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We review recent progress in NLO calculations for dilute-dense processes in the CGC

picture. In particular, we focus here on recent steps in understanding high energy renor-

malization group evolution (BK/JIMWLK), the total DIS cross section at small x and
forward particle production in proton-nucleus collisions at next-to-leading order.
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1. Introduction

The increasing accuracy of experimental data for small x processes, both from

the EIC and from ongoing LHC experiments, calls for a corresponding increase in

the accuracy of theoretical calculations. This requires going to higher orders in

perturbation theory also for processes where nonlinear gluon saturation phenomena

are dominant. In order for the theory to have predictive power, it is crucial to have a

consistent treatment of both inclusive and exclusive processes in DIS, and in forward

rapidity proton-nucleus collisions and ultraperipheral collisions of heavy ions. In

the high energy limit such a consistent, systematically perturbatively improveable,

framework for describing the physics of gluon saturation is provided by the Color

Glass Condensate (CGC) effective theory formulation. Here, the gluon fields of

the target are described in terms of Wilson lines, path ordered exponentials in the

strong color fields, which are measurable as the eikonal scattering amplitudes of a

light projectile passing through the field.

Here we will review recent progress on NLO calculations in the CGC picture,

concentrating on three different parts of the program towards a consistent frame-

work for small-x physics. We will first, in Sec. 2 discuss high energy (BK/JIMWLK)

renormalization group evolution of the Wilson lines and their correlators, i.e. eikonal

scattering amplitudes, with the energy scale of the process. We will then, in Sec. 3

move to calculations of the total DIS cross section in the dipole picture that natu-
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rally emerges in the CGC framework. Finally, in Sec. 4, we discuss single inclusive

particle production in forward rapidity proton-nucleus collisions. Exclusive pro-

cesses will be discussed in other contributions to this volume.

2. High energy evolution

Starting at next-to-leading order in perturbation theory, calculations of scattering

processes at very high energy contain large logarithms of the center of mass energy√
s which can be resummed into a RG evolution. In terms of Wilson lines, which

are appropriate for describing the scattering of small projectiles off a generic target,

this evolution is given by the JIMWLK equation1–3. In most applications one

only needs the scattering of a color dipole, whose evolution can be derived from

the JIMWLK equation in a mean field approximation. The corresponding closed

equation is known as the Balitsky-Kovchegov (BK) equation4,5.

2.1. Double logarithms and instabilities

The BK equation has now been derived up to NLO accuracy6–8. For the moment we

shall take into account only the most dominant of the NLO terms, which also require

a special treatment in order to lead to physically meaningful results. With (x,y)

the transverse coordinates of the dipole, the equation of interest for the S-matrix

Sxy(Y ) reads

∂Sxy

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
1−ᾱs ln

(x−z)2

(x−y)2
ln

(z−y)2

(x−y)2

]
(SxzSzy−Sxy) , (1)

where ᾱs = αsNc/π and with Nc the number of colors. We stress that the variable,

for which the above equation has been derived, is the projectile rapidity Y . The

dipole is a right moving object with large plus longitudinal momentum q+ and

the target hadron a left moving object with minus longitudinal momentum, so

that s = 2q+P− is the COM energy squared. If a typical parton in the target

carries a fraction x0 of P− and if Q0 is its typical transverse momentum, we define

p+ = Q2
0/2x0P

−. Then the rapidity variable is defined as the boost invariant ratio

Y = ln
q+

p+
= ln

x0s

Q2
0

= ln
x0

x

Q2

Q2
0

, (2)

where Q2 ∼ 1/r2 with r = |x − y| the dipole size and x = Q2/s as traditionally

defined. In the kinematical limit of interest, Y is assumed to be parametrically

large. In general, the scattering amplitude Txy = 1− Sxy is small when the target

is dilute, while it approaches the unitarity limit Txy(Y ) = 1 when the target is

dense or “saturated”. The two regimes are separated by a dynamically generated

scale, the saturation momentum Qs(Y ), which should be an increasing function

of the rapidity Y . In other words, the scattering amplitude should increase with

increasing Y and fixed dipole size r, or with increasing r and fixed rapidity Y . This
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is the physical expectation and this is indeed what happens when we keep only the

LO term in Eq. (1) as one can verify both numerically and analytically.

The next natural step is to solve Eq. (1) including the “non-conformal” NLO

term. In the regime where the daughter dipoles are large, i.e. for |x−z| ' |z−y| �
r, the double logarithm gets significantly large. For any reasonable value of the

coupling ᾱs, the total contribution of the NLO term is larger in magnitude than

the one of the LO term, and because of its negative sign it leads to a particularly

awkward solution which exhibits an unphysical oscillating behavior. These features

have been confirmed by analytical studies and numerical solutions9–11.

Such big collinear logarithms spoil the convergence of the perturbative expansion

in ᾱs and an all-orders resummation in the regime where large daughter dipoles

are emitted, can be the only resolution to the problem. As is always the case

in a Quantum Field Theory, large logarithmic contributions are associated with

a certain physical mechanism. Here, they are generated by diagrams in light-cone

perturbation theory in which the successive gluon (or dipoles at large-Nc) emissions

in the projectile are not only strongly ordered towards smaller (plus) longitudinal

momenta and larger dipoles sizes, as clear from the above discussion, but are also

ordered towards smaller lifetimes or equivalently larger light-cone energies11,12.

Simply by enforcing this time-ordering in the projectile wavefunction, we are

led to a well-defined evolution which goes beyond a fixed order expansion in ᾱs. In

fact there are two possibilities on how to proceed, and they are equivalent to the

order of accuracy. In the one approach, the resummation of the double collinear

logarithms is explicit in the evolution kernel and the ensuing equation reads11

∂Sxy

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
KDLA(ρxyz) (SxzSzy − Sxy) , (3)

where the kernel is given by

KDLA(ρ) ≡ J1(2
√
ᾱsρ2)√

ᾱsρ2
with ρ2

xyz = ln
(x−z)2

(x−y)2
ln

(z−y)2

(x−y)2
. (4)

Eq. (3) remains a local equation in Y , like Eq. (1). When expanding to first non-

trivial order in ᾱs we recover the NLO double logarithm in Eq. (1). But the all-

orders kernel exhibits a completely different behavior at large distance: the Bessel

function oscillates strongly when its argument gets large, and thus eliminates the

contribution of large daughter dipoles which could violate time-ordering.

In the other approach the respective evolution equation reads12

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
×Θ(Y −ρmin)

[Sxz(Y −∆xz;r)Szy(Y −∆zy;r)− Sxy(Y )] , (5)

where the two quantities ρmin and ∆xz;r are given by

ρmin = ln
1

r2
minQ

2
0

and ∆xz;r = max

{
0, ln

|x−z|2
r2

}
, (6)
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and rmin is the size of the smallest of the three dipoles. Although we shall not

show the details here, which require to write Eq. (5) in an integral form, the shifts

in the arguments of the S-matrices are a direct consequence of the time-ordering

constraint. Again there is a change w.r.t. the LO BK equation only regarding the

contribution of the sufficiently large daughter dipoles. Contrary to Eq. (3), the

above keeps the LO dipole kernel but is a non-local equation in Y . Equations (3)

and (5) both reduce to the LO BK equation when expanded to LO in ᾱs, while

they agree to all orders in ᾱs so long as one is interested in the double logarithmic

contributions arising from the emission of very large dipoles. The pure ᾱ2
s terms

(i.e. terms of order O(ᾱ2
s) not enhanced by large collinear logarithms) in the two

equations are not the same, but they can be made to match each other and also

match the respective terms of the full NLO BK equation.

Eqs. (3) and (5) have been solved as initial value problems13,14, using typical

initial conditions like the MV model15,16. The solutions seem to be stable, but there

are many issues in the results which are puzzling. The solution to the BK equation

is always characterized by the speed λ = d lnQ2
s/dY of the evolution and the slope

γ = d lnT/d ln r2 in the perturbative side of the amplitude. The aforementioned

equations lead to a somewhat low speed (such that after taking into account all the

NLO corrections, it is difficult to cope with the phenomenology) and a significantly

larger slope when compared to the LO dynamics. For fixed coupling evolution one

finds that γ is close to 1 or even larger than 1, except for values of ᾱs which are

unnaturally small. Given that at LO the asymptotic value γ ' 0.63 is a hallmark

of BFKL dynamics and saturation, one may wonder why this feature is lost when

moving to NLO and beyond.

The first thing to realize, is that Y is not the correct variable to use. It was

merely introduced since in the presence of saturation it is much easier to calcu-

late using the kinematics of the projectile which is a simple object. Instead, we

should use the target rapidity η defined as the logarithm of the ratio of the minus

longitudinal momenta, namely

η = ln
x0P

−

q−
= ln

x0s

Q2
= Y − ρ. (7)

We have defined the minus longitudinal momentum of the dipole according to 2q− =

Q2/q+ and the logarithmic variable ρ = ln 1/r2Q2
0. When doing DIS of a photon

off the hadronic target, typically Q2 is also the virtuality of the photon and thus η

is closely related to the logarithm of the Bjorken variable. Moreover, since we are

mostly interested in a situation where Q2 � Q2
0, the rapidities Y and η can be very

different. We express the results in terms of the physical variable η defining

S̄xy(η) ≡ Sxy(Y = η + ρ), (8)

from which we extract the saturation momentum Q2
s(η). We find that indeed the

evolution in terms of η is faster, since the new speed reads λ̄ = λ/(1−λ), while the

shape of the amplitude is less steep since the new slope is given by γ̄ = γ(1− λ).
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Still, there are two serious issues, which seem too difficult to deal with using the

current procedure. First, we have not been very careful about the initial condition at

Y = 0 when solving Eqs. (3) or (5). In fact, these two equations are boundary value

problems, more precisely a condition must be given at Y = ρ, but such a problem

looks very hard to solve. A workaround, would be to write an initial condition at

Y = 0 which reproduces via evolution the desired amplitude, e.g. the MV model,

at Y = ρ. This has been exactly done only at the level of linear evolution in the

DLA17, but it looks almost impossible to do it for the non-linear equation. Second,

the shift ∆ in Eq. (5), is not really uniquely defined as we have written in Eq. (6),

rather it can be only specified within double-log accuracy. This arbitrariness in

the choice of ∆ leads to a small reasonable uncertainty in the results terms of

Y . However, such a scheme dependence becomes very strong when expressing the

results in terms of η and leaves the whole approach without any predictive power17.

For example, for certain schemes which at a first sight look fair, the speed λ̄ turns

out to be physically non-acceptable even for typical values of ᾱs.

2.2. Evolution in the target rapidity

The way to avoid the difficulties encountered at the end of Sect. 2.1 is rather simple.

Instead of making the change of variables given in Eq. (8) on the solution, we shall

do it directly on the evolution equation. Focusing on the non-local version in Eq. (5),

it is an easy exercise to show that going from (Y, ρ) to (η, ρ) leads to17

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

×Θ(η−δxyz)
[
S̄xz(η−δxz;r)S̄zy(η−δzy;r)− S̄xy(η)

]
, (9)

where the shifts are given by

δxz;r = ln
|x−z|2
r2

−∆xz;r = max

{
0, ln

r2

|x−z|2
}
, δxyz = max{δxz;r, δzy;r}. (10)

We are still looking at the evolution from the projectile point of view, since the

transverse sector involves the splitting of a dipole into two. The equation remains

non-local where now the shift is effective only when one of the daughter dipoles

is very small. When evolving in η time ordering is trivially satisfied, while it is

only due to the shift δ in Eq. (10) that k+ ordering is also guaranteed to hold.

As before, the prescription for the shift is not unique beyond double-logarithmic

accuracy. Finally, let us mention that we can truncate Eq. (9) to second order in

ᾱs by expanding to first order in the shift. Not surprisingly, the ensuing equation

contains a large double logarithm when a small daughter dipole is formed. Although

such an emission is atypical in the course of evolution, it can give rise to instabilities

when η gets large due to BFKL diffusion, and thus it is mandatory that one use

Eq. (9) which effectively resums such logarithmic contributions to all orders in ᾱs.

The most essential feature of Eq. (9) is that, contrary to Eq. (5), it is an initial

value problem. We can specify a physical condition S̄xy(η = 0) = S̄
(0)
xy and proceed
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to solve the equation. The solution shows a weak dependence on the detailed form

of the shift δ, e.g. the uncertainty in the value of the speed λ̄ is of order O(ᾱ2
s),

which is precisely what we should expect to the order of accuracy. Also the speed

does not show any weird behavior, and the ratio λ̄/ᾱs is a monotonic function of

ᾱs, namely it decreases when the coupling increases. Thus, we have a procedure

which contains the proper physics in a controlled approximation.

2.3. Beyond double logarithms

So far we have focused on the higher order terms enhanced by double collinear

logarithms, but there are other large corrections to be taken into account. The NLO

BK equation also contains single transverse logarithms13, for which it is intuitively

clear that they stand for DGLAP corrections on top of the small-x evolution. That

is, we can have a sequence of two emissions where only the first one is enhanced

in the longitudinal sector, while both are strongly ordered in dipole sizes, either

towards large daughter dipoles or towards dipoles of which one is much smaller. To

a first approximation, such effects can be naturally resummed by inserting a power

law suppression in the evolution kernel. More precisely, we introduce the factor

KA1
=

[
(x− y)2

min{(x− z)2, (z − y)2}

]±A1

, (11)

with A1 = 11/12 the familiar coefficient in the relevant DGLAP anomalous dimen-

sion. The sign in the exponent is such that KA1
is never larger than one.

The last corrections that are mandatory to be included, are those related to the

running coupling. We recall that on the r.h.s. of the NLO BK equation there is a

term proportional to the first coefficient of the QCD β-function and which reads6,7

b̄ᾱ2
s

2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
ln(x−y)2µ2− (x−z)2−(y−z)2

(x−y)2
ln

(x−z)2

(y−z)2

]
. (12)

Here b̄ = (11Nc−2Nf)/12Nc, Nf is the number of flavors and µ is a renormalization

scale at which the coupling is evaluated. The logarithms can give large contributions

and spoil the convergence of the perturbative expansion when either r is very small

or very large compared to 1/µ or when the gluon at z is close to any of the legs of

the parent dipole. Thus µ must be chosen in such a way to guarantee that there

are no large logarithms for any size of the three dipoles involved in the splitting

process. Usually in QCD it is the hardest scale that determines the scale for the

running coupling and one readily sees that this is true also here. The choice of µ is

not unique and we shall list two different prescriptions which are equivalent to the

order of accuracy. The first one is just the smallest dipole scheme defined by

ᾱmin = ᾱs(rmin) with rmin = min{|x− y|, |x− z|, |z − y|}. (13)

The second one is the BLM scheme, which in the current context means to choose
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µ so that the whole integrand in Eq. (12) vanishes. This leads to

ᾱBLM =

[
1

ᾱs(|x−y|)
+

(x−z)2 − (z−y)2

(x−y)2

ᾱs(|x− z|)− ᾱs(|z − y|)
ᾱs(|x− z|)ᾱs(|z − y|)

]−1

, (14)

and it is an elementary exercise to show that ᾱBLM reduces to ᾱmin for all the

configurations in which one of the three dipoles is much smaller than the other two.

Finally, we point out that there are other NLO corrections, which however are

not enhanced by large logarithms in any kinematic regime. It suffices to say that the

resummations which we reviewed here, can be matched to the full NLO BK equation.

Thus, we have a stable formalism which includes the necessary resummations and

is accurate to order O(ᾱ2
s). In particular one must revise here the discussion given

in Sect. 2.2, where the matching was done only at LO (cf. Eq. (9)) and this is why

the uncertainty due to the choice of δ was of order O(ᾱ2
s). When the matching is

lifted to NLO accuracy, we can show that such an uncertainty due to the choice of

a scheme is reduced to order O(ᾱ3
s), as it should.

3. Total DIS cross section

The simplest scattering observable where the dipole S-matrix element Sxy appears

is the total deep inelastic scattering cross section. Here the leading order picture is

that the quark-antiquark dipole discussed in the context of the evolution equation

is a quantum fluctuation of the virtual photon emitted by the lepton. Depending

on the polarization state of the γ∗ one must consider separately transversally and

longitudinally polarized photons. Experimentally the polarization states are sepa-

rated using the kinematics of the scattered lepton and varying
√
s. Measuring both

cross sections will be a central part of the physics program at the EIC.

In this “dipole factorization” one separates the process into an impact factor

describing the fluctuation of the virtual photon into a partonic state, at leading

order a dipole and at NLO also a qq̄g state, and the scattering amplitude of this

state with the target, which at leading order is 1− Sxy. The term “impact factor”

is most often used for calculations in momentum space: for deep inelastic scattering

at small-x there is a momentum space calculation in Refs. 18,19. However, for the

eikonal scattering picture in general, and for nonlinear high energy evolution in the

CGC picture as discussed in Sec. 2, it is more convenient to work in mixed space,

with transverse coordinates and longitudinal momentum. The calculation of the

total DIS cross section in this formulation has been completed more recently in

Refs. 20–22. This is the formulation we will discuss in more detail here.

The theoretical tool of choice for these calculations is light cone perturbation

theory23–26. Here one calculates diagrammatically the perturbative expansion in

terms of bare Fock states of the incoming particle (in this case γ∗) state. The

coefficients of this expansion are known as the light cone wave functions. For the

NLO DIS cross section the calculation is thus based on obtaining the virtual photon

wavefunction to NLO accuracy.
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3.1. Leading order

In general, the total DIS cross section is obtained, via the optical theorem, from

the forward limit of the elastic photon-target scattering amplitude

σγ
∗
[A] =

2

2q+(2π)δ(q′+ − q+)
Re

[
i〈γ∗(~q ′, Q2, λ′)|1− ŜE |γ∗(~q,Q2, λ)〉i

]∣∣∣∣
~q ′→~q

(15)

Here the photon states |γ∗(~q,Q2, λ)〉i are interacting theory states, that must be

developed in a perturbation theory expansion in terms of the bare Fock states of

the theory. The eikonal scattering operator ŜE is diagonal in transverse position

space, and in the CGC expressed in terms of Wilson lines in the target gluon field.

At leading order, the only contributing photon Fock state is the quark-antiquark

dipole, and the corresponding tree-level virtual photon wave functions are easily

calculated. The resulting leading order expression

σγ
∗p
T,L(x,Q2) = 2

∑

f

∫
dzd2bd2r

∣∣∣Ψγ∗→qq̄
T,L

∣∣∣
2

(1− S(b, r, x)) , (16)

has been widely used to describe HERA DIS data, with the dipole amplitude S

obtained from BK or JIMWLK evolution or from different more phenomenological

parametrizations.

3.2. Next to leading order

Fig. 1. Loop diagrams needed for the NLO γ∗ → qq̄ wavefunction. In addition to these diagrams
one must also include the corresponding “instantaneous interaction” contributions.

Fig. 2. Gluon emission diagrams needed for the γ∗ → qq̄g wavefunction. In addition to these
diagrams one must also include the corresponding “instantaneous interaction” contributions.

At NLO accuracy one must develop the interacting photon state in Eq. (15)

to include one loop corrections to the γ∗ → qq̄ wavefunction, shown in Fig. 1,

and the contribution of the qq̄g state, shown in Fig. 2. This calculation has been

done in Refs. 20,21 in the conventional dimensional regularization (CDR) scheme
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and independently in the four-dimensional helicity (FDH) scheme in Ref. 22. The

result can be written, using the notations of Ref. 22, as

σγ
∗
T,L [A] = σγ

∗
T,L

∣∣∣∣
qq̄

+ σγ
∗
T

∣∣∣∣
qq̄g

, (17)

where the qq̄ term is

σγ
∗
T,L

∣∣∣∣
qq̄

= 2
∑

f

∫
dzd2bd2r

∣∣∣Ψγ∗→qq̄
T,L

∣∣∣
2

×
{

1 +

(
αsCF

π

)[
1

2
log2

(
z

1− z

)
− π2

6
+

5

2

]}
(1− S(b, r, x)) (18)

The qq̄g terms have slightly more complicated expressions20–22 that differ for the

trasverse and longitudinal polarizations, and involve the S-matrix elements for the

qq̄g Fock state scattering on the target

Sxyz =
Nc

2CF

[
SxzSzy −

1

N2
c

Sxy

]
. (19)

where the nonlinear term is the same as in the BK equation as written in Eq. (3),

and the second, Nc-suppressed one, a part of the linear term.

Further details about the calculations leading to the NLO result can be found

in the original references, so let us here make a few remarks on the slight differ-

ences between the two independent calculations. It is important to note that the

split into the two terms (17) is not unique. Both the virtual (Fig. 1) and real

(Fig. 2) separately contain divergences that, at least in light cone quantization,

appear as logarithmic (transverse) UV ones. In coordinate space they correspond

to the configurations where the gluon (at z) is very close to its parent quark (at

x) or antiquark (at y). In the calculation these divergences are regularized us-

ing transverse dimensional regularization, and cancel between the real and virtual

terms in the end. This cancellation relies on the coincidence limit of the qq̄ and qq̄g

scattering amplitudes Sxyz −→
z→x

Sxy, which is always satisfied by their definitions

in terms of Wilson line correlators. In practice the cancellation is effectuated by

subtracting from the real part a divergent term proportional to Sxy. This subtrac-

tion term must have the correct form in the limits z → x and z → y, but there

is freedom in choosing its functional form for other values of z. In addition to the

different variant of the dimensional regularization scheme, the calculation in Refs.

20,21 on one hand and in Ref. 22 on the other hand, differ by the choice of this

subtraction term. Thus the form in which the result is quoted is different, but the

actual expressions equivalent.

The NLO impact factor contains a large logarithm of the energy (or of Bjorken

x in the context of DIS). In the DIS case this large logarithm resides in the σγ
∗
T

∣∣
qq̄g

term in Eq. (17), which contains an explicit integral over the longitudinal mo-

mentum fraction of the gluon in the diagrams of Figs. 1 and 2. When the gluon

becomes very soft (i.e. the momentum fraction zg → 0), this integral yields a large
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logarithm of the lower cutoff, which kinematically is ∼ 1/xBj. This contribution

must be subtracted from the calculation of the cross section and absorbed into the

BK/JIMWLK evolution of the target in order to extract the finite genuinely NLO

contribution. This factorization procedure is much less straightforward in the case

of small x than for collinear factorization. It is tied in with the issues of collinear

logarithms or kinematical constraints in the NLO evolution discussed in 2. For

DIS, there is a preliminary numerical implementation of the cross section formu-

lae27. This work shows that indeed the NLO corrections are sizeable (several tens

of %), but controllable. In particular, there is a large cancellation between the two

different terms in Eq. (17), making the overall NLO correction smaller than the

two separate terms individually. However, a more systematical comparison with

experimental data has not yet been achieved, and it is not obvious if the factoriza-

tion procedure here is the optimal one. The issues here are largely the same as in

forward particle production, which has been discussed more in the recent literature.

Thus we will not discuss this further here, but return to the issue in that context

in Sec. 4.

3.3. Massive quarks

The calculation of the NLO DIS cross section discussed above was only performed

with massless quarks. The total charm quark cross section is likely to be an impor-

tant observable at the EIC. In particular, it is a more safely perturbative probe of

weak coupling physics than the total cross section, being less sensitive to very large

dipoles in the “aligned jet” (large r, small z(1 − z)) configurations allowed even

at large Q2 for massless quarks28. Currently the work to extend the calculation

described here to massive quarks is ongoing, and we shall briefly discuss the new

issues involved.

In principle what one should calculate are precisely the same diagrams as for

massless quarks. The presence of quark masses of course complicates somewhat the

kinematics and the algebra in the loop integrals. More important, however, is that

one must confront the known29–31 issues with quark mass renormalization in light

cone perturbation theory.

To start, let us examine in more detail the structure of the elementary fermion-

gauge boson vertex of QED or QCD, for exaxmple for the emission of a gauge

boson with momentum k from a quark with momentum p, with the quark after the

emission having 3-momentum ~p ′ = ~p− ~k:
[
ūh′(p

′)ε/∗λ(k)uh(p)

]
(20)

Using the properties of the free spinors u, ū, v, v̄ and polarization vectors ε(k), and 3-

momentum conservation, this vertex can be expressed in terms of three independent

Lorentz structures: ūh′γ
+uhδ

ijqiε∗jλ , ūh′γ
+[γi, γj ]uhq

iε∗jλ and ūh′γ
+γjuhmqε

∗j
λ .

The first two are light cone helicity conserving ones (∼ δh,h′) that are present
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independently of the quark mass. The third one is a light cone helicity flip term

∼ δh,−h′ , and is explicitly proportional to the quark mass. Note also that the

helicity flip vertex has one less power of the transverse momentum than the nonflip

one, thus resulting in less UV divergent contributions.

The inclusion of the additional helicity flip structure introduces two new kinds

mass-dependent UV divergent contributions. Firstly, in the first two diagrams of

Fig. 1 one can have a flip vertex at both ends of the quark line. Since for massless

quarks the transverse momentum integral in the loop is quadratically divergent,

this yields a logarithmic UV divergence proportional to m2
q. This divergence is

absorbed into a renormalization of the quark mass squared appearing in the energy

denominator of the leading order wave function. The corresponding counterterm

is the “kinetic mass” counterterm, since it is associated with the kinetic property

of the mass as a parameter in the dispersion relation relating the energy p− to the

momentum p+,p. Secondly, in the second two (vertex correction) diagrams of Fig. 1

one can take one out of the three vertices to have a flip, and get a logarithmically

divergent contribution proportional to the quark mass mq. This divergence, on the

other hand, separately from the other one, is absorbed into a renormalization of

the quark mass appearing in the helicity flip part of the leading order vertex. The

associated counterterm is referred to as the “vertex mass” one, since it is related

to the role of the quark mass as the coefficent of the helicity flip amplitude in an

interaction with gauge bosons.

In a covariant formulation of the theory rotational invariance guarantees that

both the kinetic and vertex masses remain the same at all orders in perturbation

theory. However, in light cone quantization one chooses a specific coordinate axis as

the longitudinal one. If the regularization method used in loop calculations is not

rotationally invariant, the two counterterms can become different. This is indeed

the case for the scheme of transverse dimensional regularization and a cutoff in

the longitudinal (p+) momentum that has been used in NLO calculations of DIS

for mass. There are two possible ways to remedy this problem. One way is to

introduce an additional renormalization condition to separately determine the two

mass counterterms by enforcing rotational invariance order by order in perturbation

theory. A convenient possibility or the case of DIS is to require that the decay

amplitudes of transversally and longitudinally polarized timelike virtual photons

are equal. The other option is to examine more closely the regularization procedure

in the case of the problematic diagrams, which in this case are in fact the propagator

correction ones. By carefully combining them with the corresponding instantaneous

interaction diagrams before integration, and evaluating a specific subset of one-body

phase space integrals in a rotationally invariant manner, one can restore rotational

invariance without an additional renormalization condition. The full details of this

procedure will be explained in more detail in a forthcoming publication.



May 13, 2020 0:39 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in book page 279

279

4. Forward particle production in pA collisions

Particle production at forward rapidities and semi-hard transverse momenta in pro-

ton (or deuteron)-nucleus collisions at RHIC and the LHC is an important source

of information about the small-x part of the nuclear wavefunction, where gluon

occupation numbers are high and non-linear effects like gluon saturation and mul-

tiple scattering are expected to be important. On the theory side, the cross-section

for single-inclusive particle production has been computed32 up to next-to-leading

order (NLO) in the framework of the so-called “hybrid factorization”33, but the

result is problematic: the cross-section suddenly turns negative when increasing the

transverse momentum of the produced hadron, while still in the semi-hard regime34.

Various proposals to fix this difficulty, by modifying the scale for the rapidity sub-

traction, have only managed to push the problem to somewhat larger values of the

transverse momentum35.

In a recent paper36, it has have argued that this negativity problem is an artefact

of the approximations used within hybrid factorization in order to obtain a result

which looks local in rapidity. On that occasion, it has also been proposed a more

general factorization scheme, which is non-local in rapidity but yields a manifestly

positive cross-section to NLO accuracy. Subsequently, this whole strategy has been

extended to the calculation of the DIS structure functions at NLO27.

Another subtle issue refers to the use of a running coupling within the non-

local factorization. Indeed, the cross-section is written in momentum space, but it

involves the solution to the BK equation, which is most naturally solved in coor-

dinate space; the mismatch between the respective prescriptions for the running of

the coupling can lead into trouble37. A solution to this difficulty that was recently

proposed38 will be briefly reviewed here.

4.1. Leading order formalism

For simplicity, we focus here on the q → q channel and do not consider the frag-

mentation functions. To leading order (LO) in the “hybrid factorization”, quark

production at forward rapidities in pA collisions proceeds as follows: a quark which

is initially collinear with the incoming proton scatters off the dense gluon distribu-

tion in the nuclear target and thus acquires a transverse momentum k. The LO

quark multiplicity is computed as follows:

dNLO

d2k dη
=
xpq(xp)

(2π)2
S(k, Xg) , S(k, Xg) =

∫
d2r e−ik·rS(r, Xg), (21)

where η is the rapidity of the produced quark in the center-of-mass frame, xpq(xp)

is the quark distribution of the proton, and xp = (k⊥eη/
√
s) and Xg = (k⊥e−η/

√
s)

are the longitudinal momentum fractions carried by the partons participating in

the collision — a quark from the proton and a gluon from the nucleus. The forward

kinematics corresponds to η positive and large, which implies Xg�xp<1.

Furthermore, S(k, Xg) is the relevant unintegrated gluon distribution (the
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“dipole TMD”), obtained as the Fourier transform of the S-matrix S(r, Xg) for

the elastic scattering between a quark-antiquark color dipole with transverse size

r and the nucleus. This quantity depends upon Xg via the high energy evolu-

tion responsible for the rise in the gluon distributions with decreasing Xg. To the

LO accuracy at hand, this evolution is described by (the LO version of the) the

BK equation4,5, which resums to all orders the radiative corrections ∝ (ᾱsYg)
n,

with Y ≡ ln(1/Xg). These corrections are associated with successive emissions of

soft gluons, which are strongly ordered in longitudinal momenta and hence can be

computed in the eikonal approximation.

The LO BK equation is boost invariant — it equivalently describes the high-

energy evolution of the dipole projectile, or of the nuclear target. For what follows

it is suggestive to vizualize this evolution in a Lorentz frame in which the “primary”

gluon (the one which is closest in rapidity to the dipole) is emitted by the dipole,

whereas all the other “soft” gluons belong to the nuclear wavefunction (see Fig. 3

for an illustration). Then the LO BK equation can be written in integral form,

S
(
x,y;Xg

)
= S(x,y;X0) +

ᾱs
2π

∫ 1

Xg/X0

dx

x

∫
d2z (x− y)2

(x− z)2(z − y)2

×
[
S
(
x, z;X(x)

)
S
(
z,y;X(x)

)
− S

(
x,y;X(x)

)]
, (22)

where x and y are the transverse coordinates of the quark and antiquark legs of

the dipole (so, r = x−y) and z is the transverse position of the primary gluon,

which carries a fraction x � 1 of the longitudinal momentum of the incoming

quark. Furthermore, X0 is the value of X at which one starts the high-energy

evolution of the target, S(x,y;X0) is the corresponding initial condition (say, as

given by the McLerran-Venugopalan (MV) model15,16), and X(x) ≡ Xg/x is the

longitudinal momentum fraction of the gluons in the target which are probed by

the scattering. Notice that ln(1/X(x)) = ln(x/Xg) = Yg − ln(1/x) is the rapidity

separation between the primary gluon and the valence partons in the nucleus.

4.2. The NLO impact factor

At NLO, one needs to also include the “pure-αs” corrections, i.e. the radiative

corrections of O(αs) which are not enhanced by Yg. These can be divided into

two classes: (i) NLO corrections to the high-energy evolution, i.e. to the kernel

(more generally, to the structure) of the BK equation, and (ii) NLO corrections to

the “impact factor”, i.e., to the “hard” matrix element which describes the quark-

nucleus scattering in the absence of any evolution, that is for Xg ∼ X0.

The LO impact factor describes the scattering between a bare quark collinear

with the proton and the nucleus. At NLO, the wavefunction of the incoming quark

may also contain a “primary” gluon with longitudinal fraction x (cf. Fig. 3). For

x� 1, this primary emission was already included in the LO evolution, as manifest

in Eq. (22). The NLO correction to the impact factor is rather associated with a

relatively hard primary emission, with x ∼ O(1), which must be computed exactly
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Fig. 3. A graph contributing to the amplitude for forward quark. When the longitudinal
fraction x of the “primary gluon” (the gluon directly emitted by the quark) is small, x� 1,
this graph is a part of the high-energy evolution of the LO multiplicity. But for generic
values x ∼ 1 (non-eikonal emission), it contributes to the NLO impact factor.

(i.e. beyond the eikonal approximation). In practice though, it turns out that

separating the LO evolution from the NLO correction to the impact factor is quite

subtle. For this reason, we shall first present an “unsubtracted” expression for the

NLO quark multiplicity36 in which these two effects are mixed with each other.

The LO multiplicity (21) receives NLO corrections proportional to the Nc and

CF color factors which have been computed in Refs. 32,39. To keep the discussion

simple, we shall only consider the Nc terms which are40 the origin of the negativity

problem observed in Ref. 34. Besides, we shall treat the dipole evolution to LO

(the running coupling corrections will be later added). Finally, we shall focus on

relatively hard momenta k⊥ & Qs(Xg) for the produced quark, since this is the most

interesting case for the phenomenology and also the regime where the negativity

problem has been observed in the literature35. The sum of the LO and NLO

contributions proportional to Nc can be written as36

dNLO+Nc

d2k dη
=
xpq(xp)

(2π)2
S(k, X0) +

ᾱs
2π

∫ 1

Xg/X0

dx

x
K(k, x,X(x)), (23)

where the first term in the r.h.s. is the tree-level contribution (or equivalently

the initial condition at Xg = X0), whereas the second term encodes, in compact

but rather formal notations, all the quantum corrections which are relevant to the

accuracy of interest: the Nc piece of the NLO corrections to the impact factor and

the LO BK evolution of the dipole S-matrix. The kernel K(k, x,X(x)) is built

with vertices for the (generally, non-eikonal) emission of the primary gluon and

with dipole S-matrices — evolved from X0 down to X(x) = Xg/x — describing the

scattering between the nuclear target and the 2-parton projectile (the original quark

plus the primary gluon). Explicit expressions can be found in Refs. 32,36,38,39.

We shall refer to the formula in Eq. (23) as “unsubtracted”, since the NLO

corrections are not explicitly separated from the LO result. This formula has been
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Fig. 4. Numerical results comparing the LO result, Eq. (21), with different formulations of the

NLO factorization: “unsubtracted”, cf. Eq. (23), “subtracted”, cf. Eq. (25), and “CXY”, cf.

Eq. (26). Left: fixed coupling. Right: Running coupling with mixed RC prescriptions: transverse-
space prescription ᾱs(k⊥) for the primary gluon emission, but coordinate-space (Balitsky) pre-

scription for the BK equation. These results are taken from Ref. 37, to which we refer for more

details.

numerically evaluated in Ref. 37, with the result shown in the left panel of Fig. 4 (the

curve denoted as “unsubtracted”). This result is seen to be positive, as expected on

physical grounds, and also smaller than the respective LO result — meaning that

the NLO corrections are negative. In order to disentangle these corrections from

the LO contribution and also make contact with the original calculations32,34,39, it

is useful to observe that the LO result (21) can be recovered from Eq. (23) by taking

the eikonal limit x→ 0 in the emission vertices (while keeping the x-dependence in

the rapidity arguments X(x) of the dipole S-matrices); that is,

dNLO

d2k dη
=
xpq(xp)

(2π)2
S(k, X0) +

ᾱs
2π

∫ 1

Xg/X0

dx

x
K(k, x = 0, X(x)). (24)

This is indeed consistent with equations (21) and (22), since the integral term

above is the same as the Fourier transform of the respective term in Eq. (22) times

xpq(xp)/(2π)2. By subtracting Eq. (24) from Eq. (23), one finds

dNLO+Nc

d2k dη
=

dNLO

d2k dη
+
ᾱs
2π

∫ 1

Xg/X0

dx

x

[
K(k, x,X(x))−K(k, x = 0, X(x))

]
. (25)

The equivalence between Eqs. (23) and (25) is confirmed by the numerical study in

Ref. 37: the “subtracted” curve in Fig. 4 (left), as obtained by numerically comput-

ing the r.h.s. of Eq. (25), perfectly matches the “unsubtracted” curve obtained from

Eq. (23). But from the previous discussion, it should be clear that this equivalence

relies in an essential way on the fact that the dipole S-matrix is an exact solution to

the LO BK equation. Any approximation in solving this equation or in evaluating

the NLO correction (the integral term) in the r.h.s. of Eq. (25) would lead to dif-

ferences with potentially dramatic consequences. This observation is important in

view of the fact that the “subtracted” formula (25) is not quite the same as the NLO

prediction32,39 of the hybrid factorization (or the closely related kT -factorization).
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The latter is local in rapidity, that is, the NLO correction to the impact factor is

fully factorized from the high-energy evolution, which is evaluated at the scale Xg

(corresponding to the maximal rapidity separation between the projectile and the

target). By contrast, the NLO correction in Eq. (25) is non-local in rapidity : it

involves the dipole evolution at all the intermediate scales X0 > X(x) > Xg.

In order to arrive at the “kT -factorized” formula presented in32,39, which is local

in X, certain approximations need to be made. First, one observes that due to the

subtraction in Eq. (25), the integral is dominated by large values x ∼ 1. Hence, to

the NLO accuracy of interest, it is justified to (i) replace the rapidity argument

of the dipole S-matrices by its value at x = 1, i.e. X(x) → X(1) = Xg, and (ii)

ignore the lower limit Xg/X0 � 1 in the integral over x. One thus obtains

dNLO+c

d2k dη

∣∣∣∣
CXY

=
dNLO

d2k dη
+

∫ 1

0

dx

x

[
K(k, x,Xg)−K(k, x = 0, Xg)

]
, (26)

where all the S-matrices implicit in the r.h.s. are evaluated at the scale Xg.

Eq. (26) is not anymore equivalent to Eqs. (23) and (25) and, despite the seem-

ingly reasonable approximations, it is rather pathological, as it rapidly becomes

negative when increasing the transverse momentum of the produced quark. This

is demonstrated by the curve “CXY” in the left panel of Fig. 4, obtained37 by

numerically evaluating the r.h.s. of Eq. (26). The reason is that the replacement

X(x)→ Xg in the argument of the dipole S-matrix leads to an over-subtraction: the

negative contribution proportional to K(k, x = 0, Xg) becomes too large in magni-

tude and overcompensates for the LO piece. Moreover, the replacement Xg/X0 → 0

in the lower limit is not physically motivated, since it violates constraints imposed

from the correct kinematics, and thus it introduces spurious contributions.

4.3. Adding a running coupling

So far, we have considered the academic case of a fixed coupling, but it is quite clear

that, both for the consistency of the NLO calculation and for realistic applications to

phenomenology, it is necessary to include the effects of the running of the coupling.

Since the transverse momentum k⊥ of the produced quark is the largest scale in the

problem, it is intuitively clear that this is also the scale which controls the running

of the coupling. It therefore looks reasonable to generalize the previous results by

simply replacing ᾱs → ᾱs(k⊥) in the primary emission vertices in equations (23)

and (25), while simultaneously using rcBK (the LO BK equation with a running

coupling) for the evolution of the dipole S-matrix. Yet, a moment of thinking reveals

that such a procedure is not exempt of ambiguities, which in some cases may lead

to serious problems. We now present several examples in that sense36–38.

In practice, it is preferable (for many good reasons37) to solve rcBK in the

transverse coordinate space, meaning that the respective running coupling (RC)

prescription must be formulated in coordinate space as well. Clearly, the scale
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dependence of the RC does not “commute” with the Fourier transform (FT), e.g.

ᾱs(k⊥)K(k, x,X(x)) 6=
∫

d2r e−ik·rᾱs(r⊥)K(r, x,X(x)) , (27)

where K(r, x,X(x)) is the FT of K(k, x,X(x)). One may interpret this mismatch

as merely a part of our scheme dependence, but in some cases it may have dramatic

consequences.

First, it spoils the equivalence between the “unsubtracted” and “subtracted”

expressions for the NLO multiplicity. Recall indeed that in going from Eq. (23)

to Eq. (25), we have used the fact that the integral term in Eq. (24) coincides

with the Fourier transform of the r.h.s. of the LO BK equation. Clearly, this

property is spoilt after replacing ᾱs → ᾱs(k⊥) in Eq. (24), while at the same time

using the coordinate-space version of the rcBK equation. Due to the fine-tuning

inherent in the derivation of the “subtracted” expression, any such a mismatch

could lead to a resurgence of the negativity problem. This is indeed observed by the

numerical study in37 (see the right plot of Fig. 4): whereas the “unsubtracted” result

remains positive and shows a similar trend as at fixed coupling, the “subtracted”

one eventually turns negative, albeit at some larger value for k⊥ than for the “kT -

factorized” expression (26) (now extended to a RC).

In order to cope with such issues, an alternative numerical implementation in

which the calculation is fully performed in coordinate space was suggested37. In

particular, the integral term in Eqs. (23) or (25) is constructed as in the r.h.s. of

Eq. (27), that is, as the FT of a quantity originally computed in coordinate space.

To get more insight on the role of the RC in this context, it is instructive to consider

the eikonal limit x→ 0, in which Eq. (23) reduces to the LO result in Eq. (24). In

coordinate space and with a RC, the integrand there should be understood as

“ᾱs(r⊥)K(r, x = 0)′′ =
xpq(xp)

(2π)2

∫
d2x

2π

ᾱs(r)r2

x2(x−r)2
[S(x)S(r − x)− S(r)] , (28)

where ᾱs(r) within the integrand generically refers to any coordinate-space RC pre-

scription which also depends upon the size r of the parent dipole; e.g., the smallest

dipole prescription ᾱs(rmin), with rmin ≡ min{|r|, |x|, |r − x|}. The generalization

of Eq. (28) to generic (non-eikonal) values of x can be found in Refs. 37,38.

The final results for the NLO quark multiplicity obtained via this procedure37

turned out to be extremely peculiar and physically unacceptable: not only they

are dramatically different from the results obtained with the momentum-space pre-

scription ᾱs(k⊥), but they also show an unphysical trend: the NLO corrections are

very large and positive, and rapidly increase with k⊥ (see the comparison between

the curves “rcBK(rmin)” and “ᾱs(k⊥)” in the left plot in Fig. 5).

The origin of this problem and also a solution to it have been identified38. Once

again, this is related to the non-commutativity of the RC with the FT. We have

no place here to explain the precise technical problem in the context of the NLO

multiplicity, but we can illustrate it with a simpler example38: this is Eq. (27) with
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Fig. 5. Left: Ratio of the NLO multiplicity (including only the Nc terms) and the LO one for

different prescriptions of the running coupling. Right: Ratio of the total NLO quark multiplicity
(including both the Nc and CF terms) and the LO one for three running coupling prescriptions.

For comparison, we also show the results for ᾱs(k⊥) when including only the Nc terms (same as

the curve “ᾱs(k⊥)” in the left panel). For both figures
√
s = 500 GeV, η = 3.2 and the evolution of

the color dipoles is obtained by solving the Balitsky-Kovchegov equation with the smallest dipole

prescription using an MV16 initial condition at X0 = 0.01.

the kernel K replaced by the dipole S-matrix, evaluated at tree-level and in the

single scattering approximation: S = 1 − T with T = r2
⊥Q

2
s ln 1

r2
⊥Λ2 . The FT of S

(i.e. the analog of the l.h.s. of Eq. (27)) is controlled by the logarithmic singularity

of T as r⊥ → 0, which yields

ᾱs(k⊥)

∫
d2r e−ik·r

(
−r2
⊥Q

2
s ln

1

r2
⊥Λ2

)
=

16πᾱs(k⊥)Q2
s

k4
⊥

. (29)

This is the expected result for the high-k⊥ tail of the quark multiplicity within the

MV model. On the other hand, when inserting the RC ᾱs(r) inside the integrand,

the mathematics goes very differently: the RC itself has a logarithmic singularity

as r⊥ → 0, due to the asymptotic freedom, which now dominates the FT:
∫

d2r e−ik·rᾱs(r⊥)S(r) '
∫

d2r e−ik·rᾱs(r⊥) ' − 4π

b̄[ln(k2
⊥/Λ

2)]2
1

k2
⊥
. (30)

(We have used ᾱs(r⊥) =
[
b̄ ln 1

r2
⊥Λ2

]−1
.) Both the sign and the power law tail in

Eq. (30) are different from the correct ones in Eq. (29). This is very similar with

the results for the coordinate-space calculation “rcBK(rmin)” in Fig. 5.

This example suggests that the difficulty encountered with the coordinate-space

calculation in Ref. 37 is due to the fact that the argument of the RC depends

upon the parent dipole size r (the coordinate involved in the FT). Accordingly, the

solution to this problem as suggested in Ref. 38 consists in using a different RC

prescription, which is independent of r and hence commutes with the FT: in the

notations of Eq. (28), this is the daughter dipole prescription ᾱs(x⊥). With this

prescription, the coordinate-space calculation becomes remarkably close to that

using the momentum-space prescription ᾱs(k⊥) (see the left plot in Fig. 5).

This being said, the daughter dipole prescription is not ideal either: First, it

is so finely-tuned that one cannot study the scheme-dependence of the calculation.
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Second, it cannot be extended to the NLO corrections proportional to the quark

Casimir CF. We thus consider that the most physical choice in the general case is

the momentum space prescription ᾱs(k⊥). In Fig. 5 (right) we show the results we

obtain when including both the Nc and CF NLO corrections with fixed, momentum-

space and coordinate-space RC. For comparison we also show the results obtained

with the momentum space prescription including only the Nc NLO terms. This

allows us to see that the inclusion of the CF terms has a sizable effect and, being

opposite in sign compared to the Nc terms, they reduce the size of the NLO cor-

rections to the cross-section. This cancellation is similar to the one for the DIS

cross section discussed in Sec. 3 between the qq̄-term (with color factor CF) and the

qq̄g-term that has the color factor Nc of the BK equation.
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37. B. Ducloué, T. Lappi and Y. Zhu, Implementation of NLO high energy factorization
in single inclusive forward hadron production, Phys. Rev. D95, p. 114007 (2017).

38. B. Ducloué, E. Iancu, T. Lappi, A. H. Mueller, G. Soyez, D. N. Triantafyllopoulos
and Y. Zhu, Use of a running coupling in the NLO calculation of forward hadron
production, Phys. Rev. D97, p. 054020 (2018).

39. G. A. Chirilli, B.-W. Xiao and F. Yuan, One-loop Factorization for Inclusive Hadron
Production in pA Collisions in the Saturation Formalism, Phys. Rev. Lett. 108, p.
122301 (2012).
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