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Abstract
Given a Lorentzian manifold, the light ray transform of a function is its integrals
along null geodesics. This paper is concerned with the injectivity of the light ray
transform on functions and tensors, up to the natural gauge for the problem. First,
we study the injectivity of the light ray transform of a scalar function on a globally
hyperbolic stationaryLorentzianmanifold and prove injectivity holds if either a convex
foliation condition is satisfied on a Cauchy surface on the manifold or the manifold
is real analytic and null geodesics do not have cut points. Next, we consider the light
ray transform on tensor fields of arbitrary rank in the more restrictive class of static
Lorentzian manifolds and show that if the geodesic ray transform on tensors defined
on the spatial part of the manifold is injective up to the natural gauge, then the light
ray transform on tensors is also injective up to its natural gauge. Finally, we provide
applications of our results to some inverse problems about recovery of coefficients for
hyperbolic partial differential equations from boundary data.
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A. Feizmohammadi

1 Introduction

Let (N , ḡ) be a smooth Lorentzianmanifold of dimension 1+n, n ≥ 2, with signature
(−,+, . . . ,+). We assume that (N , ḡ) is oriented, connected and time oriented, and
satisfies the strong causality condition. Here, by strong causality we mean that given
any p ∈ N and any neighborhood U of p, there exists a neighborhood V ⊂ U of
p such that any causal curve segment with endpoints in V lies entirely in U . We are
interested in studying the injectivity of the so-called light ray transform on functions
and tensors over such Lorentzian manifolds.

To formulate the problem precisely we introduce some notations. For each m =
0, 1, . . ., let Sm = Sm(N ) denote the vector bundle of symmetric tensors of rank m
on N . In local coordinates each α ∈ C∞

c (N ;Sm) can be written as

α(y, w) = α j1... jm (y)w j1 . . . w jm , ∀ (y, w) ∈ TN ,

where we are using the Einstein summation convention. Next, let β be a maximal null
geodesic in (N , ḡ), namely an inextendible geodesic whose tangent vector at each
point is lightlike:

∇ ḡ
β̇(s)

β̇(s) = 0, and ḡ(β̇(s), β̇(s)) = 0. (1)

Observe that Eq. (1) defines the parametrization of β uniquely up to a group of affine
reparametrizations. We also note that such parametrizations can depend on the null
geodesic itself. Given any choice of such parametrization along β, we define the light
ray transform of α ∈ C∞

c (N ;Sm) along β as follows:

Lβα =
∫
R

α(β(s), β̇(s)) ds. (2)

Note that, by the strong causality condition the null geodesic β(s) will lie outside
of any compact set K ⊂ N , for |s| large enough (see [21, Lemma 13, p. 408]), and
therefore the integral in (2) is well defined for compactly supported α. Note also that
the domain of integration in (2) is also justified even when β is not complete since α

is compactly supported.
Let us observe that an affine reparametrization of β results in the integral (2) to

be scaled. Together with the linearity of the map L , this implies that the choice of
the parametrization in (1) is of no significance provided that we are concerned with
injectivity of the light ray transform on N .

1.1 The Case of Stationary Geometries

The first result in our paper is concerned with the injectivity of the light ray trans-
form on scalar functions under the additional assumption that (N , ḡ) is both globally
hyperbolic and stationary. For the purposes of this paper, it suffices to recall that global
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The Light Ray Transform in Lorentzian Geometries

hyperbolicity is equivalent with (N , ḡ) having a smooth spacelike Cauchy hypersur-
face, that is, a hypersurface which is intersected by every maximal timelike curve
exactly once, see, e.g., [26, Corollary 11.19] and [21, Corollary 39, p. 422]. Also, by
stationary, we mean that there exists a smooth complete timelike Killing vector field.

Let N ⊂ N denote a fixed, smooth, spacelike Cauchy hypersurface in N , write
g = ḡ|N and observe that (N , g) is a Riemannian manifold. It is well known (for
example [14, Lemma 3.3]) that the manifold (N , ḡ) admits an isometric embedding

Φ : R × N → N

such that

Φ∗ḡ = −c dt2 + dt ⊗ η + η ⊗ dt + g, (3)

where c is a smooth positive function on N and η is a smooth covector field on N . For
the convenience of the reader we show this in Sect. 2.1. In the more restrictive case
where the one-form η in (3) vanishes identically in N , the manifold N is said to be
static.

Let us remark that given a spacelike Cauchy surface N and a timelike Killing vector
field E , it is possible to fix the parametrization for the null geodesics in a natural way
as follows. Given any maximal null geodesic β there is a unique point of intersection
between β and N (see [21, Lemmas 29 and 42, on pp. 415 and 425]). We can then fix
the affine parametrization by requiring that

β(0) ∈ N and ḡ(β̇(0), E) = −1.

Note that the quantity ḡ(β̇(s), E) is in fact a constant of motion along null geodesics
and as such it can be fixed at any arbitrary point along β.

Before formulating our injectivity results in the setting of stationary globally hyper-
bolic Lorentzian manifolds (N , ḡ), we give injectivity results in the model setting
(M, ḡ), whereM = R × M , M is an n-dimensional manifold with a smooth bound-
ary, and ḡ has the form (3) on R × M . In this setting, we prove injectivity of the
light ray transform on scalar functions under one of the two hypotheses that we will
formulate next.

To state the first hypothesis, we recall some concepts from Lorentzian geome-
try, namely, the notion of time-separation and null cut locus. The time-separation
function, τ(p, q), between two points p and q is defined as the supremum of the
semi-Riemannian length of all future-pointing causal curves connecting p to q, and
zero if there is no such path. Next, let p ∈ M, let β : I → M be a future-pointing
null geodesic with β(0) = p, and set

s0 = sup{s ∈ I | τ(p, β(s)) = 0}.

If s0 ∈ I int, we call β(s0) the future null cut point of p along β (see [3, Sect. 9.2]).
Finally, the null cut locus C+

N (p) is then defined as the set of all future null cut points
of p.
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A. Feizmohammadi

The geodesic β is the only causal path from p to β(s) for s ∈ (0, s0), see, e.g., [3,
Lemma 9.13]. On the other hand, for any s > s0 there is a timelike curve from p to
β(s). As an example, let us consider the ultrastatic caseM = R×M and ḡ = −dt2+g
where (M, g) is a Riemannian manifold with boundary. If γ (s) is a geodesic on M
and γ (s0) is a cut point along γ in the Riemannian sense, then β(s0) is the future null
cut point of β(0) along β(s) = (s, γ (s)).

Hypothesis 1 Suppose that M, g, c and η are real analytic and that the metric ḡ given
by (3) on R × M has empty null cut locus.

Before stating the second hypothesis, we need to make more definitions. We intro-
duce the conformally scaled metric ḡc onM by

ḡc = −dt2 + dt ⊗ ηc + ηc ⊗ dt + gc, (4)

where ηc = c−1 η, gc = c−1 g. Next, we define G to be the set of smooth curves b on
M that satisfy the following ordinary differential equation:

∇gc
ḃ
ḃ = G(b, ḃ), (5)

subject to the initial data (b(0), ḃ(0)) ∈ T M . The function G(z, v) is defined for each
(z, v) ∈ T M as follows:

G(z, v) = −
(

c

c + |η|2g

) (
(∇gc

v ηc) v
)

η�
c − (ηcv +

√
(ηcv)2 + |v|2gc ) F(z, v). (6)

Here η
�
c is the vector dual to ηc with respect to gc and the terms (∇gc

v ηc) v and ηcv

denote the natural pairing between the one-forms ∇gc
v ηc and ηc with the vector v,

respectively. All the terms in (6) are evaluated at the point z ∈ M . Finally, the term
F(z, v) is the vector field defined through

F(z, v) = dηc(·, v)� −
(

c

c + |η|2g

)
dηc(η

�
c, v) η�

c.

As we will later see in Sect. 3, projections of null geodesics on M satisfy Eq. (5).
This is due to the fact the null geodesics are translation invariant along the flow of the
Killing field given by ∂t .

The second hypothesis relies on a notion of foliation by a family of strictly convex
hypersurfaces with respect to curves in G , and can be stated as follows.

Hypothesis 2 The dimension n of M satisfies n ≥ 3, and there is a function ρ : M →
[0, l], so that the following conditions hold:

(i) dρ �= 0 when ρ > 0, ρ−1(l) = ∂M and ρ−1(0) has empty interior.
(ii) For any b ∈ G , if d

dt ρ(b(t)) = 0, then d2

dt2
ρ(b(t)) > 0.

Our main theorem in the model case can now be stated as follows.
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The Light Ray Transform in Lorentzian Geometries

Theorem 1 Let M be a smooth compact manifold with boundary and consider a
Lorentzian metric ḡ of form (3) on M = R × M. Suppose one of the following:
(i) there is a metric ḡ� of form (3) onM such that ḡ� satisfies Hypothesis 1 and ḡ is in
a small enough C3-neighborhood of ḡ�, (ii) (M, ḡ) satisfies Hypothesis 2. Then the
light ray transform in (M, ḡ) is injective on scalar functions. In other words, given
any f ∈ C∞

c (M), there holds

Lβ f = 0 for all maximal β inM �⇒ f ≡ 0.

As applications of Theorem 1, we state the following two perturbative examples:

(1) Suppose that (M, g�) is a compact real-analytic Riemannianmanifold with bound-
ary without cut points. If c is close to 1, η is close to 0 and g is close to g�, then
the light ray transform is injective on (R × M, ḡ) with ḡ as in (3).

(2) Suppose that (M, g�) is a compact Riemannian manifold with strictly convex
boundary and suppose that there is a strictly convex function on (M, g�). If c is
close to 1, η is close to 0 and g is close to g�, then the light ray transform is injective
on (R × M, ḡ) with ḡ as in (3).

We will now give a corollary of Theorem 1 in the setting of globally hyperbolic
stationary Lorentzian manifolds (N , ḡ).

Corollary 1 Let (N , ḡ) be a globally hyperbolic stationary Lorentzian manifold, and
let N have a non-compact Cauchy hypersurface N. Suppose one of the following:

(i) The Lorentzian manifold N and the Cauchy hypersurface N are real analytic,
and there is a real-analytic Killing vector field. Moreover, N has empty null cut
locus.

(ii) There exists a function ρ : N → [0,∞), such that Hypothesis 2 holds on each
Ml = {ρ ≤ l} with respect to the function ρ|Ml .

Then the light ray transform in (N , ḡ) is injective on C∞
c (N ).

We note that under the assumption (i), the corollary follows immediately from Theo-
rem 1, since the embedding Φ is also analytic in this case, see Sect. 2.1. In the case
that (ii) holds, we note that due to the non-compactness assumption on N , given any
scalar function f on N with compact support, there exists a large enough l such that
supp f ⊂ Φ(R × M) with M = {ρ ≤ l}. The corollary then follows from Theorem 1
since M satisfies Hypothesis 2 with ρ|M .

1.2 The Case of Static Geometries

Given a static globally hyperbolic Lorentzian manifold there exists an embedding
Φ : R × N → N such that (3) holds with η ≡ 0. To simplify the statement of our
results, we defineM = Φ(R×M)whereM ⊂ N is a compact manifold of dimension
n with smooth boundary and study the injectivity of the light ray transform on tensors
of arbitrary rank m over M.
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Before presenting the main result, we need to recall the definition of the geodesic
ray transformon tensors in (M, gc). To this end, suppose that γ is a unit-speed geodesic
in (M, gc). We define the bundle

∂inSM = {(x, v) ∈ T M | x ∈ ∂M, v ∈ TxM, |v|gc = 1, gc(v, ν) < 0},

where ν denotes the unit outward pointing normal vector to ∂M at the point x . For
each (x, v) ∈ ∂inSM , we consider the unique geodesic γ with initial data (x, v) and
define

τ+(x, v) = inf{r > 0 | γ (r; x, v) ∈ ∂M, γ̇ (r; x, v) /∈ Tγ (r;x,v)∂M}.

We assume that the manifold (M, gc) is non-trapping, that is, for all unit-speed
geodesics γ (·; x, v) with (x, v) ∈ ∂inSM , there holds τ+(x, v) < ∞. Finally, let
Sm = Sm(M) denote the bundle of symmetric tensors of rank m on M (not to be con-
fused with Sm , the corresponding bundle onN ) and define the geodesic ray transform
of ω ∈ C∞

c (M; Sm) along γ in M as follows:

Iω(x, v) :=
∫ τ+(x,v)

0
ω(γ (τ ; x, v), γ̇ (τ ; x, v)) dτ. (7)

Here, analogously to the Lorentzian case, we have in local coordinates

ω(y, w) = ω j1... jm (y)w j1 . . . w jm , ∀ (y, w) ∈ T M .

We require the following hypothesis to hold:

Hypothesis 3 The geodesic ray transform on (M, gc) is solenoidally injective. In other
words, for any ω ∈ C∞

c (M; Sm), there holds

Iω(x, v) = 0 ∀ (x, v) ∈ ∂inSM �⇒ ∃ θ such that ω = dsθ, θ |∂M = 0,

where ds denotes the symmetrized covariant derivative on (M, gc).

The study of the solenoidal injectivity of the geodesic ray transform on tensors of
arbitrary rank has a rich literature. For example, Hypothesis 3 with a fixedm = 0, 1 is
known to be true when (M, gc) is a simple manifold [1,19,20] or has strictly convex
boundary and admits a foliation by strictly convex hypersurfaces [36]. Under the
latter condition it was later proved that Hypothesis 3 holds for all m = 0, 1, 2 [31],
and subsequently that it holds for all m = 0, 1, 2, . . . [8]. For more related results we
refer the reader to [5,22–24,30] and the review article [13]. We can now state our main
theorem for the injectivity of the light ray transform on tensors.

Theorem 2 Let (N , ḡ) be a static globally hyperbolic Lorentzian manifold of dimen-
sion 1+ n. Let Φ be an embedding satisfying (3) with η = 0 and letM = Φ(R× M)

where M is a compact n dimensional submanifold of N with smooth boundary such
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that Hypothesis 3 holds. Let α ∈ C∞
c (M;Sm). The following injectivity result holds

for the light ray transform on (M, ḡ):

Lβ α = 0 for all maximalβ inM �⇒ ∃ T ,U s.t α ≡ d̄sT +U ḡ,

where d̄s denotes the symmetrized1 covariant derivative, T ∈ C∞
c (M;Sm−1), U ∈

C∞
c (M;Sm−2) and U ḡ denotes the symmetrized tensor product of the tensors U and

ḡ.

Let us emphasize that the gauge appearing in the statement of Theorem 2 is the
natural one since the light ray transform of any tensor of the form d̄sT + U ḡ with
T ,U compactly supported in M, vanishes. We refer the reader to Lemma 1 for the
details. Observe also that, akin to Corollary 1, the result of Theorem 2 can be for-
mulated for compactly supported tensor fields on a suitable non-compact Lorentzian
manifold. Finally we mention that Theorem 2 extends analogous results obtained in
[10, Proposition 1.4], where only the cases m = 0, 1 were considered.

To our knowledge, there are no results on tensor tomography along general flows
of the form given by (5). For this reason, we leave the case of higher rank tensors on
stationary spacetimes as a topic of future work.

1.3 Applications and Examples

We discuss some applications of our main results in general relativity that builds on
the perturbative examples (1) and (2) in Sect. 1.1.

Indeed, Theorem 1 can be applied in the context of the Kerr black hole spacetime
as discussed next, following the notations in [2, Sect. 5]. Recall that the Kerr geometry
(R4, ḡKerr) is an exact solution to the Einstein field equations in general relativity and
describes the geometry of vacuum spacetime around an axially symmetric black hole
with a so-called quasi-spherical event horizon. The metric has the following form:

ḡKerr = −dt2 + λ

(
dr2

�
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + 2mr

λ
(a sin2 θ dφ − dt)2.

(8)

Here, (r , θ, φ) are the usual spherical coordinates inR
3,m denotes the mass andma is

the angular momentum as measured from infinity. The parameters� and λ are defined
through

λ = λ(θ, r) = r2 + a2 cos2 θ and � = �(r) = r2 − 2mr + a2.

It is easy to see that both vector fields ∂t and ∂θ are Killing fields. Moreover, ∂t is
timelike outside the ergosphere, i.e., the region

{(r , θ, φ) ∈ R × R
+ × S

2 : r > m +
√
m2 − a2 cos2 θ}.

1 We refer the reader to expressions (12)–(13) in Sect. 2.2 for the definition of the symmetrized covariant
derivative and symmetrized tensor product in local coordinates.
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A. Feizmohammadi

Clearly the metric ḡKerr is real analytic in this region, since � is non-vanishing there.
It follows that given any M ⊂ R

3 that is a sufficiently small compact submanifold
with boundary outside the ergosphere, then the submanifold (R × M, ḡKerr) satisfies
the conditions of Hypothesis 1. In fact, the further away M is from the origin of R

3,
the larger it can be since the Kerr geometry is close to the Minkowski geometry far
away from the center of the black hole. Let us emphasize that this application is using
the full strength of Theorem 1 in the sense that η is non-vanishing in (3). Only the
case a = 0, corresponding to the Schwarzschild black hole, gives η ≡ 0.

Theorem 1 and Corollary 1 have applications to the recovery of zeroth order time-
dependent coefficients for the wave equation from boundary data. It is well known
that the canonical wave equation is well-posed on a globally hyperbolic Lorentzian
manifold, see, e.g., [26]. If the manifold is also stationary, there is a rich theory on the
solution space of the wave equation. This space is used for instance in the context of
quantum field theory, see Sect. 4.3 of [37]. For another example we refer to the recent
relativistic generalization of the Gutzwiller–Duistermaat–Guillemin trace formula for
the wave group [34,35].

To keep the notation simple, we suppose that (M, ḡ) is as in Theorem 1, and
consider the following initial boundary value problem:

⎧⎨
⎩

�ḡu + q u = 0, on R × M,

u = h, on R × ∂M,

u = 0, on (−∞, 0) × M,

(9)

where �ḡ denotes the wave operator on (M, ḡ) given in local coordinates by the
expression

�ḡu = −
n∑

i, j=0

| det ḡ |− 1
2

∂

∂xi

(
| det ḡ | 12 ḡi j ∂

∂x j
u

)

and q is a smooth a priori unknown function with compact support in the set (T ,∞)×
M with large enough T > 0. We consider the problem of recovering q from the
Dirichlet-to-Neumann operator �q that is defined for all h compactly supported in
∂M through

�q : h �→ ∂ν̄u|∂M.

It can be shown that the question of unique recovery of q from �q reduces to the
question of injectivity of the light ray transform on (M, ḡ) (see for example [33]). As
an immediate consequence of Theorem 1, we deduce that �q determines q uniquely,
if Hypothesis 1 or 2 holds.

1.4 Previous Literature

The study of injectivity of the light ray transform on tensors of arbitrary rank is
motivated in part due to its connection with coefficient determination problems for the
wave equation on Lorentzian manifolds from boundary data, as shown for example in
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[1,4,10,15,28,33,38] for the cases m = 0, 1. In the setting of Minkowski spacetime,
invertibility of the light ray transform on scalar functions was proved by Stefanov in
[28]. A local version of this injectivity result follows from the more general result [29]
for scalar functions on real-analytic Lorentzian manifolds. An analogous local result
for one-forms in theMinkowski space was later proved in [25]. In [18], motivated by a
study of the Cosmic Microwave Background radiation, the light ray transform on two
tensors was considered in Minkowski spacetime, and it was showed that the spacelike
singularities of a two-tensor can be recovered from its light ray transform. In [39] this
result was extended to recovery of some lightlike singularities.

Beyond the Minkowski space time the literature is sparse even in the scalar case
m = 0. Stefanov proved the injectivity of the light ray transform for this case under
the geometrical assumptions that the Lorentzian manifold is real analytic and that a
convexity-type assumption holds [29]. In [10], injectivity of the light ray transform
was proved for the cases m = 0, 1 when (M, ḡ) is static and the transversal manifold
has an injective geodesic ray transform. This result has been generalized to the case
of non-smooth scalar functions and continuous one-forms [9]. Finally, we refer the
reader to [17] for a microlocal study of the light ray transform on general Lorentzian
manifolds. There it is proven that the spacelike singularities of a scalar function can
be recovered from its light ray transform.

A fundamental open question in the field of inverse problems is the recovery of
the potential q in (9) given the Dirichlet-to-Neumann map �q when ḡ is an arbitrary
globally hyperbolic Lorentzian metric. In fact, this problem is open even whenM =
R × M , with M ⊂ R

3 a compact strictly convex set with smooth boundary, and ḡ is
assumed to be close to the Minkowski metric, say in any Ck-space. The present paper
solves the problem in the near Minkowski case under the additional assumption that
ḡ is stationary. Indeed, as a corollary of Theorem 1, we can conclude that the light
ray transform is injective for this class of Lorentzian manifolds (with k = 3), and the
recovery of q follows then from the discussion in the end of Sect. 1.3.

Theorem 2 provides the generalization of [10] to the more general case of tensors
of arbitrary rank m ≥ 2 in static geometries. We mention that in the case m = 2, this
theorem has applications in transmission ultrasound imaging of moving tissues and
organs [17, Sect. 5]. As mentioned above, it is also related to analysis of the Cosmic
Microwave Background radiation [18].

The analysis in this paper is based on reducing the question of injectivity of the
light ray transform in the Lorentzian manifold (M, ḡ) to the question of injectivity
of a ray transform on the spatial part of the manifold (M, gc). In the stationary case,
the corresponding ray transform is a generalization of the geodesic ray transform,
consisting of integrals over a family of curves that solve equations (5). Injectivity of
such a ray transform has in fact been studied for a broader family of vector fields G
than the specific one given by expression (6). We refer the reader to [11], and also the
appendix section of [36] written by Hanming Zhou (see also [40]). In the static case,
the corresponding ray transform is the geodesic ray transform on M . As discussed in
Sect. 1.2, solenoidal injectivity on tensors of arbitrary rank is known to hold in several
cases.

Before closing the section we mention that we have become aware of the indepen-
dent preprint [16] that was uploaded within a few days of our work. There, the authors

123
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study the injectivity of two-tensors along null geodesics inMinkowski spacetime from
partial data and show that uniqueness holds modulo the natural gauge.

1.5 Outline of the Paper

In Sect. 2, we begin with the derivation of (3). We then discuss the natural gauge for
the injectivity of the light ray transform and the conformal invariance of this gauge,
see Corollary 2. Section 3 is concerned with the proof of Theorem 1. Finally, Sect. 4
contains the proof of Theorem 2. The latter two sections are independent of each other.

2 Preliminaries

2.1 Geometry of Stationary Lorentzian Manifolds

The aim of this subsection is to construct the canonical embedding Φ : R × N → N
corresponding to a Cauchy surface N in N , such that the metric Φ∗ḡ takes the form
(3). As discussed in the introduction, this is well known in the literature and we only
provide it for the convenience of the reader.

We start by defining E as the complete Killing vector field on N , and for each
x ∈ N , define Φ(·, x) as the integral curve

d

dt
Φ(t, x) = E(Φ(t, x)), ∀ t ∈ R and Φ(0, x) = x . (10)

Existence of a solution Φ(t, x) for all t ∈ R is guaranteed by the completeness of
the vector field E . We will show that Φ is a diffeomorphism. By global hyperbolicity,
any integral curve Φ(·, x) cannot self-intersect. As two distinct integral curves cannot
intersect either, we deduce that Φ is injective. To see surjectivity, let y ∈ N and
consider the integral curve

d

dt
�(t) = E(�(t)) ∀ t ∈ R and �(0) = y.

Using the definition of a Cauchy hypersurface and the fact that E is timelike, it follows
that �(s) ∈ N for some s ∈ R. Hence y = Φ(−s, �(s)) and Φ is surjective. Finally,
since E is smooth, it follows that Φ is a diffeomorphism.

Next, we study Φ∗ḡ. Let (t, x) denote a local coordinate system near a point p ∈
R × N and let ḡi j represent the components of the metric in this coordinate system,
with i, j = 0, 1, . . . , n. Since E is a Killing vector field, it follows that the components
(Φ∗ḡ)i j (t, x) are all independent of t . Therefore, we can write

Φ∗ḡ(t, x) = (Φ∗ḡ)00(x) dt2 + 2 (Φ∗ḡ)0α(x) dxα︸ ︷︷ ︸
η

dt + g(x),

where g = ḡ|N and the index α runs from 1 to n. Note that (N , g) is a Riemannian
manifold since N is a spacelike hypersurface, in the sense that all of its tangent vectors
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are spacelike. Since ∂t = Φ∗E , it is easy to see that η = ∂
�
t = Φ∗E�|N , where E� is

the dual covector associated with E .

2.2 Conformal Invariance of the Gauge

We begin with a lemma that shows the gauge in Theorem 2 is the natural one for the
injectivity of the light ray transform on tensors.

Lemma 1 Let (N , ḡ) denote a globally hyperbolic Lorentzian manifold. Suppose that
T ∈ C∞

c (N ;Sm−1) and U ∈ C∞
c (N ;Sm−2). Then,

Lβ(d̄sT +U ḡ) = 0 for all maximal null geodesics β ⊂ N .

In other words, given T ,U as above, Lβ is invariant under the transformation

α → α + d̄sT +U ḡ. (11)

Proof First, let us recall that the symmetrized covariant derivative is defined through
the expression

[d̄sT ]i1,...,im = 1

m!
∑

π∈S(m)

(∂iπ(1)Tiπ(2),...,iπ(m)
− Γ̄ l

iπ(2),iπ(1)
Tl,iπ(3),...,iπ(m)

− . . . − Γ̄ l
iπ(m),iπ(1)

Tiπ(2),...,l), (12)

where Γ̄ i
jk denotes the Christoffel symbols, S(m) denotes the group of permutations of

the set {1, . . . ,m} and we are using the Einstein’s summation convention with respect
to the index l. We also recall that given any U ∈ C∞

c (N ;Sm−2) the symmetrized
tensor product Uḡ is defined by

[U ḡ]i1,...,im = 1

m!
∑

π∈S(m)

Uiπ(1),iπ(2),...,iπ(m−2) ḡiπ(m−1),iπ(m)
. (13)

Since ḡ(β̇(s), β̇(s)) = 0 along any null geodesic, it follows trivially from (13) that
Lβ(U ḡ) = 0. Now applying the definition (12) together with the geodesic equation

β̈ i (s) + Γ̄ i
jk(β(s))β̇ j (s)β̇k(s) = 0,

it follows that

∂sT (β(s), β̇(s)) = [d̄sT ]i1...im β̇ i1(s) . . . β̇ im (s)

and subsequently we have Lβ(d̄sT ) = 0 since T is compactly supported. ��
Next, we aim to study the light ray transform on tensors under conformal rescalings of
themetric and show that the natural gauge for the problem is conformally invariant.We
consider a globally hyperbolic Lorentzian manifold (N , ḡ) and use the notation Lḡ

βα
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to emphasize the dependence of the light ray transform on the metric. Let c ∈ C∞(N )

be strictly positive valued and define g̃ = cḡ. Using [18, Sect. 6, Lemma 6.1], we
observe that given a maximal null geodesic β : R → N satisfying (1) with respect
to ḡ and any non-zero s0 ∈ R, the same curve β parametrized as β̃(s) = β(σ(s))
satisfies (1) with respect to g̃, where

σ(s) =
∫ s

s0
c(β(τ))−1 dτ,

with s ∈ R. This shows that given a α ∈ C∞
c (N ;Sm), there holds

Lg̃
β̃
α̃ =

∫
R

α̃(β̃(s), ˙̃
β(s)) ds =

∫
R

(c−m+1α̃)(β(s), β̇(s)) ds. (14)

Using the above identity, it is clear that the injectivity of the light ray transform
on scalar functions is conformally invariant. For tensors of rank m ≥ 1 we have the
following lemma that shows the natural gauge for the problem as seen in Theorem 2
is conformally invariant as well.

Lemma 2 Let (N , ḡ) be a Lorentzian manifold and consider g̃ = cḡ for some smooth
positive function c. Suppose T ∈ C∞(N ;Sm−1) for some m = 1, . . . . There exists
U ∈ C∞(N ;Sm−2), such that

c−m+1d̃sT = d̄s(c−m+1T ) +U ḡ.

In the case m = 1, the tensor U is identically zero.

Proof We use the notations Γ̃ k
i j (resp., d̃

s) and Γ̄ k
i j (resp., d̄

s) to denote the Christoffel
symbols (resp., symmetrized covariant derivative) onN with respect to the metrics g̃
and ḡ, respectively. By definition,

[d̃s T̃ ]i1,...,im = 1

m!
∑

π∈S(m)

(∂iπ(1) T̃iπ(2),...,iπ(m)
− Γ̃ l

iπ(2),iπ(1)
T̃l,iπ(3),...,iπ(m)

− . . . − Γ̃ l
iπ(m),iπ(1)

T̃iπ(2),...,l). (15)

Next, we defineφ = − 1
2 log c and recall the following identity that relates theChristof-

fel symbols Γ̄ i
jk and Γ̃ i

jk (see [18, Lemma 6.3]):

Γ̄ i
jk = Γ̃ i

jk + δij∂kφ + δik∂ jφ − bi g̃ jk,

where b = ∇ g̃φ. Using the above identity togetherwith the expression (15)we observe
that the symmetrized derivative on tensors T̃ ∈ C∞

c (N ;Sm−1) transforms as

[d̄s T̃ ]i1,...,im = [d̃s T̃ ]i1,...,im − 1

m!

⎡
⎣ ∑

π∈S(m)

Sπ

⎤
⎦

︸ ︷︷ ︸
I

−Ug̃, (16)
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where

Sπ =
(
(∂iπ(1)φ) T̃iπ(2),...,iπ(m)

+ (∂iπ(2)φ) T̃iπ(1),iπ(3),...,iπ(m)

)

+ · · · +
(
(∂iπ(1)φ) T̃iπ(2),...,iπ(m)

+ (∂iπ(m)
φ) T̃iπ(2),...,iπ(m−1),iπ(1)

)
.

We can simplify I further, by considering the number of times that a fixed term of
the form (∂iπ̃(1)φ) T̃iπ̃(2),...,iπ̃ (m)

appears in I with π̃ ∈ S(m). Indeed, observe that

∑
π∈S(m)

(∂iπ(1)φ) T̃iπ(2),...,iπ(m)
=

∑
π∈S(m)

(∂iπ(2)φ) T̃iπ(1),iπ(3),...,iπ(m)

= . . . =
∑

π∈S(m)

(∂iπ(m)
φ) T̃iπ(2),...,iπ(1) .

Consequently, Eq. (16) reduces to

[d̄s T̃ ]i1,...,im = [d̃s T̃ ]i1,...,im − 2(m − 1)

m!

⎡
⎣ ∑

π∈S(m)

(∂iπ(1)φ)T̃iπ(2),...,iπ(m)

⎤
⎦ −Ug̃.

(17)

Next,we consider the tensorT in the statement of the lemmaanddefine T̃ = c1−mT .
We use the defining expression for the symmetrized derivative (15) and the definition
of φ to obtain

[c−m+1d̃sT ]i1,...,im = [c−m+1d̃s(cm−1T̃ )]i1,...,im

= [d̃s T̃ ]i1,...,im − 2(m − 1)

m!

⎡
⎣ ∑

π∈S(m)

(∂iπ(1)φ)T̃iπ(2),...,iπ(m)

⎤
⎦ .

The claim follows from this identity and Eq. (17). ��
Combining Lemma 2 together with Eq. (14) and Theorems 1–2 we have the fol-

lowing immediate corollary.

Corollary 2 Given a globally hyperbolic Lorentzian manifold (N , ḡ), injectivity of the
light ray transform modulo the gauge (11) is conformally invariant. In particular, the
injectivity results stated in Corollary 1 and Theorem 2 hold in the more general setting
that N is conformally stationary or conformally static, respectively.

3 Injectivity of L in Stationary Geometries

Suppose that (M, ḡ) is as in Theorem 1.We are interested in the question of injectivity
of the light ray transform. Owing to the conformal invariance of the light ray transform
on scalar functions (see Sect. 2.2), we will work with the conformally rescaled metrics
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ḡc and gc as discussed in Sect. 1.1. For the remainder of this section, we abuse the
notation slightly and write L to denote the light ray transform on (M, ḡc), where we
recall that

ḡc = −dt2 + ηc ⊗ dt + dt ⊗ ηc + gc.

Lemma 3 Let β : I → M be a maximal null geodesic on (M, ḡc) and write β(s) =
(a(s), b(s)) where a and b are paths on R and M, respectively. Let T ∈ R. Then
βT : I → R defined through βT (s) = (a(s) + T , b(s)) is a maximal null geodesic on
M.

Proof This follows immediately from the fact that the components of ḡc(t, x) are
independent of the time-coordinate t . ��

Let f ∈ C∞
c (M) and suppose that β : I → M is a maximal null geodesic. Define

βT : I → M as translations of β(s) along the time coordinate t analogously as above.
Then,

∫
R

e−ιτT LβT f dT =
∫
R

∫
I
e−ιτT f (a(s) + T , b(s)) dT ds

=
∫
I
eιτa(s)

∫
R

e−ιτr f (r , b(s)) dr ds =
∫
I
eιτa(s) f̂ (τ, b(s)) ds,

(18)

with f̂ denoting the Fourier transform2 in t . We define the integral transform

I f (b) =
∫
I
f (b(s)) ds, (19)

where b = π ◦ β, with π : M → M the natural projection and β a null geodesic on
M.

Let us analyzeI further. Referring to β(s) = (a(s), b(s)) in Lemma 3, we use the
shorthand notations

ȧ = da

ds
, ḃ = db

ds
, |ḃ|gc = |ḃ|.

As β̇ is lightlike, there holds

−ȧ2 + 2ȧηcḃ + |ḃ|2 = 0.

Therefore

ȧ = ηcḃ ±
√

(ηcḃ)2 + |ḃ|2. (20)

2 We use the notation ι for the imaginary unit to avoid confusion with the indices.
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Let Γ̄ i
jk denote the Christoffel symbols on (M, ḡc) and observe that Γ̄ i

00 = 0 for
i = 1, . . . , n. Using this and the definition of a null geodesic, we see that b satisfies
Eq.

d2bi

ds2
+ Γ̄ i

jk(b(s))ḃ
j ḃk + 2Γ̄ i

0k ȧḃ
k = 0, (21)

for i = 1, . . . , n. We can choose, without loss of generality, the positive sign in
Eq. (20). Indeed, suppose that (a+(s), b+(s)) solves (20)–(21) with the positive sign
in (20) for s ∈ I . Then, (a−(s), b−(s)) := (a+(−s), b+(−s)) with s ∈ −I solves
the same two equations with the negative sign in (20). Hence, the choice of sign
corresponds to affine reparametrizations of a fixed null geodesic. For this reason, we
will just consider the positive sign in (20).

Now, Eq. (21) can be recast in the form

∇gc
ḃ
ḃ = G(b, ḃ), (22)

where

Gi (b, ḃ) := (Γ i
jk − Γ̄ i

jk)ḃ
j ḃk − 2Γ̄ i

0k(ηcḃ +
√

(ηcḃ)2 + |ḃ|2)ḃk, (23)

where Γ i
jk denotes the Christoffel symbols on (M, gc). We will now simplify the latter

expression and show that the curves b ∈ G are coordinate invariant inM. To see this,
we first observe that

ḡ−1
c =

(
c

c + |η|2g

) [
−1 η

�
c

(η
�
c)

T c+|η|2g
c g−1

c − η
�
c ⊗ η

�
c,

]

where η
�
c denotes the canonical vector that is dual to the one-form ηc and T denotes the

transposition operation. Now, using the definition of the Christoffel symbols together
with the fact that the coefficients of the metric are time-independent, we write

Γ i
jk − Γ̄ i

jk = −1

2
(ḡc)

i0 (
(ḡc)0, j;k + (ḡc)0,k; j

)
︸ ︷︷ ︸

I

+ 1

2
((gc)

im − (ḡc)
im)

(
(gc)mj;k + (gc) jm;k − (gc) jk;m

)
︸ ︷︷ ︸

I I

,

where the term I I involves a summation over the index m = 1, . . . , n. The term I
reduces as follows:

I = −1

2

(
c

c + |η|2g

)
(η�

c)
i ((ηc) j;k + (ηc)k; j

)
.
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Similarly, the term I I reduces as follows:

I I = 1

2
((gc)

im − (ḡc)
im)

(
(gc)mj;k + (gc) jm;k − (gc) jk;m

)

= 1

2

(
c

c + |η|2g

)
(η�

c)
i (η�

c)
m (

(gc)mj;k + (gc) jm;k − (gc) jk;m
)

= 1

2

(
c

c + |η|2g

)
(η�

c)
i (ηc)l(gc)

ml ((gc)mj;k + (gc) jm;k − (gc) jk;m
)

=
(

c

c + |η|2g

)
(η�

c)
i (ηc)lΓ

l
jk .

Combining the expressions for I and I I we deduce that

(Γ i
jk − Γ̄ i

jk)ḃ
j ḃk = −

(
c

c + |η|2g

) (
(∇gc

ḃ
ηc) ḃ

)
(η�

c)
i .

We now consider the last term in the expression for G. Using the definition of the
Christoffel symbols again and the expression of the inverse matrix ḡ−1

c above, this
reduces as follows:

2Γ̄ i
0k ḃ

k = ḡimc ((gc)m0;k − (gc)0k;m)ḃk = ḡimc ((ηc)m;k − (ηc)k;m)ḃk

=
(
gimc − c

c + |η|2g
(η�

c)
i (η�

c)
m

) (
(ηc)m;k − (ηc)k;m

)
ḃk .

Recalling that (dηc)mk = (ηc)m;k − (ηc)k;m , we conclude that G can be rewritten as
given by Eq. (6), thus establishing that it is an invariantly defined vector field on M .
Let us emphasize that the parametrization of the curve b(s) in M with s ∈ I is not
a unit-speed parametrization and is directly induced by the initial choice of an affine
parametrization for the null geodesic β inM.

Theorem 3 If I is injective, then L is also injective.

Proof Suppose that Lβ f = 0 where β : I → M denotes any maximal null geodesic
in M with maximal interval I . Differentiating Eq. (18) k times with respect to τ and
evaluating at τ = 0, we obtain

0 =
k∑
j=0

∫
I
(ιa(s))k− j ∂ j

τ f̂ (0, b(s)) ds ∀ b ∈ G .

Setting k = 0, we have

(I f̂ (0, ·))(b) = 0 ∀ b ∈ G .
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By injectivity ofI , it holds that f̂ (0, ·) = 0. In a similar manner, by using induction
on k together with the injectivity of I , we deduce that

∂kτ f̂ (0, ·) = 0, ∀ k ∈ N.

As f (t, ·) is compactly supported in t , f̂ (τ, ·) is analytic in τ , and thus f vanishes
everywhere. ��

3.1 Proof of Theorem 1

It is clear that Theorem 1 follows, once we prove injectivity of the ray transform I
along all maximal curves b ∈ G .We prove this under the assumption that Hypothesis 1
or Hypothesis 2 holds. In fact, the transform I has been studied for more general
vector fields G(z, v) than the one given by expression (6) and invertibility is known to
hold under some assumptions. When Hypothesis 2 holds on (M, ḡ), injectivity ofI
follows from [36, Theorem 4.2] in the appendix by Hanming Zhou and the remarks
immediately following that theorem.

To prove Theorem 1 under Hypothesis 1, we will use [11, Theorems 1–2]. There,
injectivity of the map I is proved under the assumption that the manifold M is real
analytic andG is in a sufficiently smallC2 neighborhood of a real-analytic vector field
G� and that the curves in G� do not contain any conjugate points. Hence, to conclude
the proof, we need to show that if Hypothesis 1 holds in M, the aforementioned
assumptions are satisfied.

To this end, let us first recall the definition of conjugate points along curves b ∈
G (following [11]) and conjugate points along null geodesics β in M. Given any
(s, ξ) ∈ T M , we define the exponential map ẽxpx (s, ξ) = b(s) where b ∈ G with
b(0) = x and ḃ(0) = ξ . Subsequently, we say that the point b(s0) is conjugate to x if
(Ds,ξ ẽxpx )(s0, ξ0) has rank less than n, where ξ0 = ḃ(0). The conjugate points onM
are defined analogously, in terms of the exponential map, exp : TM → TM of the
Lorentzian manifold (M, ḡc) along null geodesics (see for example [21, Definition
10.9]).

We now return to verifying the assumptions of [11, Theorem2]UnderHypothesis 1.
It follows from (6) that G and G� are in a smallC2 neighborhood of each other. To see
that the curves inG� are real analytic we note that (M, ḡ�), c� and η� are assumed to be
real analytic. Thus the curves b ∈ G� are also real analytic as they solve a second-order
linear ordinary differential equation (5) with real-analytic coefficients.

In order to apply [11, Theorem 2] and deduce the injectivity of the ray transform
I , it remains to verify that the curves in G� do not have conjugate points. This will
be proved in the following lemma.

Lemma 4 If (M, ḡ�) has an empty null cut locus, then there are no conjugate points
along any curve b ∈ G�.

Proof Suppose for contrary that there exists a curve b ∈ G� with a pair of conjugate
pointsb(0) andb(s0). The abovedefinition of conjugate points implies in particular that
there exists a one-parameter family of curves br in G� with r in a small neighborhood
of origin, such that
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br (0) = b(0), ḃr (0) = ḃ(0) + rv

for some fixed v ∈ Tb(0)M and

dist(br (s0), b(s0)) ≤ Cr2 (24)

for some uniform constantC > 0, where dist(·, ·) is the Riemannian distance function
on (M, g�c) (note that b0 ≡ b). We define the functions ar (s) as the solutions to the
following differential equation:

dar
ds

= η�cḃr ±
√

(η�cḃr )2 + |ḃr |2 and ar (0) = 0,

where the sign ± is chosen in order to make the curve (ar (s), br (s)) future-pointing.
Observe that the curves βr (s) = (ar (s), br (s)) define a family of maximal null
geodesics in (M, ḡ�) (in what follows, we will drop the subscript r when r = 0).

Next, we observe that there exists a constant δ > 0 depending only on η�c and g�c,
such that if

| dist(brk (s0), b(s0)) | < δ |ark (s0) − a(s0)| (25)

for a sequence rk → 0, then there exists a causal path between β(s0) and βrk (s0) for
all k sufficiently large.

If (25) does not hold for any sequence rk → 0, then in particular it implies that
|ar (s0) − a(s0)| < C

δ
r2 and all r sufficiently close to zero. But then the first variation

of β among the family of null geodesics βr must vanish at the point β(s0) and conse-
quently the pointβ(s0) is a conjugate point toβ(0) alongβ. By [21, Proposition 10.48],
there exists a future-pointing timelike curve connecting β(0) to β(s0) and therefore
there exists a null cut point on β corresponding to β(0) which is a contradiction.

Thus, we assume that (25) holds, for a sequence rk → 0 and consequently that
there exists a future-pointing causal path connecting β(s0) to βrk (s0), or vice versa,
for some k. First, we consider the case where this future-pointing causal curve is from
β(s0) to βrk (s0). Then the points β(0) and βrk (s0) can be connected through the con-
catenation of the curve β that connects β(0) to β(s0) and the causal curve that connects
β(s0) to βrk (s0). By [21, Proposition 10.46], we conclude that τ(βrk (0), βrk (s0)) �= 0,
which implies that C+

N (β(0)) �= ∅. In the other case that the future-pointing causal
curve connects βrk (s0) to β(s0), we can use a similar argument to conclude that
τ(β(0), β(s0)) �= 0 and subsequently that C+

N (β(0)) �= ∅. ��

4 Proof of Theorem 2

We start by considering an embedding of the form (3) with η ≡ 0 and satisfying
Hypothesis 3. Throughout this section and for the sake of brevity of notation we will
assume without loss of generality that c ≡ 1 so as to discard the notations ḡc and gc
(see Sect. 2.2). Observe that due to the more restrictive form of the metric (compared
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to the stationary case), null geodesics in (M, ḡ) can conveniently be parameterized
as

β(·; r0, x, v) = (r + r0; γ (r; x, v)),

with r0 ∈ R, (x, v) ∈ ∂inSM and γ (·; x, v) denoting a unit-speed geodesic with initial
data (x, v) ∈ ∂inSM .

Owing to this identification of null geodesics, we can recast the light ray transform
on R × M for α ∈ C∞

c (R × M;Sm) as

(L α)(r0, x, v) =
∫ τ+(x,v)

0
α((r + r0, γ (r; x, v)), (1, γ̇ (r; x, v)))dr ,

for all (r0, x, v) ∈ R × ∂inSM .

4.1 Notations

For symmetric tensors f and h, we denote the symmetrized tensor product simply by
f h. In particular, if f and h are 1-forms, then

f h(v,w) = 1

2
( f (v)h(w) + f (w)h(w)), v,w ∈ T M .

Following [7], we next define three operators. The operator

iii : C∞(M; Sm) → C∞(M; Sm+2)

is defined through iii f = f g, where we recall that Sm denotes the bundle of symmetric
tensors of rank m on M . Next, the operator jjj is the trace with respect to g, that is,

jjj : C∞(M; Sm+2) → C∞(M; Sm)

is the adjoint of iii , and in local coordinates we can write, ( jjj f ) j1... jn = g jk f jk j1... jn .
The composition jjjiii is self-adjoint and positive definite [7, Lem. 2.3]. In particular, the
inverse ( jjjiii)−1 exists. Moreover, by the same lemma, the bundle Sm has the orthogonal
decomposition into sub-bundles Sm = Ker( jjj) ⊕ Ran(iii). Finally, the operator

ppp : C∞(M; Sm) → C∞(M; Sm)

is defined to be the orthogonal projection from Sm to Ker( jjj), and it can be written as

ppp = 1 − iii( jjjiii)−1 jjj,

see [7, Eq. (2.15)].
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4.2 Helmholtz Decomposition

Let us first recall the Helmholtz decomposition as proven in [27, Theorem 3.3.2],
that is, given any ω ∈ C∞(M; Sm), there are unique ωs ∈ C∞(M; Sm) and h ∈
C∞(M; Sm−1) satisfying

ω = ωs + dsh, δsωs = 0, h|∂M = 0,

where δs is the adjoint of ds . We say that ω is solenoidal if ω = ωs .
For a family ω ∈ C∞

c (R;C∞(M; Sm)) we define ωs(t) = (ω(t))s . As the corre-
sponding potential h(t) is obtained by solving the elliptic partial differential equation,

δsdsh(t) = δsω(t), h(t)|∂M = 0,

we see that h ∈ C∞
c (R;C∞(M; Sm−1)) and ωs ∈ C∞

c (R;C∞(M; Sm)).
We define also the Fourier transform in time by

ω̂(τ ) =
∫
R

e−ιτ tω(t) dt .

Then dsω̂(τ ) = d̂sω(τ) and δsω̂(τ ) = δ̂sω(τ). In particular, ω̂(τ ) = ω̂s(τ ) + ds ĥ(τ )

and δsω̂s(τ ) = 0. As the Helmholtz decomposition of ω̂(τ ) is unique, we obtain

(ω̂(τ ))s = ω̂s(τ ). (26)

4.3 Trace-Free Helmholtz Decomposition

We will next recall the trace-free Helmholtz decomposition as discussed for exam-
ple in [7]. By [7, Theorem 1.5], for any ω ∈ C∞(M; Sm) there are unique ωtfs ∈
C∞(M; Sm), h ∈ C∞(M; Sm−1) and ωt ∈ C∞(M; Sm−2) satisfying

ω = ωtfs + iiiωt + dsh, δsωtfs = 0, h|∂M = 0, jjjωtfs = 0, jjjh = 0. (27)

This decomposition is obtained by first solving the following elliptic partial differential
equation for h,

δs pppdsh = δs pppω, h|∂M = 0.

Then ωt = ( jjjiii)−1 jjj(ω − dsh) and ωtfs = ω − iiiωt − dsh.
The last equation jjjh = 0 in the decomposition (27) is in fact a consequence of the

first four equations. That is, if

ω = ω0 + iiiω1 + dsω2, δsω0 = 0, ω2|∂M = 0, jjjω0 = 0, (28)
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then ω0 = ωtfs, ω1 = ωt and ω2 = h. Indeed, writing ω′
0 = ω0 − ωtfs, ω′

1 = ω1 − ωt

and ω′
2 = ω2 − h, we obtain ω′

1 = −( jjjiii)−1 jjjdsω′
2. Then pppdsω′

2 = −ω′
0 and ω′

2
solves

δs pppdsω′
2 = 0, ω′

2|∂M = 0.

Therefore ω′
2 = 0 and ω2 = h. Now also ω0 = ωtfs and ω1 = ωt by [7, Th. 1.5]. We

record the following consequence that will be useful in what follows.

Remark 1 Ifw = dsh for some h ∈ C∞(M; Sm−1) satisfying h|∂M = 0, thenwtfs = 0
and wt = 0.

Analogously to the previous section, for a family ω ∈ C∞
c (R;C∞(M; Sm)) we

can define

ωtfs(t) = (ω(t))tfs, ωt(t) = (ω(t))t,

that gives smooth families of tensors that are compactly supported in time. Observe
that iiiω̂(τ ) = îiiω(τ) and jjjω̂(τ ) = ĵjjω(τ), and analogously with (26), we have

(ω̂(τ ))tfs = ω̂tfs(τ ), (ω̂(τ ))t = ω̂t(τ ).

4.4 Injectivity of the Light Ray Transform on Tensors

For the remainder of the paper and for the sake of brevity, we will abuse the notation
slightly and identify tensors in M with their identical copies in Φ−1(M) without
explicitly writing the embedding. Let α ∈ C∞(M;Sm) and suppose that Lα ≡ 0. As
ḡ = −dt2 + g and α is symmetric, we write

α = f dt + ω + b ḡ, (29)

where

f ∈ C∞
c (R;C∞(M; Sm−1)) ω ∈ C∞

c (R;C∞(M; Sm)) b ∈ C∞
c (M;Sm−2).

We can simplify (29) further by considering the Helmholtz decomposition of f ,
that we denote by f = f s + ds p. To this end, we begin by writing

ds p dt = d̄s(p dt) + ∂t p ḡ − ∂t p g.

Note that the term d̄s(p dt) + ∂t p ḡ takes the form of the gauge (11) and by Lemma 1
lies in the kernel of L , while

−∂t p g ∈ C∞
c (R;C∞(M; Sm)).
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In particular, we can replace ω with ω − ∂t p g in (29). As also b ḡ is in the kernel of
L , we can assume without loss of generality that

α = f dt + ω, f = f s . (30)

We have the following Fourier slicing lemma.

Lemma 5 Suppose that α ∈ C∞
c (R × M; Sm) is of the form (30). Then for k =

0, 1, . . . , and (x, v) ∈ ∂inSM it holds that

∂kτ L̂α(τ, x, v)|τ=0 = I(∂kτ f̂ (τ, ·)|τ=0)(x, v) +
k−1∑
j=0

(
k

j

)
Rk− j (∂

j
τ f̂ (τ, ·)|τ=0)(x, v)

+ I(∂kτ ω̂(τ, ·)|τ=0)(x, v) +
k−1∑
j=0

(
k

j

)
Rk− j (∂

j
τ ω̂(τ, ·)|τ=0)(x, v),

(31)

where

R jω(x, v) =
∫ τ+(x,v)

0
(ιr) jω(γ (r; x, v), γ̇ (r; x, v)) dr , ω ∈ C∞

c (M; Sm).

We are now ready to prove the main theorem.

Proof of Theorem 2 As discussed above, we can write α in the form (30) with f = f s .
Now note that for any (x, v) ∈ ∂inSM we have that (y, w) ∈ ∂inSM as well, where

y = γ (τ+(x, v); x, v), w = −γ̇ (τ+(x, v); x, v).

Moreover, we have that Iω(x, v) = Iω(y, w) for any ω ∈ C∞
c (M; Sm) with even m

but Iω(x, v) = −Iω(y, w) for any f ∈ C∞
c (M; Sm) with odd m.

Applying (31) with k = 0 and using the above observation implies that

I( f̂ (0)) = 0, I(ω̂(0)) = 0. (32)

Using Hypothesis 3 together with f = f s and Remark 1 we deduce that

f̂ (0) = 0, ω̂tfs(0) = 0, ω̂t(0) = 0.

Let us define

a0(t, x) =
∫ t

−∞
ωt(t ′, x) dt ′. (33)
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Asω is compactly supported in time, a0(t) vanishes for t sufficiently small. Moreover,
for large t ,

a0(t) =
∫ ∞

−∞
ωt(t ′)dt ′ = ω̂t(0) = 0.

Thus a0 ∈ C∞
c (R;C∞(M; Sm−2)). Observe also that ∂t a0 = ωt and hence ιτ â0 = ω̂t.

In particular,

∂kτ ω̂t(0) = ιk∂k−1
τ â0(0), k = 0, 1, . . . .

In what follows, we will write

ω = ωtfs + iiiωt + dsa1, a1 = as1 + dsh,

to denote the trace-free Helmholtz decomposition of ω and the Helmholtz decompo-
sition of a1, respectively. We will use the fact that for any u ∈ C∞

c (M; Sm),

R j (d
su) = ι j

∫ τ+

0
r j dsu(γ (r), γ̇ (r))dr

= ι j
∫ τ+

0
r j∂r (u(γ (r), γ̇ (r)))dr

= −ι jR j−1(u).

When k = 1, Eq. (31) reduces to the fact that

I(∂τ f̂ ) + I(∂τ ω̂tfs + ι̂a0) + R1(d
sâ1)

= I(∂τ f̂ ) + I(∂τ ω̂tfs + ι̂a0) − ιI (̂a1)

= I(∂τ f̂ − ιâs1) + I(∂τ ω̂tfs + ι̂a0g)

vanishes at τ = 0. Note that ∂τ f̂ − ιâs1 is solenoidal and of rank m − 1. Moreover, the
tensor

w := ∂τ ω̂tfs + ι̂a0g

is of rank m and satisfies

wt = ι̂a0g and wtfs = ∂τ ω̂tfs.

Hence at τ = 0,

∂τ f̂ = ιâs1, ∂τ ω̂tfs = 0, â0 = 0.
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We will now proceed with an induction argument to show that for all j ∈ N, it
holds at τ = 0 that

∂ j
τ f̂ = ι j∂ j−1

τ âs1, ∂ j
τ ω̂tfs = 0, ∂ j−1

τ â0 = −ι( j − 1)∂ j−2
τ ĥ. (34)

Indeed, let us suppose that this hypothesis holds for all j = 1, . . . , k − 1. Together
with (31) this implies that

I(∂kτ f̂ ) + ι

k−1∑
j=0

(
k

j

)
jRk− j (∂

j−1
τ âs1) + I(∂kτ ω̂tfs + ιk∂k−1

τ â0)

+
k−1∑
j=0

(
k

j

)
Rk− j (ι j∂

j−1
τ â0 + ds∂ j

τ â1)

vanishes at τ = 0. As a1 vanishes on R × ∂M , we have

Rk− j (d
s∂ j

τ â1) = −ι(k − j)Rk−( j+1)(∂
j
τ â1)

= −ι(k − j)Rk−( j+1)(∂
j
τ â

s
1) − ι(k − j)Rk−( j+1)(d

s∂ j
τ ĥ).

(35)

Next, using the identity

−ι

k−1∑
j=0

k!
j !(k − j)! (k − j)Rk−( j+1)(∂

j
τ â

s
1) = −ι

k∑
j=1

(
k

j

)
jRk− j (∂

j−1
τ âs1),

together with (35), we see that

I(∂kτ f̂ ) + I(∂kτ ω̂tfs + ιk∂k−1
τ â0) − ιkI(∂k−1

τ âs1)

+
k−1∑
j=0

(
k

j

)
Rk− j (ι j∂

j−1
τ â0) − ι

k−1∑
j=0

k!
j !(k − ( j + 1))!Rk−( j+1)(d

s∂ j
τ ĥ)

vanishes at τ = 0. As h vanishes on R × ∂M , we have for j = 0, . . . , k − 2,

Rk−( j+1)(d
s∂ j

τ ĥ) = −ι(k − ( j + 1))Rk−( j+2)(∂
j
τ ĥ),

and for j = k − 1,

Rk−( j+1)(d
s∂ j

τ ĥ) = I(ds∂ j
τ ĥ) = 0.

We rewrite
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− ι

k−1∑
j=0

k!
j !(k − ( j + 1))!Rk−( j+1)(d

s∂ j
τ ĥ) =

k−2∑
j=0

k!
j !(k − ( j + 2))!Rk−( j+2)(∂

j
τ ĥ)

=
k∑
j=2

k!
( j − 2)!(k − j)!Rk− j (∂

j−2
τ ĥ),

and, using ∂
j−1
τ â0 = −ι( j − 1)∂ j−2

τ ĥ,

k−1∑
j=0

(
k

j

)
Rk− j (ι j∂

j−1
τ â0) =

k−1∑
j=2

k!
( j − 2)!(k − j)!Rk− j (∂

j−2
τ ĥ).

Therefore

I(∂kτ f̂ ) + I(∂kτ ω̂tfs + ιk∂k−1
τ â0) − ιkI(∂k−1

τ âs1) + k(k − 1)I(∂k−2
τ ĥ)

vanishes at τ = 0. We obtain at τ = 0,

∂kτ f̂ = ιk∂k−1
τ âs1, ∂kτ ω̂tfs = 0, ι∂k−1

τ â0 = (k − 1)∂k−2
τ ĥ,

and this closes the induction argument.
We can now use (34) to deduce that

f = ∂t a
s
1, ωtfs = 0, a0 = −∂t h.

To see this, recall that since the functions f , as1,ω
tfs, a0 and h are compactly supported

in time, their Fourier transforms in t are real analytic. Hence,

f̂ (τ, ·) =
∞∑
k=0

∂kτ f̂ (0, ·)τ
k

k! = ιτ

∞∑
k=0

∂kτ â
s
1(0, ·)

τ k

k!

implying that f = ∂t as1. The other two claims follow similarly. Recalling also that
ωt = ∂t a0, Eq. (30) can be rewritten as

α = ∂t a
s
1 dt + dsa1 + ∂t a0 g.

This expression can be further simplified to obtain

α = d̄s (a0 dt + a1)︸ ︷︷ ︸
T

+ (∂t a0)︸ ︷︷ ︸
U

ḡ, (36)

thus concluding the proof of the theorem. ��
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