
 Elina Räisänen & Aino-Maria Väyrynen

 SECURE SOFTWARE DESIGN AND DEVELOPMENT –

TOWARDS PRACTICAL MODELS FOR IMPLEMENTING INFORMATION SECURITY
INTO THE REQUIREMENTS ENGINEERING PROCESS

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2020

ABSTRACT

Räisänen, Elina & Väyrynen, Aino-Maria
Secure software design and development – towards practical models for im-
plementing information security into the requirements engineering process
Jyväskylä: University of Jyväskylä, 2020, 125 p.
Cyber Security, Master’s Thesis
Supervisor: Siponen, Mikko

The aim of the Requirements Engineering (RE) process is to elicit and refine into
a solution the ideas and needs from identified stakeholders of a product or a
service. These solve problems in customer business while bringing added value.
Software development’s central theme is software’s security. It has been studied
abundantly but its usage and implementation are often problematic and defi-
cient. Software threats and risks evolve continuously, and vulnerabilities from
software’s development are discovered and exploited in new ways. Software
development should invest into information security as a part of requirements
engineering processes’ continuous development. This process should encom-
pass the entire product lifecycle and consider post-launch phases where the on-
market product is further developed. Requirements should be reviewed itera-
tively to keep current and adapt to the changing threats and risks in the soft-
ware. The research objective was to create a suitable model for the commission-
er (a large manufacturer of physical security products in Finland) which would
adapt information security as an integral part of the software development and
thus produce more secure software. Two stages of action research were applied
to problem solving. The first step was to create the theoretical background for
requirements engineering and information security. After that, the current situ-
ation analysis was initiated, and document analysis was used to map out the
organizational operating environment with a focus on the requirements engi-
neering process model and the stakeholders utilizing it. These results formed
the foundation for the interviews, where the problems of the requirements en-
gineering process were surveyed. Results were analyzed with coding and cate-
gorizing. A second part of the diagnosis was a comparative study, which was
utilized to discover suitable practices to form the needed elements for the mod-
el. The resulting change recommendations from the interviews were combined
with suitable practices from the field. This combination formed a model for in-
formation security in RE process and it will be later implemented by the com-
missioner. The model has a novelty value because it merges agile development
practices with the idea of threat and risk modelling, which is still an understud-
ied subject. Additionally, both components work as a part of a linear RE process.

Keywords: information security, software development, requirements engi-
neering

TIIVISTELMÄ

Räisänen, Elina & Väyrynen, Aino-Maria
Turvallinen ohjelmistosuunnittelu ja -kehitys – kohti konkreettisia metodeja
tietoturvallisuuden implementoimiseksi osaksi vaatimusmäärittelyprosessia
Jyväskylä: Jyväskylän yliopisto, 2020, 125 s.
Kyberturvallisuus, pro gradu -tutkielma
Ohjaaja: Siponen, Mikko

Vaatimusmäärittelyprosessin tavoitteena on kerätä ja jalostaa ratkaisuiksi tuot-
teen tai palvelun sidosryhmiksi tunnistettujen osapuolten ajatuksia ja tarpeita.
Näiden ratkaisujen avulla poistetaan asiakkaan liiketoiminnassa olevia ongel-
mia ja tuotetaan lisäarvoa. Ohjelmistokehityksessä on tällä hetkellä keskeistä
erityisesti ohjelmistojen turvallisuus. Sitä on tutkittu paljon, mutta sen käytän-
töön vieminen on usein ongelmallista ja puutteellista. Ohjelmistojen tietoturval-
lisuusuhkat ja -riskit lisääntyvät jatkuvasti ja ohjelmistojen kehityksessä muo-
dostuneita haavoittuvuuksia paikallistetaan sekä hyväksi käytetään uusin ta-
voin. Ohjelmistokehityksen tulisi panostaa tietoturvallisuuden osalta vaati-
musmäärittelyprosessin jatkuvaan kehittämiseen. Prosessin tulee kattaa koko
tuotteen elinkaari, huomioiden myös lanseerauksen jälkeiset vaiheet, joissa
markkinoilla olevaa tuotetta kehitetään. Vaatimuksia on kyettävä tarkentamaan
iteratiivisesti, jolloin ne pysyvät ajantasaisina ja huomioivat muutokset ohjel-
miston uhkissa ja riskeissä. Tutkimustehtävänä oli luoda toimeksiantajan (iso
Suomalainen fyysisten turvallisuustuotteiden valmistaja) tarpeisiin sopiva mal-
li, jonka avulla on mahdollista implementoida tietoturvallisuus kiinteäksi osak-
si ohjelmistokehitystä ja turvallisempaa ohjelmiston tuottamista. Tutkimuson-
gelman ratkaisussa hyödynnettiin käytännönläheisen toimintatutkimusmallin
kahta ensimmäistä vaihetta. Tutkimuksen aluksi luotiin työn teoreettinen pe-
rusta vaatimusmäärittelystä ja tietoturvallisuudesta, sitten aloitettiin nykytila-
analyysi. Siinä selvitettiin dokumentti analyysillä toimeksiantajan organisatoris-
ta toimintaympäristöä: keskittymällä vaatimusmäärittelyn prosessimalliin ja
sitä hyödyntäviin sidosryhmiin. Saatujen tietojen pohjalta laadittiin suunnitel-
ma haastatteluun, jonka avulla kartoitettiin vaatimusmäärittelyprosessin on-
gelmakohtia. Saadut tulokset analysoitiin codingilla ja teemoittelemalla. Toinen
osa diagnoosia oli vertailututkimus, jota hyödynnettiin parhaiden käytänteiden
selvittämiseen ja oikeiden elementtien muodostamiseen. Saadut muutosideat
yhdistettiin kirjallisuuskatsauksesta nousseisiin, kohdeyrityksen liiketoimin-
taan sopiviin käytänteisiin. Tämä kombinaatio muodosti mallin tietoturvalli-
sempaan vaatimusmäärittelyprosessiin, joka jalkautetaan kohdeorganisaatioon.
Työn uutuusarvo on se, että malli yhdistää ketterää ohjelmistokehitystä riski- ja
uhkamallinnus pohjaiseen ajatteluun, jota on tutkittu vielä vähän. Lisäksi mo-
lemmat komponentit toimivat lineaarisessa vaatimusmäärittelyprosessissa.

Avainsanat: tietoturvallisuus, ohjelmistokehitys, vaatimusmäärittely

FIGURES

FIGURE 1 Requirement types and levels ... 13

FIGURE 2 Criteria for requirements ... 14

FIGURE 3 Requirements engineering process phases ... 15

FIGURE 4 Relations between information security, ICT-security, and cyber
security .. 22

FIGURE 5 The CIA- triad ... 23

FIGURE 6 The Parkerian hexad- model ... 24

FIGURE 7 The model of the five pillars of IA ... 25

FIGURE 8 Relationship between security properties of IS and asset................... 26

FIGURE 9 Information security components .. 27

FIGURE 10 Hierarchy of data, information, knowledge & wisdom 28

FIGURE 11 Risk management phases in ISO/IEC 27001 29

FIGURE 12 Three major undertakings of risk management 30

FIGURE 13 Purpose of security requirements ... 31

FIGURE 14 Information availability component classes 34

FIGURE 15 Agile development model’s four security features 38

FIGURE 16 Touchpoints- model.. 43

FIGURE 17 BSIMM- model .. 43

FIGURE 18 SQUARE- model ... 44

FIGURE 19 SAMM- model ... 44

FIGURE 20 SAFe- model .. 45

FIGURE 21 Phase-Gate process ... 46

FIGURE 22 Canonical action research (CAR)- model .. 50

FIGURE 23 The most critical stakeholder groups ... 60

FIGURE 24 Interviewee's role in the requirements engineering process 61

FIGURE 25 Process phases where the role of the interviewee is emphasized ... 63

FIGURE 26 Comparison of models in the fifth iteration 81

FIGURE 27 Model for RE with implemented information security 85

FIGURE 28 Change iterations .. 88

FIGURE 29 The CSSDP- model used in product development 108

FIGURE 30 The high level CSSDP- model ... 108

TABLES

TABLE 1 Core attributes of information security ... 26

TABLE 2 Traditional and agile methodologies ... 35

TABLE 3 Various perspectives on SSDLC ... 40

TABLE 4 Iterations in comparative study .. 55

TABLE 5 Recommendations for requirements engineering 79

TABLE 6 Secure software development models presented in literature review 79

TABLE 7 Model comparison according to commissioner’s business goals 80

TABLE 8 Outputs of the comparative study ... 82

TABLE 9 Elements for the final model ... 83

TABLE 10 Action planning phase outputs .. 84

TABLE 11 The criteria for secure software development 91

TABLE 12 Total amount of interviewees per stakeholder group 109

TABLE 13 Usage of a product mission statement (PMS) -document 109

TABLE 14 Acceptor of product mission statement (PMS) -document 109

TABLE 15 Reason for requirements elicitation ... 110

TABLE 16 Requirements elicitation time ... 111

TABLE 17 Initial requirements elicitation tools and methods 112

TABLE 18 Requirement elicitation tools and methods .. 112

TABLE 19 Requirements documentation forms and databases 113

TABLE 20 Methods for requirement analysis ... 114

TABLE 21 Utilization of requirements ... 115

TABLE 22 Roles and tools of requirement implementation supervising 116

TABLE 23 Occurrence of different requirement types ... 117

TABLE 24 Stakeholder groups involved in requirements elicitation 118

TABLE 25 Models of requirements presentation .. 119

TABLE 26 Methods for market and customer understanding 120

TABLE 27 Methods for system context understanding 121

TABLE 28 Responsibility of requirement engineering process 122

TABLE OF CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ ... 3

FIGURES .. 4

TABLES .. 4

TABLE OF CONTENTS ... 6

1 INTRODUCTION ... 8

2 THEORETICAL BACKROUND ... 11

2.1 Requirements engineering.. 11

2.1.1 Requirement types ... 12

2.1.2 Stakeholders .. 14

2.1.3 Requirements engineering model .. 15

2.1.4 Requirements engineering in a software development process 20

2.2 Information security .. 20

2.2.1 Security, information, and information security 22

2.2.2 Models of information security .. 23

2.2.3 Components of information security .. 27

2.2.4 Information security controls in a software product 31

2.3 Software development and secure development models 32

2.3.1 Software development ... 33

2.3.2 Various levels and types of software ... 34

2.3.3 Software development models ... 35

2.3.4 Traditional versus agile security principles and aspects 38

2.3.5 Secure software development .. 39

2.3.6 Quality in software development .. 41

2.3.7 Models for secure software development..................................... 42

3 RESEARCH METHODOLOGY .. 47

3.1 Aim and scope of the research ... 47

3.2 Research methods .. 49

3.2.1 Literature review .. 51

3.2.2 Document analysis ... 52

3.2.3 Semi-structured interview .. 53

3.2.4 Comparative study... 54

4 APPLYING ACTION RESEARCH AND EVALUATION OF RESULTS ... 57

4.1 Current situation diagnosis .. 57

4.1.1 Familiarization of the commissioner ... 57

4.1.2 Identifying the problems of requirements engineering process59

4.1.3 Analyzing the identified problems .. 74

4.1.4 Concluding the prevalent situation of requirements engineering
process .. 78

4.1.5 Comparing secure software development - practices 79

4.1.6 Conclusions of the current situation diagnosis 83

4.2 Action planning for implementation phase ... 83

5 DISCUSSIONS ... 90

6 CONCLUSIONS .. 93

REFERENCES .. 96

ANNEX 1 INTERVIEW TEMPLATE ... 106

ANNEX 2 THE COMPANY SPECIFIC SOFTWARE DEVELOPMENT PROCESS
(CSSDP) .. 108

ANNEX 3 SEMI-STRUCTURED INTERVIEW RESULT TABLES 109

ANNEX 4 FIRST ITERATION OF COMPARATIVE STUDY 123

ANNEX 5 ALL THE COMPARATIVE STUDY ITEARATION OUTPUTS 124

ANNEX 6 ALL THE COMPARATIVE STUDY ITEARATION OUTPUTS 125

1 INTRODUCTION

Alexander and Beus-Dukic (2009, p. 217) represent Howard Chieves’s statement
in their book Discovering requirements, which describes the special characteris-
tics of secure software development: “You can’t calculate the probability that a
system is secure based on the risks it handles, if it’s certain that insecure hu-
mans will form a part of it.”

Nowadays, software products perform everyday tasks and ensure that the
most critical applications operate uninterrupted. These systems include critical
infrastructure, banking, transportation, and many others. This means that secu-
rity has become one of the most critical aspects of reliable software product de-
velopment (Barabas et al., 2019, p. 1).

Software development means problem solving, customer’s problem is
identified and possibly solved with a suitable software (Aitken & Ilango, 2013,
p. 4752). Software is executed based on the stakeholder minimum requirements
where the software security and information security requirements are empha-
sized. These requirements compiled into the requirements engineering process.
It aims to refine the process inputs - ideas and thoughts of the product and ser-
vice’s recognized stakeholder needs – into solutions. The process emphasizes
documentation based on it the process can be well planned and managed, the
change and risk management in addition to product acceptance is possible.

This thesis was commissioned by a large manufacturer of physical security
products in Finland. The aim was to produce a model for the commissioner to
implement the information security as an integral part to the company’s soft-
ware development and its practices. The commissioner wants to examine and
further develop the software development’s current situation so that the com-
pany could produce high security software in even quality; to better respond to
inner and outer stakeholder needs and expectations.

Security is a vital part of the commissioner’s brand and the company is
known for its secure products. The shift of the market to a more digital envi-
ronment requires that the company’s core values are transferred to modern
products. It is vital that information security requirements are identified and
addressed as early as possible in the development process. It was agreed in co-

9

operation with the commissioner that the most effective means to respond to
this need is to implement information security into the software development’s
requirements engineering process.

Based on the commission the aim of this research is to answer the follow-
ing question: ”What is the best model for secure software development for the
commissioner, to implement information security requirements into the re-
quirements engineering process, in order to produce more secure software?”.
This question is the main research question. Taken apart the question includes
three subtopics: A Secure Software Development (SSD) method, Requirements
Engineering (RE) and Information Security (IS).

This thesis was concluded as a pair project. The theoretical section was di-
vided into two parts, other parts were done in cohesion. During the writing,
progress was constantly monitored, evaluated and peer reviewed.

This research utilizes the action research methodology. Baskerville has au-
thored many research papers about action research and its usage in information
system context. In one of these papers Baskerville and Woodharper (1998, pp.
96–97) have concluded that the aim is to increase research comprehension while
solving a real-world problem. Davison, Kock and Martinsons (2004, p. 73) speci-
fy that an action research involves two parties: the commissioner and the re-
searcher. The commissioner receives aid in problem-solving and the researcher
discovers a practical problem that can further develop an existing theory. An
action research is focused on a specific need or a problem and it is very prag-
matic.

This is an empirical and qualitative study that intends to construct an un-
derstanding about the phenomenon of RE in the context of software develop-
ment. The semi-structured interview presents the empirical part, where the
problems of the requirement engineering process of the commissioner where
investigated. Thus, the comparative study, in turn, examines the best models
and practices used in the field of SSD. These two parts were used to diagnose
the current situation and based on them to create a combination model for im-
plementing information security into requirements engineering process of the
commissioner in action planning stage.

Software development changes to more agile practices and thus the
emerging research focuses on added information production to further develop
agile practices. Butler and Vijayasarathy (2016, p. 90) have researched different
software development approaches and methodologies. They compared their
usage during software development projects. The most used approach was a
hybrid 45,3 % and the second was an agile 33,1 %. However, most frequently
companies used Waterfall methodology (32 %). This thesis aims to produce a
combination of these models by bringing agile practices to linear software de-
velopment model.

Security is an even more integral part of software development and thus,
security requirements engineering’s role is highlighted. Software products, crit-
ical especially, require that the security requirements mitigate the identified
threats and risks. Therefore, requirements engineering should be based on

10

threat and risk modelling. Bernsmed et al. (2019, p. 2) have concluded that there
is relatively little research on implementing threat and risk- based requirement
engineering into agile development. This thesis brings a threat and risk- based,
iterative requirements engineering process to linear framework where the actu-
al work is done with agile practices. This means that the resulting Threat and
Risk Driven Software Gateway (TRD-SGW) -model is a hybrid which focuses
on information security perspective.

There are copious amounts of research related to the field, from widely
different perspectives these focus areas can roughly be divided into thirds. First
third focuses on generic models of software development process, and one third
surveys the widely used practices, compares, and combines them. And the re-
maining third concentrates on specific aspects, features or process sections and
defines them in minor detail. Software develops into agile direction which
means that the research concentrates on new knowledge producing. However,
the Waterfall software development model is still the most extensively used.

This thesis contains six chapters from which the first is the introduction. In
the introduction the background, purpose, progression, and the preliminary
results are presented. After which the chapter two encompasses the theoretical
background for this work based on literature review. This chapter delivers a
comprehensive understanding of the research subject and introduces the back-
ground for development ideas which are reflected in the analysis sections for
requirements engineering process and information security requirements. In
chapter three the research methodology of this study is presented. In chapter
four the results of both current situation diagnosis and action planning stage
are presented. The chapter five, in turn, includes discussions and chapter six
conclusions.

11

2 THEORETICAL BACKROUND

The theoretical background and starting point for the research was limited to
the secure software development and requirements engineering process in the
part of information security. The most meaningful theoretical subjects were re-
quirements engineering, information security and secure software development.
These theories were used as a foundation for the analysis and interpretation of
the data that was gathered from semi-structured interviews and a comparative
study. The formulation of the combination model will also lean on this theory
and enable an interesting discussion about the different models used in secure
software development.

2.1 Requirements engineering

Zave (1997, p. 315) has given a widely respected definition about the require-
ments engineering. She claimed that requirements engineering is a branch of
software engineering concerned with the real-world goals of software system
functions and constraints. Requirements engineering is also focused on to the
relationship of these factors, their evolution over time and across software fami-
lies. It examines how the precise specifications of software behavior compare to
real-world goals.

This definition is a foundation to many other writers and influencers of
this topic like for Laplante (2017, p. 3). He modified this universal definition
and included the complexity of modern technology into it, be it hardware,
software, a combination of these or something even more complex. He ob-
served that software should be used instead of “software engineering”, he al-
tered all “software systems” terms into “systems” and added “of related sys-
tems” after the “software families”. He continued to investigate the term in its
new definition and all the related activities involved with the subject in detail
throughout the book.

According to Abran, Kotonya, Moore and Sawyer (2001, p. 9) the main
reason for the emergence of the term requirements engineering has been a need
to express systematic handling of requirements. It is a widely spread belief in

12

software industry field that the software projects perform poorly when the re-
quirements process activities such as acquisition, analysis, specification, valida-
tion, and management are done insufficiently. These activities are widely ap-
proved as the most essential steps in successful requirements engineering.

Eberlein et al. (2003, p. 1) have a more concise definition for requirements
engineering objective believing it to be a conventional software engineering
process. Which objective is to detect, assess, document then confirm require-
ments for the system that is being developed. They also state in their research
that requirements engineering must be done before the actual system develop-
ment begins to prevent mistakes and aid in requirements discovery.

Easterbrook and Nuseibeh (2000, p. 37) survey requirements engineering
from the stakeholder perspective. They defined the requirements engineering
process’s aim as a process which establishes the purpose for the software or a
product by discovering the correct stakeholders and their needs. Those needs
are then documented into a form that can be easily analyzed, communicated,
and eventually implemented to use. These activities produce the requirements
to which the software development activities are then founded on. Require-
ments establish the foundation for project planning, risk management, change
control, acceptance testing and trade-offs (Dick, Hull & Jackson, 2005, p. 2).

2.1.1 Requirement types

A requirement is a feature which must be displayed with the intention of re-
solving a conundrum of the real world (Abran et al., 2001, p. 4). Requirements
can be anything from a desire expressed in a natural language, a sketch on a
sticky note or a formal mathematical statement (Laplante, 2017, p. 3). There are
various classes and categories for different requirements types and Laplante
(2017) concisely dictates that the types can be explained by the different stake-
holders that give and read the requirements. Stakeholders view the software, or
a product from their own perspective and reflect their individual desires on to
the design.

According to Laplante (2017) requirement types can be subdivided into:
domain, non-functional and functional requirements and on the requirements
level Laplante (2017) divides requirements into design, system and user levels.
Beatty and Wiegers (2013, p. 10) disagree and divide software product require-
ments only into functional or non-functional requirements.

Functional requirements describe “what the software intends to do” and
Non-Functional Requirements (NFRs) determine “how to accomplish that”.
Functional requirements describe circumstances that generate certain behavior
from a product. NFRs are added features on the requirements document for
instance security, quality and resilience. (Beatty & Wiegers, 2013, p. 7; Merkow
& Raghavan, 2010, p. 14). Various researchers have observed that non-
functional requirements such as safety, security and reliability are often disre-
garded during the software development. The process naturally focuses on
functional requirements rather than non-functional. This leads to the situation

13

where these non-functional requirements are easily overlooked or forgotten. To
maintain security’s high level the security related issues require a high priori-
ty and security requirement elicitation must be done comprehensively (Beg,
Khan & Parveen, 2014, p. 11).

Beatty and Wiegers (2013, pp. 7–9) agree with Laplante (2017), and state
that there are several forms of different requirements. They regard user re-
quirements as something that a user wants to have or be able to do with a cer-
tain product. They describe business requirements as high-level business objec-
tives and functional requirements as a behavior that the system needs to per-
form. They conclude that these three also function as requirements levels. Based
on another interpretation by Dick et al. (2005, p. 23) requirement levels are di-
vided into five categories: needs statement, stakeholder, system, system com-
ponent and subsystem component requirements. The combination of various
representations of distinct levels and types can be seen in the FIGURE 1 below.

FIGURE 1 Requirement types and levels

The difference between a goal and requirement should be kept evident on the
customer and on the engineer’s part. A high-level objective that a business, an
organization or a system has is a goal and requirements determine how a goal
ought to be reached by the intended system. (Laplante, 2017, p. 4). Dick et al.
(2005, p. 21) agree that before any system or product can end-up in develop-
ment the need for such a system has to be established, the reason and the even-
tual use must be made clear. Thus, the product has a reasonable chance to reach
for that conclusion. Without this there is a real change that the production will
eventually lead into failure if this phase is not done thoroughly.

Dick et al. (2005, p. 85) and Laplante (2017, p. 21) state that there are “obli-
gations” for requirements. They have concluded that natural language expres-
sions and desires do not translate well into requirements. Those expressions or
ideas can be too vague, there can be ambiguity, inadequateness, wrongness, or
requirements can be too open for interpretation. Thus, requirements that are
chosen must be written down objectively, consistently and chosen requirements
must have clear metrics. Criteria for requirements obligations is listed below,
divided into six subcategories (FIGURE 2) by Dick et al. (2005, p. 85). There is
therefore a need to adhere to a process or utilize a unified form in the company
to effectively conclude that “obligations” have been fulfilled.

14

FIGURE 2 Criteria for requirements

The criteria shown in FIGURE 2 are universally applicable, not specific to any
project or product. There can be more specified and elaborate criteria for re-
quirements, but these six subcategories provide a good baseline for any re-
quirement set.

2.1.2 Stakeholders

A stakeholder is an individual, a group or an organization which has a stake in
the project. They are the ones benefitting from the service or a product - the
product or a service is meant for them. Stakeholder is actively part of the project
and affects its outcome. There are internal as well as external stakeholder
groups. Choosing meaningful stakeholders to a project is a vital phase of the
requirements engineering process. At the beginning it is beneficial to include a
large number of groups to ensure that no group is accidentally overlooked, par-
ticipants can be reduced from there. (Beatty & Wiegers, 2013, p. 27). There are
several ways and models that aid in the choosing process, most basic are the
viewing of an organizational chart and having a conversation with a client.

Beatty and Wiegers (2013, pp. 22, 25) state that there is no substitute for a
real customer opinion. A seller or a developer might think that perceived un-
derstanding of the customer will suffice when trying to understand their needs.
These needs are understood differently with the various levels of involvement
of the customer in different development approaches. Good customer relations,
extensive customer engagements and co-operation from the start of the project
will most likely provide the best results and make the expectation gap narrower
between what the customer wants and what the developer delivers.

Beatty & Wiegers (2013, p. 4) comment that stakeholders include project
customers, users, developers, inner stakeholder groups and many additional
ones. They add that though they all can be involved with a same project they
most likely do not want the same thing out of the project or a product. One

15

stakeholder – like a user might think that a feature is essential to a product and
a developer might see it as unnecessary and time consuming to build. Alexan-
der & Beus-Dukic (2009, p. 31) remind that these differences of opinion must be
acknowledged, analyzed and negotiated on to discover common ground, this is
one of the most critical parts of requirements engineering.

There are various hardships related to stakeholders and their under-
standing. Lauesen (2002, p. 4) writes that stakeholders may express themselves
unclearly. They might have conflicting demands, completion of written and
agreed upon requirements. Furthermore, it does not guarantee that the custom-
er is satisfied with the end-result. The product might have a new niche on the
market, and it is hard to find initial users. Demands also evolve over time,
changing the desire that the customer has originally expressed, this must be
monitored.

2.1.3 Requirements engineering model

According to Beatty and Wiegers (2013, p. 4) various problems for software de-
velopment ascend from the deficiencies that involve learning, documenting,
agreeing upon and modifying product’s requirements. Requirements engineer-
ing model outlines what the development team is trying to produce and aids in
establishing mutual understanding on the abstract level, about the solution that
has been planned. Dick et al. (2005, pp. 22–23) remind that it can also be used to
assure stakeholders about the direction the process is heading to and it docu-
ments the system requirements in a structured manner.

Most researchers divide the requirements engineering process (FIGURE 3)
to five phases from elicitation, analysis as well as negotiation, documentation,
validation to management. Some draw the first four phases on the same level
while the “management” phase encompasses the entire process. However, all
agree to the number of named process activities which is five (Beatty & Wiegers,
2013, p. 15; Dorfman & Thayer, 2000, p. 1; Eberlein et al., 2003, p. 1; Kotonya &
Sommerville, 1998, p. 32; Laplante, 2017, p. 12).

Beatty and Wiegers (2013, p. 45) explain that these phases are interwoven,
incremental and iterative. They add that roles cannot be identified because the
duties and responsibilities change according to the needs of different companies
and products. However, according to Kotonya and Sommerville (1998, p. 36) it
is a good practice to identify the roles that ordinarily are associated with the
process actions while modelling a process.

FIGURE 3 Requirements engineering process phases

Next five sections condense the essential idea behind every phase, describe ac-
tivities related to it and common ways of establishing these required activities.

16

There are general forms, practices and standards that need to be mentioned in
relation to the requirements engineering process model that ensure its success-
ful completion. These principles and theory were also behind the interview
form and its drafting.

Elicitation

Requirements elicitation is frequently seen as the first step in requirements en-
gineering process and all other phases follow what has been ascertained during
it (Easterbrook & Nuseibeh, 2000, p. 39). Abran et al. (2001, p. 4) conclude that
elicitation specifies how the requirements are gathered and where they emerge
from, requirement sources and techniques for elicitation. Eberlein et al. (2003, p.
1) view elicitation as a way to establish the requirements, system context and
identify the system boundaries. They present various techniques how it might
be established one of these techniques is an interview. They state that the goal is
to discover facts and opinions that stakeholders have about the developed sys-
tem.

Easterbrook and Nuseibeh (2000, p. 40) write that some commonly used
techniques for requirements elicitation are surveys, interviews, focus groups,
prototyping and participant observations. Kotonya and Sommerville (1998, p.
63) add that if interviews are part of elicitation process as they should be in
their opinion, they should always be combined with other elicitation techniques.
Lauesen (2002, p. 338) reminds that stakeholder analysis as well as supplier and
domain-requirements analysis are also used for elicitation. All these methods
are relevant, but the appropriateness of a certain measure must be considered
project-specifically.

Analysis and negotiation

Kotonya and Sommerville (1998, p. 57) remark that while elicitation and analy-
sis are separate phases of the requirements engineering process they are still
closely related and tightly interwoven. Abran et al. (2001, p. 4) write that re-
quirements analyzing is done to detect and resolve problems between different
requirements. System limits and desired interaction with the environment must
be discovered and these must be translated into intricate system requirements.
Classification, conceptual modelling, architectural design, and requirements
allocation as well as requirements negotiation is also done in the analyzing
phase. Dick, Hull and Jackson (2011, p. 79) add that all requirements need to be
identified, classified, elaborated on and their status must be trackable. Also,
tracing, placing them into a context and retrieval must be accomplished during
the analysis phase.

Easterbrook and Nuseibeh (2000, p. 41) and Eberlein, Maurer and Paetsch
(2003, p. 2) agree that conflicts between requirements are solved with negotia-
tion and prioritization with stakeholders and compromises must be made.
Easterbrook and Nuseibeh (2000, p. 41) write that a common technique for re-
quirements analysis is customers made requirements prioritization. Eberlein et

17

al. (2003, p. 2) add that modelling like data-flow models and object-oriented
approaches are also common, models provide a way to create abstract descrip-
tions that are open to interpretation.

Documentation

Documentation aids the future maintenance, explains choices and ensures that
data is not lost during time or with the loss of key personnel (Eberlein et al.,
2003, p. 6). According to Parnas (2000, pp. 3–4) a document is a written descrip-
tion that has an official status or authority and may be used as a legal document.
If deviations from the document must be made those changes must be written
down and approved by an appropriate role. Code in itself is not a document; it
can falsely be thought as a document but in practice programs are so intricate
that thinking code functions as documentation is naïve and misleading.

Beatty and Wiegers (2013, p. 19) elaborate that writing and documenting
requirements simply means the documentation process about the things that
have been learned from the customers or other stakeholders. Clarifying, elabo-
rating, and recording what has been learned ensures that the team works to-
wards the right goal and tries to solve the same problem. Without knowing and
comprehending the requirements it cannot be gleamed in any certain manner
that the project has been completed or has it been done successfully.

Parnas (2000, p. 1) writes extensively about documentation. He states that
documentation is an essential step of requirements engineering process, but it
carries a negative label in most people’s eyes. Program developers do not want
to do it, user documentation is left to technical writers who often do not have
the big picture. Thus, it easily leads to incorrect, inconsistent, and incomplete
documents that must be revised when the user complains about them. Intended
readers prefer not to read the documentation, because they have experienced it
to be poorly organized and unreliable. “Help” systems have begun to replace
documentation. This is not a sustainable replacement because often these sys-
tems can only answer frequently asked questions, and this means that answers
can be incomplete and redundant.

Laplante (2017, pp. 107–108) has detailed demands to the writing of the
document. He states that it should be clearly written, the writing should be re-
viewed by other people, there should be a clear structure to the requirement
numbering from the first-level 1.0 to the fourth level 1.1.1.1 and the format
should be clear, concise, consistent and precise. The positive form and impera-
tives should be used when shaping requirements such as “email shall be sent”
not “email will not be sent”.

Dick et al. (2011, p. 77) state that writing down requirements is a technical
process, which involves two aspects that must be balanced. Requirements must
be processable and their document readable. They state that the document
should be well organized, and it should set the requirements into context.
Statements should be organized clearly, precisely and be traceable into singular
items. Beatty and Wiegers (2013, p. 4) add that comprehensively documenting
requirements prevents problems that arise from inadequate user input and in-

18

formation gathering. Misunderstanding and mismanagement of customer re-
quirements, miscommunicated assumptions, implied functionality, badly speci-
fied requirements, and an informal change process can also cause difficulties.

Easterbrook and Nuseibeh (2000, p. 41) write that the way and form to
which requirements are documented steers the process forward. It ensures that
the requirements are readable, can be analyzed, rewritten if necessary and vali-
dated. They state that requirements documentation aids communication be-
tween stakeholders and developers.

Laplante (2017, pp. 31–32) writes that before initiating a new development
or redesigning it should be described what the desired end-result should do
and this is often called a product mission statement or Conops. A product mis-
sion statement can be used to gather stakeholder needs and aid in problem un-
derstanding as well as the product definition. Product mission statement pro-
vides the input for the list of features in the product. It is a short descriptive
summary of the product containing the information of the intended users,
product purpose and what problem the product will solve. It describes the ex-
pected functionalities for the stakeholders and acts as the input for the non-
functional requirements identification. Agile methodologies employ a “system
metaphor” which can be seen to fulfil the same role to some extent.

ISO/IEC/IEEE (ISO, 2011b) has constructed a structure that aids in docu-
mentation. They provide a model like IEEE 29148 launched jointly by the IEEE,
IEC, and ISO in 2011 and updated in 2018. Laplante (2017, p. 96) and Parnas
(2000, p. 9) write that this model provides an understanding about the soft-
ware’s purpose and framework for requirements assessment. It also provides
the means for risk and cost evaluation and helps in verification and validation
of plans. Furthermore, it aids in deployment of the product or service to inexpe-
rienced users or environments and provides the structure for product im-
provement. Functional and non-functional requirements can be managed easily
with the aid of a document. Eberlein et al. (2003, p. 3) add that the requirements
document acts as a foundation for evaluation of the processes such as design
and testing of resulting products.

Laplante (2017, p. 97) also recommends a form for System Requirements
Specification (SRS) document. It includes the main and subheadings to which
the information can be collected. The form is reminiscent of an academic article
starting from introduction, scope definition, references, a chapter for specific
requirements – including subchapters like functions, design constraints and
usability requirements, the last two chapters are verification and appendices.

Laplante (2017, pp. 102–104) reminds that requirements document is in-
tended to be used by multiple users in diverse ways. The document provides
information to the customer, aids maintenance and even acts as a legal docu-
ment and so on. The document should, regardless of the form have a consistent
modelling approach and separate operational specifications from descriptive
behavior. It should also use consistent levels of abstraction and conformance
within the models, include non-functional requirements and omit hardware
and software assignments in the specification. Parnas (2000, p. 1) motivates

19

documenting activities by concluding that without a proper documentation and
a model of the system environment, inconsistencies and incompleteness cannot
be reliably detected.

Validation

Requirements validation aims to ensure that requirements are correct, whole
and consistent. It also ensures that requirements can really be met and a result-
ing product completes the requirements satisfactorily can be built from them
(Bahill & Henderson, 2005, p. 2). Eberlein et al. (2003, p. 3) clarify that require-
ments validation certifies that the chosen requirements are acceptable and accu-
rately represent the system that is to be implemented. Validation requires mul-
tiple iteration rounds to fully develop requirements into “good enough”, “per-
fect” is unrealistic, but a mutual understanding must be reached. This agree-
ment is according to most done in cohesion with the customer.

Beatty and Wiegers (2013, p. 17) elaborate that validation is accomplished
with reviews of the documented requirements and based on those reviews’ ac-
ceptance tests are developed. Kotonya and Sommerville (1998, pp. 87–90) insert
that these requirement reviews are the most common technique for validation
and validation should answer the question “do we have the right requirements,
and did we understand them correctly”. In the validation phase the customer is
heard and a confirmation about the needs of the customer and achievable busi-
ness objectives must be charted.

Management

Requirements management does what the term implies, it helps to manage in-
formation and its changes, in this case the altering requirements. Eberlein et al.
(2003, p. 3) specify that management means capturing, storing and dissemina-
tion of information. Kotonya and Sommerville (1998, p. 117) dictate that the
most essential responsibility of requirements managements is to ensure that all
the requirements have a unique identifier. They elaborate that this is an apt way
to measure the effectiveness of requirements management.

Easterbrook and Nuseibeh (2000, pp. 41–42) state that managing the evo-
lution of requirements is essential and ability to trace requirements to their
origin is important. Tracing provides reason for the requirements inclusion as
well as sheds light to the impact of the specific requirement. This provides in-
tegrity and completeness to the documentation which is integral in change
management. Dick et al. (2011, p. 182) highlight the stakeholder perspective.
They state that requirements management means the capturing, tracing and
management of stakeholder needs and inspecting their changes throughout the
process lifecycle.

Kassab, Laplante and Neill (2014, pp. 5, 8) investigated requirements en-
gineering practices in 2013 among 119 interviewees from 23 countries. When
asked about the requirements review and inspection 53 % of respondents an-
swered that they used some methods. On average there were 2.29 various an-

20

swers per individual. These researchers listed techniques such as team review,
ad hoc walk-through, checklists and formal walk-through, scenario and others.

2.1.4 Requirements engineering in a software development process

Dale and Saiedian (2000, p. 419) write that communication and co-operation are
key components in successful requirements engineering process, like they are in
many other instances. When developing a new product, technical, cultural, in-
terpersonal, and organizational factors must be considered. These factors form
the context of the software product and affect its design and features.

Requirements engineering for a software development process covers a
wide spectrum of viewpoints, roles, responsibilities, and objectives. Software
can be developed traditionally or with agile practices. Requirements engineer-
ing is perceived to be a traditional tool. Traditional development is often struc-
tured into strict phases and has a lot of documentation. Agile methods are code-
and people oriented and perceived to be less process and documentation centric.
Because of this difference and the need to document less and do more, require-
ments documentation process can be left wanting with agile methods. The five
phases involved with requirements engineering process are present in the agile
methods to some capacity (Eberlein et al., 2003, p. 6).

The development life cycle that the organization has chosen be it a water-
fall, iterative, incremental, phased, agile or a combination model, must com-
plete the requirements model activities, this is an easy way to improve custom-
er satisfaction. (Beatty & Wiegers, 2013, p. 15).

All the components that form the unified whole of this chapter inspect re-
quirements engineering as a process model with certain activities. These activi-
ties can be systematically completed with the aid of a similar model and the
activities can be combined with agile practices. Agile embraces change and the
customer wants to know her requirements are met in the resulting software.
Reassuring the customer does not mean that the process cannot be agile at the
same time. According to Beatty and Wiegers (2013, p. 41) a client can sign-off on
the requirements based on the user stories, this can be an acknowledgement
a ”we are here” conversation today, it doesn’t mean that tomorrow the process
cannot be somewhere else. This sign-off would simply ensure a mutual under-
standing and function as a point of reference.

2.2 Information security

In the 1980s computers entered to the field of commerce and the cheap software
and hardware spread widely to consumers both in business and private sector.
This expansion of information and communication technology increased data
invasion and thus shifted the focus of security from hardware to data and in-
formation. (Kamkarhaghighi, Moghaddasi & Sajjadj, 2016, p. 5).

21

Before this era, machines and computers were limited in number and used
mostly in military environments, where the information was secured and sup-
ported by the military. This quick shift caused a need to set up new priorities
for information security in commercial settings. New unaccustomed commer-
cial users lacked data security, strict physical data support as well as initiated
unintentional and intentional cyberattacks. This decade (1980) started intensive
discussions about security of data and information. (Kamkarhaghighi et al.,
2016, p. 5).

After 40 years of study, information security is a widely researched field.
Therefore, information security has many definitions. These definitions can be
technical, behavioral, philosophical, managerial, or organizational, depending
on one’s viewpoint. In this case, this research focuses on managerial point of
view, representing the elements needed for secure software development from
the perspective of information security.

The first subchapter contains some of these definitions used in the field of
information security, describing both words separately, which together form
the whole of information security. Therefore, the intent of the first chapter is to
answer the question; why information security is important.

The second subchapter, however, will represent several models, which
have been composed to explain the key attributes of information security. To
accomplish information security in a software, these attributes must be met.
Therefore, they also serve as information security goals, contriving the first el-
ement: security objectives of the software. They provide an answer to the ques-
tion; what are the objectives that the software development organization must
establish with the software to make it secure.

In the third subchapter present are the components of information security:
computer and data security, network security, policy, and information security
management. All these parts are essential for achieving information security in
the software. However, when the scope of this thesis is limited to the creation of
a model used in secure software development, the focus is on both information
security management and its policies. The aim of this thesis is to aid the thesis’s
commissioner in his endeavors to implement information security into the re-
quirements engineering process. This requires a comprehensive understanding
of information security management and its components in requirements engi-
neering context. Therefore, this chapter answers questions; what components
are critical in information security management in the context of secure soft-
ware development and therefore critical for further investigation.

The fourth, and the last subchapter of information security entity, focuses
on the critical components presented in the third chapter. It represents threat
modelling and risk assessment as crucial components for secure software de-
velopment, which will also play a vital role when the final, combination model
is composed.

22

2.2.1 Security, information, and information security

Security is defined as “the state of being or feeling secure”. Secure alternatively,
is defined as “free from danger, damage etc.; in safe custody; not likely to fail;
able to be relied on”. (Collins English Dictionary, 2019). In a general sense secu-
rity signifies protecting our assets.

Information is defined as a representation of knowledge in a stored form or
as data in the phenomenon’s environment – data in its context (Madden, 2000).
Van Niekerk and von Solms (2013, p. 100) infer, that the stored form of data and
a possibility to transmit it, leads to a conclusion that information is also a pos-
sessable asset to a user or an organization. Therefore, information security as an
entity, simply denotes all aspects of protecting information and business
through it. Mattord and Whitman (2017, p. 10) agree with Niekerk and von
Solms, clarifying that the type of security is determined by the ultimate objec-
tive of it. Information security’s objective is logically information, through all
the stages of its life cycle, from the creation until the eventual end-of-life.

Peltier’s paper (2013, p. 15) considers information (as an objective) even
closer. It divides it into two distinct parts: 1) information assets not using in-
formation and communication technology (ICT) and 2) information assets using
ICT. This division is also part of the fundamental idea in van Niekerk and von
Solms’s paper (2013, p. 101), which aims to clarify the relationship between in-
formation and communication-, information- and cyber security (FIGURE 4).
This paper focuses on the context of information security, where information
assets are using ICT.

FIGURE 4 Relations between information security, ICT-security, and cyber security

Von Solms and van Niekerk (2013, p. 98) explain that the intent of information
security is to guarantee business continuity and to reduce business damage by
confining the security incidents’ impact. Therefore, as the Finnish security
committee (2018, p. 15) defines in its vocabulary of cyber security that infor-

23

mation security could be conceived as a state, where information security risks
are under control, but also as an umbrella term encasing all the arrangements
aiming to ensure it.

National Institute of Standards and Technology (NIST) (2017, p. 2) in turn,
describes information security through the means of protection of information
and information systems. They clarify that information security is protection
from unauthorized actions such as access, use, disclosure, modification, disrup-
tion, or destruction to ensure availability, confidentiality, and integrity.

Over the years several models of information security have been present-
ed. These models are performing attributes that the organization is required to
meet to attain information security. These attributes or features are continuous-
ly growing in number with greater capabilities to achieve information security
but also emphasizing the role of control and assurance needed for information
security management. Following sections will present three models of infor-
mation security to gain a deeper understanding about the attributes that have
an effect to a secure state of information. These attributes can also be defined as
objectives of information security.

2.2.2 Models of information security

Availability, integrity, and confidentiality are three of the primary concepts of
information security. The collection of these concepts, as shown in the FIGURE
5 below, is commonly known as the CIA- triad and was first presented in 1987
by Clark and Whilson (Kamkarhaghighi et al., 2016, p. 5).

FIGURE 5 The CIA- triad

In CIA- triad model confidentiality means the access to information. Clark and
Whilson state that the access should be allowed only for those, who have legal
disclosure and for that reason authorized restrictions should be preserved. The
second concept, availability, means that the access to the information should be
timely and reliably ensured. Lastly, the third concept, integrity means guarding
against improper modification and destruction of information. (Kamkar-
haghighi et al., 2016, p. 2).

24

The CIA- triad might be seen as a too restrictive with its definition of infor-
mation security. In 1998, in his book “Fighting computer crime: a new frame-
work for protecting information” Donn Parker (1998, p. 85) proposed an alter-
native and more extensive model. It later gained a title: The Parkerian hexad
(Andress, 2011, p. 6). The Parkerian hexad (FIGURE 6) is a variation of the clas-
sic CIA- triad. It represents a set of six atomic elements of information including
the elements presented in CIA- triad (confidentiality, integrity and availability).
Parker (1998, p. 85) adds three new elements to the classic combination; posses-
sion, authenticity and utility.

FIGURE 6 The Parkerian hexad- model

The Parkerian hexad- model represents the possession of information as a quali-
ty or state of ownership or control of an object or an item. Parker (1998, p. 85)
highlights that possession of information should be one of the core attributes
and protected against theft. Andress (2011, p. 7) notes that in case of infor-
mation, it is in one’s possession if it is independent of format, other characteris-
tics and obtained by the individual. Therefore, he states that it refers to a physi-
cal tendency of the media on which the data is stored. Mattord and Whitman
(2009, p. 13) add that by removing the data from its secured environment - its
store, is consequently a breach of possession.

Parker (1998, p. 85) specifies that authenticity conforms reality. Andress
(2011, p. 7) clarifies that authenticity is necessary for ensuring that the data,
documents, transactions, communications and parties involved with the action
are genuine or original. This requires that the data, for example, can be verified
and therefore trusted. It allows for a discussion about the appropriate attribu-
tion as to the proprietor or author of the data in question.

Parker (1998, p. 85) describes utility as the measure of how useful data is
in the hands of its user. Andress (2011, p. 8) adds that a user could be an attack-
er having unauthorized access to encrypted backup tape, when the utility is
little compared to authorized users with the encryption keys. Mattord and
Whitman (2009, p. 12) summarize the utility of information as a value to a par-
ticular purpose or an end that it can serve. Available information needs to meet
user requirements to be useful to the user otherwise it is rendered useless.

25

In agreement with Donn Parker, also Ross Anderson (2001, p. 7) corrobo-
rates that information security is not covered entirely by the CIA- triad. He de-
clares that the approach to information security is multidimensional and pre-
sents the idea that people, are not less essential than the technical features. He
claims that a solely technical approach to information security is not effective.

Anderson’s (2001, p. 7) general view on the economic incentives behind in-
formation security point out that collaboration between lawyers, economics and
managers is necessary to solve the problems of information security. However,
Gordon and Loeb (2002) took a deeper look to Anderson’s economical approach
and created a model, which aims to aid in determining the optimal amount of
investment in information security. The work was based on the idea of infor-
mation security, with goals of confidentiality, availability, integrity, authenticity,
and non-repudiation. This model is generally known as information assurance
model.

The term Information Assurance (IA) was invented in 1998 by the US Joint
Staff. It was released for the first time in Joint Doctrine for Information Opera-
tions (1998, p. 51). The term itself has been formulated from two parts, where
the first part - information - was earlier defined as a representation of
knowledge in a stored form. The second part – assurance – stands for the state
of being assured, such as being secured (Merriam-Webster Dictionary, 2020).

NIST (2020) defines IA measures as a protection and defense of information
and information systems by assuring their availability, integrity, authentication,
confidentiality and non-repudiation. IA measures consist of incorporated pro-
tection, detection, and reaction capabilities to provide restoration of information
systems. IA was originally retrieved from the concept of information security
and its definitions. It incorporated the CIA -triad into a definition of five pillars
of information assurance. (Dardick, 2010, p. 3). As presented below in FIGURE
7 IA includes four familiar attributes; availability, integrity, confidentiality and
authentication (authenticity), but also represents a new attribute called non-
repudiation (Joint Pub, 1998, p. 51).

FIGURE 7 The model of the five pillars of IA

In the Joint pub’s (1998, p. 51) first publication of IA, non-repudiation was de-
scribed shortly as; undeniable proof of participation. Later Committee on Na-
tional Security Systems (CNSS, 2010, p. 50) opened this term in more detail.
Their instruction No. 4009 described that non-repudiation of the information

26

assures, that the sender is provided with proof of delivery and the recipient re-
ceives proof of the sender’s identity. After that, neither party could deny com-
pleted actions like creating information, sending a message, approving infor-
mation and receiving a message.

Joint Task Force Transformation Initiative (2013, p. 50) completes these
two definitions by stating that the role of non-repudiation is to protect individ-
uals against later false claims such as denying actions made by different parties.
Also, the authors behind of the authorized documents, senders that have
transmitted messages, receivers that have received messages, or signatories that
have signed documents.

All previously presented models; the Five Pillars of Information Assur-
ance, the Parkerian Hexad as well as the CIA -triad, included confidentiality,
integrity and availability (TABLE 1). Derived from that fact, these three attrib-
utes form the fundamental core of information security.

TABLE 1 Core attributes of information security

Attribute/Model The CIA – triad The Parkerian hexad The Five pillars of IA

Confidentiality X X X

Integrity X X X

Availability X X X

Possession X

Authenticity X X

Utility X

Non-repudiation X

Campbell (2016, p. 5) claims that these three fundamental attributes of infor-
mation security are also special security properties. They are attached to every
security action, such as risk mitigation or security control implementation that
is done and there is always one or more of these properties covered from this
perspective. As described earlier in this chapter, security actions protect assets.
Therefore, these three attributes apply to every asset that we protect (FIGURE 8).

FIGURE 8 Relationship between security properties of IS and asset

In the case of information security, all the protection measures secure these at-
tributes and therefore protect assets. Campbell (2016, p. 6) writes that when the

27

organization is designing solutions to improve their security, they must analyze
all the threats affecting these security properties: confidentiality, integrity and
availability. Campbell (2016, p. 98) also presents that security controls imple-
mented to mitigate those threats should be matched against the security classi-
fication schemes defined by the business. Security classification should be es-
tablished in the preliminary stages of information security implementation pro-
ject.

2.2.3 Components of information security

Whitman and Mattord (2013, pp. 4–5) call information security with a term In-
fosec and represent it as a combination of three main components: management,
computer and data security and network security. These three main compo-
nents have a common overlapping area a policy shown in the FIGURE 9 below.

FIGURE 9 Information security components

Mattord and Whitman (2011, p. 177) state that information security policy forms
the basis for all information security planning, design and deployment. Those
policies direct how issues should be addressed, and technologies used. Accord-
ingly, information security policy is a management tool that obligates personnel
to operate in a manner that protects the security of information assets.

According to Mattord and Whitman (2013, p. 4) network security focuses
on protecting data networking devices as well as connections and their contents.
Anuradha and Pawar (2015, p. 504) summarized this in their paper by stating,
that network security means that message sent from one nod to another as well
as computers at the end of the communication chain, are secured. However,
Pandey (2011, p. 4351) depicts the objective of the network security from user-
perspective. He states that the purpose of network security is to assure that the
network performs in critical situations and it has no damaging effects for user
or employee.

Computer and data security, in turn, include protection of all the systems
and hardware that are applied to using, storing or transmitting information
(Mattord & Whitman, 2013, p. 4). According to Ahmad, Horne and Maynard

28

(2016, p. 3) computer security is also known as Information and Communica-
tion Technology (ICT) security. Data security, in turn, is defined by Consortium
of European Social Science Data Archives (2017, p. 1). It defines data security as
data protection from accidental or malicious damage.

As defined earlier in this paper, information is defined as a representation of
knowledge in a stored form. In order to understand the difference between in-
formation and data security, closer look at the Data-Information-Knowledge-
Wisdom (DIKW) -hierarchy specified by R.L. Ackoff (1988, p. 1) presented in
FIGURE 10, might be in order.

FIGURE 10 Hierarchy of data, information, knowledge & wisdom

According to Ackoff (1988, p. 1) data symbols represent the properties of both
events and objects. Information, in turn, consists the processed data, which in-
creases its usefulness. It is contained in descriptions and it can provide answers
to questions like who, what, where, when and how. Therefore, data security is a
component of information security. As described earlier, both computer and
data security function on the same level of the DIKW -hierarchy. Thus, they can
be discussed as a united entirety: computer and data security.

Information security management can be seen as one of the most essential
components of information security. Mattord and Whitman (2011, p. 176) ex-
press that far too often information security is considered as a technical concern,
when it is, in reality, a management issue. To tackle these issues, information
security management should meet the goals of information security governance.
Mattord and Whitman (2011, p. 177) conclude that firstly, information security
should be in alignment with the business strategy to aid organizational objec-
tives. Secondly, it should include risk management, which executes appropriate
measures to manage and mitigate threats related to information resources.
Thirdly, information security knowledge and infrastructure should be utilized
efficiently and effectively by the resource management, and fourthly infor-
mation security performance should be measured, monitored, and reported to
ensure that the objectives of the organization have achieved. Lastly, Mattord
and Whitman (2011, p. 177) suggest that information security investments
should be optimized in order to support organizational objectives.

However, Raggard (2010, p. 7) highlights that there are no off-the-self solu-
tions on information security management, because security requirements al-
ways vary depending on the vulnerabilities and threats associated with the en-
vironment in question. That is also why the effects and consequences of similar

29

security incidents vary from one environment to another. Thus, information
security management, as well as security investigation, must be risk driven.

According to Alexander, Finch, Sutton and Taylor (2013, p. 6) Information
Security Management System (ISMS) concept is part of an overall management
system of the organization, based on a business risk approach. It is used for es-
tablishing, implementing, operating, monitoring, reviewing, maintaining, and
improving information security.

International Organization for Standardization has created a standard
model for information security management (Calder & Watkins, 2010, p. 11). It
is based on risk management, which is divided into two phases: 1) Risk assess-
ment and 2) Risk treatment. The first phase, risk assessment, is a process that is
used to identify threats and assess their likelihood for exploitation of a vulnera-
bility (FIGURE 11). This phase also evaluates the prospective impact of such an
incident transpiring (Calder & Watkins, 2010, p. 17).

FIGURE 11 Risk management phases in ISO/IEC 27001

The second phase, risk treatment, takes estimations about threats and risks as
well as impact as an input. It aids the organization to mitigate risks with proper
countermeasures and safeguards. (Calder & Watkins, 2010, p. 18).

The objective of this model is to create and implement a risk manage-
ment strategy into organization to reduce undesirable impacts. Additionally, it
also delivers a structured and consistent basis for deciding among the risk miti-
gation options. (Calder & Watkins, 2010, p. 17).

Mattord and Whitman (2017, p. 255) also presented risk management as
an integral principle of information security management, when the organiza-
tion wants to maintain objectives of information security. In their publication
(2017, p. 256) risk management included three parts named as “three major un-
dertakings” and therefore, the model was named here accordingly. These un-
dertakings were risk identification, risk assessment and risk control as present-
ed in FIGURE 12.

30

FIGURE 12 Three major undertakings of risk management

Mattord and Whitman’s (2017, p. 256) model is also a high level graph, but it
differs from the ISO/IEC 27001 in analysis, splitting it into two separate phases:
risk identification and risk assessment. It also offers a more detailed infor-
mation on how to manage assets, threats, and risks as well as how to use this
information to utilize risk controls. Compared to the first high level model, Mat-
tord and Whitman’s presentation also pays more attention to control monitor-
ing. While ISO/IEC 27001 focuses more on the existence of the process, Mattord
and Whitman’s model describes its content in detail.

Siponen (2006, p. 97) supports this conclusion by stating that information
security management standards, like all standards, have a certain feature: they
are process oriented and more concerned about the existence of a process rather
than the content of it. This produces a two-folded problem. First, standards are
more concerned about ensuring that particular security activities exist in the
organization but disregards evaluation of how well those activities are conduct-
ed. Secondly, standards provide processes, guidelines and principles that are
simple and abstract and provide no instructions on how desired end-results are
to be reached in practice.

Therefore, it can be stated that even if the organization has an ISO/IEC
27001 standard, it only guarantees certain process activities existence from the
information security perspective, but not the efficiency of those activities. To
implement information security effectively into requirements engineering pro-
cess, the process itself should be investigated from information security man-
agement point of view.

As presented earlier through the examples of ISO/IEC 2001 standard and
Mattord and Whitman’s model of three major undertakings, the most meaning-
ful part of the information security management is risk management. Risk man-
agement contains asset, threat and risk identification and modelling as well as

31

security control creation, through the understanding of possible vulnerabilities
related to the software. Next subchapter presents these terms shortly in the con-
text of software development.

2.2.4 Information security controls in a software product

As stated earlier, confidentiality, integrity and availability (CIA), are the goals
of information security. These goals must be met in order to provide infor-
mation security in a system and protect its assets (Haley, Laney, Moffett &
Nuseibeh, 2008, p. 138).

Havadi et al. (2008, p. 5) state that assets are the abstract and innate re-
source of the system. Alexander et al. (2013, p. 21) add that assets vary in form
from tangible to intangible, but when consequences of the security incident are
examined, assets are always impacted. If the asset is stolen, lost or damaged in
any way, the organization will suffer from the result. In case of severe damage,
organization might never recover.

Impacts are consequences of realized threats (Alexander et al., 2013, p. 21).
According Alexander et al. (2013, p. 2) threat is a potential cause of an incident,
which may result in harm to a system or an organization. It depends on the per-
spective, environment, and situation that it is being considered. Haley et al.
(2008, p. 135) add that threats, that might violate assets, can be constructed by
enumerating the assets of the system and then estimating all those actions that
would violate the security concerns of them. Bernsmed et al. (2019, p. 2) call the
process as threat modelling.

Threat modelling is a requirements engineering approach, which is used
for specification of security requirements (Hadavi, Hamishagi & Sangchi 2008,
p. 5). Bernsmed et al. (2019, p. 2) write that a well-defined threat model aids
organization in threat identification related to assets of the system. This identi-
fication is done through well-founded assumptions of the capabilities of an at-
tacker, who might be interested in system exploitation. Threat modelling also
enables the development teams to discover the most crucial areas of the system
design, which must be protected. Through this process the mitigation strategies
can also be easily determined (see the FIGURE 13).

FIGURE 13 Purpose of security requirements

According to Ansari et al. (2018, p. 4) security requirements engineering consid-
ers security interests of all the stakeholders of the software product. In addition

32

to threat modelling, it also takes risk analysis into account. Alexander et al.
(2013, p. 22) explain that a risk is considered as combination of the impact and
the likelihood that the threat can be realized. Therefore, when the overall risk is
calculated, both factors must be estimated and considered threat by threat (Al-
exander et al., 2013, p. 23). Ansari et al. (2018, p. 7) continue that the typical risk
calculation formula used in industry is; “Risk = probability x damage potential”.
This formula aids in evaluating and prioritizing threats according to their po-
tentiality, after which threat mitigation decisions can be made.

Security requirement is a countermeasure to a threat. Ansari et al. (2018, p.
7) write that security requirements are security controls of the software, created
to mitigate the identified threat. However, unmitigated security threats are vul-
nerabilities, that the attacker might exploit, to damage the system. Additionally,
every threat is not detrimental to the system and thus, mitigation for every
threat is not necessary.

Alexander and Beus-Dukic (2009, p. 217) remind of the main hardship
with security requirements; it’s not possible to have absolute security against
anything, guarantees cannot be given nor can there, truly, be an honest proba-
bility that a specific threat shall be defeated. Actions taken or defenses con-
structed cannot guarantee security or give an estimation of the time that they
will provide protection for. Security is a trade-off that fact must be accepted and
responsibility for those choices must be taken. There it is a choice between those
design steps that will be sufficient yet affordable.

Abraham et al. (2016, p. 18) note that once the list of essential security re-
quirements has been established, continuous risk monitoring should be orga-
nized. This means that the organization must make sure that the agreed securi-
ty requirements are implemented and that the measures taken have a desired
effect on security. Additionally, other new requirements or technological choic-
es will add new threats to the list and therefore iterations are needed. McGraw
(2006, p. 88) adds that keeping security requirements up to date and even iden-
tifying the appropriate ones is an intricate undertaking deserving proper atten-
tion. In his opinion software security aims to build software that can endure
attacks proactively.

2.3 Software development and secure development models

This chapter combines the ideas of requirements engineering, software devel-
opment and information security that were represented during the previous
subchapters. It concludes the relations between these theories and formulates
the foundation for the second research.

33

2.3.1 Software development

According to Boehm (2006, p. 13) in the 1950’s software was developed like
hardware and the development process followed this trend. In 1984 Zave (1984,
p. 104) wrote that the conventional life cycle has experienced chronic problems
in software development. Development processes have a long history on the
mechanical side and even the software development has had time to gain a rela-
tively long history. However, this hardly compares to the mechanical and
hardware development history.

Zahran (1998, pp. 389–390) states that a software process simply means
that procedures that ultimately precedes to the development of a software
product. Aitken and Ilango (2013, p. 4752) on the other hand have more encom-
passing definition and they conclude that software development is in its basic
essence the art of problem solving, no matter how it is performed or what is the
process used, the goal is to solve a problem. This requires an understanding
about the problem. Its requirements must be elicited, analysis must be done to
ensure correct problem comprehension and design the best solution with speci-
fication and implementation – using the resulting solution.

Maciaszek (2007, p. 3) agrees with this definition and remarks that soft-
ware is fundamentally complex, modern systems even more so, their size, in-
terdependencies between components and the amount of data the system has to
process make these system intricate. This sets some requirements to the model
which often must adapt to various process sizes and provide a framework to
various projects. A certain model size might be suitable to a large company
when a smaller counterpart requires a less cumbersome model. Zahran (1998, p.
78) concludes that software process improvement helps the development of
new products and their revision. These are also improvement objectives that
this thesis aims to enhance.

Kotonya and Sommerville (1998, p. 30) define process models as simpli-
fied descriptions of a process, one model views the process from its perspective
so one process might be described with multiple modes such as fine- and
coarse-grain activity-, role-action- and entity-relation models. The coarse-grain
activity model is used in this thesis to encompass the sequencing of the re-
quirements engineering actions. These activities are elicitation, analysis and
negotiation, documentation, and validation, additionally the model used in this
thesis involves requirements management.

Kotonya and Sommerville (1998, p. 9) also state that there is not a single
process that suits all organizations, every organization chooses its own process
which are appropriate for the type of systems that is developed, fit the organi-
zational culture and the expertise level and abilities of the people working with
requirements engineering. Easterbrook and Nuseibeh (2000, p. 37) conclude
that the most prominent mark of success for a software system is the fulfilment
of the purpose for which it was intended and designed.

Qadir and Quadri (2016, p. 189) write about the organizational reliance to
the use of information and communications technology. The have gathered that

34

the most meaningful resource are the information system and the network to
which it is connected to. They have divided the information system components
that affect the information availability into three classes: software, hardware
and network (FIGURE 14). From which the software is the most critical of the
three in their opinion. Hardware and network run on their operating codes and
the code is the factor that gets under the attack. All the security attacks and the
solutions addressed to those attacks are addressed via software or through the
operating code. To secure the information system, the software must be the pri-
ority. Pressman (2005, p. 5) specifies that hardware is physical: wires, circuits or
chips, but software is non-physical, the code that is running on the machine.
Everything from data to web sites to different apps can be software. Software is
something that a human or engineers develop, hardware is manufactured.

FIGURE 14 Information availability component classes

Buyens, De Win, Grégoire, Joosen and Scandariato (2009) states that typical
software development process is divided into nine phases: education and
awareness, project inception, analysis and requirements, architectural design,
detailed design, implementation, testing, release and deployment and support.
Apvrille and Pourzandi (2005) on the other hand state that project lifecycle in-
cludes an iterative process of analysis, design, implementation, testing and
maintenance.

2.3.2 Various levels and types of software

Qadir and Quadri (2016, pp. 189–190) divide software architecture into three
distinct levels: service, component or object/class level. Service level is the
highest level of application software architecture and the external view of the
system, it also is the level that hackers or attackers exploit open services if these
are found. Component level is the second, components are accessed via inter-
faces and provide service to client programs that produce the correct interface,
because of this strong authentication and access control mechanisms must be
planted. Object and class levels are the last and most fine-grained level of soft-
ware architecture, it ensures efficient performance and secure functioning. If a
secure system is the aim of a development process all these levels must be con-
sidered and secured.

Doyle (2000, p. 111) divides software into two categories: systems software
or operating software and applications software. Bizzell, Clinton, Prentice and

35

Stone (2017, p. 321) disagrees and gives a three-way divide into systems soft-
ware, programming languages and application software. Doyle (2000, p. 111)
defines systems software as a program that directly controls the computer and
ensures the usability of the hardware. The systems software can be described as
the bridge that connects the hardware and the application software together.
Application software must obey certain rules that the software and hardware
platforms demand and integrate to existing information systems.

Doyle (2000, pp. 111–112) dictates that systems software must also ensure
that the resources of the computer like internal memory or input and output
devices are effectively managed. Systems software includes are operating sys-
tems, utility programs, file management programs and virus detection software.
Systems software enables the user to multitask while using the computer.

Maciaszek (2007, p. 3) remark that business processes and requirements
change continuously and application software must be built to accommodate
change. According to Kotonya and Sommerville (1998, pp. 12–13) there are
three main classes of systems that are developed for the customers; information
systems, embedded systems as well as command and control systems. Apvrille
and Pourzandi (2005) remind that every development process should be initial-
ized with clearly defining the behavior that is expected of the software. In their
opinion security development must be done with the same rules in mind, con-
cepts must be defined for the security environment and its purposes in the de-
velopment process’s initial stages.

2.3.3 Software development models

In 1984 Zave (1984, p. 104) defined “software development” as an effort to solve
a problem with a computer system and spoke about the deficiencies of a con-
ventional model in software development. Software development methodolo-
gies offer a context for planning, executing, managing, and controlling the pro-
cess of software system development. Ruparelia (2010, p. 8) lists multiple mod-
els that are used from traditional and agile sides. Three of the listed models are
Waterfall, Kanban and Scrum. This listing is continued by Ghilic-Micu, Mircea
and Stoica (2013, pp. 72–73) and still further by Butler and Vijayasarathy (2016,
pp. 86–89). Bassil (2012, p. 1) writes that all models have the same principle,
they have steps or phases that must be completed to have results and produce a
product. All methodologies that came up during the literature perusal are
shown in

TABLE 2, agile practices are used as a foundation for the model that is pro-
duced for the commissioner and some parts follow Scrum. That is why Agile
principles and Scrum are described in more detail.

TABLE 2 Traditional and agile methodologies

36

Maciaszek (2007, p. 6) claims that most contemporary software development
processes are consistently iterative and incremental. Babar, Liming, Ming and
Verner (2004, p. 520) state that on the abstract level Waterfall and Agile are very
different but their practices in the development cycle do share parallels. Hoss-
ain and Moniruzzaman (2013, p. 5) confirm that traditional and agile methodol-
ogies have different characteristics. They write that traditional development
trusts in predictability, specificity and extensive planning. Agile development
relies to small teams, continuous design improvements and feedback. Jain and
Patel (2013, p. 1386) specify that in traditional methodologies the process in
plan driven and the process is initiated with requirements elicitation and doc-
umentation, after which architectural design and design development and in-
spection follow.

Balaji and Murugaiyan (2012, p. 26) write that iterative and incremental
development form a base for agile software development which is a group of
software development methodologies where requirements and resolutions de-
velop through cooperation amid self-organizing cross-functional teams. Cho
(2008, p. 188) confirms this and adds that agile methods do emphasize iterative
and incremental development and also focus on customer satisfaction, frequent
and fast delivery including quicker adaptation on requirements changes.

Babar et al. (2004, p. 523) specify that customers support the development
teams through the whole development process in agile models. In waterfall
model the customer is typically involved during the requirements definition
phase and sometimes during system or software design. They do not however
contribute significantly and are not as involved as the customer is in agile mod-
els.

Balaji and Murugaiyan (2012, pp. 28–29) define Agile as “moving quickly”,
an adaptive team can respond to changing requirements swiftly and changes
are welcomed. It has iterations instead of phases. Rapid delivery at short inter-
vals and keeping the customer satisfied are the most important principles, these
are achieved through continuous communication with the client and involving
the client to the process.

Cho (2008, p. 191) tells that Scrum is an agile process that operates an em-
pirical process control with three points in all its implementations; transparency,
inspection and adaptation. Transparency implies that all facets of the process
that influence the outcome must be kept evident. Inspection entails that the as-
pects of the process are examined periodically to detect any undesirable vari-
ances in the process. Adaptation means that if the inspection discovers any un-
desirable aspects the process will be adjusted accordingly.

37

Ghilic-Micu et al. (2013, p. 74) write that Scrum is centered on two aspects:
team autonomy and adaptability. Scrum does not focus on implantation level
practices but rather on how the members of a development team should co-
operate to produce a flexible, adaptive, and productive system in a continually
transforming environment. Cho (2008, pp. 191–192) concurs and adds that
Scrum process consists of responsibilities, meetings and texts. How the work is
divided and what roles do the team members have, how are the meeting orga-
nized and when and ultimately, what text material does the process produce.

Next the traditional methodologies are represented. Those have also been
collected to TABLE 2 and Waterfall is described in more detail because its prin-
ciple forms the foundation for the model that is being produced. Ruparelia
(2010, p. 8) remarks that Waterfall or a cascade model relies firmly on require-
ments definition and analysis before development initiation Babar et al. (2004,
p. 521) write that waterfall model is divided into five consecutive phases, each
phase results in well-defined deliverables. Every phase requires the delivera-
bles of a previous phase as an input so, no subsequent phase can commence
before its predecessor has produced its deliverables and they have been signed.

Balaji and Murugaiyan (2012, p. 27) specify that Waterfall model has se-
quential steps that must be completed before the next one can be initialized,
there is no overlap between the phases and because it is a linear model it is easy
to implement. Documentation and testing are conducted after every phase to
maintain high quality of the project. Requirements are frozen from the very be-
ginning of the project and changes are not considered; this means that require-
ments are clear before development starts. Waterfall does not consider changes
well, if a stakeholder changes their mind or a new need arises it will not be tak-
en as a part of the current development process.

Lauesen (2002, pp. 3–4) reminds that Waterfall model is an ideal, one pha-
se is not always completed before the developer embarks onto the next one,
something must be redone, iterative analysis, design and programming take
place and then several phases are repeated more than once. Analysis, design
and programming happen, but often these actions take place iteratively and
concurrently. This in turn leads to altered requirements when missing, wrong
and unrealistic requirements are spotted, this is where requirements manage-
ment is needed. Cho (2008, p. 189) remarks that Waterfall model has drawbacks,
it is inflexible and it is often not completed on-time or on-budget, rather it is
often finished with less features and functions than intended and one third of
the projects get cancelled altogether.

Babar et al. (2004, p. 525) argue that software quality cannot be compared
realistically or reliably between waterfall model and agile methods because
their initial development conditions are not equal particularly concerning to
cost. Mitchell and Seaman (2009, p. 514) add that there is hardly any empirical
evidence of one model’s superiority compared to other models. There are a lot
of opinions and anecdotes but proof of advantages on one model over others in
regards of quality, cost and duration are minimal. It is vital that the team or a
company chooses the best suited method for a project, every method has its

38

drawbacks and advantages. Bhatia and Kumar (2014, p. 196) remark that tradi-
tional and modern models are suited to different projects and the project type
affects the choice; whether the project is critical or not so critical or are the re-
quirements dynamic or are they stationary.

Software development processes need to consider a varying number of re-
quirements that must be included in the process, depending on the product that
is developed or the commissioner for which the product is meant. Some re-
quirements are such that all the projects need to consider them. Some require-
ments are so specific that only a product or two must take them into account.
Including information security into the process model of software development
helps to enhance and maintain the high quality of the product.

2.3.4 Traditional versus agile security principles and aspects

Baskerville, Kuivalainen and Siponen (2005, p. 6) note that agile methods typi-
cally lack precise software security features, several separate methods can be
added like checklists and management standards. However, they add that only
a few can be integrated effortlessly to the traditional software development
methods, making implementation to agile software development even more
arduous. Baskerville et al. (2005, p. 2) have defined agile development model’s
security features into four phases: requirements analysis, design, implementa-
tion and testing and they add that these phases are not sequential and each
phase is optional (FIGURE 15).

FIGURE 15 Agile development model’s four security features

Beckers, Bruegge, Klepper, Lachberger and Moyon (2018, p. 31) agrees with
Baskerville et al. and proclaims that security engineering is often planned for
linear rather than iterative and incremental development that by their nature
convolute risk analysis and assurance practices. The focus is often on function-
ality; security requirements and traceability are neglected, and dynamically
changing processes hinder audits.

Vuori (2011, pp. 23–25) explains this further and states that agile devel-
opment has renounced the traditional requirement specification and presenta-
tion and replaced them with user cases which have in turn been replaced with

39

user stories. These agile practices are insufficient to safety critical projects. User
stories are non-systematic and subjective, and most safety features are objective
demanding standard-defined design and implementation requirements. Thus,
the process of requirements management cannot depend on agile culture and
the traditional techniques should be used instead.

Vuori (2011, pp. 24–25) continues that utilizing threat and risk analysis for
user behavior study can be applied to systemize descriptions and to elicit safety
requirements, such a practice is typical for agile development. The non-
commitment to concrete planning as well as evolving feature list during devel-
opment complicates safety feature planning. If agile methods are to be used for
this type of development some form of more detailed up-front design is needed.
These details are utilized as a foundation for the safety argument building pro-
cess (Abdelaziz, El-Tahir & Osman, 2015, p. 43).

2.3.5 Secure software development

As early as 1986 Rice and Tompkins (1986) have examined security in relation
to development process. They have concluded that SDLC methodology pro-
vides a structure that aids in security safeguard planning, designing, develop-
ing, and testing with a manner consistent to sensitivity of information. McGraw
(2006, p. 20) agrees and defines software security as the process of designing,
building and testing, where it discovers and obliterates problems in the soft-
ware itself. McGraw (2006, p. 5) continues and clarifies that good software secu-
rity practices consider security from the first stages of the software lifecycle,
know and comprehend the basic (including language- based) problems, design
for security and expose all products to impartial risk analysis and testing.

Ajayi, Onashoga and Sodiya (2006, p. 638) write that to produce software
its engineering process has to be combined with security engineering. This will
require a detailed understanding about the software development process. Fle-
chais and Sasse (2005, p. 15) dictate that secure software development process is
basically a mandatory requirement if a company wants to provide secure prod-
ucts to the customer. They remark that security cannot be a patch that gets add-
ed on later by security experts. Security must be included into the development
process. Security is frequently thought as a non-functional requirement that
gets included into the process when functionality is addressed, but often not
before this. Several other researcher concur and Howard (2004, p. 63) writes
that security should never be thought at the end stages of the software devel-
opment process rather it should be an integral part of the whole development.
However, Koskinen (2020, p. 36) who wrote her thesis about implementing se-
curity into the core of DevOps- model. Based on a literature review the thesis
concluded that the biggest challenge is still how to ensure software develop-
ment pipeline security.

According to Howard (2004, pp. 63–64) there are several ways to ensure
that development process considers all the best ways to include security
throughout the development process. He suggests several means of achieving

40

this. Organization can create a team that the development team can consult and
receive training on security matters and an external reviewer for the design and
code security review is also invaluable. The executive level must be made to
understand and accept the cost of security their advantages. The developer
team must understand the threats and vulnerabilities that a process and coding
without security produces, education is the key in raising awareness.

Howard continues that (2004, pp. 64–65) understanding the attackers and
one’s own product helps to mitigate the threats that the product is facing. Se-
cure design practices must be part of the process including least privilege prin-
ciple, simplicity and fail-closed defaults. He advises that process of coding
should be secured, all code must be security reviewed not only by tools but by a
human eye. Holding checkpoints and security-focused events aids in finding
security vulnerabilities these events include several activities: responsible par-
ties re-review the threat models and design documents to ensure that the most
current threats are presented. Before the product is released it should be re-
viewed for security for the last time including but not limited to penetration
testing, bug analysis and fuzz testing. Keeping-up with current development,
updates and maintenance aids with the future and on-going product security.
There are two review types: One occurs at a precise point during the process
like prior to a phase completion and the other type is the final review.

Security can be implemented into separate phases of the process, different
models implement security in distinct phases like requirements, design or cod-
ing phase or security can be a part of the whole development process. It all de-
pends on the perspective and need the company has. According to a literature
review made by Alshayeb, Mahmood, Mohammed and Niazi (2017, pp. 110–
111) most researchers consider security practices to be most meaningful in the
coding phase 41 %, 29 % in design and 19 % in the requirements phase, the
whole development lifecycle is considered in 11 % of the 118 papers that were
studied in that review.

Various researchers see the number of phases in Secure Software Devel-
opment Lifecycle (SSDLC) differently, four views are presented next. Basker-
ville et al. (2005, p. 2) list four phases, Futcher and von Solms (2007, p. 43) list
the five phases for SSDLC, Goertzel & Jarzombek (2006, p. 5) disagree and con-
clude that there are four phases and Higuera, Mohino and Montalvo (2019, p. 4)
again list four phases that they consider relevant. These differences can be seen
in TABLE 3.

TABLE 3 Various perspectives on SSDLC

41

Goertzel and Jarzombek (2006, p. 5) perceive the division as a way to enhance
security in the development life cycle. The also state that threat modelling is a
key factor of risk-driven software development and must occur in the initiation
phases of the process. Futcher and von Solms (2007, p. 43) considers their divi-
nation from their SecSDM model’s perspective which has five phases and di-
vided between them 10 steps to ensure that security concerns are addressed
during each phase. Higuera et al. (2019, pp. 3–4) indicate that especially agile
principles are perceived to be fast paced because security concerns such as se-
curity impact analysis, verification and validation tests are disregarded during
development. Thus, they conclude that verification should be included as one
of the phases so that no matter what SSDLC model is chosen the security testing
is accomplished during it. Baskerville et al. (2005, p. 2) concur but speak about
testing instead of verification. This last division is used during the comparative
research in fifth iteration, because it was the most suitable for the organizational
context and included agile methods in its perspective of security.

2.3.6 Quality in software development

Alexander and Beus-Dukic (2009, p. 138) state that quality can be measured
with the aid of standards that list the most important or vital “ilities” that a
software product should have so it could be considered as of high-quality. A
standard ISO/IEC 25010:2011 Software Product Quality and ISO/IEC/IEEE
29148:2011 Recommended Practice for Software Requirements Specifications
are two of the available standards that could be used to measure and inspect the
quality of the software product and the process leading to it (ISO/IEC
25010:2011.; ISO/IEC/IEEE 29148-2011). Siponen and Willison (2009, p. 1) note
that if a company is using ISO27001, it guarantees a base-level for the infor-
mation security environment. Every company needs to have a method for soft-
ware development tailored to their needs, even though the company may use a
generic model like an ISO standard-family as a basic model for operations.

These previously mentioned standards are meant for software system
development and are suited only for that purpose. They provide software re-
quirements specification (SRS) document forms to guide the quality measure-
ments of the process and products. Alexander and Beus-Dukic (2009, pp. 138–
139) write that qualities can be anything from usability, reliability and main-
tainability to security, flexibility and portability. The idea is to use a checklist to
cover those requirements that are expected from the project. For every item on
the checklist it should be asked what kind of requirements the project should
have. Then a brainstorming or a workshop session should be held to identify
relevant goals for the project, those goal are often “ilities” and then those goals
and “ilities” are to be analyzed to create measurable and realistic requirements
(Alexander & Beus-Dukic, 2009, p. 141).

Gupta (2014, pp. 145–147) defines quality management’s purpose for
software and its development processes. She declares that an effective system
reduces IT risk by averting problems and spotting defects where they appear.

42

She mentions three activities which produce quality management. These are
quality assurance, - control and – planning. She mentions that for software
product the quality assurance has two section which are process- and product
assurance. Product assurance ensures that the resulting product will meet its
specification and this assurance is achieved via testing. Process assurance eval-
uated the process that was used to design the product. It is important to main-
tain a high-level of process quality because software must be used for a while
before its maintainability can be measured. Although she notes that the change
of the process does not always lead to an improved product quality.

2.3.7 Models for secure software development

Ruparelia (2010, p. 8) writes that a model describes what to do and methodolo-
gy describes what and how to do it. SSDL models can be categorized under
three wide categories: linear, iterative and a combination model of the precious
two categories. Linear model is sequential meaning that one phase leads to an-
other phase. An iterative model sees development as a constant process, where
all phases are repeated multiple times. A combination of linear and iterative
endeavors to end the repletion of the iterative model at some point.

Baskerville (1993, p. 411) tells that the initial security methods concentrat-
ed on checklists and simple risk analysis to support decision making. Those
methods evolved a focus on mechanistic partitioning of intricacy in the coveted
system. They entailed critical control checks which offered the barest acceptable
protection for the comprehensive information system. Later the interest in de-
velopment methods focused to abstract models. The key feature of this kind of
an abstract model was to comprehend the information system’s diverse security
requirements.

Ruparelia (2010, p. 8) adds that software development lifecycle (SDLC)
model considers all the phases of software from the initiation; requirements
engineering phase, all the way through to maintenance. McGraw (2006, p. 34)
adds that a company can create its own secure development lifecycle by im-
plementing security touchpoints to the existing software development lifecycle.

McGraw (2006, p. 35) dictates that software security’s main pillars are
knowledge, software security touchpoints and risk management. He highlights
the need for prescriptive, diagnostic and historical knowledge about software
security, current research and best practices for a stable foundation of software
security practices. If these pillars are applied gradually, in an evolutionary
manner and equally the resulting software is cost-effective and secure.

Various secure software development models exist, and the most suitable
models were chosen for further inspection during the literature review (annex
4). This forms the foundation for the comparative study, so the six models out
of 41 that were chosen in co-operation with the commissioner are briefly repre-
sented here.

McGraw (2006, 83-84) has developed a Touchpoints model which exam-
ines an assortment of software security best practices which McGraw has de-

43

termined. He states that integration into existing software development is pos-
sible and this forms one of the center pillars of software security. Touchpoints
are organized into a liner model but can be applied to any existing model and
done iteratively as presented in the FIGURE 16.

FIGURE 16 Touchpoints- model

McGraw (2017, p. 1) has also been a central influencer to the development of
BSIMM model. BSIMM stands for the building security in maturity model and
it is the result of multiyear study. Over 100 firms were included to compile the
BSIMM version eight, which entails 113 real-world software security initiatives.
(McGraw et al., 2017, p. 5). McGraw et al. (2017, p. 8) write that BSIMM is di-
vided into four domains which are formed from 12 main activities (FIGURE 17).

FIGURE 17 BSIMM- model

The next model focuses especially to the requirements engineering process.
SQUARE means secure quality requirements engineering (Gedam & Meshram,
2019, p. 3) and it was developed by Mead, Padmanabhan, Raveendran and
Viswanathan (2008) as a part of CERT program in 2008. Therefore, it is a secure
software development model, which focuses purely on integrating security into
requirements process. It is based on coordination between stakeholders and
requirements engineers and it contains nine process steps (FIGURE 18) (Gedam
& Meshram, 2019, pp. 1–3).

44

FIGURE 18 SQUARE- model

SQUARE considers all the software’s life-cycle development phases from the
initial phases to the end-of-life. Thus, it is a security requirements engineering
model and a model for SDLC improvements (Gedam & Meshram, 2019, p. 1).

Another maturity model besides BSIMM is a SAMM model. Shoemaker
and Sigler (2014, p. 224) have described SAMM as a benchmark to evaluate the
progress of its security assurance initiatives and create a scorecard. These score-
cards provide a way to trace and demonstrate organization’s improvements
where an iterative software assurance integration process into existing policies
and procedures is evaluated. SAMM can also be used as a map to aid in build-
ing or improving a security assurance initiative. SAMM has 12 security practic-
es (TABLE 16) with three maturity levels and each level has a criterion that
specifies the critical success factors to implement and assess to reach the desired
level. Those levels have an assigned objective and it is a general statement of
goals for achieving the desired level.

FIGURE 19 SAMM- model

SAFe is the scaled agile framework established by Dean Leffingwell and his
collaborators. It combines agile and lean practices through four levels of organi-
zation including team, program, value stream and portfolio. Every level con-
tains its own activities and is tied together. (Alqudah & Razali, 2016, p. 830).
SAFe’s activities are a mix of Scrum, Lean, DevOps, Kanban and XP (FIGURE
20 SAFe- model). It supports especially large enterprises confronting difficulties

45

in Agile practice adopting by offering a structure that eases the transition from
traditional framework to agile. (Alqudah & Razali, 2016, p. 835).

FIGURE 20 SAFe- model

Stage-Gate as it was originally called by its developer Cooper (1990) defined a
framework which is applied to an existing development process. It aids the pro-
cess and ensures that the new product proceeds without difficulty through idea
phase to launch. It combines project management disciplines and those pro-
cesses that are needed for new product realization. It is often implemented to
aid in problems related to product performance, cost increases and time slip-
page during the development and is thus, a tool for risk reduction. Each stage
has a product development element which is often a set of activities. Each gate
stands for a review point for the preceding stage and as a decision point based
on the conclusions of the previous phase’s activities. (Broughton, Neailey &
Phillips 1999).

In his conference publication Thamhain (2000) presents a Stage-gate based
Phase-gate model that proceeds step-by-step through the five process phases
(FIGURE 21). Each phase is outlined with principle scope, objectives, activities,
deliverables and functional responsibilities. After this each phase ends up in a
gate which defines the exact criteria and mandatory outcomes for success in the
next phase and beyond. When accomplished and designed correctly gates vali-
date with multifunctional reviews all success conditions.

46

FIGURE 21 Phase-Gate process

47

3 RESEARCH METHODOLOGY

This chapter describes the combination of research problems, methods, and the
gathering of empirical research material. First subchapter describes the aim and
scope of the research, what is being examined, what are the research questions
and material to which the research is founded on. Second subchapter focuses on
methodological choices, how the material was gathered, analyzed, and refined.

3.1 Aim and scope of the research

In this thesis the commissioner wants to maintain a high-quality and expertise
in software products. Mutual conversations led the parties to the conclusion
that this aim would be best addressed through the further development of re-
quirements engineering process from the information security perspective.

These conversations led to the main research question: ”What is the best
model for software development in the commissioner, to implement infor-
mation security requirements into the requirements engineering process, in or-
der to produce more secure software?”. Davison, Martinsons and Ou (2012, p.
766) state that diagnosis, planning and assessment are crucial stages in action-
change process and this process is connected to the main research theory. Da-
vison et al. (2012, p. 767) dictate that after the prevalent situation diagnosis is
finalized an intervention plan that addresses the problem or problems must be
created.

This divided the research into two stages; 1) Current situation diagnosis,
chapter 4.1 and 2) Action planning, chapter 4.1.6. The current situation diagno-
sis maps the prevalent situation of the requirements engineering process as well
as concludes possible practices for secure software development to be able to
represent intervention plan to the customer organization. Thus, the question for
the diagnosis stage is: “What are the current problems of requirements engi-
neering process of the commissioner and what practices in the field of secure
software development, would best solve them?”. The question maps out an un-

48

derstanding about the current practices and those process phases that should be
further developed to improve process quality. Baskerville (1993, p. 377) notes
that by modelling the prevalent requirements engineering process as a compo-
nent of the company specific product development framework it is possible to
survey and evaluate numerous current tools to accumulate information security
requirements and their design methods.

A systematic way to follow process steps creates process quality and that
produces security. Therefore, a well-defined process including both require-
ments engineering and information security practices, results in a more secure
software product. Siponen and Willison (2009, p. 3) add that the problems and
implications of applying guidelines are to be examined. The key findings
should be abstracted to identify proper improvement actions.

A document analysis provided the answer to the first sub-question of the
diagnosis. This document analysis provided an understanding about the cur-
rent model of requirement engineering process used in the commissioner or-
ganization and mapped the stakeholder groups participating in its main func-
tions. The main stakeholder groups were later interviewed to gain an under-
standing of the current state of the requirements engineering process.

The aim of the second sub-question of diagnosis stage was to find out
which practices and methods of the secure software development were widely
used in the studied field and answer the second sub-question of the stage:
“What are the widely used practices befitting the commissioner’s needs for
software development which implement information security into requirements
engineering process?”. Shortly, the goal was to identify the most suitable prac-
tices to implement them into a model of requirements engineering process. The
second sub-question partly forms the scope for this section limiting the focus
area to the secure software development’s practices. These practices will be ex-
amined especially through the commissioner’s business perspective.

The aim of an action planning stage was to combine the final model from
the ideas emerging from the literature review, stakeholder needs gathered
through the semi-structured interviews and the widely used practices on the
field derived from the comparative study. This combination was adjusted ac-
cording to the commissioner’s needs. Thus, a created model is unique, and not
directly applicable for other business contexts. The software development or-
ganization – as a customer of this work - together with an advisor from the
commissioner and thesis steering group defined the goals that the end-result
should fulfil.

Goals for the model:

a. The model must provide the means to define project-specific securi-
ty requirements and concrete security measures to various stages
of the software development process.

b. Model must be easily implemented to the commissioner’s software
development and its Gateway- process model.

49

c. The model must be founded on widely used software develop-
ment practices on the field and it must support in a concrete man-
ner the development of high-quality and secure product and ser-
vice development and life-cycle management.

According to Davison et al. (2004, p. 73) diagnosis and action planning are the
first and second stage of the Canonical Action Research (CAR)- model respec-
tively (FIGURE 22). The rest three stages are not in scope, although some of
their activities have been accomplished through evaluation sessions and re-
search result representation to the commissioner during the writing process.
Their feedback has influenced and developed the outcome of the intervention,
evaluation and reflecting stages have thus been observed to some degree. With
high probability the intervention action taking and change management will
take months for the commissioner. Thus, the restricting time limit for this thesis
confined thesis activities to the first two stages and other stages of Davison et al.
(2004) model were not observed in their entirety.

3.2 Research methods

The research methodology applied in this study is action research, where the
empirical part of it was structured though the semi-structured interviews. The
selection of the research methodology was justified by the characteristics of the
study, where the aim was to both create a new research information as well as
solve a real-world problem in the commissioner’s organizational environment.
This solution will also initialize a change process for the commissioner in the
future. According to Baskerville and Meyers (2004, p. 329) the action research
does not simply investigate a phenomenon but seeks an organizational change.
It develops and alters practices with pragmatic research and provides useful
information about the objective of the investigation (Baskerville & Wood-
Harper, 1998, p. 96).

In this research, the real-world problem was that the information security
had not been properly implemented to the requirements engineering process
for the commissioner. Therefore, the software’s security level was unclear be-
cause it was not certain what requirements the software should fulfil. Davison
et al. (2004, pp. 72–73) has written extensively about Canonical Action Research
(CAR) in information system discipline. He has defined for it a five-stage cycli-
cal process model (FIGURE 22). The process establishes the best rigor when it is
conducted in sequential fashion and it often requires multiple rounds of itera-
tions.

50

FIGURE 22 Canonical action research (CAR)- model

Davison et al. (2004, pp. 72–73) write that the first stage is diagnosis and it aims
to comprehend the prevalent situation in the organization. The researcher has a
duty to conduct their own diagnosis on the problems and their cause, but the
client may also present deficiencies and problems. Intervention cannot be ap-
plied if the environment is not understood and the diagnosis will directly influ-
ence the planning of actions. Action plan reflects the underlying theory and
these plans are implemented and evaluated after diagnosis stage.

Action research is separated from other research methods by its active in-
volvement of the practitioners to study their own practices, it is an exception
where research is not done on but rather with the practitioner. The researcher is
inside the study, a part of the context that is under scrutiny not outside observ-
ing the situation. (McNiff, 2017, p. 10). The researchers of this thesis participat-
ed intensively to the commissioner’s operations during the research process.
Conversations with the stakeholders were had outside the interviews. The re-
searchers familiarized themselves with different departments, their main func-
tionalities, and the key personnel responsibilities. These conversations gave the
researchers additional development ideas for the entire process.

Action research assumes that all the stakeholders affected by the change
should be engaged with the investigation (Stringer, 2013, p. 15). It enables eve-
ryone to evaluate, investigate, improve and develop their practices and habits
at work and thus it is a practical form of enquiry (McNiff, 2017, p. 9). This per-
spective will also give the interviewees a chance to comprehend the reasons
behind their actions. An interview is thus not only a conversation where infor-
mation is traded between the interviewee and the researcher but a development
opportunity. (Nielsen, 2007, p. 219). The stakeholders were identified and in-
cluded to the process and key personnel was interviewed for the prevalent situ-
ation comprehension. The key personnel provided a vital input to the require-
ments engineering process’s change investigation.

51

3.2.1 Literature review

Literature review aimed to provide the answer for thesis’s main research ques-
tion. Which was divided into three main themes: a secure software develop-
ment method, requirements engineering and information security. These
themes were analyzed closely from the perspective of earlier research. First the
material for literature review was collected and this functioned as the founda-
tion for theoretical frame of reference. As Ellis and Levis (2006, p. 183) stated
one major justification for a literature review is to examine what has been pre-
viously understood. According to Watson and Webster (2002, p. 13) it is essen-
tial to review prior and significant literature for every academic project. It gen-
erates a foundation for evolving knowledge and enables theory development. It
also aids the researcher to discover among this prior research those gaps that
would benefit from further research.

Earlier research sources were examined with search engines and appro-
priate library publications in university of Jyväskylä were studied. Specific
searchers were concluded to digital databases such as Google scholar, ACM -
digital library, IEEE Xplore, ScienceDirect, Springer, Taylor and Francis Online
as well as ResearchGate. The electronic search was conducted with English
search terms such as: ” requirements engineering”, “requirements engineering
models”, “requirements engineering process”, “information security”, ”infor-
mation security management”, ”principles of information security”, “software
development”, “secure software development” and “SDLC”. These terms were
combined to different combinations and, with more detailed field specific terms
such as “agile” or “agile development”.

The aim was to gather research articles published in scientific conferences,
publications of the industry and instructive material from authorities such as
standards and glossaries to establish the foundation of the research material.
Essential influencers of this study are Mattord and Whitman, Beatty and Wieg-
ers and McGraw. Mattord and Whitman have studied extensively IS manage-
ment and IS principles. Beatty and Wiegers are known influencers in the field of
requirements engineering. McGraw influenced the secure software develop-
ment section but is also used widely throughout this thesis. McGraw for is the
creator of Touchpoints, which is one of the comparative study models.

The literature review was a part of thesis’s mandatory structure, and its
usage was preordained. Copious amounts of software development research
material created difficulties for inclusion and exclusion choices. Forming a co-
herent synthesis from the material was challenging and the scope had to be nar-
rowed based on the initial material search. In addition to the literature review,
an empirical interview material was gathered. This was compared to the obser-
vations gained from the literature. According to Byrne, Keary and Lawton (2012,
p. 239) a literature review forms the foundation for merging research findings
of a subject matter into a cohesive unity and it indicates the current progress,
constraints and potential trends for the research. The next subchapter presents

52

the semi-structured interview and its results and contains the described com-
parison.

3.2.2 Document analysis

A document analysis systematically reviews and evaluates documents. Like all
analytical methods in qualitative research, document analysis entails examina-
tion of the data and interpretation of it to gather meaning and develop empiri-
cal knowledge. The analysis of the data involves discovering, selecting, apprais-
ing and synthesizing it into major themes and categories. (Bowen, 2009, pp. 27–
28).

Through the document analysis existing documentation, files and archives
for the commissioner were studied and mapped thoroughly. There were also
multiple occasions of familiarization to the used documents, platforms, services,
applications and current practices of the software development organization
and the security aspects that had already been considered. This familiarization
involved occasions where the interviewers had an opportunity to learn about
the Company Specific Software Development Process (CSSDP) and ask clarify-
ing question from company experts.

The information provided by the documents analysis was supported by
the open, non-structured interviews. These were conducted with a product de-
velopment manager of traditional product development as well as with a soft-
ware development manager. This provided a managerial understanding about
the CSSDP, its phases, inputs, and outputs, and gave the researches an estima-
tion about its usage in commissioner’s software development site. Identifying
the stakeholder groups was done after the interviewers had familiarized them-
selves with the process. Process comprehension enabled interviewer participa-
tion to the selection process. The CSSDP has many participants from inner as
well as outer stakeholder groups.

Lamsweerde (2009, p. 62) writes about stakeholder analysis. He states that
effectiveness of their role for the system-to-be, domain expertise level, exposure
to the alleged problems, impact in system acceptance and individual objectives
as well as conflicts of interest need to be considered. He continues that the
group most likely must be revised during the process because new relevant
viewpoints are usually uncovered. During this research, a stakeholder analysis
was done to reach an understanding about the problem that had to be solved. It
was utilized in identifying the most critical groups for this project. The correct
groups were chosen based on their roles, stakes, interests, and knowledge they
could contribute.

The document analysis was a preparatory and necessary phase before the
semi-structured interview process enabling its conclusion, so its extent was not
as profound compared to the interviews. The familiarization based on the doc-
ument analysis would have benefitted from more instructed and managed pro-
cess on the commissioner’s side. All the archives were not accessible to the re-
searchers so some of the material was not accessed simply because its existence

53

was not known. If this research would be repeated the results of the document
analysis would be quite different. There was not clearly defined or even drafted
material for the process and the initial perusal was done with scatted document
drafts and initial “to-do-lists”. All these factors affected the reliability and valid-
ity of the document analysis.

3.2.3 Semi-structured interview

Subjective experiences can best be collected through an interview process. This
method is very usable and provides a good technique for system level require-
ments extraction from stakeholders and stakeholder groups particularly in the
case of usability requirements. (Laplante, 2017, p. 64). In this part system level
meant the company’s requirements engineering process from which this inter-
view aimed to identify the problems for further process improvement. Process
improvement recommendations were closely related to usability of the current
requirements engineering process.

There were three choices for the interview type (structured, semi-
structured and unstructured interview) and the choice resulted in a semi-
structured interview. A semi-structured interview combines the best aspects of
the structured and unstructured interviews and it is especially well-suited to a
process-oriented organization. It also provides a carefully thought out list of the
questions, but allows spontaneous questions to creep in during the interview
(Laplante, 2017, p. 65). It suited the main research question and provided a way
to have a structured form for the interview, but also left room for improvisation
and additional questions that proved to be an asset.

It was possible to divide the interviews questions in accordance with the
suitable role perspective. The interviews lasted anywhere from 30 minutes to 1
hour and 20 minutes in one sitting, the medium was 43 minutes. 13 participants
were interviewed face to face and seven were done remotely via Skype. Inter-
views were conducted between 25.10.2019-5.12.2019, sixteen were interviewed
once and five were interviewed twice. Nuances and subtle aspects of the re-
sponses can be lost if the interviews are done remotely like through a video
conference (Laplante, 2017, p. 65). Face-to-face was the preferred method for the
reactions of the people were more discernible as was noticed from the very be-
ginning, due to scheduling difficulties some still had to be conducted remotely.

The timeframe was flexible which is why some were interviewed twice.
They often had interesting viewpoints and additional information that they
provided. Interview questions were done beforehand to produce a structured
way to conduct the interview. Some questions included example answers, not
to lead the answers but to provide a direction and reduce uncomfortableness.
This subject was perceived as a difficult one because the process documentation
and the supporting material was severely lacking.

Interviews were done individually, and all were recorded to have the op-
portunity to store all the information gained from the interview and not lose
any due to slowness of writing or misunderstandings in the moment. Permis-

54

sion for the recording was asked and all the participants agreed to the request.
Reliability was affected by the fact that the participants of the interview were
from various departments and department levels. Thus, their perspective to the
subject matter varied and they chose distinct terms typical to their own de-
partment which was not always unified throughout the company. Researchers
had to make interpretations from the transcripts which affected the results.

3.2.4 Comparative study

The widely used secure software development practices that fit the commis-
sioner’s context had to be identified and compared. This comparative study was
concluded to determine models and their feature suitability for the business
context. This affected the choice for the method which is a qualitative compara-
tive study.

Pickvance (2005, p. 2) writes that a principal rationale for a comparative
analysis is the explanatory curiosity of achieving an improved grasp of the
causal processes engaged in the creation of an event, feature or relationship. In
comparative study differences between the cases are mapped and data is col-
lected from two or more cases according to a shared framework. Pickvance also
cites Tilly (1984, p. 82) who has defined four types of comparative analysis. This
thesis utilizes the variation-finding comparison which tries to establish a prin-
ciple of variation in the character or intensity of a phenomenon by examining
systematic distinctions among instances. This comparative study aims to detect
differences and similarities between the models. Because this is a qualitative
study the focus was on multiple features which were compared be-
tween six models. They were given a certain criterion to fulfil and these criteria
was adapted to the commissioner’s goals:

a. Generic (software development model)
b. Traceability of information requirements
c. Adaptability to linear software development
d. Process accommodates iterations
e. Widely used in real-life
f. Founded on threat- and risk principles

The listed criteria are elaborated here. The first criterion is a generic software
development model which implies that the model acts as the foundation for the
whole software development. The second, information security requirement
traceability entails that the commissioner wants to systematically trace infor-
mation security requirement implementation into usage. This encompasses re-
quirement status, owner, category, and risk- based prioritization and this com-
bination aids in requirement implementation decisions. It is vital for traceability
to justify the decisions accurately and document them comprehensively. It
means that the decision making can be traced to its origin during the develop-
ment. The after-launch changes for improved traceability must also be included.

55

Linear software development adaptability simply means that the repre-
sented practices can be implemented to linear software development. This pro-
cess must enable iterations. In this context enabling process iterations means
that the practices that are implemented to as part of the requirements engineer-
ing process will not disable the iterations between phases. Thus, agile practices
are also supported.

Widely used entails the model recognizability and usability in large scale
by the industry. These criteria ensure its easily accessible and there are enough
experiences of its usage on expertise and developer levels. A widely used mod-
el is also better maintained and further developed.

Foundation on threat and risk modelling entails initiation of risk man-
agement. This idea is founded on the presumption that to protect critical soft-
ware assets, their threats and risks must be identified, and their probability and
effect evaluated. Through this the prioritization of security requirements and
refinement implementation to software development can be achieved.

Comparative study included five iterations (TABLE 4) and the first itera-
tion was already outlined during the literature review. This was done by listing
frequently mentioned secure software development models from industry’s
research and literature. The exception being the “Phase-Gate”. It is the original
version of the commissioner’s Gateway- model to which these practices are to
be implemented and was added per the commissioner’s requests. There were 41
models that emerged, and they are listed in their entirety to the annex 4. The
initial listing was examined in co-operation with the commissioner during the
second iteration and the most suitable models for third iteration were selected:

a. Phase-Gate (GateWay) d. SAMM (by OWASP)
b. SAFe e. Touchpoints (by McGraw)
c. BSIMM (by OWASP f. Square

Third iteration included a comparison against the chosen criteria and the fourth
iteration was done to exclude some unsuitable models. The fifth and final itera-
tion compared the process with an existing research paper’s results to assess
perspectives with another set of criteria.

TABLE 4 Iterations in comparative study

Iteration Purpose

1. Discover and list initial SSDL- models found through literature review

2. Select the most suitable models to third iteration with the commissioner

3. Evaluate models to selection criteria

4. Comparison between models

5. Comparison of the model content between Higuera et al. and this thesis

It cannot be concluded to any degree of certainty that all suitable models for the
comparison were found during the literature review. Time limits for this re-
search did not permit a full investigation into every available model. Search

56

results were logically restricted for example if the model was specific, unknown
or brand new then the probability of its exclusion was high despite the best ef-
forts of the researchers. These restrictions affected the first iteration, its scope
and steered its direction thus, the reliability of the research was negatively af-
fected. The five iterations ensure that the issues have been considered from var-
ious perspectives and several times. Furthermore, it guarantees high-quality
results and fulfils the research directives.

57

4 APPLYING ACTION RESEARCH AND EVALUA-
TION OF RESULTS

This chapter consists the two phases referred as stages according to Davidson’s
study presented earlier. The first stage 4.1 is a current situation diagnosis,
which consists of the document analysis-, interview- and comparative study
material as part of action research. The document analysis is compact and func-
tioned as the familiarization phase for the researchers. Semi-structured material
is also introduced, and its material was processed through coding and categori-
zation. The material from the interviews formed the empirical foundation of
this research. Comparative study is based on the literature review where com-
parisons are done on the suitable models and their practices for the commis-
sioner. The second stage 4.1.6 is action planning, which ties together all the re-
sults of previous mentioned material. These materials as well as literature re-
view together are used to form the plan for intervention.

4.1 Current situation diagnosis

This section contains results of document analysis, semi-structured interview,
and comparative study. It also provides analysis and conclusions related to
them. The intent of this section is to generate a diagnosis of the prevalent situa-
tion equally from commissioner’s requirement engineering process as well as
secure software development practices used widely in the field of software de-
velopment and befitting to the commissioner’s needs. The diagnosis works as
the input to the planning of the intervention stage.

4.1.1 Familiarization of the commissioner

Document analysis results established the foundation for the semi-structured
interview that is why its results are the first ones presented. Its aim was to as-
certain what kind of model is currently used in the requirements engineering

58

process. Additionally, it sorted the most critical stakeholder groups for that
process to interview to find out the prevalent situation.

What kind of requirements engineering process is used by the commissioner?

Like told in introduction the commissioner utilizes a company specific process
model for new product development. This model has been used in the tradi-
tional mechanical business side and it is transitioning to the software develop-
ments side. Meaning that the process is linear and has been created to accom-
modate the mechanical software development’s needs. The model’s phases are
consecutive and there are checkpoints that must be completed after every phase
these checkpoints provide the model its name: Gateway.

This model (annex 2 picture 1) has seven phases respectively; InnoStream
(-1), Concept (1), Product specification (2), Planning (3), Product Design (4),
Ramp-up (5) and Launching (6). Each phase has phase specific actions and prac-
tices that advance the practices defined for it, the new product development
and produce the documentation needed for the product and its features during
its lifecycle. Concisely the idea of this process is to refine a product from an idea
to the market.

The InnoStream phase (-1) channels the ideas from inner and outer stake-
holder groups into one forum where an initial business case is formed. This case
is evaluated twice: it receives the initial evaluation and the second evaluation in
a meeting where the potential business ideas are transferred to the concept
phase with the product council’s approval. The initial business case evaluation
is founded on the estimated profits and the possibility to actualize the ideas.

The Concept phase (1) is where the potential business idea is analyzed
again. This analysis is performed with the aid of QFD (Quality Function De-
ployment) – matrix where the correlation between customer requests and quali-
ty is inspected. The result is the understanding about the features that the
product should have and what the customer wants. This understanding pro-
vides the foundation for the calculation of resource consumption for these most
meaningful features. Essentially this phase evaluates the product’s business
profitability. Corporate model initializes “agile development” from this phase
to fourth phase (1-4) (annex 2 FIGURE 30).

If product development is worthwhile the actual business case becomes a
project suggestion. This suggestion includes the requirements book where the
product’s requirements are gathered. This document enables the creation of a
concept from the business case. Concept examination helps the executing deci-
sion and how and what is the specific product that would fulfil customer’s
needs. When the concept has been created the project progression can be pre-
planned and its risks and resources inspected.

Product specification (2) is founded to the concept understanding and
from it the product specification and launching are planned. When product un-
derstanding increases the project’s risk and threat documentation can be clari-
fied and updated. The product undergoes a failure mode and effect analysis
(FMEA) which identifies the product’s feature malfunctions and problems

59

caused by these. Analysis forms the base for concept description which can be
updated, risks re-evaluated and the resources that are required can be clarified.
Corporate level dictates that the alpha product should be accomplished be-
tween these phases 2-3 (annex 2 FIGURE 30).

After product specification a planning phase (3) is initiated. This phase is
intended for the planning of the project like the name of the phase indicates.
The progression requires plans like the project plan, initial manufacturing plan,
testing plan and the update for the precious phase’s launching plan. Addition-
ally, the technical specification is drafted, and the first prototypes can be created
based on this. Corporate level dictates that the beta product should be accom-
plished between these phases 3-4 (annex 2 FIGURE 30).

After the planning phase the product design (4) is initiated. The central
idea is to produce the product plan and review and their documentation such
as product drawings. While product understanding increases in the third and
fourth phase, the FMEA analysis is updated on the malfunctions of the product
features and the problems they cause. Corporate level dictates that the MVP
should be accomplished between these phases 4-5 (annex 2 FIGURE 30).

Fifth phase leads form planning to execution, the phase is named as
Ramp-up (5). This essential idea is to produce the first production patch and
compare the execution to the requirements that have been set for it. The com-
parison acts as the foundation for the launching decision and prepares the
product for market. If the product is market suitable is will move to Launching
(6) and with this shift the responsibility of the product will move to software
development to production.

What stakeholder groups participate in requirements engineering process?

To map out the prevalent situation of the requirements engineering process the
most critical stakeholder groups were selected with the guidance of the project
steering group. The most critical stakeholder group was identified as the prod-
uct development from where the software development section was especially
critical. In addition to software development business development and prod-
uct management are linked to the development process. All these three groups
were added to the list of critical stakeholder groups.

Requirements and stakeholder’s needs expertise roles focus to sales, ser-
vice center and law department, which is why all of these were added to the list
of possible stakeholders. On the part on information security the expertise lay
with the IT-department and security organization, which is why these were
added. The final decision privileges were reserved for the project steering
group.

4.1.2 Identifying the problems of requirements engineering process

This section will provide the results of the first part of the diagnosis – problems
of requirements engineering process. The results will be provided question by

60

question in the order they were presented to the participants of the interview
process.

In total 23 interview requests were sent, only one individual was unable
to participate to the interview process. The most critical stakeholder groups that
were interviewed were business development, software development, product
management, legal, sales and service center (in the FIGURE 23).

FIGURE 23 The most critical stakeholder groups

From every group the aim was to interview at least one individual, but prefera-
bly two or three. The distribution of the groups went according to annex 3 TA-
BLE 12.

Three of the most critical groups that were not interviewed on the re-
quirements engineering’s prevalent situation were IT-department, security or-
ganization and the Operations-unit. At the time, the security organization did
not have a specific person to point as suitable and knowledgeable for the inter-
view. IT was as a more consultative than anything else and its role centered
more to the information security side, this was a part of the second research in-
stead of the first, which this interview- process was for. Operations-unit was not
identified as a critical stakeholder group in the pre-study phase and its role was
specified during the interviews. This resulted to the lack of an interview or in-
terviews from this unit, and it was only later recognized as one of the most cru-
cial stakeholder groups by the project steering group.

Two of the 22 interviews were shorter in duration, and most of the 18
questions were not asked at all from these two individuals. These two inter-
views were done differently because the aim was to clarify and gain a deeper
understanding about certain aspects, practices and partners used during the
requirements engineering process of the commissioner. These two were not as
actively involved with the requirements engineering process thus it was decid-
ed to use them only as a reference and clarify certain aspects of the interviews
with their responses. These responses also easily reveal the identity of the re-
spondents so only the data was collected. This is reflected on the results, were
the response rate is often 20 instead of 22.

There were 18 questions in total and most questions had specifications or
clarifications that are not included into the heading of the question. Complete
questions and their possible clarifying subparagraphs can be seen in annex 1.

Questions 3 and 4 as well as 7 and 8 from the form (see annex 1), have
been combined so there are 16 subchapters instead of 18 (the number of ques-
tions) to this chapter. This merging was done because the question 3 defined the
phase to which the interviewee participated on and after that knowledge was
gained, the most essential phase to that individual’s workload was mapped in

61

the question 4. These were asked separately but the question 4 can be perceived
as a clarification to the question 3. This same reasoning holds true for the ques-
tion 7 and 8, question 8 is a clarification to question 7, so these questions have
also been merged in the answer section.

Could you provide your personal information?

Results relating this question are not included here, this was done because the
information provided for this question was personally identifiable. This infor-
mation included titles, roles, or more specific job descriptions and these have
been erased to preserve individual privacy.

How do you see your role in the requirements engineering process?

Participants received a list of the most typical roles in the requirements engi-
neering process to assist them in their responses and gain a usable material to
analyze. These five role models were: subject matter expert, business process
expert, software systems engineer, architect and hybrid role, the question in its
entirety can be seen in the annex 1. These role models were chosen based on the
role model distribution done by Laplante (2017, p. 18). Respondents saw their
own role in the requirements engineering process as a hybrid role meaning a
combination of some of the five roles presented previously, after this the op-
tions were elaborated on orally. Following this discussion most chose a more
specific role shown in the FIGURE 24.

FIGURE 24 Interviewee's role in the requirements engineering process

As shown in the FIGURE 25 most (three out of four) felt that their role in the
requirements engineering process in either a subject matter expert or a business
process expert. This being so, the remaining quarter is formed from the roles of:
software systems engineer, hybrid and architect. After the question most of the

62

participants indicated that in their experience the RE was not part of their main
work duties.

Which phase/phases of the Company Specific Software Development Process
(CSSDP) are you involved with? In what phase is your role most involved
with the process?

Questions and 3 and 4 aim to map out the participant collaboration into the
Gateway- process and their attitudes to the model usage in the software devel-
opment process. The results for these questions are presented in unison in this
subchapter.

Question 3: “Which phase/phases of the company specific software de-
velopment process (CSSDP) are you involved with?” tried to direct the inter-
viewee to think their own role in the CSSDP and cover all the areas of the pro-
cess that the interviewee is participates in. Along with the question the re-
spondents were shown a picture of the CSSDP (see annex 2), which is used to
develop new products to aid their thinking.

The question was leading, and it was only intended to make the partici-
pant to consider his/her role in the software development process and thus the
answers were not recorded. The intention was not to gain any data from this
question, but the answers provided valuable input as to the attitude of the in-
terviewee towards the CSSDP.

After the picture was shown most of the participants told that they did not
consider the current model to be suitable to the software development’s agile
principles, because the model is fundamentally linear and thus too inflexible.
They also mentioned that they had understood that currently there were multi-
ple different methodologies used it software development. When they were
asked, how had this come to be, interviewees adduced two things; diverse
teams work differently and traditional mechanical product development versus
software development process are quite different. Most also expressed their
wish about more unified work practices between the teams.

Question 4; “In what phase is your role most involved with the process?”,
mapped the specific phases of the software development phases that the partic-
ipants saw more vital than the other phases in their own perspective or to
which they used more resources.

Along with the question the respondents were again shown a picture of
the CSSDP (see annex 2), which is used to develop new products. Participants
were asked to name a singular phase or limit their involvement to its most
meaningful place in the process, this could mean two distinct process phases.

These mentions were scored in such a manner that every mention was
counted individually and if the mention was made it received a point, most in-
terviewees gave two or three mentions and thus the mention count was greater
than one. The mentions counted to one phase do not then reflect the number of
participants but rather the number of mentions. The mentions were divided
according to FIGURE 25.

63

FIGURE 25 Process phases where the role of the interviewee is emphasized

There were 40 mentions all together. Most mentions were given to the concept
phase, which gathered over one quarter of all given mentions. Additionally,
respondents highlighted the planning, InnoStream and product specification
phases, where many felt that their role was essential.

Is the company using a product mission statement (PMS) or any document
that would provide that information?

Fifth question inspected the PMS document and who is responsible about its
approval. This document (described in more detail in the chapter 2.1.3) in used
to store the product description and the most essential functions. This docu-
ment clearly states why the product has been developed and what is the need it
answers to. Answers to the question: ”…using PMS?” were divided according
the annex 3 TABLE 13.

From twenty participants 19 answered this question. The most mentions,
seven, were either “I can’t answer, I don’t know, I’m not familiar with this kind
of a document”. Two answered that they have not seen any documents of this
kind, but they felt that it could be useful. Especially the sales – people felt that it
would be a useful referral point when customers asked after a certain function-
ality or inquired about the products and service available.

Other answer can be divided into three categories, 1) respondents who
believed that the commissioner used such a document but could not directly
name such a document, 2) respondents who admitted that they did not believe
that such documentation exists with the commissioner, but provided sugges-
tions about other documents and 3) respondents who mentioned another doc-
umentation that in their opinion acts as product description document. Every
group was represented by four answers.

The respondents were next asked who approves the product description
document. This question was answered by eight participants, whose answers
can be seen in the annex 3 TABLE 14.

64

This question was not asked of all the participants, because they had told
that there was not such a document in use, to their knowledge. Question was
provided only if the respondents believed that the company used some product
description documentation or directly suggested another choice for the compa-
ny’s document. Participants did not have a unified perception about the person
who approves such a document. All the interviewees, who answered to this
question, gave a different role of responsibility as a result.

Why are requirements collected?

This question ensured that the process meaning in software development and
in business perspective has been correctly understood. All 20 participants re-
sponded the question and provided 25 answers. Answers were grouped into
the annex 3 TABLE 15, showing the mentions in every group, in the table one
mention means a mention made by the respondent.

There were 25 responses in total and the most mentions were given to
“…produce best product, software or service to fulfil customer needs”, custom-
er was overall seen as the most meaningful factor for elicitation and this was
reflected in the answers overall. Mentions relating to business growth and cus-
tomers collected 18 responses out of 25 in total. There was dispersion in the an-
swers in the departments, some took the perspective of the customer, some
business, and others a product point of view.

When and how are requirements collected?

The 7th and 8th question both cover requirements collection, so the results of
both questions will be presented in this subchapter. 7th question: ”when are re-
quirements collected?”, surveyed how long does the collection last and the
question was specified with a clarification; “is the collection iterative or relating
to a specific phase in the CSSDP?”. This clarification was provided for the inter-
viewees as a frame of reference to the answer they were to provide. All the 20
participants provided an answer and the distribution can be seen in the annex 3
TABLE 16.

Out of the 20 respondents nine respondents thought that requirements
engineering is a continuous process and requirements should be collected
throughout the product lifecycle. One participant specified that elicitation and
re-review of the requirements must be done multiple times. Besides that, two
interviewees mentioned that elicitation should be a continuous process. These
12 responses can be merged, and then every respondent represents continuous
collection.

Eight of the responses are divided into various groups. Two participants
responded that they did not know when the requirements are to be elicited.
Additionally, one participant mentioned that requirement elicitation depends
wholly on what process will be followed and what kind of process model is
used. With this the respondent meant, that some projects follow a so-called
hardware specific development process, and some do not. All four replies re-

65

flected the uncertainty on how to elicit the requirements in software develop-
ment.

The remaining four responses represent the beginning stages of the re-
quirements engineering process. Two replied that requirements are elicited
immediately at the beginning of the process. The third respondent felt the same
and he considered the questions from the hardware point-of-view and he felt
that this process is specifically and inclusively meant for hardware develop-
ment and requirements are thus elicited before phase 1. The fourth respondent
notes that requirements are elicited when a development for a new product is
begun. This means that all these four responses consider the initial phases of the
process and consider the current model as a linear process.

The 8th question: ”how are requirements elicited (collected)?” examined
the methods that were used during the elicitation. All 20 participants respond-
ed to this question and everyone gave two to three different mentions to this
question. As previously told, all mentions were counted separately, so the final
count of answers to this question was 51 meaning the number of distinct men-
tions. After initial grouping the answers were categorized to the table x (annex
3, table 1).

Provided responses were not process related but rather separate tools
and methods to be used in elicitation. These initial grouping results of methods
and tools were further grouped to annex 3 TABLE 18 into eight categories, to
create a clearer picture of the used tools and methods. This table was created
from these elicitation methods and tools that received three or more mentions.
Other individual groups form one bigger category “other tools and methods”.

Most mentions were given to discussions that was mentioned six times,
but the responses provided additional variations. In must be noted that in dis-
cussions the opposite side -from whom the requirements are elicited, like the
stakeholder group change and the interviewees did not specify the opposite
side who participated to the discussion.

Different forms of discussion that were provided were discussions with
the development team, where the experience of the team was utilized, this has
two mentions. Customer meetings (one mention) or regular customer meetings,
where customer needs are discussed with the customer gained two mentions
and where these needs can be written down on notes gained one mention.
These different variations of discussion gained six mentions.

Another theme strongly associated with discussions was sales events.
This was mentioned three times, but the method was not defined. It was left
unclear was the method a discussion with the customer or are there structured
forms that are filled or are there some other methods in use.

Third theme was sales sparring that was mentioned twice. In this case the
discussion takes place inside the organization and between the software devel-
opment and sales (more specifically export) employees these discussions aim to
gather knowledge to product development from the customer needs. All to-
gether there were 17 discussion related mentions.

66

Interviews were mentioned as an elicitation method three times, but the
respondents did not specify with whom the interviews were made with. Inter-
views can be utilized in market research as a data elicitation method. Market
research was mentioned as requirements elicitations method four times. Market
research can be executed with various kinds of questionnaires, questionnaires
were mentioned three times.

Regularly field observation was mentioned in connection with interviews
and questionnaires. Observation was mentioned five times, respondents also
specified that end-customer was observed in their workplace and after that ob-
servation their needs are noted down. The end-customer ja end-user perspec-
tive was used by four participants. The fifth mention came from supplier obser-
vation and their need observation, which was documented for later use.

Suppliers and end-customers have needs that must be elicited and addi-
tionally work practice observation was mentioned as an area where require-
ments should be elicited from. Three additional mentions were made about this
area and from this area competitor analysis was mentioned as an elicitation
method. One participant mentioned a central pool on collected competitor
analysis lists and this knowledge is then shared with the commissioner. These
listings provide knowledge on how large companies have overseen, won or lost
these competitive tendering processes. From this knowledge a further analysis
on what lead to the competitor success or to the choice of their service instead
of the commissioner’s comparable product or service.

Participants told that requirements elicitation is not structured and be-
cause of this everyone does things in their own way. Three respondents ex-
pressed an opinion that there are no methods for requirements elicitation or if
there is it has not been implemented to the whole organization.

These three respondents expressed a need for a structured process for re-
quirements elicitation. In these conversations respondents also reasoned that a
structured process would aid them in simultaneous elicitation between the
teams and iron out the quality differences of the work and ease resourcing. Ad-
ditionally, a structured process produced uniform documentation that was
mentioned as a development point. Documents used for the elicitation were
told to be different even in the team not to mention between separate teams.
This was a source of frustration and confusion for the participants.

“Other tools and methods for elicitation” consist of 12 mentions from
which singular tool like email, user story mapping and voice of the customer
(VOC) -analysis. These have been listed more in detail in annex 3.

Overall, the participants told the experience helped with requirements
elicitation and that it is done in co-operation with the development team. Elici-
tation can be aimed to the right place if the market understanding is good and
comprehensive. While interview was ongoing with the system developer, he
mentioned that he is not usually a part of the elicitation of the software re-
quirements. He felt that he could benefit from participation, to gain an under-
standing of the bigger picture and context for the code and he saw a way to
provide insight that could be useful for elicitation.

67

Requirements elicitation brought out responses of singular tools and
methods, which were known to the participants from those projects they had
participated on. This was also the explanation behind the fact that the respond-
ent did not know how to describe company level practices and processes for
requirements elicitation.

How are the “raw” requirements analyzed?

This question surveyed how requirements are first analyzed after initial elicita-
tion of them. All requirements are not valid, so the objective of the analysis
phase is to figure out the first group of applicable requirements for software
development and its later iterations. Altogether, 19 participants answered the
question producing 38 mentions about analysis related to collected raw re-
quirements. This means, that each interviewee mentioned two possible ways or
methods for requirements analysis.

The analyzing method was the same in this question as in all previous
questions. Answers were grouped into the annex 3 TABLE 20, showing the
mentions separately in the table and one respondent could make several men-
tions. Like with the previous questions the answers were put together to cate-
gories and mentions were counted, one mention is represented by one point.

The most points were given to the choices that produce the most business
potential. Meaning that the biggest customers will receive what they want and
need, this was mentioned four times. Four mentions were given to require-
ments prioritization in a workshop with the development team and this can be
combined with a conversation with the development team, which received
three mentions.

The responses underlined two analysis priorities: the monetary gain pro-
duced by the requirements in business potential and the prioritization of re-
quirements through importance and executability. In its entirety the responses
were divided to very few responses that defined specific analysis tools, that
they had experienced useful when analyzing requirements, there were three
from the whole group of 20. Most focused on their descriptions to what, how
and when the right circumstances were to analyze requirements.

It should be noted that most of these mentions are based on conversation.
This was essential when mapping and specifying the concept and researching
the bigger picture the requirements create. This is not a structured or a precise
analysis technique for the elicited requirements.

Centralized database aids concept correcting through customer need un-
derstanding. Previously collected information would also be more easily uti-
lized and additional stakeholder group’s needs better realized. Especially the
sales organization experienced that there were plenty of customer needs that
have been collected but their full potential is not realized.

How are requirements documented?

68

All 20 participants answered the question producing 59 mentions about the
documentation, this meant nearly three distinct document suggestions to one
interviewee. The method was the same in this question as in all previous ques-
tions.

Like with the preceding questions the answers were sorted to categories
and mentions were counted, one mention is represented by one point. There
were 26 groups, in which PowerPoint and Jira received six mentions each and
Confluence had five mentions. Every other category received 3 or less mentions.
TABLE 19 with groups and over all point score can be found in annex 3.

It is not necessary to present all the possible groups that were categorized,
or list all given mentions, but rather place weight to group’s total count of men-
tions which was 26. In practice this means that requirements documentation
and storing is done with 26 diverse ways.

Every documenter has had the means to choose a form according to their
fancy and craft the content as they desire. This has contributed to the situation
where the data is fragmented and scattered to many different documents which
do not have a consistent content and thus comparison of these documents is
difficult.

There were 16 different document form mentions, this result confirms and
underlines the conclusions of the previous question that there needs to be a sys-
tematic documentation and a structured process. The commissioner does not
utilize a standardized model for requirements documentation, which has led to
the state where the amount of used document form is varied. Every individual
doing documenting can basically choose a form to which document the re-
quirements. This leads to a situation where the information has spread to dif-
ferent documents, in non-uniform manner and comparison between the docu-
ments is nearly impossible.

Besides the document forms also the database count was large. Ten differ-
ent databases were mentioned for requirements documentation storage or di-
rect listing. Used databases varied from personal laptops to several different
company databases. Just the sheer number of different databases leads to chal-
lenges, because the knowledge cannot be utilized effectively because it is spread
virtually to multiple locations.

How do you utilize the requirements?

This question surveyed how requirements are utilized after elicitation, analysis,
and documentation phases. The purpose of this question was to check how the
organization of software development sees the role of requirements after they
have been identified. What happens to requirements then? 19 participants an-
swered the question producing 30 mentions about the requirement utilization.

The method was identical in this question as in all questions. Answers
were put together into the annex 3 TABLE 21, showing the mentions individu-
ally in the table and one respondent could make several mentions. Like with the
previous questions the answers were categorized and mentions were counted,
one mention is represented by one point.

69

The initial presumption was that the most critical stakeholder groups for
the software development would have described how these elicited require-
ments give an opportunity to create the software, the coding, testing and after
these activities the eventual launch. Basically, to answer stakeholder needs.

Responses revealed two bigger group categories: business development
and increasing sales and software development responses. These categories can
be linked to interviewee roles and responsibilities.

Most mentions were given to the group that responded that the require-
ments are utilized to fulfil business potential and for building a portfolio for the
future. This group gained three mentions, additionally requirements are uti-
lized in sales cases, which received two mentions and one mention was given to
aiding in strategic decision making. Requirements are utilized in software de-
velopment planning like allocating resources and prioritizing what must be
done and what is cost-effective, both received a mention.

Altogether 14 mentions in separate groups were directly involved with
software development. The interviewees mentioned that based on the require-
ments, planning, designing, completing the program and testing for it can be
done. For organization purposes based on the requirements sprints, tasks and
the documentation they require can be completed. Additionally, interviewees
have experienced that the requirements are needed for technical specification
and for minimum viable product creation.

The interviewees provided direct development suggestions for the process.
One mentioned that requirement documentation and writing does not have a
specific tool and highlighted the need for more systematic documentation. Two
interviewees told that forwarding ideas and requirements needs to the software
development stakeholder groups is not clear. They specified that the problem is
that they do not receive confirmation about the development phase, or has it
even been begun on part of their idea. They wanted a confirmation when the
idea has been implemented to software.

How is it supervised that the requirements get implemented?

This question surveyed how requirements implementation is supervised. The
purpose of this question was to gain an understanding about methods or roles
involved with requirements implementation. This question surveyed the re-
sponsibility for requirements implementation, monitoring and controlling pro-
cess phases after requirements elicitation, analysis, and documentation. By ask-
ing “how” instead of “who”, the possibility was left to the respondents to name
methods or tools used in implementation supervising.

In total 17 participants answered the question producing altogether 29
mentions about the implementation supervising. The method was the same in
this question as in all previous questions. Answers were grouped into the annex
3 TABLE 22, showing the mentions separately in the table, where respondent
could make several mentions. Like with the earlier questions the responses
were categorized and mentions were calculated, one mention is represented by
one point.

70

Most of the mentions related to requirements implementation supervising
are associated with software testing. Software testing was mentioned 13 times
and is composed of alfa and beta testing (3 mentions), usability testing (4 men-
tions), pen-testing (1 mention), in-house testing (1 mention; “we are testing the
software ourselves”) and automatized testing (4 mentions). Therefore, it can be
generalized that the tool used in requirements implementation supervising is
testing. It aids in finding out if requirements have been met as they should.

Another significant theme related to requirements implementation super-
vising, as mentioned earlier, are the roles and responsibilities related to it. 4
mentions were given to theme, which proposes that customer has a crucial role
in supervision. These mentions outline the reality that requirements implemen-
tation is supervised by involving the customer with the process.

Other role centered mentions brought up the responsible person in-house.
One interviewee suggests that the responsibility lies with the product manager,
where another underlines that the responsibility belongs to product owner. The
third role centered mention proposed that the responsibility for implementation
supervision belongs to the software development team.

Two interviewees questioned the supervising process of requirements im-
plementation and gave interviewers direct improvement ideas. The first one
stated that the company lacks a systematic process and hopes to gain improve-
ments via this thesis project. Another one noted that the process itself is neither
scheduled nor included in someone’s responsibilities. These both statements
and the earlier uncertainty about the responsible person, indicates that there is
no shared understanding between stakeholders about the roles and responsibil-
ities related to requirements implementation supervision. Also, interviewees,
who did not mention a person but preferred mentioning tools or ways for su-
pervising, support this conclusion.

What are the different kinds of requirements you see the most?

This question examined how different types of requirements are ranked by the
interviewed stakeholder groups, what they emphasize and when they are com-
pared to each other. The aim of this question was to gain an understanding
about the role and significance of information security requirements among the
most crucial stakeholder groups in the company’s software development.

In total 19 participants answered the question producing 62 mentions
about the different types of requirements that they saw meaningful from their
own point of view. The technique was the identical in this question as in all pri-
or questions. Answers were grouped into the annex 3 TABLE 23, showing the
mentions separately in the table and one respondent could make several men-
tions. Like with the preceding questions the answers were clustered to catego-
ries and mentions were counted, one mention is represented by one point.

Software development requirement types concentrated to three require-
ments groups primarily. These were user, functional and business requirements
(money, time, and resources). User and functional requirements were both
mentioned seven times each and business requirements gained five mentions.

71

It can be discerned from the responses that the people participating and
doing the developing in the software process, co-operate, emphasize user
friendliness and ease of usability. It is logical to consider the business potential
of a certain product or a service. This means that the leadership and corporation
have their own requirements for the development process, money, time and
resources are evaluated and defined for the development project.

It should be noted that information security requirements were explicitly
mentioned only three times. Additionally, respondents mentioned other infor-
mation security related requirements such as protection policies, legal require-
ments, data protection and GDPR, the law, VAHTI-instructions and KATAKRI -
recommendations.

In the part of requirements types especially the legal requirements were
mentioned as a development target. Stakeholder’s mentioned that they had no
clear practices in place to indicate the correct actions to be taken if a law change
occurred affected the company’s software and systems. One respondent men-
tioned that he would not know the correct stakeholder groups to inform in-
house or how to proceed with the change. Checklists were provided as a sug-
gestion to solve the murkiness and unclear practices relating to legal require-
ments.

The legal department shared this view. It was their perception that the le-
gal requirements defined by the law are currently considered in late stages of
the development process. This means that privacy by design does not get actu-
alized in the best possible manner. Legal requirements should be integrated as a
part of the company’s software development process from initiation phase for-
ward to be considered from the same point on as other requirements. Integra-
tion would be easier to accomplish by fortifying legal’s involvement to the
software development process but simultaneously keeping the role consultative.

From what stakeholder groups are requirements collected from?

This question examined from what stakeholder groups requirements are col-
lected this aimed to gain an understanding about the stakeholder groups that
are the focus of the collection and are there deficiencies. All 20 participants an-
swered the question, but one response was not included because it did not re-
spond to the question. So, the 19 respondents produced 82 mentions that were
divided into 36 groups. The method was the same in this question as in all pre-
vious questions. Answers were grouped into the annex 3 TABLE 24, showing
the mentions separately in the table and one respondent could make several
mentions. Like with the earlier questions the answers were categorized and
mentions were counted, one mention is represented by one point.

Most mentions were given to the groups on various levels that form the
client base of the commissioner. Various levels mean in this context customer’s
distributors and distributor’s customers, basically the end-customers of the
company. In places it was hard to comprehend the meaning of “customer” dur-
ing an interview session, all the various levels for customer were not defined
clearly and the term “customer” was used about both the retailer of the end-

72

customer and the end-customer itself. Combined all the mentions relating
to ”customer” received 23 mentions, meaning over a quarter of the mentions for
this question. Customer voice in its entirety is well considered in the company’s
requirements engineering process.

The interviewees mentioned that customer stakeholder group and end us-
er requirements are usually elicited through company’s retailers. This was seen
as an effective collection method but at the same time the interviewees told that
a secondhand knowledge did not entirely meet customer needs. There was a
consensus about the opinion that the commissioner should focus more re-
sources on stakeholder requirements elicitation and elicit them itself not operate
through a third party.

Another development target for requirements elicitation was the commis-
sioner groups of this action, the biggest and the best customers. It is a wasted
opportunity that the failed, lost or transferred customers are not systematically
interviewed. This would provide the commissioner more information about the
development needs to further improve the business.

Another meaningful finding was that the inner stakeholder groups such as
legal, marketing and operations were all mentioned only once. However, outer
stakeholder groups such as the law and legal requirements were mentioned six
times making it the second biggest group.

What are the models for requirements presentation?

This question surveyed how requirements are presented to stakeholder groups
that participate to the requirements engineering process. The question was
asked: “what forms or models are used to present stakeholder needs?”.

The purpose of this question was to examine how stakeholder require-
ments information is usually presented. This is meaningful, because the accura-
cy of the requirements information in the used forms or models, affects the
need for extra clarifications and the workload of the programmers. The system-
atic way to gather this information and write it up, helps programmers to fulfil
their duties more efficiently and therefore also have an influence on software
security.

Altogether 20 participants answered the question producing 39 mentions
in total about the requirements presentation. The system was constant in this
question as in all preceding questions. Answers were grouped into the TABLE
25, showing the mentions separately in the table and one respondent could
make several mentions. Like with the previous questions the answers were
grouped to categories and mentions were counted, one mention is represented
by one point.

From all the answers plain text got most mentions. It was mentioned as a
requirements presentation form 11 times. After plain text, pictures got 6 men-
tions and verbal form 5 points. All the rest got only from 1 to 2 mentions, so
these 3 groups are most common forms or models for requirements presenta-
tion of the commissioner.

73

As described earlier, commissioner is eliciting requirements mostly from
its retailers. One matter of improvement related both to requirements elicitation
and presentation with retailers, mentioned by the software development team.
Retailers should be informed and guided to correct requirements presentation.
This guidance should be developed in cooperation between operations and
software development departments, to create a form which helps programmers
to fully understand what the customer truly needs and wants. Currently the
form and accuracy of the information is free, and therefore programmers must
often perform extra clarifications with the customer, through the operations
department.

One interviewee explained that he often gets requirements as a picture at-
tached to an email and according to the picture, he should be able to program.
This interviewee highlighted the significance of accurate requirement specifica-
tion, which helps to understand how the software should be functioning and
performing.

How is it confirmed that the market/user is understood correctly (from the
business point of view)?

This question provided a better understanding for the market and customer
understanding. The better these are understood the better different customer
needs and reasons behind these needs can be comprehended. This leads to im-
proved collection, higher quality requirements and better security.

18 interviewees responded to this question and provided 25 mentions, two
did not provide a response. The technique was consistent in this question as in
all preceding questions. Answers were grouped into the annex 3 TABLE 26,
showing the mentions separately in the table and one respondent could make
several mentions, these 25 mentions were divided into 21 categories. Like with
the previous questions the answers were grouped to categories and mentions
were counted, one mention is represented by one point.

This means that the mentions were divided to diverse ways to gain market
and customer understanding and it is not possible to highlight a single or even
a few main techniques or means.

How the system context is understood?

This question examined how system context is built, four sub-questions were
presented; “System boundaries”, “Who are involved with system usage”, “How
does the system converse with other systems” and “What is the (business and
usage) environment like”. The aim of this question was to gain an understand-
ing about how the system context is understood in its entirety among the most
crucial stakeholder groups of the company’s software development.

All 20 participants answered the question, producing 24 mentions divided
into 19 categories. The method was similar in this question as in all earlier ques-
tions. Answers were grouped into the annex 3 TABLE 27, showing the mentions
separately in the table and one respondent could make several mentions. Like

74

with the previous questions the answers were grouped to categories and men-
tions were counted, one mention is represented by one point.

In this question, like with the previous one the mentions had a wide vari-
ance and it is not possible to highlight a single or even a few main techniques or
means to ensure that the system context is correctly understood during the re-
quirements engineering process. One anecdote from an interviewee; “there are
as many ways as there are people doing it”.

Compared to the previous question this question produced most mentions
that belong to the “I don’t know” – group. This response was directly dictated
twice and additionally three participants mentioned that “not part of my job
description”, which is seen as a part of the group in this context. This made the
“I don’t know” – mentions the largest group with five mentions.

Who takes responsibility if the requirements engineering process fails?

The final question in addition to; “Do you have any questions about the inter-
view or its subject” was to map out who is responsible if the process fails or
who has the final responsibility for the requirements engineering.

All 20 participants answered the question, but two responses were not in-
cluded because they did not respond to the question. So, the 18 respondents
produced 23 mentions that were divided into 18 groups. The method was the
same in this question as in all previous questions. Answers were grouped into
the annex 3 TABLE 28 showing the mentions separately in the table and one
respondent could make several mentions. Like with the prior questions the an-
swers were sorted into categories and mentions were counted, one mention is
represented by one point

Based on the variance the responsibility is not clear in the commissioner
organization’s requirements engineering process. Most mentioned first that
they themselves were responsible if the process fails. After additional questions
respondents categorically provided another person’s name.

4.1.3 Analyzing the identified problems

This thesis explored the problems of the requirements engineering process by
interviewing its most essential stakeholder groups. There were 22 interviewees
and two of them were more specific and concentrated on few topic clarifications
that emerged during the interview process. The results were analyzed with cat-
egorizing and coding. The analysis of the results provided three crucial themes:
various requirements engineering models, methods and tools, roles and respon-
sibilities as well as requirements management. This chapter is structured ac-
cording to these themes and the progress follows their presented order.

Various models, methods, and tools

75

It came apparent during the interviews that the requirements engineering pro-
cess is concluded with several various models and a unified model has not been
implemented. Some teams operate through agile principles and others accord-
ing to mechanical side’s company specific development process. This process is
thought to be unsuitable for software development because the model is fun-
damentally linear and thus thought too inflexible for agile software develop-
ment purposes. It is often seen as a traditional product development tool in-
cluding a lot of documentation. However, a combination model, utilizing both
linear and agile methods, can be created. This was also mentioned by the inter-
viewees as an improvement idea for systematic process usage. The resulting
process model should be business specific and include only the least amount of
documentation needed for tracing requirements through their life cycle.

A lack of a unified model means that teams have various operating prac-
tices during the process and thus produce divergent documentation. Various
operating practices between the teams occur from agile practices and the devel-
oper’s need to have the freedom to select the most appropriate and suitable
tools for their work. However, from administrative perspective the require-
ments engineering process needs its own process model to evaluate, monitor,
guide, and control activities.

In addition to various operating practices the teams utilize various tools
for requirement elicitation, analysis, documentation, storage, and utilization,
this was perceived to be a positive thing. It would still be beneficial for the
commissioner to ensure that the necessary tools are available, the usage has
been instructed and the teams utilize the available tools comprehensively when
refining the requirements.

Requirements create the foundation for project planning, management,
risk and change management and eventually to approval and trade-offs. Func-
tional, user and business requirements were mentioned multiple times. Security
requirements like information security were mentioned only thrice. It might be
that they were mentioned so rarely because the roles are not defined concisely
and the responsibility for software security is not assigned to anyone. The
threats and risks are not on the table during software development but rather
they are dealt with among other nonfunctional requirements. The commissioner
should ponder how much it wants to invest to software’s information security
and what role is should have during the development process.

The commissioner should also ensure that the process produces at least
the unified quality ensured by standardized tools. Deficiencies in tools emerged
in the analysis phase because the interviewees could not name specific tools to
use in this phase. Instead they described what, how and when should analysis
be done in their opinion.

Requirements implementation supervision was said to be completed with
various testing methods, so it is a logical deduction that testing is the current
method for supervision. Most interviewees had a hesitant voice tone when
mentioning or maybe suggesting testing methods. This led the researchers to

76

believe that they were not sure about their suggestions or they were unsure as
to how and with what is the testing accomplished.

Like all processes the requirements engineering process relies to the pre-
vious phase and the results that it has produced. This means that the founda-
tion for the process is laid during its initial phases and these either guarantee a
success or ensure a failure. Development needs for these phases should be con-
sidered seriously because problems accumulate during the process.

Roles and responsibilities

Confusion relating to the roles and responsibilities came apparent during the
interview questions. The interviewees could not name their own role in the pro-
cess even though they represented critical roles in it. Like told in the results the
interviewees thought that requirements engineering is not an essential work
task they should be concerned about. This leads to the conclusion that the inter-
viewees did not completely understand what the requirements engineering
process in its entirety covers and through this their own meaning to the process.

Role and responsibility divide and the confusion relating to it continued
during the product mission statement question and the responsibility for its
approval, also they were not knowledgeable about the requirements implemen-
tation approval and does the product fulfil the requirements in the testing
phase. Lastly, they did not have a specific person to name as the responsible
person for requirements failure or as the proprietor of the requirements engi-
neering process. All these express deficiencies in role and their responsibility
assignment, where one critical deficiency is the lack of a process owner’s defini-
tion. If the process owner is not defined, logically no one oversees the process.
Then the process will not evolve with the business and its operational environ-
ment.

The confusion related to roles and responsibilities was reflected across the
requirements engineering process. The practices and activities have not been
assigned to those groups that participate to it and this makes the completion
erratic. Which means that when the requirements engineering process model is
generated, it is a good practice to identify the roles that ordinarily are associat-
ed with actions in the process.

Defining the roles presumes that the process stakeholders - inner as well
as outer have been identified. This is one of the defining phases of the require-
ments engineering process. Stakeholder identification must be examined from
their perspective and their desires must be mapped and expectations for the
product managed. This does not affect only the outer stakeholders but also the
inner groups.

Inner stakeholder input in software development processes needs to be
improved upon. Various inner stakeholder groups, and their voice should be
considered more thoroughly during the development process. These inner
stakeholder groups include the law, which was a meaningful outer stakeholder
representative. The legal department does not have a specific role or responsi-

77

bilities in current software development projects, and it is worth considering
should it be capitalized more efficiently as an inner stakeholder group.

Also, software engineer’s role and responsibilities should be clarified. Ac-
cording one of the interviewees, software engineers are not participating in re-
quirements engineering process from its initial phases. This leads to situation,
where software engineer has no comprehensive context understanding about
the software to be developed.

Requirements management

The role of requirement management, as described more in detail in chapter 2,
is to aid in information management, its capture, storage, and dissemination. It
also permits requirement traceability, which was mentioned by one of the soft-
ware engineers as an area for further improvement.

Like Beatty and Wiegers (2013, p. 13) state, requirements cannot be man-
aged if they are not well documented. Documentation aims to maximize the
benefits of the elicited information and through that the understanding of the
software and at the same time ensures that if key personnel changes the data
loss is minimized. Additionally, documentation aids maintenance and devel-
opment choices can also be justified legally. This was also mentioned as an im-
provement point by the company’s legal representative.

Demands evolve over time, and therefore requirements engineering pro-
cess must be flexible adapting to changes. Requirements should be open for re-
evaluation and review. This is accomplished by validating documented re-
quirements during the occurring changes.

Before requirements can be elicited, stakeholders must have a mutual un-
derstanding about the software and its primary functions. This information is
usually presented in product mission statement document, which according to
the interviewees is lacking from the commissioner’s software development. Be-
cause the product mission statement is not used, there cannot be a person that
would approve such a document.

Requirements documentation, analysis and utilization all suffer from simi-
lar challenges. Requirements documentation method steers the process forward
and ensures that requirements can be read, analyzed, rewritten, and validat-
ed. The commissioner utilizes multiple requirements documentation and stor-
age solutions which weakens requirement utilization in software development
processes as well as during development lifecycle.

Centralized requirements database was suggested as a solution for the
scattered information. It might also help with the utilization of the elicited in-
formation to its full potential. Especially sales representatives mentioned a need
for further investigation of the gathered requirements. They often base their
forecasts of the market development and customer need changes on this mate-
rial.

Interviewees did not mention any specific tools for requirements analysis,
and they seemed confused about the subject of the question. Because there is no

78

structured method for the analysis phase, the analysis quality is diverse and
same for the results. The quality depends on the individual who forms the
analysis.

Requirements analysis should be a continuous process. After every change,
the effect of this modification to the product and its most important assets must
be recognized. This analysis provides an understanding on how the change
shall affect the product, its safety and requirements can then be specified. Thus,
making it possible to update risk and threat evaluations and their mitigating
factors, from where the requirements have originally been created.

4.1.4 Concluding the prevalent situation of requirements engineering pro-
cess

Interviews provided a good perspective to the commissioner’s current situation
and the development needs for the requirements engineering process as well as
provided a part of the answer for the question; “What are the current problems
of requirements engineering process for the commissioner and what practices in
the field of secure software development, would best solve them?”.

The commissioner did not have an applied model for requirements engi-
neering, thus its phases could not be compared across various projects. Typical
requirements engineering actions and practices were done but the lack of a de-
fined process caused these actions serious deficiencies. During the research
three crucial themes emerged: various requirements engineering models, meth-
ods and tools, roles, and responsibilities as well as requirements management.
There same themes were present in the analysis chapter and they also formed
the structure for this chapter. The four recommendations founded on these
themes are represented here.

The first recommendation was that a model for requirements engineering
should be implemented. This model should be a combination of linear and agile
practices. The commissioner’s corporation applies a linear model and its use is
mandatory, but the commissioner wants to maintain a partly agile procedures
in its practices.

A second recommendation was that there should be a standardized cus-
tom for method and tool usage, while leaving the developers a choice as to the
most appropriate tool or method. This standardized custom would ensure a
homogeneous quality foundation for the products, software and services gener-
ated throughout the process.

A third recommendation was that the stakeholder groups should be iden-
tified, and their responsibilities in the process must be both examined and de-
fined. Additionally, stakeholder interests for the software should be mapped, to
understand the basic framework of the requirements related to the develop-
ment projects.

The fourth recommendation was that a central database should be estab-
lished for the requirements to ensure their usability and traceability. This data-
base should be used across projects and locations. The database could be an ex-

79

isting one, but it should be assigned as the official and mandatory destination
for this information.

All these recommendations (TABLE 5) were important themes for further
development of requirements engineering process. However, the main purpose
of this thesis, was to produce a model for requirements engineering. This
frames the focus area to the first recommendation and its further investigation.
This means, that the researchers first identified the widely used practices for
implementing information security into the software development process and
secondly unified these identified practices to a combination model.

TABLE 5 Recommendations for requirements engineering

Recommendation Issue Content

1. Model Implement a RE- model

2. Methods & tools Customs for tools & methods usage

3. Roles & responsibilities Identify stakeholders and their roles

4. Requirements management Establish a central database

4.1.5 Comparing secure software development - practices

The literature review can be perceived as the first iteration of this study where
41 secure software models and frameworks were discovered and listed (see an-
nex 4). Additionally, the commissioner requested that the CSSDP would be in-
cluded into initial comparison to evaluate its success compared to other soft-
ware development models. This listing was represented to the commissioner:
the models, their central idea, features and emphasis and the most suitable
models were selected to iteration three. This second iteration resulted into mod-
els in TABLE 6 and they are presented in more detail at the literature review
section 2.3.7.

TABLE 6 Secure software development models presented in literature review

80

The third iteration included an evaluation with the commissioner on the model
criteria and its results can also be seen in previously mentioned section 3.2.1.
The condensed selection criteria of desired features:

a. Enables documentation and its traceability
b. Enables practice implementation into a linear model
c. Enables iterations between phases
d. Enables risk- based security requirement prioritization
e. Enables risk- based decision making

Based on the third iteration it was concluded that none of the models fulfils the
criterion by itself, as presented in TABLE 7 . Therefore, a combination model
should be drafted. The third iteration excluded the Phase-gate and SAFe models.
Phase-Gate model was excluded because it was already used by the commis-
sioner, so its features and characteristics had nothing new to provide in regards
of information security. SAFe did not adapt to linear software development
foundation, which was a mandatory and critical requirement, so it was also ex-
cluded. So, the third iteration resulted into four models: BSIMM, SAMM,
SQUARE and Touchpoints.

TABLE 7 Model comparison according to commissioner’s business goals

The fourth iteration was the comparison of the models, previous iterations were
done to exclude the unsuitable and undesirable models out of the comparison.
The fact that the SQUARE model did not fulfil the evaluation criteria complete-
ly on the part of “commonly used” was in this case disregarded. The model was
a more specific one than the others, focusing on requirements engineering and
its quality. Thus, it was concluded that its value as a requirement engineering
based model would exceed this one shortcoming and it was included to the
next iteration.

This comparative study utilized an existing research paper from 2019 were
Higuera et al. (2019, pp. 4–7) compared SAMM, BSIMM, SQUARE and Touch-
point models among others. They had made a comparative analysis of the
SSDLC and evaluated the security actions which were offered for each phase.

81

They considered the four main phases of SSDLC: identification of requirements,
design, implementation, and verification as well as validation. In their study all
four phases were considered by all, but the SQUARE framework was the only
one of the four that was not reported to be used in the software industry.

This research utilized four phases of SSDLC which are requirements
(analysis), specification, implementation, and testing. This follows the categori-
zation of Baskerville et al. (2005, p. 2). Their division is represented for the first
time in the subchapter 2.3.4. However, in the research of Higuera et al. (2019, p.
4) they used verification instead of testing but the content is compatible to Bas-
kerville et al. (2005, p. 2) categorization choice thus it is treated as such.

The fifth iteration included the comparison of research results by Higuera
et al. (2019) and this thesis’s views on the practical implications of the models in
the commissioner’s context. The benefit of each model for the company was
represented in phases and can be viewed from the SSDLC- process as well as
CSSDP perspective. The results have been gathered in to the FIGURE 26.

FIGURE 26 Comparison of models in the fifth iteration

SQUARE provided the most comprehensive practices to the requirements
phase where they were founded on the understanding of the most vital features
of the product. This also provided a way to identify the most important assets,
prioritize threats and risks related to them and formulate the security require-
ments. Additionally, Touchpoints supported this view with its risk analysis-
based practices.

BSIMM and SAMM had a more thorough inclusion of product related le-
gal requirements, recommendations, and standards than SQUARE. These
should be considered during the requirements identification phase. The output

82

of requirements phase into action planning stage was a product mission state-
ment (PMS), security goals, asset identification, threat and risk- modelling, re-
quirement elicitation where BSIMM and SAMM model brought the components
of strategy, compliance, policy and standards as well as requirement prioritiza-
tion and categorization.

BSIMM provided the most suitable practices for the design phase where
threat and risk modelling for security design definition and establishment.
These activities were commenced after initial confirmation of software’s design
and architecture. Secure architecture production was established with the prac-
tices from BSIMM while SAMM provides additional resources. The output of
design phase into action planning stage was threat and risk modelling, which is
used to clarify and confirm security design as well as security requirements.
Creation of security architecture was supported with SAMM practices.

The practices in implementation phase were divided between various
model perspectives. BSIMM and Touchpoints highlighted threat and risk-
based security testing. SAMM emphasized vulnerability management through
threat and risk identification and SQUARE emphasized the decision-making
process of requirement implementation and the encompassing documentation
of their rationale. The output of implementation phase into action planning
stage was threat and risk modelling based security testing offered by BSIMM.
Additionally, decision-making process and rationale (a security report), which
were related to security requirements implementation phase and were consid-
ered as the output.

All the phases emphasized security testing and especially ideas from
Touchpoint fit well to the commissioner’s context. SQUARE included befitting
practices that emphasized documentation and decision-making process and
rationale (a security report), which are related to security requirements testing
phase that was considered as the output. All the iteration outputs were gath-
ered to annex 5. Outputs of the iteration five are shown in TABLE 8 and they
acted as the inputs for the action plan.

TABLE 8 Outputs of the comparative study

Phase (SDLC) Output

Requirements PMS, security goals, asset identification, threat and risk modelling, re-
quirements elicitation, prioritization and categorization

Strategy, compliance, policy and standards, which also form requirements

Design Threat and risk modelling, which clarifies and confirms security design
and requirements

Security architecture can be supported with SAMM practices

Implementation Threat and risk modelling based security testing (round 1)

Security report (report 1)

Testing Threat and risk modelling based security testing of finalized software
(round 2)

Security report of finalized software (report 2)

83

4.1.6 Conclusions of the current situation diagnosis

Current situation was formed out of two parts: interviews and a comparison
between practices. These two parts together provided the answer to the re-
search question; “What are the current problems of requirements engineering
process for the commissioner and what practices in the field of secure software
development, would best solve them?”.

The interviews revealed problems with the whole requirements engineer-
ing process and provided the first part of diagnosis of the prevalent situation.
The prevalent situation was that there is no process model currently used in
requirements engineering. This diagnosis is the foundation for the second stage
of the action research, where the possible intervention for it is planned.

The second part of the diagnosis formed from the comparative study,
which concluded the practices needed for the final model creation. These prac-
tices were inspected through four phases of SDLC and compared against each
other, after which the most suitable ones refined elements required for the new
requirements engineering model.

4.2 Action planning for implementation phase

Action planning stage considered the first recommendation of the semi-
structured interview, structuring a model for requirement engineering. The
framework of the model is CSSDP and its main added elements were formed
through literature review, document analysis (subchapter 2.1.3), semi-
structured interview and comparative study and also justified by them. These
elements were presented in in more detail with justifications (annex 6) and a
condensed version (TABLE 9) can be seen below.

TABLE 9 Elements for the final model

Elements Literature Document
analysis

Semi-structured
interview

Comparative
study

1. Product mission statement
(PMS)

x x x

2. Security classification x x

3. Requirements document x x x x

4. Technical design plan x x

5. Test plan x

6. Threat modelling & risk
analysis

 -Security requirements
 -Privacy requirements

x x x

7. Beta security report x x x

8. MVP security report x x x

9. Requirement changes x x

84

The model which was drafted from CSSDP as well as from the elements pre-
sented above is named as the Threat and Risk Based Software Gateway (TRB-
SGW) (FIGURE 27). Gateway- process (the foundation for this model) and its
phases were marked with dark blue, thick arrows and two lowest rectangles in
the picture. Process deliverables are light blue rectangles (TABLE 10) and two-
sided arrows and relationships were marked with black arrows. Descriptions
are light grey, and the symbol is a speech bubble. Decision points are sky blue
diamonds. Swimmer lines divide the sections between the “diamonds” and
these sections are called phases.

TABLE 10 Action planning phase outputs

Phase Output

-1-0 Product mission statement

0-1 Requirements document draft

1-2 Software specification including the technical design and test plans

2-3 Beta security report

3-4 MVP security report

4-5 Release of a first version of the software

(5- Update, revision, new release or a new feature)

The phases were examined one at a time and every phase is explained. The first
is a pre-study extending from -1 to 0. The second phase was requirements defi-
nition from 0 to 1. Third phase was specification from 1-2 and fourth was prod-
uct and process design from 2 to 3. Fifth was industrialization and market
preparation from 3 to 4 and then the launch 4 to 5 and production finalized the
phases, occurring after phase 5.

85

FIGURE 27 Model for RE with implemented information security

The focus of this thesis was between phases 0-2, in these phases the require-
ments engineering’s role is highlighted. Other phases from -1-0 and 2-5- were
described in more general terms.

Pre-study (-1-0)

Phase input is an idea from the InnoStream. The pre-study examines if the idea
has business potential and this is scrutinized with a market study. Stakeholder
analysis provides the correct stakeholders for a specific project. The stakeholder
groups are identified, analyzed and their needs are mapped. In this phase the
initial requirements are also elicited from the groups. The market study delivers
an understanding about the initial requirements, shape of the concept and com-
bining these as the output, a product mission statement.

Requirement definition (0-1)

86

This phase receives the product mission statement as an input and initialized
agile development which continues all the way through the process to industri-
alization and market preparation phase (4). The requirements definition phase
produces the requirement definitions and answers the question; “what kind of
software should be produced?”. To answer this question the security goals of
the software should be defined, and its security level must have a classification.
To produce this decision, the company should define what are the classes and
the criteria for a security classification. The criteria should be specified, and its
usage must be implemented to the organization. This will provide guidance to
the employees and aid in the decision of the correct class.

A chosen security classification defines the scope for the security and pri-
vacy requirements. This scope includes these initial high-level requirements
that can be documented and specified later during the process.

The initial requirements document includes the high-level requirements
that have been received through the security classification. In the document all
requirements must be prioritized, the class must be labelled, someone must be
accountable for them and their status must be clearly marked. The documenta-
tion should be stored into a centralized database. A typical output from this
phase is a requirements document draft.

Specification (1-2)

Phase input is the requirements document draft. In this phase the product mis-
sion statement and the requirements document draft form the input for the
technical design including architectural design and test plan of the software.

After the software architecture is drafted the initial threat modelling and
risk analysis can be produced. The meaning of this process phase is to identify
the most critical assets regarding the developed software. The identification
process results in threat recognition, after this the risk related to the threat
should be evaluated. Based on the risk evaluation the risks can be prioritized
and categorized to identify the most critical threat that must mitigated by the
software development team. These countermeasures are used as security con-
trols and these countermeasures can also be perceived as requirements.

This initial threat modelling and risk analysis produces more accurate se-
curity and privacy requirements. The re-evaluation of the threats and risks con-
tinues from this phase (1-2) through the process until phase 3-4. The require-
ments documentation is updated after every re-evaluation.

The most essential security and privacy requirements are divided into pri-
ority classes, the meaningful ones are chosen and then transferred to a require-
ments document. The development team combines their knowledge and choos-
es the most meaningful ones and these choices must be explained and docu-
mented. The documented requirements are forwarded to the development team
as epics and initial beta and minimum viable product (MVP) content are decid-
ed. The typical output from this phase is the software specification including
the technical design and test plans.

87

Product and process design (2-3)

Phase input is the software specification combined with security and privacy
requirements and used to produce product and process design. This phase an-
swers to the question; “how should the requirements be implemented?”.

The software development team received the plans as an input and initi-
ates a refinement of the plans into individual development tasks. These refine-
ments and tasks are implemented in iterations during the phase. When beta
content has been implemented and tested the typical output for this phase; a
beta security report (a general comprehension about the security’s state at the
time) is produced and the beta version of the software is released. The security
report includes the work that still needs to be done and risks related to this
missing work.

Industrialization and market preparation (3-4)

Phase inputs are the beta version of the software and the security report. The
development team continues working on the project tasks and the issues identi-
fied during beta testing. The beta software can be evaluated, and its program-
ming adjusted accordingly. During this phase minimum viable product testing
is done to ensure that the software responds to the minimum viable product’s
criteria. When MVP content has been implemented and tested the typical out-
put for this phase; an MVP security report is produced, and the MVP software
is released. The aim of MVP security report is to describe the software’s security
requirements and the decisions made during the project.

Launch (4-5)

Phase inputs are the MVP version of the software and the MVP security report,
during this phase the software is made available to the market. The typical out-
put from this phase is the release of a first version of the software, which is
maintained and further developed after launch according to market needs.

Production and further development (5-)

The software is reviewed if further development is required and the documen-
tation is updated accordingly the update and change revisions are represented
in FIGURE 28. The phase input is a feature request that has not already been
accounted for in the previous software release. It must be stored into
InnoStream where all the requests are commonly deposited. The request must
be evaluated and analyzed according to its business potential, what are the
costs of its production and the impact of the change. When impact changes
original plans all relevant documentation needs to be updated otherwise devel-
opment of the feature may begin. In case of a minor change the process jumps
from -1 to phase 2 and if the change is to security and privacy requirements a
more thorough analysis must be performed similarly to the new software de-

88

velopment. Based on the changed version and change’s security report the re-
lease decision is made directly on phase 4.

FIGURE 28 Change iterations

This model is a combination of the best methods and practices of the software
development field. The foundation of the process is linear and is founded onto
Gateway- process model. A linear model enables better management of the pro-
cess and follows the corporate strategy. The linear model is also used to ensure
that the process results are as even in quality as possible while maintaining a
good security level.

The operative software development happens between phases 0-4 and the
aim is to keep it as agile as possible which is why software development will be
fundamentally agile with the commissioner. Programming and work in the
process utilize agile development practices which has been done to lighten the
too linear aspects of the development process. The central idea of it arises from
the process of threat modelling and risk analysis. The purpose of that process is

89

to investigate all the factors affecting software security and consider their im-
pact if the threats related to those factors will be realized.

The threat modelling and risk analysis process should be implemented by
the commissioner. As a recommendation, this process should cover at least the
following steps: 1) security classification, 2) asset identification, 3) threat identi-
fication 4) risk assessment, 5) countermeasure formulation and 6) security re-
quirements creation. Security classification step includes both security catego-
ries and their selection criteria. This step is used to lighten security goals of the
software development, meaning confidentiality, integrity and availability eval-
uation related to the software. Commissioner should develop security classifica-
tion classes and the criteria for their selection.

Asset identification step is used to recognize all the critical assets of the
software, that the attacker could exploit. After the asset identification threat
modelling (synonym to threat identification) should be implemented. This
modelling should go through all the assets, examine and name all the threats
related to them, through the CIA perspective and execute their risk assessment.
Risk assessment aids in threat prioritizing and according to these, the counter-
measures can be formulated.

Countermeasures of the threats represent the idea of the needed security
requirements. Therefore, the last step of the threat modelling and risk analysis
is security requirements creation, done according to the formulated counter-
measures. Thus, it can be stated that the agile development is threat and risk
based, which is still academically understudied area.

Davison et al. (2012, p. 767) write that the research methodology choice of
an action research mandates that action planning stage must explain and justify
the solution and how exactly is the identified problem solved. During the diag-
nosis stage and its first part the interviews revealed several problems in the re-
quirements engineering process. The most essential problem being that a struc-
tured model was not used. This model solves this problem by providing a
structured model for requirements engineering (FIGURE 27).

The second part of the diagnosed problem was the uncertainty towards
the most suitable practices of information security and how to implement into
requirements engineering. This problem was solved during the comparative
study where the most suitable practices were identified. These practices formed
the elements of the resulting model. The paramount problem of how to imple-
ment information security into requirements engineering process was solved
simultaneously by combining the results of diagnosis parts.

90

5 DISCUSSIONS

Methodological choice of an action research led to two main goals: one goal was
academical and the second goal was to provide concrete benefits to the com-
missioner. The first one required that this thesis would fill the framework of an
academic research and the second one to solve an existing organizational prob-
lem. Thus, literature review provided an understanding about software devel-
opment context and document analysis about the business context.

The empirical material was gathered through semi-structured interview,
which together with comparative study, formed the expeditionary framework
for the current situation diagnosis. The interview material was analyzed with
categorizing and coding. Analysis was accomplished by comparing interview
material with the observations of theoretical framework. The comparative study,
in turn, was completed through five iterations. Every iteration, to the fourth one,
was used to exclude models, after which the main comparison was accom-
plished in the fifth iteration. The fifth iteration benefitted from a recently pub-
lished research paper, containing a similar set of models but with a different
incidence angle. This research paper was written by Higuera et al. and pub-
lished in 2019.

All four methods were used to accomplish the diagnosis of current situa-
tion. They both revealed the problems related to requirements engineering pro-
cess in commissioner’s business context as well as afforded the suitable practic-
es for implementing information security into it. All the results were merged in
the action planning stage, where it engendered the answer to the main research
question: ”What is the best model for secure software development for the
commissioner, to implement information security requirements into the re-
quirements engineering process, in order to produce more secure software?”.

The action planning stage resulted in the TRD-SGW- model. This model is
not only theoretical, but a combination of its stakeholder’s needs. The principal
idea of the researcher’s has been to find a solution, which will be easily adopted
by its users. At the same time, it would increase their shared understanding of
secure software development and its fundamentals. It is warmly recommended
to involve stakeholders to implementation and testing of this model as well as

91

its continuous development. This model already has multiple earlier versions,
which all have been results of regular stakeholder reviews.

The resulting model and its applicability to its purpose can be authenticat-
ed only after completing the evaluation and reflecting stages. However, the
model can be evaluated according to a criterion created for models of secure
software development. Lynn Ann Futcher (2007, p. 43) combined such a criteri-
on, which contains seven points (TABLE 11, adapted from (Futcher, 2007, p. 43)).
It is used to measure how satisfyingly the developed model considers the most
critical standards and practices on the field. This criterion was generated under
the supervision of professor Rossouw von Solms, who is also one of the central
influences of this work. Even though technology has evolved, and the threat
environment has changed, the secure development’s fundamental idea remains
the same: to secure software’s critical assets from those threat and risks directed
at them. For this reason, the criterion is still relevant.

The TRD-SGW- model considers five points out of seven. It integrates in-
formation security into SDLC, is threat and risk driven, ensures security re-
quirements elicitation, suggests security controls according the risk assessment
results and considers change. The remaining two points should be considered
through, before the evaluation of the presented model.

TABLE 11 The criteria for secure software development

No. Description Original source Fulfilled

1. Ensure that developers are trained in how to develop
secure software

NIST SP 800-14, Microsoft TechNet
Report

2. IS must be integrated into the SDLC. It is essential that
security be a well-thought-out process from system
inception and design through implementation and
deployment, covering all the stages

Jones and Rastogi, ISO/IEC 17799, BS
7799, NIST SP 800-14, RUP, Microsoft
TechNet Report

x

3. Some form of risk analysis, risk assessment and threat
modelling must be performed during the initial phase
of the SDLC

Howard and LeBlanc, 2003; BS 7799,
ISO/IEC 17799, NIST SP 800-14,
ISO/IEC TR 133353

x

4. Security requirements must be identified early in the
SDLC

ISO/IEC 17799, BS 7799, NIST SP 800-
14, RUP

x

5. Relevant security services must be assigned ISO 7498-2, X.800, X.805

6. Design appropriate security controls and mechanisms
into application systems to meet the security require-
ments. These IS controls and mechanisms should be
selected because of some risk- based approach

ISO 7498-2, ISO/IEC 17799, BS 7799,
NIST SP 800-14

x

7. Ensure that any system changes do not compromise
the security of the application

ISO/IEC 17799, BS 7799, RUP x

As a typical characteristic to an action research, it considers complex organiza-
tional situations, involving many actors, subproblems, and subprocesses. All
these variables represented a particularly acute problem for this action research.
The need was not only to identify and describe the organizational situation, but
also to co-operate with different stakeholders to improve the situation. On the
other hand, this same characteristic made this research information rich, offer-
ing abundant empirical backdrop. Other weakness of an action research is that
conversations and social interactions can never be repeated with comparable

92

results. Thus, this kind of research setting can be challenging to repeat which
negatively influences reliability of the results.

The reliability weakness related to conversations and social interactions is
shared between action research and semi-structured interview. However, the
semi-structured interview as a research method was a perfect match for the
goals of this research because the goal was not to form generalizable but specif-
ic information for a specific purpose.

The foundation for the comparative study was formed during the litera-
ture review, by listing secure software development models befitting to the
business frame. That frame was refined from the set of commissioner’s goals
during the initial phases of this project. Reliability of this research may have
been affected by this approach, where the accessibility of the information
played a vital role. If the model candidate was for example relatively new or
covered only needs of a specific business field, it was excluded already during
this first iteration. This means, that some of the potential solutions may have
been ignored already in this “data gathering phase”. On the other hand, the
accomplished comparison included altogether five iterations, where each one of
them refined the information and re-examined it from a new perspective. This
factor increases the reliability of the end-results and offers the research itself
extra value, even as a singular part.

Both essential parts of the current situation diagnosis resulted in decisive
research results but also important experience. The semi-structured interview
showed how much silent information and great ideas there are hiding among
the stakeholders. After this experience, it is not exaggerated to underline the
importance of gathering stakeholder’s needs as well as feedback and ideas
regularly. Comparative study, in turn, highlighted the understanding about the
threat and risk-based ideology of all security related actions. Every defensive
action should be built on the understanding of the objective and its significance
for its assessor. Only through this understanding the potential threats and risks
related to asset may be mitigated efficiently. Therefore, security is never off-the-
self solution.

Lastly, the organization is as strong as its weakest link. By this statement
we want to remind that even if the threats and risks of an asset are identified
and mitigated, the significance of a security training and culture cannot be un-
dervalued. Like already mentioned; ”You can’t calculate the probability that a
system is secure based on the risks it handles, if it’s certain that insecure hu-
mans will form a part of it.".

93

6 CONCLUSIONS

The aim of this thesis was to produce a model for the commissioner to imple-
ment information security to the company’s requirements engineering process
used in software development. The material was collected as a part of two-stage
action research, where the first stage was current situation diagnosis and the
second action planning. The research included four research methods: literature
review, document analysis, semi-structured interviews, and comparative study.

Software products perform an increasingly critical role in information so-
ciety. Like Barabas et al. (2019, p. 1) wrote software products perform everyday
tasks and ensure that the most critical applications operate uninterrupted. This
means that security has become one of the most essential aspects of reliable
software product development. Secure software is forged during requirements
engineering process, which elicits stakeholder needs to solve customer’s prob-
lems. In this process, the role of information security requirements is empha-
sized.

The aim of this thesis was to produce a model for the commissioner to im-
plement information security into the company’s requirements engineering
process. The represented model, solving this problem, is a TRD-SGW- model,
which will create a foundation for secure software development and will later
be implemented to the commissioner’s use. The model is a threat and risk driv-
en, focusing on requirements engineering perspective and characteristically to
requirements engineering, inner and outer stakeholder needs are highlighted.
However, the implementation of this model will not alone ensure secure soft-
ware development, but it will help the organization to organize and perform
security driven development activities throughout the SDLC.

The research was founded on action research characteristics and included
two stages: diagnosis of the current situation and action planning, respectively.
The first stage provided an answer to the question; “What are the current prob-
lems of requirements engineering process for the commissioner and what prac-
tices in the field of secure software development, would best solve them?”. The
answer was provided through two parts; interviews about the process problems
and a comparison between practices used in the field.

94

One of the weak points of an action research and an interview is that con-
versations and social interactions could never be repeated with comparable re-
sults. Thus, these kinds of research settings can be challenging to repeat which
negatively influences reliability of the results. However, the chosen research
methodology was a suitable match for the goals of this research because the
goal was not to form generalizable information but specific information for a
specific purpose. The interviews revealed several problems with the whole re-
quirements engineering process, the main being that there is no structured
model utilized.

Researcher interpretations and inexperience on software development
might have affected the end results and the material that was chosen for com-
parative study. However, researchers acted in co-operation with the commis-
sioner and employee experts. Therefore, their input acted as a kind of vetting
process for this thesis’s choices. The comparative study was an only methodo-
logical option to fulfil the need to find the most suitable practices. It resulted in
the practices needed for the creation of a final model. These practices were in-
spected through four phases of SDLC and compared against each other, after
which the most suitable elements needed for the new requirements engineering
model were refined.

These elements, together with existing CSSDP formed the TRD-SGW -
model. The model is generic in nature for this one company, which enables its
usage widely in their context. However, the aim has been to find a balance be-
tween a too universal model and a too meticulous one. TRD-SGW will be used
project specifically, which is why it endeavors to be straightforward and user-
friendly.

The corporation level requires a linear model usage from the commission-
er. However, it leaves a freedom to the developers to choose their preferred
work practices. The reality is that agile practices are used and preferred in most
software development companies and projects, thus TRD-SGW- model includes
an agile practice element. Meaning that the model can be seen as a hybrid of a
linear foundation and agile practices, with a focus on information security.

The TRD-SGW has a novelty value because it merges agile development
practices with the idea of a requirements engineering- process. Bernsmed et al.
(2019, p. 2) concur that the combination of threat and risk modelling and agile
principles is still an understudied area. Therefore, this work has a novelty value
to the existing research. It also brought added value to the commissioner by
fulfilling the goals set for it. The model enables a project-specific security re-
quirement definitions and concrete security measures to distinct stages of the
SDP. Security measures are based on a risk assessment, which is done to all se-
curity requirements and can be traced through the requirements engineering
process.

The TRD-SGW- model can be easily implemented to the commissioner’s
software development and its Gateway- process model because it is built on its
existing foundation and structure. New elements of the model surfaced from
the comparative study, where the most widely used practices were the focus

95

point. This was also one of the goals set for the model’s creation. The final and
the most paramount goal was to ensure that the company could develop soft-
ware and services with high-quality and security. This will be accomplished by
utilizing this model and at the same time it will support security throughout
product life cycle.

The methodological choice affected to the research process. It resulted to
hardships and miscommunication during the action research. The goals and
desires of the parties were wide apart. The need for the organization to receive
a concrete and tangible solution and the required framework that had to be
reached for this thesis were not always compatible. The aim of an action re-
search is to develop a novel approach to an issue or solve a problem with ties to
a practical activity (Davison et al., 2012, p. 763). The value of this thesis is even-
tually defined by its usability as a model for software development and its abil-
ity to further develop the current practices in the company.

Further investigation could be addressed to polishing the model with the
stakeholder groups. This action requires an owner for the model, eliciting the
improvement ideas and critic regularly. This kind of research could for example
be directed at one of the model elements and moved through the process one
element at a time. This would improve the quality of the elements and adhere
to the ideology of continuous improvements. This model is company specific,
which restricts its usage only to this context. Therefore, the other investigation
development idea is to examine how usable this model would be with a wider
audience. It might be beneficial to study this phenomenon among other compa-
nies working on the same business section and conduct the process among their
stakeholder groups.

96

REFERENCES

Abdelaziz, A. A., El-Tahir, Y., & Osman, R. (2015). Adaptive Software
Development for developing safety critical software. 2015 International
Conference on Computing, Control, Networking, Electronics and Embedded
Systems Engineering (ICCNEEE), 41–46.
https://doi.org/10.1109/ICCNEEE.2015.7381425

Abraham, A., Happe, A., Hudic, A., Krenn, S., Notario-McDonnel, N., Striecks,
C., & Thiemer, F. (2016). System Security Requirements, Risk and Threat
Analysis. 97.

Abran, A., Kotonya, G., Moore, J. W., & Sawyer, P. (2001). Guide to the software
engineering body of knowledge: Trial version : a project of the software
engineering coordinating committee. IEEE Computer Society.

Ackoff, R. (1988). From Data to Wisdom.

Ahmad, A., Horne, C. A., & Maynard, S. B. (2016). A Theory on Information
Security. 13.

Aitken, A., & Ilango, V. (2013). A Comparative Analysis of Traditional Software
Engineering and Agile Software Development. 2013 46th Hawaii
International Conference on System Sciences, 4751–4760.
https://doi.org/10.1109/HICSS.2013.31

Ajayi, O. B., Onashoga, S. A., & Sodiya, A. S. (2006). Towards Building Secure
Software Systems. 3, 12.

Alexander, D., Finch, A., Sutton, D., Taylor, A., & Taylor, A. (2013). Information
Security Management Principles. BCS Learning & Development Limited.
http://ebookcentral.proquest.com/lib/jyvaskyla-
ebooks/detail.action?docID=1213992

Alexander, I., & Beus-Dukic, L. (2009). Discovering Requirements: How to Specify
Products and Services. A John Wiley and Sons Ltd.

Alqudah, M., & Razali, R. (2016). A Review of Scaling Agile Methods in Large
Software Development. International Journal on Advanced Science,
Engineering and Information Technology, 6(6), 828.
https://doi.org/10.18517/ijaseit.6.6.1374

Alshayeb, M., Mahmood, S., Mohammed, N. M., & Niazi, M. (2017). Exploring
software security approaches in software development lifecycle: A
systematic mapping study. Computer Standards & Interfaces, 50, 107–115.
https://doi.org/10.1016/j.csi.2016.10.001

97

Anderson, R. (2001). Why information security is hard—An economic
perspective. Seventeenth Annual Computer Security Applications Conference,
358–365. https://doi.org/10.1109/ACSAC.2001.991552

Andress, J. (2011). The basics of information security: Understanding the
fundamentals of InfoSec in theory and practice. Syngress.

Anuradha, J., & Pawar, M. V. (2015). Network Security and Types of Attacks in
Network. Procedia Computer Science, 48, 503–506.
https://doi.org/10.1016/j.procs.2015.04.126

Apvrille, A., & Pourzandi, M. (2005). Secure software development by example.
IEEE Security Privacy, 3(4), 10–17. https://doi.org/10.1109/MSP.2005.103

Babar, M. A., Liming Zhu, Ming Huo, & Verner, J. (2004). Software quality and
agile methods. Proceedings of the 28th Annual International Computer
Software and Applications Conference, 2004. COMPSAC 2004., 520–525.
https://doi.org/10.1109/CMPSAC.2004.1342889

Bahill, A. T., & Henderson, S. J. (2005). Requirements development, verification,
and validation exhibited in famous failures. Systems Engineering, 8(1), 1–
14. https://doi.org/10.1002/sys.20017

Balaji, S., & Murugaiyan, M. S. (2012). WATERFALLVs V-MODEL Vs AGILE: A
COMPARATIVE STUDY ON SDLC. International Journal of Information
Technology and Business Management, 2(1), 6.

Barabas, M., Blazek, P., Borcik, F., Fujdiak, R., Misurec, J., Mlynek, P., &
Mrnustik, P. (2019). Managing the Secure Software Development. 2019
10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), 1–4. https://doi.org/10.1109/NTMS.2019.8763845

Baskerville, R. (1993). Information systems security design methods:
Implications for information systems development. ACM Computing
Surveys, 25(4), 375–414. https://doi.org/10.1145/162124.162127

Baskerville, R., Kuivalainen, T., & Siponen, M. (2005). Integrating Security into
Agile Development Methods. Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, 1–7.
https://doi.org/10.1109/HICSS.2005.329

Baskerville, R., & Myers, M. D. (2004). Special Issue on Action Research in
Information Systems: Making IS Research Relevant to Practice: Foreword.
MIS Quarterly, 28(3), 329–335. JSTOR. https://doi.org/10.2307/25148642

Baskerville, R., & Wood-Harper, A. T. (1998). Diversity in information systems
action research methods. European Journal of Information Systems, 7(2), 90–
107. https://doi.org/10.1057/palgrave.ejis.3000298

98

Bassil, Y. (2012). A Simulation Model for the Waterfall Software Development
Life Cycle. International Journal of Engineering, 2(5), 7.

Beatty, J., & Wiegers, K. (2013). Software Requirements. Microsoft Press.
https://www.dawsonera.com/readonline/9780735679641

Beckers, K., Bruegge, B., Klepper, S., Lachberger, P., & Moyon, F. (2018).
Towards Continuous Security Compliance in Agile Software
Development at Scale. 2018 IEEE/ACM 4th International Workshop on
Rapid Continuous Software Engineering (RCoSE), 31–34.

Beg, R., Khan, M. H., & Parveen, N. (2014). Software Security Issues: Requirement
Perspectives. 5(7), 5.

Bernsmed, K., Cruzes, D. S., Jaatun, M. G., & Tøndel, I. A. (2019). Exploring
Security in Software Architecture and Design: (M. Felderer & R. Scandariato,
Eds.). IGI Global. https://doi.org/10.4018/978-1-5225-6313-6

Bhatia, P. K., & Kumar, G. (2014). Comparative Analysis of Software
Engineering Models from Traditional to Modern Methodologies. 2014
Fourth International Conference on Advanced Computing & Communication
Technologies, 189–196. https://doi.org/10.1109/ACCT.2014.73

Bizzell, A., Clinton, B. D., Prentice, R. A., & Stone, D. N. (2017). Wiley CPAexcel
Exam Review April 2017 Study Guide: Business Environment and Concepts.
John Wiley & Sons.

Boehm, B. (2006). A view of 20th and 21st century software engineering.
Proceedings of the 28th International Conference on Software Engineering, 12–
29. https://doi.org/10.1145/1134285.1134288

Bowen, G. A. (2009). Document Analysis as a Qualitative Research Method.
Qualitative Research Journal, 9(2), 27–40.
https://doi.org/10.3316/QRJ0902027

Broughton, T., Neailey, K., & Phillips, R. (1999). A comparative study of six
stage‐gate approaches to product development. Integrated Manufacturing
Systems, 10(5), 289–297. https://doi.org/10.1108/09576069910371106

Butler, C. W., & Vijayasarathy, L. R. (2016). Choice of Software Development
Methodologies. IEEE SOFTWARE, 9.

Buyens, K., De Win, B., Grégoire, J., Joosen, W., & Scandariato, R. (2009). On the
secure software development process: CLASP, SDL and Touchpoints
compared. Information and Software Technology, 51(7), 1152–1171.
https://doi.org/10.1016/j.infsof.2008.01.010

99

Byrne, M., Keary, E., & Lawton, A. (2012). How to Conduct a Literature Review.
38(9), 8.

Calder, A., & Watkins, S. G. (2010). Information Security Risk Management for
ISO27001/ISO27002.
http://web.a.ebscohost.com.ezproxy.jyu.fi/ehost/ebookviewer/ebook/
bmxlYmtfXzM5MTA5Nl9fQU41?sid=d921a1d5-3c01-42a2-9c7e-
a269b28ad50a@sdc-v-sessmgr01&vid=0&format=EB&rid=1

Campbell, T. (2016). Practical Information Security Management: A Complete Guide
to Planning and Implementation. Apress.

CESSDA Training Working Group. (2017). CESSDA Data Management Expert
Guide.

Cho, J. (2008). ISSUES AND CHALLENGES OF AGILE SOFTWARE
DEVELOPMENT WITH SCRUM. Issues in Information Systems, IX(2), 8.

CNSS, C. on N. S. (2010). CNSS Instruction No. 4009.

Collins English Dictionary. (2019). Motivation definition and meaning | Collins
English Dictionary.
https://www.collinsdictionary.com/dictionary/english/motivation

Cooper, R. G. (1990). Stage-gate systems: A new tool for managing new
products. Business Horizons, 33(3), 44–54. https://doi.org/10.1016/0007-
6813(90)90040-I

Dale, R., & Saiedian, H. (2000). Requirements engineering: Making the
connection between the software developer and customer. Information
and Software Technology, 42(6), 419–428. https://doi.org/10.1016/S0950-
5849(99)00101-9

Dardick, G. S. (2010). Cyber Forensics Assurance [PDF]. 8th Australian Digital
Forensics Conference, Edith Cowan University, November 30th 2010.
https://doi.org/10.4225/75/57B2926C40CDA

Davison, R., Kock, N., & Martinsons, M. G. (2004). Principles of canonical action
research. Information Systems Journal, 14(1), 65–86.
https://doi.org/10.1111/j.1365-2575.2004.00162.x

Davison, R., Martinsons, M. G., & Ou, C. X. J. (2012). The Roles of Theory in
Canonical Action Research. MIS Quarterly, 36(3), 763.
https://doi.org/10.2307/41703480

Dick, J., Hull, E., & Jackson, K. (2005). Requirements engineering (2. ed). Springer.

100

Dick, J., Hull, E., & Jackson, K. (2011). Requirements Engineering | Elizabeth Hull
| Springer (3.rd). Springer-Verlag London Limited 2011.
https://www.springer.com/gp/book/9781447158189

Dorfman, M., & Thayer, R. (2000). Software requirements engineering. John Wiley
& Sons. https://ieeexplore.ieee.org/servlet/opac?bknumber=5989265

Doyle, S. (2000). Understanding Information Technology. Nelson Thornes.

Easterbrook, S., & Nuseibeh, B. (2000). Requirements engineering: A roadmap.
Proceedings of the Conference on The Future of Software Engineering -
ICSE ’00, 35–46. https://doi.org/10.1145/336512.336523

Eberlein, A., Maurer, F., & Paetsch, F. (2003). Requirements engineering and
agile software development. WET ICE 2003. Proceedings. Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003., 308–313.
https://doi.org/10.1109/ENABL.2003.1231428

Ellis, T. J., & Levy, Y. (2006). A Systems Approach to Conduct an Effective
Literature Review in Support of Information Systems Research. Informing
Science: The International Journal of an Emerging Transdiscipline, 9, 181–212.
https://doi.org/10.28945/479

Finnish security committee. (2018). Vocabulary of Cyber Security. In
Turvallisuuskomitea.fi. https://turvallisuuskomitea.fi/wp-
content/uploads/2018/06/Kyberturvallisuuden-sanasto.pdf

Flechais, I., & Sasse, M. A. (2005). Usable Security: Why Do We Need It? How
Do We Get It? In L. F. Cranor & S. Garfinkel (Eds.), Security and Usability:
Designing secure systems that people can use (pp. 13–30). O’Reilly.
http://shop.oreilly.com/product/9780596008277.do

Futcher, L. A. (2007). A Model for Integrating Information Security into the Software
Development Life Cycle. 198.

Futcher, L. A., & von Solms, R. (2007). SecSDM: A Model for Integrating
Security into the Software Development Life Cycle. ResearchGate. Fifth
World Conference on Information Security Education, United States
Military Academy, West Point, New York, USA.
https://doi.org/10.1007/978-0-387-73269-5_6

Gedam, M. N., & Meshram, B. B. (2019). Vulnerabilities & Attacks in SRS for
Object-Oriented Software Development. 6.

Ghilic-Micu, B., Mircea, M., & Stoica, M. (2013). Software Development: Agile
vs. Traditional. Informatica Economica, 17(4/2013), 64–76.
https://doi.org/10.12948/issn14531305/17.4.2013.06

101

Goertzel, K. M., & Jarzombek, J. (2006). Security in the Software Life Cycle. The
Journal of Defense Software Engineering, 6.

Gupta, A. (2014). International Journal of Advance Research in Computer Science and
Management Studies. 2(12), 6.

Hadavi, M. A., Hamishagi, V. S., & Sangchi, H. M. (2008). Security
Requirements Engineering; State of the Art and Research Challenges.
Hong Kong, 7.

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2008). Security
Requirements Engineering: A Framework for Representation and
Analysis. IEEE Transactions on Software Engineering, 34(1), 133–153.
https://doi.org/10.1109/TSE.2007.70754

Higuera, B., Mohino, de, & Montalvo, J. A. (2019). The Application of a New
Secure Software Development Life Cycle (S-SDLC) with Agile
Methodologies. Electronics, 8, 1218.
https://doi.org/10.3390/electronics8111218

Hossain, D. S. A., & Moniruzzaman, A. B. M. (2013). Comparative Study on Agile
software development methodologies. 25.

Howard, M. (2004). Building more secure software with improved development
processes. IEEE Security Privacy, 2(6), 63–65.
https://doi.org/10.1109/MSP.2004.95

ISO/IEC 25010:2011. (ISO 2011). Retrieved January 24, 2020, from
https://www.iso.org/standard/35733.html

ISO/IEC/IEEE 29148-2011. (ISO 2011b). Retrieved January 24, 2020, from
https://standards.ieee.org/standard/29148-2011.html

ISO/IEC/IEEE 29148-2018. (ISO 2018). Retrieved February 16, 2020, from
https://standards.ieee.org/standard/29148-2018.html

Jain, N. K., & Patel, U. A. (2013). New Idea In Waterfall Model For Real Time
Software Development. International Journal of Engineering Research, 2(4),
6.

Joint Pub. (1998). Joint Doctrine for Information Operations. Joint Pub 3-13 - Joint
Doctrine for Information Operations. http://www.c4i.org/jp3_13.pdf

Joint Task Force Transformation Initiative. (2013). Security and Privacy Controls
for Federal Information Systems and Organizations (NIST SP 800-53r4; p.
NIST SP 800-53r4). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-53r4

102

Kamkarhaghighi, M., Moghaddasi, H., & Sajjadi, S. (2016). Reasons in Support
of Data Security and Data Security Management as Two Independent
Concepts: A New Model. The Open Medical Informatics Journal, 10, 4–10.
https://doi.org/10.2174/1874431101610010004

Kassab, M., Laplante, P., & Neill, C. (2014). State of Practice in Requirements
Engineering: Contemporary Data. Innovations in Systems and Software
Engineering: A NASA Journal. https://doi.org/10.1007/s11334-014-
0232-4

Koskinen, A. (2020). DEVSECOPS: BUILDING SECURITY INTO THE CORE
OF DEVOPS [Master thesis, University of
Jyväskylä]. https://jyx.jyu.fi/bitstream/handle/123456789/67345/URN
%3aNBN%3afi%3ajyu-202001171290.pdf?sequence=1&isAllowed=y

Kotonya, G., & Sommerville, I. (1998). Requirement Engineering Processes and
Techniques. John Wiley & Sons Ltd.

Lamsweerde, A. van. (2009). Requirements Engineering From System Goals to UML
Models to Software Specifications. John Wiley & Sons Ltd.

Laplante, P. A. (2017). Requirements Engineering for Software and Systems (3rd ed.).
CRC Press Taylor & Francis Group.

Lauesen, S. (2002). Software Requirements: Styles and Techniques. Pearson
Education.

Maciaszek, L. (2007). Requirements Analysis and System Design. Pearson
Education.

Madden, A. D. (2000). A definition of information. Aslib Proceedings, 52(9), 343–
349. https://doi.org/10.1108/EUM0000000007027

Mattord, H. J., & Whitman, M. E. (2009). Principles of Information Security.
Cengage Learning EMEA.

Mattord, H. J., & Whitman, M. E. (2011). Principles of Information Security.
Cengage Learning.

Mattord, H. J., & Whitman, M. E. (2013). Management of Information Security.
Cengage Learning.

Mattord, H. J., & Whitman, M. E. (2017). Principles of Information Security.
Cengage Learning.

McGraw, G. (2006). Software Security: Building Security in. Addison-Wesley
Professional.

103

McGraw, G., Miguels, S., & West, J. (2017). BSIMM8.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd
=3&cad=rja&uact=8&ved=2ahUKEwjX9-
a1zKPoAhVM4KYKHZrcDZMQFjACegQIARAB&url=https%3A%2F%2
Fwww.bsimm.com%2Fcontent%2Fdam%2Fbsimm%2Freports%2Fbsim
m9.pdf&usg=AOvVaw34fLYhtYTPzlVj2f3Gtdb5

McNiff, J. (2017). Action research: All you need to know (1st edition). SAGE
Publications.

Mead, N. R., Padmanabhan, D., Raveendran, A., & Viswanathan, V. (2008).
Incorporating Security Quality Requirements Engineering (SQUARE) into
Standard Life-Cycle Models: Defense Technical Information Center.
https://doi.org/10.21236/ADA482345

Merkow, M. S., & Raghavan, L. (2010). Secure and Resilient Software Development.
Auerbach Publications. http://ebookcentral.proquest.com/lib/helsinki-
ebooks/detail.action?docID=1446770

Merriam-Webster Dictionary. (2020). Definition of ASSURANCE. In Merriam-
Webster Dictionary. https://www.merriam-
webster.com/dictionary/assurance

Mitchell, S. M., & Seaman, C. B. (2009). A comparison of software cost, duration,
and quality for waterfall vs. iterative and incremental development: A
systematic review. 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, 511–515.
https://doi.org/10.1109/ESEM.2009.5314228

Nielsen, K. (2007). The Qualitative Research Interview and Issues of Knowledge.
Nordic Psychology, 59(3), 210–222. https://doi.org/10.1027/1901-
2276.59.3.210

NIST. (2020). Information Assurance (IA)—Glossary | CSRC [Glossary]. Computer
Security Resource Center.
https://csrc.nist.gov/glossary/term/information-assurance

Pandey, S. (2011). MODERN NETWORK SECURITY: ISSUES AND
CHALLENGES. International Journal of Engineering Science and Technology,
3(5), 7.

Parker, D. B. (1998). Fighting Computer Crime: A New Framework for Protecting
Information. John Wiley & Sons.

Parnas, D. L. (2000). Requirements documentation: Why a formal basis is
essential. Proceedings Fourth International Conference on Requirements

104

Engineering. ICRE 2000. (Cat. No.98TB100219), 81–82.
https://doi.org/10.1109/ICRE.2000.855594

Peltier, T. R. (2013). Information Security Fundamentals, Second Edition. CRC Press.

Pickvance, C. (2005). The four varieties of comparative analysis: The case of
environmental regulation. 1–20.

Pressman, R. S. (2005). Software Engineering: A Practioner’s Approach (6th ed.).
McGraw-Hill.

Qadir, S., & Quadri, S. M. K. (2016). Information Availability: An Insight into
the Most Important Attribute of Information Security. Journal of
Information Security, 07(03), 185–194.
https://doi.org/10.4236/jis.2016.73014

Raggad, B. G. (2010). Information Security Management: Concepts and Practice.
CRC Press.

Rice, R. S., & Tompkins, F. G. (1986). Integrating security activities into the
software development life cycle and the software quality assurance
process. Computers & Security, 5(3), 218–242.
https://doi.org/10.1016/0167-4048(86)90014-3

Ruparelia, N. B. (2010). Software development lifecycle models.html. ACM
SIGSOFT Software Engineering Notes, 35(3), 8–13.
https://doi.org/10.1145/1764810.1764814

Shoemaker, D., & Sigler, K. (2014). Cybersecurity: Engineering a Secure Information
Technology Organization. Cengage Learning.

Siponen, M. (2006). Secure-system design methods: Evolution and future
directions. IT Professional, 8, 40–44.
https://doi.org/10.1109/MITP.2006.73

Siponen, M., & Willison, R. (2009). Information security management standards:
Problems and solutions. Information & Management, 46(5), 267–270.
https://doi.org/10.1016/j.im.2008.12.007

Stringer, E. T. (2013). Action Research. SAGE Publications.

Thamhain, H. J. (2000). Accelerating product developments via phase-gate processes.
https://www.pmi.org/learning/library/phase-gate-processes-
promising-complex-547

Tilly, C. (1984). Big Structures, Large Processes, Huge Comparisons. Russell Sage
Foundation.

105

van Niekerk, J., & von Solms, R. (2013). From information security to cyber
security. Computers & Security, 38, 97–102.
https://doi.org/10.1016/j.cose.2013.04.004

Vuori, M. (2011). Agile Development of Safety-Critical Software. 14, 114.

Watson, R. T., & Webster, J. (2002). Analyzing the past to prepare for the future:
Writing a literature review—ProQuest. MIS Quarterly, 26(2), R13.

Zahran, S. (1998). Software process improvement: Practical guidelines for business
success. Addison-Wesley.

Zave, P. (1984). The operational versus the conventional approach to software
development | Communications of the ACM. Communications of the
ACM ACMPUB27, 27(2), 104–118. https://doi.org/10.1145/69610.357982

Zave, P. (1997). Classification of research efforts in requirements engineering.
ACM Computing Surveys, 29(4), 315–321.
https://doi.org/10.1145/267580.267581

106

ANNEX 1 INTERVIEW TEMPLATE

Mandatory = M or Optional question = O
Freetext = FT or Multiple Choice = MC

1. Could you provide your personal information? (M/FT)

a. Title and department
b. A short job description of your role in the software development or-

ganization?
c. What are the main responsibilities in your role?

2. How do you see your role in the requirements engineering process? (pro-

vide a possible role such as: subject matter experts, software systems engi-
neer, architects and so on) (M/FT)

3. Which phase/phases of the company specific software development process

(CSSDP) are you involved with? (the FIGURE 29 is shown to the interview-
ees) (M/MC)

4. In what phase of the CSSDP do you think your role is the most important?

(O/MC)
a. What do you think about the CSSDP? (O/MC)

5. Is the company using a product mission statement or any document that

would provide that information? (description of the most important features
of a product) (M/FT)

a. Who approves such a document? (O/FT)

6. Why are requirements collected? (M/FT)

7. When are requirements collected? (a timeframe and/or a phase in the
CSSDP) (M/FT)

8. How are requirements collected? (provide a method) (M/FT)

9. How are the “raw” requirements analyzed? (M/FT)

a. Do you do analyzing? (O/FT)
b. What are the methods used? (O/FT)

10. How are requirements documented? (M/FT)

a. Do you use a standardized model? (O/FT)

11. How do you utilize the requirements? (M/FT)

107

a. What is their effect on the software development? (O/FT)
b. How do the requirements affect the software development? (O/FT)

12. How is it supervised that the requirements get implemented? (M/FT)

a. What are the methods? (O/FT)

13. What are the different kinds of requirements you see the most? (such as user,
system, design) (M/FT)

14. From what stakeholder groups are requirements collected from? (such as

user, client, legal and so on) (M/FT)

15. What are the models for requirements presentation? (picture, text, other)
(M/FT)

16. How is it confirmed that the market/user is understood correctly (from the

business point of view)? (M/FT)
a. How do you make sure? (O/FT)

17. How the system context is understood? (M/FT)

a. System boundaries? (O/FT)
b. Who are involved with system usage? (O/FT)
c. How does the system converse with other systems? (O/FT)
d. What is the (business and usage) environment like? (O/FT)

18. Who takes responsibility if the requirements engineering process fails?

(from the point-of-view of your role) (M/FT)
a. Product doesn’t respond to the need the customer presented, who

“takes the fall”? (O/FT)

108

ANNEX 2 THE COMPANY SPECIFIC SOFTWARE DEVELOP-
MENT PROCESS (CSSDP)

FIGURE 29 The CSSDP- model used in product development

FIGURE 30 The high level CSSDP- model

109

ANNEX 3 SEMI-STRUCTURED INTERVIEW RESULT TABLES

TABLE 12 Total amount of interviewees per stakeholder group

Groups /
interviews

Business De-
velopment

Software De-
velopment

Product
Management

Legal Sales Service
Center

22 6 5 4 1 5 1

TABLE 13 Usage of a product mission statement (PMS) -document

Answers grouped according the theme Number of
mentions

I cannot answer / I do not know; I am not familiar with this
kind of a document

7

Yes, I believe that we have such a document. I suppose so 4

We do not have it, but we do need it 2

User Story Mapping works as product mission statement 1

I think, we do not have it, but I suppose that we are creating
one

1

Power Point works as product mission statement 1

Service description works as product mission statement 1

We do not have it in its usual form, but we are using ver-
sion releases as product mission statement

1

We do not have it in its usual form, but we have common
product descriptions

1

No reply 1

TOTAL 20

TABLE 14 Acceptor of product mission statement (PMS) -document

Answers grouped according the theme Number of
mentions

I do not know 2

Product group manager 1

Person named to the task 1

Product owner 1

Concept owner, who will ask steering groups approval for
it

1

Steering group of the project 1

Product council 1

TOTAL 8

110

TABLE 15 Reason for requirements elicitation

Answers grouped according the theme Number of
mentions

Collected to produce the best product, software or service
to fulfil customer needs

5

Collected to improve mutual understanding about things
related to the product

3

Collected to gain understanding about the customer 3

Collected to improve business 2

Collected to produce added value to the customers 2

Collected to avoid making over-quality 1

Collected to fulfil the customer needs better via the product 1

Collected to produce products that have a customer orien-
tated approach

1

Collected to develop company’s market position 1

Collected to put them into InnoStream 1

Collected to understand the user 1

Collected to understand what we are developing 1

Collected to improve business competitiveness 1

Collected to be able to program and test the product 1

Collected to avoid doing waste 1

TOTAL 25

111

TABLE 16 Requirements elicitation time

Answers grouped according the theme Number of
mentions

Elicitation is a continuous process 9

I do not know 2

Elicited in the beginning of the process 2

Elicitation should be a continuous process 2

Elicited when we are going to develop something new 1

Elicited and reviewed multiple times 1

Elicitation depends on process and process model used 1

Hardware POW, requirements are elicited before gateway 1 1

Elicited when necessary, but it is not done systematically 1

TOTAL 20

112

TABLE 17 Initial requirements elicitation tools and methods

Answers grouped according the theme Number of
mentions

Via discussions 6

Via observations in the field 4

Via market researches 4

Via interviews 3

Via inquiries 3

Via competitor analyses 3

Via sales events 3

We have no process for requirements elicitation 3

Salesmen forward the information coming from customers
to development

2

By discussing with the development team and using expe-
rience

2

Via regular customer meetings 2

Via sparring sales (export) 2

By using user story mapping 2

Via email 2

By using VOC -technique (Voice of the customer) 2

By observing distributer’s operations 1

By making notes when visiting a customer 1

By collecting these requirements to a data pool when we
have one

1

Big operatives on the field are collecting lists about competi-
tive tendering and sharing this information with our com-

pany

1

I have not participated in requirements elicitation process 1

By collecting customer feedback (phone calls or problem
tickets) and by making my own perceptions about devel-
opment objectives and by registering them into ticket to

commissioner’s group ticketing service

1

By visiting customers 1

By getting the information from our distributers, after they
have met our customers and heard about their needs

1

TOTAL 51

TABLE 18 Requirement elicitation tools and methods

Answers grouped according the theme Number of
mentions

Via discussions 17

Other tools and methods 12

Via observations 5

Via market researches 4

Via competitor analysis 4

Via interviews 3

Via inquiries 3

We have no requirements elicitation process 3

TOTAL 51

113

TABLE 19 Requirements documentation forms and databases

Answers grouped according the theme Number of
mentions

As a PowerPoint 6

JIRA 6

Confluence 5

To InnoStream (where they are in excel form) 3

As word -documents 3

Via voice of customer (VOC) -documents 3

We have no structured way/form to save requirements 3

User case and user story mapping 3

CRM 3

To folders in company’s network disk 2

I do not document them, there is no place for that 2

As a Value Proposition Canvas (VPC) 2

Miro 2

Wiki 2

Excel 2

Email 2

As CORE -tickets 1

As animated videos 1

As MRD -documents 1

As a Comparative chart 1

By using a customer project form 1

As TST -tickets 1

As documents describing customer value 1

As a Business Proposition Canvas (BPC) 1

SharePoint 1

Teams 1

TOTAL 59

114

TABLE 20 Methods for requirement analysis

Answers grouped according the theme Number of
mentions

What the biggest customers are saying that they need or
want. So, according to the potential cash flow

4

Analysis is made in workshops with the development team
by prioritizing elicited requirements

4

By discussions with the development team 3

By asking questions repeatedly, until the customer can pro-
vide accurate definitions

3

By considering if requirements are executable 3

Via InnoStream 2

By going through the requirements with the customer 2

I discuss with the customer to analyze the requirements 2

Requirements are analyzed in JIRA, where they will get
points according to working hours needed to fulfil them

2

Via Comparative Chart 1

Prioritization between ideas that our customers have mostly
asked for. All those ideas will be taken into cost calculation

process and the best options put forward

1

Via Affinity Wall 1

I believe that we make an analysis from requirements 1

I call to software development and ask if it is possible to
produce the product according to these requirements

1

By analyzing the business case 1

Interviewee does not provide an answer to the question 1

In the mechanical side, we are using tool called QFD, for the
analysis

1

Via flipchart 1

With a discussion 1

By testing if the requirement can be fulfilled 1

Product owner makes requirements prioritization and elim-
ination

1

Via time-estimation analysis 1

Via user story mapping 1

TOTAL 38

115

TABLE 21 Utilization of requirements

Answers grouped according the theme Number of
mentions

Building future business portfolio and business potential 3

Interviewee gives an answer, but it does not answer to the
presented question

2

It is hard to say, which requirements really are utilized,
because we do not have visibility to InnoStream

2

Requirements are used in sales cases 2

Requirements are used to make a technical product specifi-
cation

2

Requirements are used to carry out sprints 2

Requirements are utilized for coding support and testing 2

Strategic decision making in business management level 1

Only those requirements are utilized, which are most high-
lighted and asked for

1

Requirements are used for prioritization; what things we
should do, or which are profitable

1

Requirements are used for specification creation for mini-
mum viable product (MVP) and after that to improve the

product

1

In software development requirements are used for new
releases and further development

1

Requirements are used through the whole product lifecycle
to improve the product

1

Requirements help development team to figure out, how to
build the wanted product

1

From hardware POW requirements affect to the product
that is sold and through that our customer satisfaction and

business

1

Requirements are used for resource planning 1

No reply 1

Programming tasks and documentation are made based on
the requirements

1

Requirements are used in requirements execution 1

Requirements are used both in programming and building
automated testing

1

Shared technologies has a business which is too far from
our customers, which is why we feel that they are making
solutions, which do not meet with our customer’s needs.
We feel that they do not really understand our customers
and therefore cannot make solutions that can fulfil their

needs. We would like to do this job by ourselves.

1

A Development team starts to program the software based
on requirements, which have been elicited and documented

(a hardware POW)

1

TOTAL 30

116

TABLE 22 Roles and tools of requirement implementation supervising

Answers grouped according the theme Number of
mentions

Implementation is supervised with involving customer to
the process

4

Supervised with usability testing 4

Supervised with automatized testing 4

No reply 3

Supervised with Alfa and Beta testing 3

Supervised with Pen-testing 1

We are lacking a systematic process and it should be built 1

Supervised with demos 1

Supervised via testing software in-house 1

Supervised by the product manager, who ensures that re-
quirements have been met

1

Not supervised. It is not scheduled nor included as some-
one’s responsibility

1

Supervised with a testing plan and a product specification 1

Supervised by the project team. They follow the implemen-
tation weekly in team meetings (a hardware POW)

1

Supervised by the product owner, who also tests the soft-
ware

1

TOTAL 29

117

TABLE 23 Occurrence of different requirement types

Answers grouped according the theme Number of
mentions

User requirements 7

Functional requirements 7

Business requirements (time, money, resources) 5

Information security requirements 3

GDPR 3

System requirements 3

Technical requirements 3

Administrator requirements 2

Customer (distributor) requirements 2

Company (concern) requirements 2

Law requirements 2

System design requirements 2

Requirements set by standards 2

No reply 1

Architectural requirements 1

(Data) Communication requirements 1

Requirements related to protection practices 1

Non-functional requirements 1

Competitor functionalities that we should be able to answer 1

KATAKRI 1

Data privacy requirements 1

TES (collective labor agreement) 1

Integrations and requirements needed to produce them 1

Definitions given by public authorities of a country related
to the data

1

Requirements related to cloud 1

Usability requirements 1

Stakeholders are defining the state of security that the com-
pany will try to reach – security level requirements

1

Requirements given by the product owner 1

Requirements set by company lead through the road map
given to software development

1

TOTAL 62

118

TABLE 24 Stakeholder groups involved in requirements elicitation

Answers grouped according the theme Number of
mentions

Customer (distributor) 10

Customer (end-customer) 9

Law and authorities 6

Third party 5

Sales (in-house stakeholder) 4

User 4

Shared Technologies 4

EMEA level of the concern 4

Product group managers (in-house stakeholder) 3

Competitors 3

Customer (no level specified) 3

In-house customers 2

HID 2

Architect offices 2

No answer 1

Operations -department (in-house stakeholder) 1

Marketing (in-house stakeholder) 1

Export (in-house stakeholder) 1

Law (in-house stakeholder) 1

Software development team in another location (in-house
stakeholder)

1

Product management (in-house stakeholder) 1

Human resources admin (in-house stakeholder) 1

IT (in-house stakeholder) 1

Software development team (in-house stakeholder) 1

In-house stakeholders 1

Big customers with biggest business potential 1

Customer’s customer 1

Software suppliers 1

Cloud service provider 1

Society 1

Concern 1

Technical support (in-house stakeholder) 1

Sales offices 1

Software sustenance (in-house stakeholder) 1

Maintenance (in-house stakeholder) 1

Architect (in-house stakeholder) 1

TOTAL 82

119

TABLE 25 Models of requirements presentation

Answers grouped according the theme Number of
answers

Plain text 11

Picture 6

Verbal 5

PowerPoint 2

No accurate model 2

Videos 2

Email 2

Drawings (hardware POW) 1

Report 1

Service Blueprint 1

Logical chain of events 1

Value Stream Mapping (VSM) 1

Visualized from customer needs 1

Word and excel 1

JIRA -ticket 1

User story 1

TOTAL 39

120

TABLE 26 Methods for market and customer understanding

Answers grouped according the theme Number of
mentions

By customer understanding 3

No reply 2

By visiting customers 2

By making advance clearance about the customer 1

Via experience from customers and their business 1

By conversations with different teams about the cus-
tomer needs

1

By discussing with product manager and segment
owner

1

By using local people 1

Via sales 1

Via retailers 1

I have not participated to this phase of the process 1

By using open source intelligence 1

By observing 1

Via protos 1

Currently we are not making sure that we really un-
derstand the market or the customer

1

By knowing the competitor 1

Via value stream mapping (VSM) 1

Via business model canvas (BMC) 1

By sending someone to visit the customer, who really
knows the business of the customer and customer itself

(business environment is familiar)

1

By selecting a focus group and focusing on it 1

By exploiting open source intelligence and confirming
the information with a party, who has the competence

1

By checking the end-product with the customer agile-
ly

1

TOTAL 25

121

TABLE 27 Methods for system context understanding

Answers grouped according the theme Number of
mentions

This is not part of my job description 3

I do not know, how is it done 2

Via customer visits 2

By integrations 2

There are as many ways to make it as makers 1

Segment owners, sales and product owners are trying
to make as accurate hypotheses as possible

1

By interviewing people 1

By investigating business processes 1

By communicating with inhouse stakeholders, such
as sales

1

By communicating with customers 1

Direct customer feedback 1

By understanding customers, and their partners as
well as ours and by understanding the business environ-

ment, where the product is supposed to be sold

1

By understanding customer organization’s roles - es-
pecially those, which affect purchasing decisions

1

By experience 1

This information comes from our business manage-
ment

1

By market researches 1

By communicating with inhouse stakeholders, such
as support (operations)

1

By communicating with stakeholders, such as
maintenance (hardware POW)

1

By performing a technical investigation 1

TOTAL 24

122

TABLE 28 Responsibility of requirement engineering process

Answers grouped according the theme Number of
mentions

Collective responsibility among the steering group of
the project

3

No reply 2

Development team 2

The owner of the information (owner of the require-
ment)

2

Product group manager 2

It is unclear, who is the responsible person 1

I do not know 1

Concept owner 1

Collective responsibility 1

Product development organization as a whole 1

Sales 1

The one who knows the problem best (professional) 1

A party, who has been in contact with the customer 1

The (project/product) owner organization 1

Shared Technologies or the development team if the
failure is with a technical solution

1

If the product development has not understood what
they are about to develop, the responsibility lies with the

project manager

1

If the customer needs are not understood, I have no
idea, who is responsible

1

Project steering group 1

With SaaS -solutions, Operations-unit is responsible 1

TOTAL 23

123

ANNEX 4 FIRST ITERATION OF COMPARATIVE STUDY

Abbreviation Full name Year
Enforce security

based on risk
assessment model

A Maturity
Model

Security
model for RE

SSDLC
process

Other

AEGIS Appropriate and Effective Guidance for Information Security 1999 √

AOD Aspect-Oriented design 1999 √

Apvrille & Pour-
zandi

- 2005 √

BLP Bell-LaPadula model 1973 √

BSIMM Building Security in Maturity Model 2008 √

CbyC Correctness by Construction 2002 √

CLASP/by
OWASP

Comprehensive Lightweight Application Security Process 2005 √

Cleanroom - 1985 √

CMMI-DEV Capability Maturity Model Integration for Development 2010 √

CORAS Risk Assessment of Security Critical Systems 2001 √

CRAMM
Central Computer and Telecommunications Agency (CCTA) Risk

Analysis and Management Method
1986 √

EBIOS
Expression des Besoins et Identification des Objectifs de Sécu-

rité/Expression of needs and identification of security objectives
1995 √

GBRAM
Goal Based

Requirement Analysis Methods
1996 √

Hadawi Set of Secure Development Activities 2007 √

ISDF Integrated Security Development Framework 2017 √

i'Tropos
i = (“threat” and “security constraint”), Trust, ownership, and

permission delegation meta-model
1999 √

KAOS
Knowledge acquisition in automated specification method/Keep all

objectives satisfied
2007 √

MS SDL Microsoft software development 2002 √

Microsoft SDL-
Agile

Microsoft software development agile 2009 √

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation 1999 √

OpenSAMM/by
OWASP

Open Software Assurance Maturity Model 2009 √

Protection Poker - 2010 √

S2D-ProM Secure Software Development Process Model 2007 √

SaFe Scaled Agile framework 2011 √

SAFECode Software Assurance Forum for Excellence in Code 2011 √

SAMM/by
OWASP

Software Assurance Maturity Model 2009 √

SCR Software Cost Reduction 2008 √

SDLC Software Development Life Cycle - √

SecSDM Secure Software Development Model 2007 √

Securosis SSDL - 2009 √

SQUARE Security Quality Requirements Engineering 2005 √

SREF Security Requirements Engineering Framework 2009 √

SREP Security Requirements Engineering Process 2006 √

SSAI Software Security Assessment Instrument 2003 √

S-SCRUM - 2014 √

SSDLC Secure Software Development Life Cycle - √

SSDM Secure Software Development Model 1975 √

SSE-CMM The System Security Engineering Capability Maturity Model 1999 √

Touchpoints/by
McGraw

- 2007 √

Tropos - 1999 √

TSP-Secure Team Software Process for Secure Software Development 2002 √

41 4 5 6 22 4

124

ANNEX 5 ALL THE COMPARATIVE STUDY ITEARATION
OUTPUTS

Iteration Purpose Result

1. Discover and list initial SSDL- models
found through literature review

A list of 41 SSDL- models + CSSDP-
model

2. Select the most suitable models to third
iteration with the commissioner

A list of 6 SSDL- models

3. Evaluate models to selection criteria None of the models fulfils the criteria
by itself. Therefore, a combination
model is needed. Exclusion of two
models

4. Comparison between models SQUARE value exceeds its one defi-
ciency, all others (3) fulfil the criteria

5. Comparison of the model content be-
tween Higuera et al. and this thesis

Content of the table 8, including the
most suitable practices for the com-
missioner

125

ANNEX 6 ALL THE COMPARATIVE STUDY ITEARATION
OUTPUTS

Elements Literature Document
analysis

Interview Comparative study

Product mission
statement (PMS)

Recommends a docu-
ment form called PMS
for shared understand-
ing about the aim of
software and its critical
features

 A unified form
was requested

by the sales; for
customer re-

quests & ques-
tions from
features &

benefit

Product features
should be defined

Security classifica-
tion

Define security catego-
ries, their criteria from
those security goal for
each software product

can be specified. RE
requires that require-

ments are classed

 Security goals should
be defined for each
software product

Requirements
document

Traceability, manage-
ment, change man-

agement, legal founda-
tion for software

Requirement
book (hardware

POV)

The requested
that it would be

developed,
unified and

standardized

Used for requirements
management (ex. elici-

tation)

Technical design
plan

 Practice of the
CSSDP

 Definition of secure
design through

threat&risk modelling

Test plan Practice of the
CSSDP

Threat modelling &
risk analysis
(TMRA)
 -Security re-
quirements
 -Privacy re-
quirements

TMRA enables security
requirement creation
and requires a PMS

document as an input

Current prac-
tices that

CSSDP are built
for product
devel. & re-

quire updating

There are defi-
ciencies on

requirement
inclusion and

comprehension
(ex. privacy)

TMRA enables security
requirement creation

and requires a product
definition as an input

Beta security report Security report should
be implemented to
present decision-

making processes &
rationales about im-
plemented require-

ments

MVP security
report

 Security report should
be implemented to
present decision-

making processes &
rationales about im-
plemented require-

ments

Requirement
changes

Provide unique identi-
fiers for req. managing
their evolution, tracing

and changes

