canopy
cover (Collins et al. 2016). We illustrate how the approach
can be used to (1) estimate model parameters and their
uncertainty; (2) calculate derived properties, such as nu-
trient fluxes and compartment residence times, and their
34.241.020 on June 23, 2020 00:14:09 AM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



966 The American Naturalist
uncertainty; (3) test alternative food web topologies; and
(4) statistically compare experimental treatments.
Modeling Tracer Dynamics

Mathematical Framework

The transfer of nutrients from one compartment to the
other can be represented as a Markov chain, a probabilistic
model where the state of a given system (i.e., the distribu-
tion of nutrients across compartments) at time t depends
only on its previous state at time t 2 1 (Iosifescu 1980).
In a HMM, dynamic data are modeled as a consequence
of two stochastic processes: an unobserved biological pro-
This content downloaded from 130.2
All use subject to University of Chicago Press Terms 
cess (here, nutrient fluxes) and an observation process that
is conditional on the biological process (in our case, sam-
pling and measurement of isotopic ratios). Table 1 shows
a summary of the parameter notation followed and units
of measurement used.
We conceptualize an ecosystem as a population of nutri-

ent atoms flowing between compartments of an ecosystem.
These compartments correspond, in HMM terminology,
to the possible states a nutrient atom can be in. For a given
ecosystem with a set of C compartments, we can define the
distribution of atoms among compartments at time t as a
C#1 vector x(t) p fx(t)

1 , x
(t)
2 , :::, x

(t)
N g, where x(t)

i indicates
the number of nutrient atoms in compartment i at time t.
We can then define aC#C transitionmatrixWwhere each
Table 1: Notation
Parameter
 Description
34.241.020 on June 23, 2020 00:14:0
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Observed variables:

C
 Number of ecosystem compartments
 N
 . . .

I
 Set of dissolved inorganic nutrient compartments
 . . .
 . . .

B
 Set of basal resources uptaking dissolved nutrients
 . . .
 . . .

x(s,t)
obs,i
 Biomass of compartment i at sampling point s and time t
 (0, ∞)
 mgN m22
z(s,t)obs,i
 Proportion of marked isotope in compartment i at sampling
point s and time t
(0, 1)
 1
SDi
 Standard deviation of compartment biomasses xi
 (0, 1)
 1

State variables:
x(s,t)
 C#1 vector of elements x(s,t)
i p nutrient mass in compartment i

at sampling point s and time t

(0, ∞)
 mgN m22
n(s,t)
 C# 1 vector of elements n(s,t)
i p unmarked nutrient mass in

compartment i at sampling point s and time t

(0, ∞)
 mgN m22
m(s,t)
 C# 1 vector of elements m(s,t)
i p marked nutrient mass in

compartment i at sampling point s and time t

(0, ∞)
 mgN m22
z(s,t)
 C#1 vector of elements z(s,t)i p proportion of heavy isotope for
compartment i at sampling point s and time t
(0, 1)
 1
y(s,t)
n
 C# 1 vector of elements y(s)n,i p external input of unmarked

nutrient into i at sampling point s and time t

(0, ∞)
 mgN m22
y(s,t)
m
 C# 1 vector of elements y(s)m,i p external input of marked

nutrient into i at sampling point s and time t

(0, ∞)
 mgN m22
Estimated parameters:

Wh
 Transition matrix of elements wi,j p rate of nutrient transition

between compartments j and i under model h

(0, 1)
 day21
ui,j
 Uptake rate from compartment j to i
 (0, 1)
 day21
li
 Loss rate of compartment i
 (0, 1)
 day21
ki
 Turnover rate of compartment i
 (0, 1)
 day21
pi
 Active (i.e., nonrefractory) portion of compartment i
 (0, 1)
 1

h
 Coefficient of variation of the isotopic proportions zi,j
 (0, 1)
 1
Derived parameters:

X̂i
 Expected steady-state biomass of compartment i
 (0, ∞)
 mgN m22
Ti
 Turnover time of the active portion of compartment i
 (0, ∞)
 day

T 0

i
 Apparent turnover time of compartment i
 (0, ∞)
 day

Fi,j
 Flux between compartment j and i
 (0, ∞)
 mgN m22 day21
FT
 Total nutrient flux
 (0, ∞)
 mgN m22 day21
PU
i,j
 Proportion of compartment i’s total uptake coming from j
 (0, 1)
 1
PK
i,j
 Proportion of compartment j’s turnover due to uptake by i
 (0, 1)
 1
and-c).



Analysis of Nutrient Tracer Additions 967
element wi,j defines the probability that an atom of nutrient
in compartment j at time t finds itself in compartment i at
time t 1 1. Some of the compartments, such the inorganic
nutrient forms, may receive external inputs between t and
t 1 1, which can be defined as nonzero elements in a
C#1 vector of external inputs y(t) p fy(t)1 , y(t)2 , ::: , y(t)N g de-
fined by input functions f i : t → y(t)i . Given this, we can
project the distribution of nutrients from time t to t 1 1 us-
ing the equation

x(t11) p W ⋅ x(t) 1 y(t): ð1Þ
This is a discretized form of the linear donor-controlled

compartment model proposed by Mulholland and Keener
(1974). The transition probabilitieswi,j inW are determined
by twoprocesses: nutrient uptake and nutrient loss. Uptake
rates determine the probability that a nutrient atommoves
from compartment j to i in one time step and are defined as
ui,j 1 0 for every pair of compartments, where compart-
ment i uses compartment j as a source of nutrient. Loss
rates lj represent the probability that a nutrient atom
leaves compartment j within one time step without being
taken up by any other compartment, thus exiting themod-
eled ecosystem. The turnover rate kj of a given compart-
ment j (i.e., the proportion of nutrient exiting a given com-
partment per unit time) will be determined by the sum of
the proportion consumed by other compartments and the
proportion lost lj:

kj p lj 1
XC

ip1

ui,j: ð2Þ

In other words, equation (1) is equivalent to stating that
the nutrient dynamics of any given compartment j is de-
scribed by the time-specific change in nutrient content:

Dx(t)
j p

X
1≤i≤C,i(j

uj,ix
(t)
j 2 kjx

(t)
j 1 y(t)j , ð3Þ

which can be simplified in the case where y(t)j p 0 (i.e., no
external input for compartment j) to

Dx(t)
j p

X
1≤i≤C,i(j

uj,ix
(t)
j 2 kjx

(t)
j : ð4Þ

For example, let us consider a simple ecosystem with
four compartments: an inorganic nutrient pool, a primary
producer, a herbivore that consumes the primary producer,
and an omnivore that feeds on both the primary consumer
and the herbivore (fig. 1). Such system would be defined by
the following 4#4 transition matrix:

W p

12 k1 0 0 0
u2,1 12 k2 0 0
0 u3,2 12 k3 0
0 u4,2 u4,3 12 k4

2
664

3
775 ð5Þ
This content downloaded from 130.2
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and an exogenous input vector y(t) p fy(t)1 , 0, 0, 0g. Note
that if we assume the concentration of inorganic nutrient
to be at a steady-state equilibrium (x(t)

1 p x(t0)
1 does not de-

pend on time), it must fulfill that

8t, Dx(t)
1

Dt
p 0⇔ y(t)1 2 k1x

(t)
1 p 0 ð6Þ

⇔ y(t)1 p (u2,1 1 l1)x
(t0)
1 ; ð7Þ

thus, y1 does not depend on t. Note also that it is straight-
forward to modify these equations describing a discrete-
time system to describe a continuous-time system. In this
case, equation (1) becomes

dx
dt

(t)

p W ⋅ x(t) 1 y(t), ð8Þ

with W ⋅ x(t) and y(t) describing instantaneous transition
rates and input rates, respectively, instead of transition
probabilities and input per time step. Equation (8) is basi-
cally a system of inhomogeneous linear differential equa-
tions (which simplifies into a homogeneous system if
y(t) p 0). The transition matrix W for a continuous-time
Figure 1: Schematic example/representation of a hidden Markov
model and food web matrix.
34.241.020 on June 23, 2020 00:14:09 AM
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968 The American Naturalist
model corresponding to the ecosystem shown in figure 1
becomes (compare with eq. [5])

W p

2k1 0 0 0
u2,1 2k2 0 0
0 u3,2 2k3 0
0 u4,2 u4,3 2k4

2
664

3
775: ð9Þ

The choice between a discrete and a continuous model
depends on the biology of the system under study. We use
a continuous model in the case study of Trinidadian mon-
tane streams presented below.
In the case of tracer addition experiments, the aim is to

increase the exogenous input of a tracer (or marked) nutri-
ent population and track the changes in the ratio between
marked and unmarked nutrient (atomic ratio, in the case
of isotope tracers). The addition ofmarked nutrient should
cause a significant enrichment of the proportion ofmarked
nutrient inwater yet amarginal increase in the total amount
of nutrient in water. This can be achieved, for example, by
using rare isotopic forms (e.g., 15N, 13C, 18O, or 2H) that oc-
cur at extremely low proportions in nature. To model this,
it is therefore necessary to follow two subpopulations of nu-
trient atoms: a tracer (or marked) population, usually the
heavy isotopic form, and an unmarked population, defined
by vectorsm(t) p fm(t)

1 , ::: ,m
(t)
C g and n(t) p fn(t)

1 , ::: , n
(t)
C g,

respectively, which add up to the total nutrient population
x(t) p n(t) 1m(t). The proportion of tracer can then be de-
fined as

z(t) p m(t)⊘x(t), ð10Þ
where⊘ stands for the element-by-element division, also
known as Hadamard division. Similarly, the exogenous
input comprises marked ym(t) and unmarked yn(t) portions,
such that y(t) p yn(t) 1 ym(t). In a tracer addition experi-
ment, the marked nutrient should be at much lower con-
centration than the unmarked nutrient, such that ym(t) ≪
yn(t), and therefore y(t) ≈ yn(t).
The schedule of tracer addition is reflected in the exog-

enous input vector of markedmaterial ym(t) and usually con-
sists of a period of increased input for one or two inorganic
nutrient pools (e.g., NH4

1 or NO3
2) followed by a period

of background input (although other experimental designs,
such as repeated pulses, can be easily defined). The exoge-
nous input for the unmarked population yn(t) is normally as-
sumed constant.
Once we have an expected realization of the biological

process model, the observation process can be modeled
as sampling and measurement error around that expecta-
tion. The observed proportion of marked tracer in any
given compartment i at time t can be modeled as a gamma
distribution, which fulfills the multiplicative properties of
proportions and allows for the skewed distribution typical
This content downloaded from 130.2
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of low-concentration data. We parameterized the gamma
distribution with the projected mean z(t)i and a coefficient
of variation h shared across compartments, such that the
observed proportion z(t)obs,i follows (usingGamma* to denote
the nonstandard gamma parameterization):

z(t)obs,i ∼ Gamma*(z(t)i , h): ð11Þ
This is equivalent to modeling gamma distributions with
shape parameter ai p h22 and rate parameter bi p
(z(t)i ⋅ h2)

21
. Although the gamma distribution can hypo-

thetically reach values larger than 1, the expected isotopic
proportions are extremely low, and therefore the probabil-
ity density for values higher than 1 is negligible.
We will assume the total biomass of nitrogen xi in com-

partment i to be approximately constant throughout the
experiment, following a truncated normal distribution. This
assumes additive properties and allows for zero values of
biomass, which can occur for a given compartment in some
sampling points. We note the truncated normal distribu-
tion with a mean x(t0)

i (the initial biomass of compartment
i) and a compartment-specific standard deviation SDi:

x(t)
i ∼ TNormlowerp0(x

(t0)
i , SDi): ð12Þ

Overenriched Compartments

The model as formulated above assumes that the tracer is
well mixed and that consumers do not selectively feed on
differently labeled subcomponents of the source compart-
ment. If this is true, the tracer signature of a consumer can-
not exceed the signature of the source compartment. In
practice, however, it is not uncommon for a consumer’s
isotopic label to be higher than its resource (Newbold et al.
1983; Dodds et al. 2014). This is because some compart-
ments, particularly detrital ones, consist of material in
which only a proportion is biologically active and assimilat-
ing tracer during the experiment. If consumers selectively
feed on active constituents and/or preferentially assimilate
active fractions, their signature can become higher than the
average of the resource compartment. For example, coarse
benthic organic matter (CBOM) is largely biologically in-
active, and nutrient uptake into leaf packs is associated
with the biofilm surrounding it. While the average tracer
signal measured on the whole compartment might be low,
the biofilm can have a high tracer signature, and organisms
selectively feeding on (or assimilating) that biofilm will be-
come highly labeled.
To allow for this in the model, one can assume that the

biomass of any given compartment i is split into two por-
tions: an active one and a refractory one. The active portion
takes up nutrients throughout the experiment and contrib-
utes to changes in x(t)

i (both m(t)
i and n(t)

i ). The refractory
portion has negligible nutrient uptake and turnover within
34.241.020 on June 23, 2020 00:14:09 AM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



Analysis of Nutrient Tracer Additions 969
the time span of the experiment and thus does not con-
tribute to changes in x(t)

i . If we define a vector of active
proportions for the C compartments p p fp1, ::: ,pCg
where 0 ! pi ! 1 whenever compartment i is assumed to
be nonhomogeneous, the apparent uptake rates u0i,: and ap-
parent turnover rate k0i of the whole compartment will be:

u0i,: p ui,: ⋅ pi, ð13Þ
k0i p ki ⋅ pi: ð14Þ

In practice, this means that while the biological model
(eq. [5]) runs only on the active portion of biomass, the ob-
servation model accounts for the total biomass. Newbold
et al. (1983) preceded the present article in recognizing that
the standing stocks of the actively cycling components (as
well as transfer fluxes) can be estimated from the model’s
steady-state solution. Note that p bears a similar meaning
to the estimates of exchangeable P in Newbold et al. (1983)
and the inverse of multiplier M in Dodds et al. (2014).
Model Fitting

Fitting the above HMM requires time series of the ob-
served tracer proportions z(t)obs,i in each compartment and
data on compartment biomasses x(t)

obs,i. In isotope tracer
studies where there is a heavy isotope (the marked tracer)
and a light (unmarked) isotope, the amount of marked
tracer will often be expressed as a d value. For example,
in studies of nitrogen dynamics, the tracer is 15N (heavier
than the naturally common 14N), and data are obtained
as d15N, which for any given compartment i at time t is

d15N(t)
i p

�
R(t)

i

R0

2 1

�
⋅ 1,000, ð15Þ

where R(t)
i p (15N=14N)(t)i is the isotopic ratio in compart-

ment i at time t and R0 is the isotopic ratio in a standard
air sample (e.g., for 15N this is taken to be 0.003663). To
fit the above-described model to these data, it is necessary
to convert the d values to observed proportions. This can
be done by expressing z(t)obs,i as a function of R(t)

i ,

z(t)obs,i p
m(t)

i

n(t)
i 1m(t)

i

p
15N(t)

i

14N(t)
i 1 15N(t)

i

p
R(t)

i

R(t)
i 1 1

,

and then using a rearrangement of equation (15) to re-
place R(t)

i in the equation for z(t)obs,i:

z(t)obs,i p R0

�
d15N(t)

i

1,000
1 1

��
R0

�
d15N(t)

i

1,000
1 1

�
1 1

�21

: ð16Þ

Given these data and an assumed system topology de-
noting which compartment pairs are assumed to be linked
as consumer and resource (i.e., which off-diagonal ele-
mentswi,j 1 0),wecanfit themodel tothedatausingaBayes-
This content downloaded from 130.2
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ian framework. To do so, we need to define priors for all
ui,j ≥ 0, 0 ≤ pi ≤ 1, li, and h. These can be uninformative
(i.e., flat) distributions within the parameter bounds or in-
formative priors if there is prior knowledge on these quan-
tities. For parameters that are positive but for which no
upper bound is known precisely a priori, a half-Cauchy
distribution defined by its scale parameter (i.e., its median)
is a reasonable choice. In the case study of Trinidadian mon-
tane streams presented below, we used half-Cauchy priors
for the uptake rates from the inorganic input compartments,
since those compartments are constantly being renewed
with the stream flow. For uptake rates and loss rates from
biotic compartments, we used (scaled) beta priors to impose
a maximum rate while allowing more prior belief to be put
in small rate values: for example, it is unreasonable to allow
uptake or loss rates greater than 1 with our data, since this
would indicate a replacement of the whole nitrogen content
of a biotic compartment within 1 day. Hence, we started
our modeling approach with the following weakly infor-
mative priors:

ui,j ∼ Half‐Cauchy(scale p 250) for input compartments j ∈ I ,
ui,j ∼ Beta(ap1, bp 3, scalep1) for all other uptake rates ui,j 1 0,
li ∼ Beta(a p 1, b p 3, scale p 1),
pi ∼ Uniform(0, 1) for all basal compartments pi ! 1,
h ∼ Half‐Cauchy(scale p 1),

where I defines the set of inorganic nutrient compart-
ments. We adjusted them for some parameters after realiz-
ing from initial runs that they could be either too restrictive
or too permissive, depending on the compartments:

ueudan,CBOM ∼ Beta(a p 1, b p 3, scale p 0:5),
ulepto,seston ∼ Beta(a p 1, b p 3, scale p 0:5):

In the formulation above, we defineX as following a scaled
beta distribution Beta(a, b, scale) if X/scale follows a beta
distribution Beta(a, b).
The likelihood L of each observation z(t)obs,i is given by

equation (11), and the joint log likelihood of all observa-
tions is given as the sum of logarithms of all individual
likelihoods. To help identifiability, the model can be con-
strained so that the total nutrient biomass of each com-
partment xi is randomly distributed with known constant
mean and standard deviation SDi, as described in equa-
tion (12). These values can be obtained from independent
estimations of compartment-specific biomasses xobs,i. The
likelihood of each biomass x(t)

i projected by the model is
evaluated against this distribution at each time point where
there is any observation z(t)obs,i, in order to constrain the bio-
mass change of the system compartments in themodel. The
posterior distribution of the parameters can be obtained
by sampling the product of prior and likelihood usingMar-
kov chain Monte Carlo (MCMC) techniques (Geman and
Geman 1984).
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Model Selection, Derived Properties,
and Statistical Comparisons

If there is uncertainty over the presence or absence of any
given trophic link, it is possible to define and fit alterna-
tive models representing different hypothesized food web
topologies Wh differing in whether particular uptake rates
ui,j are equal to zero. The model fits can then be compared
using the deviance information criterion (DIC; Spiegel-
halter et al. 2002), defined as

DIC p �D 1 pD, ð17Þ
where D is the set of deviance values calculated from the
log-likelihood value at each MCMC iteration as22 ⋅ logL,
�D is the mean deviance value, and pD is the effective num-
ber of parameters in the model and can be calculated as
var(D)/2 (Gelman et al. 2003). The most parsimonious
model will be the one with the lowest DIC. A DIC differ-
ence (DDIC) greater than 2 indicates some evidence for
the model with a lower DIC, while substantial evidence
would be indicated by DDIC 1 5. It is also possible to
compare the proportional support for any given model
Wh as a DIC weight (Link and Barker 2010):

wh p
exp(DDICh=2)PM
gp1 exp(DDICg=2)

, ð18Þ

where h represents the model hypothesis in question,
DDICi is the DIC difference between the most parsimo-
nious model and model i, andM represents the total num-
ber of models tested.
Any derived metric of the system, such as total uptake

and residence times of different compartments or propor-
tion of a given prey in a consumer’s diet, can be calculated
using the MCMC chains of the parameter estimates in-
volved in the calculations. This will produce an equally
sized MCMC chain from which to create the distribution
of the metric and its uncertainty (e.g., 95% credible inter-
vals). Similarly, one can compare estimates of parameters
or derived metrics between streams by subtracting (or di-
viding) the MCMC chains of the two estimates and pro-
ducing a distribution and credible intervals of the difference
in the estimates. The 95%credible intervals of statistically sig-
nificant differences should not overlap zero (or 1 for ratios).

Case Study: Nitrogen Fluxes in Trinidadian
Montane Streams

Study System and Experimental Methods

As an empirical illustration of our statistical modeling
framework, we showcase its use in a case study conducted
in Trinidadian streams, using simultaneous 15N tracer iso-
tope additions to evaluate the effects of an experimental
manipulation of light availability onmajor foodweb fluxes.
This content downloaded from 130.2
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These experiments were carried out in streams of the
Northern Range of Trinidad: Upper La Laja (UL) and
Lower La Laja (LL). The study reaches are 100 and 156 m
long, respectively, and form part of a long-term experiment
to study interactions between ecological and evolutionary
processes (Travis et al. 2014). These data have been previ-
ously analyzed using current methodology in Collins et al.
(2016), providing a good point of comparison between the
current method and our proposed modeling.
Details on the experiment and sampling can be found

in Collins et al. (2016). In summary, we established a con-
tinuous drip of a solution of 15N-labeled ammonium (as
dissolved 15NH4Cl) on the upstream end of each stream
with a rate of 10 mL min21 over a 10-day period from
March 7 to 16, 2010. The N injections increased the d15N
of dissolved ammonium to approximately 20,000, yet the
concentration of ammonium added was below 5% of am-
bient NH4 and thus did not enrich the stream.We sampled
the biomass of food web compartments and water chemis-
try at approximately 15, 30, and 60m downstream, in both
pool and riffle habitat, on days 3, 7, and 10 of the injec-
tion and on days 13, 17, 20, 30, and 40 postinjection. The
sampled food web compartments include water chemistry
(NH4

1 and NO3
2), basal resources (epilithon, seston, fine

benthic organic matter [FBOM], and CBOM), eight com-
mon invertebrate taxa representing all major functional
feeding groups including grazers (Petrophila and Psephe-
nus), filterers (Leptonema), collectors (Tricorythodes, Phyl-
loicus, and Eudaniela), and predators (Argia and Euthyplo-
cia). For simplicity, fish were not included in this illustrative
analysis. For each of the 14 compartments we analyzed the
isotopic ratio (d15N) of the samples obtained through time
and estimated the standing biomass of each compartment
in mass of nitrogen per square meter at three points in time.
We also collected background samples from each compart-
ment, either before the experiment or upstream from the
injection, to estimate background isotopic values.We detail
the analytical methods in the appendix (available online).

Model Specification and Selection

The Trinidadian stream web modeled is composed of the
14 compartments described above. Therefore, the distribu-
tion of nitrogen biomasses at any given time t is described
by the vector

x(t)pfx(t)
NH4, x

(t)
NO3, x

(t)
epi , x

(t)
ses, x(t)

FBOM, x
(t)
CBOM, x

(t)
pet, x

(t)
pse, x(t)

lep, x
(t)
tri , x

(t)
eud, x

(t)
phy , x

(t)
arg , x(t)

eutg,

which can be projected following the system of differen-
tial equations shown in equation (8), given a transitionma-
trix W of trophic relationships. Given the uncertainty of
some trophic links, we test eight variations of the food web
structure assumed by Collins et al. (2016), which corre-
sponds to the matrix shown in box 1.
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Because thedynamics of the two inorganic element com-
partments, NH4

1 and NO3
2, occur at much faster rates

than the rest, the system can be numerically approximated
by assuming that they are completely regenerated at each
infinitesimal time step and driven by external inputs—
or, in other words, that they are completely replaced by the
flux from upstream. Note that this assumption does not
imply that the system modeled is completely open but is
merely a mathematical simplification that treats water nu-
trient as a given in order to simplify the estimation. This
can be mathematically expressed by setting w1,1 p w2,2 p 0
and by replacing after each step of the numerical integra-
tion of the system of differential equations the elements
x1 and x2 of x with values that reflect the measured profiles
for NH4

1 and NO3
2 at sampling point s. In our example,

we have three sampling points (transects) per stream.
Given this, we can model the two parallel subsystems

comprising x: unmarked nutrient n and marked nutrient
m, representing the dynamics of each isotope. While both
systems will be governed by the same transition matrixW,
they have different initial values n(0) and m(0) correspond-
ing to the background isotopic ratios before the drip exper-
iment has started. The inorganic nutrient compartments
also have different forced input profiles between unmarked
and marked nutrient pools. The forced quantity of un-
marked tracer in the inorganic compartments is constant
through time, such that

n(s,t)
i p 14N(s)

i,bkg for i ∈ I and all t values, ð19Þ

where I defines the set of inorganic nutrient compart-
ments (NH4

1 and NO3
2) and 14N(s)

i,bkg is the natural (back-
ground) abundance of 14N (mgNm22) in the inorganic nu-
trient compartment i measured at sampling transect s.
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On the contrary, the forced quantity of marked nutrient
in the inorganic compartments changes with the experi-
mental enrichment profile. This means that if we define toff
as the time the drip is turned off, then the following step
function drives m(s,t)

i :

m(s,t)
i p

15N(s)
i,bkg 1

15N(s)
i,add for i ∈ I and t ! toff ,

15N(s)
i,bkg for i ∈ I and t ≥ toff :

(
ð20Þ

Here, 15N(s)
i,bkg represents the natural (background) abun-

dance of the heavy isotope (15N) form of the inorganic nu-
trient compartment measured at sampling transect s before
nutrient addition, and 15N(s)

i,add is the additional 15N mea-
sured during the experimental addition at sampling transect s.
We tested eight topological model structures of the net-

work Wh representing the variations of W111 where one
or more of three uncertain links were eliminated. The un-
certain links corresponded to the uptake of FBOM by the
Eudaniela crabs and predation of Psephenus waterpennies
and Petrophila caterpillars by Argia damselflies (table 2).
We fit the models to the data on Lower and Upper La

Laja using transect- and compartment-specific time series
of isotopic proportions z(s,t)obs,i as well as compartment-specific
biomass data x(s,t)

obs,i at three points in time t and three points
in space s. Latent biomasses xi were assumed to be constant
(i.e., at steady state); therefore, sample differences were con-
sidered to be randomwith observed standard deviation SDi.
In practice, this allows for deviations of the steady-state as-
sumption that are within the range of the compartment’s
natural variation.
We fit themodel in R version 3.6 (RCore Team 2019) by

implementing it in Stan (Carpenter et al. 2017) and run-
ning it with the RStan package (Stan Development Team
2019). Details on the model implementation and of the
Box 1: Transition matrix describing the food web structure assumed by Collins et al. (2016)

W111 p

w1,1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 w2,2 0 0 0 0 0 0 0 0 0 0 0 0

uepi,NH4 uepi,NO3 2lepi 0 0 0 0 0 0 0 0 0 0 0
uses,NH4 uses,NO3 0 2lses 0 0 0 0 0 0 0 0 0 0
uFBOM,NH4 uFBOM,NO3 0 0 2lFBOM 0 0 0 0 0 0 0 0 0
uCBOM,NH4 uCBOM,NO3 0 0 0 2lCBOM 0 0 0 0 0 0 0 0

0 0 upet,NO3 0 0 0 2lpet 0 0 0 0 0 0 0
0 0 upse,NO3 0 0 0 0 2lpse 0 0 0 0 0 0
0 0 0 ulep,ses 0 0 0 0 2llep 0 0 0 0 0
0 0 0 0 utri,FBOM 0 0 0 0 2ltri 0 0 0 0
0 0 0 0 0 ueud,CBOM 0 0 0 0 2leud 0 0 0
0 0 0 0 0 uphy,CBOM 0 0 0 0 0 2lphy 0 0
0 0 0 0 0 0 0 0 uarg,lep uarg,tri 0 0 2larg 0
0 0 0 0 0 0 0 0 0 0 0 ueut,phy 0 2leut

2
66666666666666666666664

3
77777777777777777777775
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priors used are described in supplementary material S1
(supplementary materials S1, S2 are available online). The
data and the source code used in our study can be found
as an R package in the Dryad Digital Repository (https://
doi.org/10.5061/dryad.8sf7m0chx; López-Sepulcre et al.
2020).
We assumed that both streams have the same network

topology of trophic links, albeit with different parameter
values. We therefore calculated the joint DIC for both
streams by adding the DICs of the same model fit to the
two streams. We chose the best model as the one with the
lowest joint DIC.
Calculation of Derived Parameters

After selecting the best model, we illustrate the calcula-
tion of some important derived metrics, their uncertainty,
and their comparison between the natural (LL) and open
canopy (UL) streams. To do so, one only has to apply
the required calculation with all 1,000 sampled values of
the MCMC chain rather than with the estimates of the
parameters. This produces a probability distribution for
the derived parameter, which can be used to calculate mea-
sures of dispersion, such as standard errors or 95% quan-
tiles (i.e., credible intervals).
A common quantity of interest is the expected residence

or turnover time Tj of nutrient N in each compartment j,
which can be calculated as the inverse of the turnover rate:

Tj p
1
kj
p

1

lj 1
PC

ip1ui,j
: ð21Þ

In the case of compartments divided into active and refrac-
tory subcompartments, the apparent residence time T 0

j will
be larger:

T 0
j p

1
pjkj

p
1

pj(lj 1
PC

ip1ui,j)
p

Tj

pj

: ð22Þ
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The flux rates between compartments can be calcu-
lated as

Fi,j p ui,jX̂ j, ð23Þ
where Fi,j represents the flux from compartment j to com-
partment i and X̂j is the expected biomass. Because we as-
sume the system to be at steady state, expected biomasses
can be calculated using an eigenanalysis of the system as
follows. Under steady state, the two nutrient forms NH4

1

andNO3
2 ought to remain constant, whichwe can achieve

by defining a transfer matrix W0 that equals W but with
w0

1,1pw0
2,2p 1 andw0

i,ip 12 ki for the other compartments.
This matrix will have at least two right eigenvectors v(NH4)

and v(NO3) corresponding to an eigenvalue of 1, which are
scaled to a norm of 1. The elements i of each of these 14#1
vectors represent the relative equilibriumbiomass of compart-
ment i that originates from each of the two inorganic nutri-
ents, NH4

1 and NO3
2, respectively. Because the eigen-

vectors v(NH4) and v(NO3) are scaled to a norm of 1, they
need to be rescaled on the basis of the mass of NH4

1 and
NO3

2 in the water, respectively. The total equilibrium bio-
mass X̂i ofcompartment iatsteadystatecanthusbecalculated
as the sum elements i of the two rescaled vectors as follows:

X̂ i p x1

v(NH4)
i

v(NH4)
1

1 x2

v(NO3)i

v(NO3)2

, ð24Þ

where x1 and x2 are the background masses (mgN m22) of
NH4

1 and NO3
2 in the stream. It is worth noting that at

steady state, it should be true that inputs should equal
outputs, and therefore

Fi,: p ki ⋅ X̂ i ⇔ X̂ i p Fi,: ⋅ Ti, ð25Þ

where Fi,: is the total flux through compartment i:

Fi,: p
XC

jp1

Fi,jX̂ j: ð26Þ
Table 2: Comparison of alternative models of food web structure regarding Argia and Eudaniela diets
Model
Trophic link
34.241.020 on J
and Conditions 
No. parameters
une 23, 2020 00:14:09
(http://www.journals.u
DIC
 AM
chicago.edu/t-a
DDIC
nd-c).
wDIC
Petrophila→ Argia
 Psephenus→ Argia
 FBOM→ Eudaniella
W100
 Yes
 No
 No
 68
 22,844.8
 0
 .757

W110
 Yes
 Yes
 No
 70
 22,841.5
 3.3
 .146

W000
 No
 No
 No
 66
 22,839.3
 5.4
 .05

W010
 No
 Yes
 No
 68
 22,839.1
 5.6
 .046

W111
 Yes
 Yes
 Yes
 72
 22,830
 14.8
 0

W011
 No
 Yes
 Yes
 70
 22,828.2
 16.6
 0

W101
 Yes
 No
 Yes
 70
 22,823.9
 20.8
 0

W001
 No
 No
 Yes
 68
 22,810.5
 34.2
 0
Note: DIC p deviance information criterion; FBOM p fine benthic organic matter.
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The total flux ofN through the system can then be calculated
as the sum of fluxes from the set of nutrient input com-
partments I (in our case, NH4

1 and NO3
2) to the set of

basal compartments B (in our case, epilithon, seston,
FBOM, and CBOM):

FT p
X
j∈I

X
i∈B

Fi,j: ð27Þ

Total flux is of interest as an indicator of whole-
ecosystem productivity, and we expect it to be higher un-
der higher light conditions (i.e., in Upper La Laja). A sec-
ondmetric of interest is the relative use of NO3

2 compared
with NH4

1 by primary producers. Primary producers fa-
vor NH4

1 over NO3
2, as a result of lower assimilation cost

(Morris 1974). Because more productive streams have
higher demand of N and greater energy supply, we expect
primary producers in the high light stream to supplement
their N need by assimilating nitrate and therefore have
a higher ratio of NO3

2
flux to NH4

1 (Morris 1974). The
proportion of N uptake flux into a given consumer com-
partment i coming from a given source compartment j
can be calculated as

PU
i,j p

ui,jxjPC
rp1ui,rxr

: ð28Þ

We will calculate the proportional use of NO3
2 by

epilithon (PU
epi,NO3) to test the above-described hypothesis

of preferential NH4
1 use under light limitation. Note that

this can also be expressed as a ratio of NO3
2 to NH4

1 use:

Repi,NO3 p
PU
epi,NO3

12 PU
epi,NO3

: ð29Þ

Similarly, one can use PU
i,j to evaluate the importance of a

particular compartment in the diet of a consumer. We il-
lustrate this by calculating the importance of Petrophila
water moths in the diet of Argia damselflies PU

arg,pet.
Conversely, we can calculate the contribution of a par-

ticular consumer i to the turnover of a given resource com-
partment j as

PK
i,j p

ui,j

kj
p

ui,j

lj 1
PC

rp1ur,j
: ð30Þ

As an example, we calculate the contribution of Eudaniela
crabs to the turnover of CBOM, PK

eud,CBOM.
Derived Parameter Uncertainty
and Statistical Comparisons

One of the main advantages of Bayesian inference though
MCMC is that it is straightforward to carry out the estima-
This content downloaded from 130.2
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tion error on the primary parameters onto the derived
parameters. This is done by simply applying the relevant
calculation elementwise on the MCMC chains of the esti-
mated parameters. This results in a posterior distribution
of the derived parameter that naturally accounts for the er-
ror in all its component parameters. One can then calculate
from the posterior distribution any relevantmeasure of un-
certainty (e.g., standard error or credible intervals).
In the same manner, one can compare the parameter

estimates between two streams by simply calculating the
elementwise difference (or ratio, or any other measure
of effect size) in the MCMC chains. A Bayesian posterior
predictive P value for the difference can then be extracted
by calculating the proportion of the posterior distribution
that falls below zero (or 1, in the case of a ratio).
Results

The most parsimonious network topology corresponded
to model W100, which includes the consumption of Pet-
rophila by Argia but not consumption of Psephenus
by Argia nor FBOM by Eudaniela crabs (table 2). The
second-best model was 3.3 DIC units away, indicating
moderate support for the best model. However, the overall
support for a Petrophila→Argia link is higher if we con-
sider all tested models. The sum of the DIC weights of
all of the models including that link is 0.90 (out of 1),
compared with only 0.19 for a Psephenus→ Argia link
and !0.01 for an FBOM→ Eudaniela link. We there-
fore present the results for model W100. Figure 2 shows
the fit for isotope ratios for this model in both streams
for the first transects (see fig. S1 for all transects and fig. S2
for biomass fit; figs. S1–S3 are available online), while the
parameter estimates, credible intervals, MCMC chains,
and posterior distributions can be found in table S1 and
fig. S3).
To compare our proposed approach to current stan-

dard methodology, in figure 3 we compare our estimates
of compartment fluxes and turnover times with estimates
obtained in a previous analysis of the same data (Collins
et al. 2016), using current methodology (Dodds et al.
2000). For basal compartments that are split into an ac-
tive portion pi and a refractory portion 12 pi, apparent
turnover times T 0

i in our analyses (eq. [22]) are equivalent
to the turnover times estimated in Collins et al. (2016).
Fourteen of the 24 compartment uptake rates estimated by
Collins et al. lie within the 95% credible intervals of our
estimates, as 14 of the 24 turnover time estimates do. Relative
to the estimates derived by our model, the estimates of Col-
lins et al. tend to overestimate uptake in the basal com-
partments and underestimate it for some consumers, while
the converse is true for turnover time. Differences between
34.241.020 on June 23, 2020 00:14:09 AM
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methods in estimates were often not trivial and in some
cases varied by an order of magnitude (e.g., CBOM uptake
or Eudaniela turnover). The negative relationship between
the bias of uptake and turnover time is expected, given that
an overestimate of uptake must be balanced by decreased
turnover time in order to explain the same concentration
of tracer in a given compartment.
The estimates and 95% credible intervals of all fluxes

among compartments, turnover times, and expected steady-
state biomasses are found in supplementarymaterial S2 (ta-
bles S2, S3) and represented in figure 4. This figure sum-
marizes the three main aspects of nitrogen dynamics across
compartments: fluxes between compartments, turnover (or
residence) times, and compartment biomasses. Basal com-
partments are divided into their active (solid white) and re-
fractory (hatched) portions as estimated by pi, with Ti

and T 0
i represented by the width of the white solid portion

of the box and the total width of the box, respectively. As
expected, active portions of basal compartments tend to
be larger in the open canopy stream than the closed canopy
stream, particularly for epilithon ((pepi)

LLp0:1350:07,
(pepi)

ULp0:4450:12) and CBOM ((pCBOM)LL p 0:305
0:14, (pCBOM)UL p 0:5050:13; values given as mean5SD;
table S1). Another clear and expected pattern that emerges
This content downloaded from 130.2
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from figure 4 is the overall higher fluxes into the basal com-
partments in the open canopy stream. This is illustrated in
figure 5 and is in good part due to an increased NO3

2 up-
take by epilithon and CBOM. In contrast, the increase in N
uptake by FBOM is mostly due to increased NH4

1 uptake.
A consistent pattern across our analyses was the high

uncertainty associated with estimates of fluxes, turnover,
and other derived parameters. Despite this quantitative un-
certainty, it is possible to make important statistical infer-
ences regarding differences among compartments and be-
tween streams. Total flux is higher in the open canopy than
the closed canopy stream ((FT )

UL 2 (FT )
LL p 63:7535:9,

one-sided Bayesian P p :036; fig. 6A), and epilithon’s
uptake shows a higher ratio of NO3

2 to NH4
1 uptake

(log[(Repi,NO3)
UL]2log[(Repi,NO3)

LL]p3:5451:51; Pp
:008, fig. 6B), as expected. Although there seems to be a
higher contribution of Eudaniela crabs to CBOM turnover
in the closed canopy stream, the parameters around Euda-
niela are highly uncertain due to irregular sampling (crab
captures are patchy), and this difference is not significant
(logit[(Peud,CBOM

K )UL] 2 logit[(Peud,CBOM
K )LL] p 21.0251.74;

P p :28; fig. 6C). A clearer but still nonsignificant result
is that Petrophilamoths seem to represent a higher propor-
tion of the diet of Argia damselflies in our high light stream
Figure 3: Estimates of uptake fluxes and turnover times of all compartments for Lower La Laja (LL; solid symbols) and Upper La Laja (UL;
open symbols). Circles and error bars represent our estimates and 95% credible intervals. Triangles represent the estimates made by Collins
et al. (2016). Turnover was not estimated for Argia or Euthyplocia in Collins et al. (2016). Note that the axis scale is logarithmic. CBOM p
coarse benthic organic matter; FBOM p fine benthic organic matter.
34.241.020 on June 23, 2020 00:14:09 AM
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Figure 4: Quantitative food web reconstruction of the two streams. Compartments are represented by boxes, and fluxes between them are
represented by filled curved lines connecting them. The white box area represents the active portion of the compartment pi, while the gray
hatched area on the basal compartments represents the nonactive (refractory) proportion (12 pi). Curve thickness is proportional to the flux
rate calculated following equation (23). The height of all nonnutrient compartment boxes is therefore proportional to the total uptake of N
by that compartment. Box widths of nonnutrient compartments are proportional to the compartment’s turnover time, with the width of
the white area representing the turnover time of the active component and the total width representing the overall turnover time. The area
of the box is therefore proportional to the compartment’s biomass under the steady-state assumption (as per eq. [25]). Note that the fluxes
and biomasses have been magnified by#10 on the right side of the figure in order to visualize differences between streams. CBOMp coarse
benthic organic matter; FBOM p fine benthic organic matter; LL p Lower La Laja; UL p Upper La Laja.
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(UL 1 LL, logit[(Parg,pet
U )UL] 2 logit[(Parg,pet

U )LL]) p 1.485
1.43; P p :13; fig. 6D).
Discussion

Wehave presented a statistical formalization of a tracer ad-
dition to track nutrient movement through an ecosystem.
As such, this is the first evaluation of the uncertainty in-
volved in the estimation of uptake and turnover using these
experiments. Quantifying and managing such uncertainty
is important in these experiments because of the limited
amount of data involved and because they measure phe-
nomena that propagate across scales. Beyond accounting
for sampling error, ourmethod can handle three important
sources of error or bias that were previously suboptimally
handled. First, modeling the system as a whole ensures that
the interdependence of parameter estimates among com-
This content downloaded from 130.2
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partments becomes explicit, and thus the error in the esti-
mates of nitrogen dynamics of a particular compartment is
incorporated in the estimation of the compartments that
consume it. In the past, this kind of error propagation
has been ignored (Dodds et al. 2000). Second, it is now pos-
sible to model diet uncertainty at two levels: topological
and quantitative. By topological uncertainty we refer to
the uncertainty regarding the presence or absence of a par-
ticular trophic link. Bymodifying the topology of the trans-
fer matrix W (i.e., changing which of its elements wi,j are
different from zero), one can explicitly test different hy-
potheses regarding the trophic structure of the ecosystem
using model selection techniques and either select the best
model or average across models usingmodel averaging.We
have illustrated how to do so using the DIC (Spiegelhalter
et al. 2002), but other Bayesian techniques, such as reversible-
jumpMCMC (Green 1995) or variable selection methods,
Figure 5: Distribution of total NH4
1 and NO3

2 uptake among the three main basal compartments. Gray areas represent 95% credible bounds.
The dashed isoline indicates equal uptake of NH4

1 and NO3
2, with estimates above it indicating a dominance of NO3

2 uptake over NH4
1.

Estimated values can be seen in table S3. Seston uptake is not visible because it is very close to zero and has small credible bounds. CBOMp
coarse benthic organic matter; FBOM p fine benthic organic matter; LL p Lower La Laja; UL p Upper La Laja.
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can be implemented (for reviews on availablemethods, see
Tenan et al. 2014;Hooten andHobbs 2015). By quantitative
uncertainty we refer to the diet of organisms with more
than one food source. Past models required the input of as-
sumed proportions of each source. This is not necessary in
our approach, and theproportionof each resource consumed
(and its uncertainty) can be calculated as a derived parameter
after the model fit (see eq. [29]). Finally, our method offers
a solution to the paradox of overenrichment, whereby con-
sumer compartments appearmore labeled than their sources
(Dodds et al. 2014). It does so by allowing the partitioning of
resource compartments into an active portionpi that uptakes
detectable marked nutrient during the time frame of the ex-
periment and a refractory one that does not (or does so at
much larger timescales). Because this portion is an estimated
parameter, its uncertainty is evaluated, which is an advan-
tage over the post hoc multiplicative factor approach pre-
viously proposed (Dodds et al. 2014).
All of the above-mentioned sources of uncertainty get

integrated to produce the uncertainty in the posterior dis-
tribution of the evaluated parameters. As exemplified by
our case study, this uncertainty can sometimes be rather
large, which is not surprising given the typically high di-
mensionality of these systems and the limited amount of
data (due to the high cost of isotopic analysis and the need
to minimize invasiveness). This highlights further the im-
portance ofmeasuring and reporting the uncertainty in the
estimated parameters in order to temper our statements on
the results. One of the advantages of our Bayesian imple-
mentation is that it can incorporate prior knowledge to
help reduce this uncertainty, a strategy increasingly used
in ecological management (McCarthy and Masters 2005).
This can be in the form of supplementary experiments
on specific organisms or published values on similar taxa
and systems. Moreover, it is possible to evaluate the influ-
ence of prior information using prior sensitivity analysis
and therefore formally evaluate the contribution of our
data to the increase (or decrease) of certainty in the studied
parameters. Ultimately, our method can be used on simu-
lated data prior to an experiment in order to test the power
of alternative experimental designs regarding the dripping
regime and the sampling schedule of each compartment.
In our opinion, this is one of themost powerful advantages
of having a formal statistical framework available for iso-
tope tracer experiments. While a full exploration of differ-
ent designs is beyond the scope of this article, two impor-
tant aspects of the design that are important to parameter
identifiability seem apparent to us. First, it is necessary to
have good temporal resolution of samples where uptake
of tracer changes slope significantly (e.g., at peak uptake).
Second, if more than one nutrient is labeled (as is the case
here with both forms of nitrogen), it is important that their
labeling is not strongly positively correlated if one is to dis-
This content downloaded from 130.2
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tinguish differential uptake of each source. In our example,
the dynamics of nitrification ensure that as 15NH4

1 label
decreases downstream, 15NO3

2
increases, allowing us to

tease apart 15NH4
1 from 15NO3

2
uptake.

Despite large uncertainties around some parameter val-
ues, we were able to identify some important expected dif-
ferences in the functioning of the two study streams. For
example, basal (and total fluxes) are higher in the open
canopy stream (fig. 6A), as expected by the limiting effect
of light in forested streams (Vannote et al. 1980). This re-
sult is consistent with previous analyses (Collins et al.
2016) andwith other contemporarywork at the same study
sites that show an increase in chlorophyll a abundance
with light (Kohler et al. 2012) and increased gross primary
production in the open canopy stream (A. O. H. C. Leduc,
S. A. Thomas, A. López-Sepulcre, et al., unpublished man-
uscript). Our analysis also clearly shows a higher ratio of
NO3

2 to NH4
1 use by epilithon in the open canopy stream

(fig. 6B). This is consistent with the fact that NH4
1 is the

preferred form of nitrogen to algae, and as light increases
the higher nutrient demand drives algae to use other sources
of nitrogen, such as NO3

2 (Morris 1974).
Our analysis also suggests potential biases in previous

estimation methods that approximate postdrip 15N turn-
over by fitting an exponential decay curve (Collins et al.
2016). Previous estimates show higher consumer turnover
times than our statistical implementation and, consequently,
higher uptake rates too (in order to maintain the same
observed 15N concentration). This could be due to the in-
creasing difficulty of detecting a clear exponential decrease
in the isotopic ratio with increasing trophic level. The con-
verse pattern is true for basal compartments: our approach
estimates higher turnover times and higher uptake rates
than Collins et al. (2016). This may be a consequence of
our splitting of basal compartments in active and refrac-
tory portions. In Collins et al. (2016) primary consumers
need to eat a larger quantity of their resource to get enough
15N signal, while in our model they need to eat a lower bio-
mass of the active portion, which has higher 15N concen-
tration. Less consumption should result in lower turnover
rates and higher turnover times. A full investigation of the
potential biases of the different methods will require an in-
tensive simulation approach.
Through our model selection exercise, we were also able

to contrast some of the topological assumptions of Collins
et al. (2016). While Collins et al. assumed that Eudaniela
crabs consume comparable amounts of CBOM and FBOM,
our model selection exercise shows clear evidence against
the consumption of FBOM. On the other hand, while in
Collins et al. we assume that Argia damselflies only con-
sume Tricorythodes mayflies, we found evidence in favor
of them also preying on Petrophila larvae. This illustrates
the power and importance of being able to perform model
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selection on isotope tracer experiments. Against a priori
expectations, some of the untested links appear very weak
(e.g., consumption of Petrophila by Argia). The purpose of
our model comparison was illustrative, and a thorough ex-
amination of all trophic links is beyond the scope of our ar-
ticle, but we hope it is clear how this would be a straightfor-
ward exercise.Wemust caution, however, that the number
of models increases exponentially with every link tested,
and one must be wary of the risks of data dredging and
overanalysis that come with testing too many models if
there are no a priori reasons to test them all.
For all their advantages, from error propagation to the

use of prior information, Bayesian models do have a main
inconvenience: computing time. It took on average 4 h of
computation to fit a single model to one stream, using par-
allel computing of the fourMCMC chains on an Intel Core
i5 processor (4590, 3.3 GHz) and 8 GB of RAM. Given that
one of the strongest motivations to use this method is the
need to statistically analyze the increasing number of large
comparative studies (Mulholland et al. 2008; Norman et al.
2017; Tank et al. 2018), this is an important concern. How-
ever, faster computers and large clusters are likely to reduce
these times quickly. It is also important to be aware of the
method’s limitations and simplifications. First, our model
is based on a linear Markov process, which means that
all transfer rates are a constant proportion of resource
abundance. Strictly speaking, this is not a realistic assump-
tion, since algal uptake often follow a nonlinear function of
nutrient availability, such as Michaelis-Menten dynamics
(O’Brien 1974), and consumers show saturating functional
responses to prey abundance (Jeschke et al. 2002). How-
ever, this simplification, common in previous methods, is
easily justified given the relatively short timeframe of iso-
tope tracer addition experiments. This makes it unlikely
that resource abundance will vary to the point that non-
linearities cannot be approximated locally by linear func-
tions. In fact, our methods assumes that the system is ap-
proximately at steady state, meaning that there are no
major changes in the biomass of compartments during the
period of the study. It is possible that this assumption will
not hold for some longer experiments in highly productive
environments, and future developments of the model may
alleviate this assumption using time series of biomass data
throughout the experiment.
We can think of other aspects that can be incorporated

into this framework in the future other than nonlinear up-
take and growth dynamics. For example, this model could
incorporate the longitudinal dimension explicitly, as was
done in Newbold et al. (1983). In that effort, the water col-
umn was treated as a dynamic compartment and included
particle exchange between the bed and the water column
(the latter being critical to fitting the dynamics of the net-
spinning caddisfly). The present article, by contrast, is not
This content downloaded from 130.2
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spatially explicit, replaces the water column dynamics with
external forcing, and neglects particle suspension, trans-
port, and deposition. An explicit treatment of flow and lon-
gitudinal linkage would allow one to combine the temporal
and spatial information of tracer distribution along the
stream in order to increase the accuracy of our estimates
of uptake and turnover. This can be particularly powerful
for understanding the dynamics of nutrient pools and basal
compartments (e.g., nitrification), whose faster dynamics
makes tracer differences most apparent along the spatial
axis (Mulholland et al. 2000; Peterson et al. 2001). A sec-
ond potential development is the incorporation of nutrient
cycling in the form of excretion or decomposition. This
would essentially involve a new set of parameters ri de-
noting the recycling rate of compartment i (i.e., the pro-
portion of that compartment that returns to the NH4

1

pool). These parameters would populate the first row of
the transfer matrixW. For compartment-specific recycling
rates to be identifiable, however, they would likely require
the incorporation of priors (e.g., using supplementary ex-
cretion trials) and the incorporation of the spatial scale
proposed above.
Another possible development would be the integration

of generalized linear mixed models (Bolker et al. 2009) or
other models that allow for covariates to affect uptake and
turnover rates. This would be particularly powerful in com-
parative analyses across different experiments and sites,
as it would improve our ability to explicitly test effects of
a particular variable of interest (e.g., light, temperature, or
time) across streams or treatments.
In conclusion, we have presented a method that im-

proves the statistical rigor of tracer addition analyses. Our
hope is that it will not only be of great use as it stands but
also provide a baseline template for further developments
and improvements that extract the most information from
such elegant experiments. Most importantly, our model-
ing approach allows statistical comparisons among sys-
tems and treatments as well as formal testing of alternative
hypotheses, expanding the utility of isotope tracer experi-
ments in comparative and experimental settings.
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