
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Protection against reverse engineering in ARM

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Accepted version (Final draft)

Ben Yehuda, Raz; Zaidenberg, Jacob

Ben Yehuda, R., & Zaidenberg, J. (2020). Protection against reverse engineering in ARM.
International Journal of Information Security, 19(1), 39-51. https://doi.org/10.1007/s10207-
019-00450-1

2020

International Journal of Information Security Special Issue on "IoT Security and Privacy" manuscript No.
(IJIS-D-18-00538R2)

Protection against reverse engineering in ARM

Raz Ben Yehudaa,1,3, Nezer Jacob Zaidenbergb,1,2,3

1University of Jyväskylä, Jyväskylä, Finland
2College of Management Academic Studies, Street, Rishon LeZion, Israel
3TrulyProtect, Finland

Received: 09 Nov 2018/ Accepted: 18 Jun 2019

Abstract With the advent of the mobile industry, we face new security challenges. ARM
architecture is deployed in most mobile phones, homeland security, IoT, autonomous cars
and other industries, providing a hypervisor API (via virtualization extension technology).
To research the applicability of this virtualization technology for security in this platform
is an interesting endeavor. The hypervisor API is an addition available for some ARMv7-a
and is available with any ARMv8-a processor. Some ARM platforms also offer TrustZone,
which is a separate exception level designed for trusted computing. However, TrustZone
may not be available to engineers as some vendors lock it. We present a method of applying
a thin hypervisor technology as a generic security solution for the most common operating
system on the ARM architecture. Furthermore, we discuss implementation alternatives and
differences, especially in comparison with the Intel architecture and hypervisor with Trust-
Zone approaches. We provide performance benchmarks for using hypervisors for reverse
engineering protection.

Keywords Security · ARM · Mobile · IoT · Hypervisor

1 Introduction

We explore Man-at-the-Endpoint (MATE) attacks on ARM-based systems such as embed-
ded and mobile devices and focus on protection against reverse engineering for the ARM
platform.

The TrulyProtect [3] microrvisor is a secured thin hypervisor based on the blue pill con-
cept [8] for the x86 environment. TrulyProtect does not run on multiple operating systems
and is used only for security purposes. TrulyProtect was initially implemented and bench-
marked on an x86 CPU architecture. We examine the necessary modifications for porting
TrulyProtect to ARM, its security benefits, and performance costs. TrulyProtect provides a
thin layer of code that is invoked through traps on the x86 architecture. We use a similar
approach using exceptions to elevate from lower privilege levels in ARM. These traps can
be generated from userspace programs (EL0) or kernel code (EL1).
In general, our technique is composed of the following steps:

ae-mail: raz@trulyprotect.com
be-mail: nezer@trulyprotect.com

2

– Static phase
Encrypt some segment of the ELF binary.
Replace this segment with a trap opcode.

– Runtime phase
Whenever the processor executes the trap opcode, the processor moves from user mode
to HYP mode, decrypts the encrypted code, executes it in HYP mode, encrypts it back
and returns to user mode.

In this paper, we examine the anti-reverse engineering of native code. We present a thin
hypervisor implemented in an ARMv8-a 64-bit processor, and synthetic benchmarks. The
hypervisor can be considered a Trusted Execution Environment (TEE) as it offers an isolated
execution environment for decrypted code.

2 Background

We present the ARM architecture permission model and past work on TrulyProtect under an
Intel platform.

2.1 ARM permission model

The ARMv8-a platform normally has four exception (permission) levels:

Exception level 0 (EL0) refers to normal userspace code. EL0 is analogous to “ring 3” in
the x86 platform. For example, virtually all applications and games on a standard iPhone
or Android phone run on EL0.

Exception level 1 (EL1) refers to operating system code. EL1 is analogous to “ring 0” in
the x86 platform. For example, the Android or the iOS (the operating system itself) on
a mobile phone runs on EL1.

Exception level 2 (EL2) refers to HYP mode. EL2 is analogous to “ring -1” or “hypervisor
mode” on the x86 platform. In most ARM devices, nothing runs on this exception level
unless the ARM device starts a hypervisor when it boots.

Exception level 3 (EL3) refers to TrustZoneTM.
TrustZone is a special security mode that can monitor the ARM CPU as well as the
operating system that it runs. TrustZone allows running a separate security real-time
operating system in a secure world. There are no directly analogous modes, but similar
concepts in x86 (from security perspectives) are Intel’s ME [9] and SMM [10].
Each of the exception levels provides its own state of registers and can access the regis-
ters that correspond to the lower permission levels, but not the higher levels. In Figure 1,
Exception Levels EL3, EL2 and EL0/EL1 have their own translation tables. Thus, mov-
ing between exception levels requires a change of the entire address space.

3

ARMv8-a Processor’s Exceptions Levels

Process Q Transla-
tion Table mapped by
TTBR0_EL3

Process P Transla-
tion Table mapped by
TTBR0_EL2

Process K Transla-
tion Table mapped by
TTBR0_EL1

EL0

EL1

EL2

EL3

Fig. 1 MMUs separation

2.2 TrustZone

EL3 refers to the TrustZone architecture [11,12]. TrustZone is a special ARM security mode
that allows the running of a “secure OS” in parallel to the normal “insecure OS.” The normal
(insecure OS), called “normal world,” is the standard operating system that normally runs on
the device (for example, VxWorks, Linux, iOS or Android). The secure OS, called “secure
world,” is an implementation-specific real-time operating system (such as OKL4[13]) and is
chosen by the hardware vendor. The purpose of the secure world is to attest the normal world
and provide a root of trust and trusted computing services. The secure world is separated
from the non-secure world by the hardware memory protection unit.

Users cannot normally run applications in the secure world. Furthermore, running ap-
plications on TrustZone is usually prevented by the vendors.

ARM Holdings introduced TrustZone as part of its architecture in 2009. TrustZone was
an optional extension to the ARMv7-a architecture. TrustZone is part of the ARMv8-a ar-
chitecture and described in detail by Ngabonziza [14]. The TrustZone can be used in two
distinct operational modes:

1. Monitor mode provides a separate operating system to run concurrently with a second,
generic operating system (such as Linux). The ARM processor itself assigns resources
(such as processing cycles) to the TrustZone real-time operating system periodically.

2. Passive library mode includes a monitor exception vector that is activated through traps
or SMC calls.

It might have been possible to implement TrustZone as a virtual machine running on
EL2. However, TrustZone is designed to execute in an isolated environment and at a higher
privilege level than the hosting machine and hypervisor.

Unfortunately, a malicious application running in TrustZone or HYP mode may be used
to attack the TrustZone operating system or the hypervisor itself. However, these attacks

4

are only possible if the malicious application runs in EL2 or EL3. Fortunately, installing
malicious input can be detected by TrustZone in the Static Root of Trust Measurements
(SRTM) process.

2.3 TrulyProtect

On x86 platforms TrulyProtect provides anti-reverse engineering [15], endpoint security
[16], video decoding [25], forensics etc. TrulyProtect relies on Dynamic Root of Trust Mea-
surement (DRTM) attestation to create a trusted environment in the hypervisor and receive
encryption keys [17].

After receiving the keys, TrulyProtect provides anti-reverse engineering by executing
encrypted code in the hypervisor and protecting the decryption keys. In this work, we review
the performance and capability of similar hypervisor operations on the ARM architecture.
Additional work includes endpoint security by controlling instructions (memory pages) that
are allowed on an endpoint. The hypervisor reads an encrypted and signed database of al-
lowed pages. The hypervisor grants execution permission only to pages that are allowed
to execute on the endpoint. Platform independent extensions to the TrulyProtect hypervi-
sor also allow protection against reverse engineering of managed code and protection of
encrypted video. These features could be ported to the ARM architecture as well but were
beyond our scope.

2.4 Attestation

TrulyProtect DRTM (Dynamic Root of Trust Measurements) relies on an attestation method
based on a technique similar to Kennel and Jamieson [27,28]. This attestation method is
not required on ARM (though we believe similar methods can be developed); thus, the
Static Root of Trust Measurements (SRTM) using TrustZone is used instead. If TrustZone
is unavailable, using TPM [19] and Secureboot is another attestation option [15]. If the
hardware root of trust is not available, then even DRTM [29] is possible. Regardless, we
provide the decryption keys only after successful attestation. We have no innovation in this
field and thus, attestation remains out-of-scope.

2.5 Protecting the hypervisor

In embedded devices, such as mobile phones or ARM servers used for cloud computing,
a malicious user may try to compromise the computer‘s [30] hypervisor [31,32] as also
described in [33] for Xen or KVM [35] through a host privilege escalation. Min [34] claims
that the best approach is to rely on the hardware and presents a security monitor as a solution.
We agree with this approach and offer to do the attestation in, for instance, the TrustZone.
However, we examine what possible vulnerabilities a malicious software might try to take
advantage of:

– A boot loader or kernel replaced. The chain of trust would prevent the bootloader or the
kernel from executing.

– A malicious program. A TrulyProtect’s signed program with a malicious code generates
the escape sequence to enter the VM. This means that part of the code tries to access
privileged registers. We trap any access to these registers while executing in EL2 so any

5

attempt would be trapped to the hypervisor. For example, we disable the SMC calls and
HVC calls while executing in EL2. In cases when there is no protection in EL2, we can
protect from the EL3 (TrustZone).

– A malicious hypervisor. It is not possible to replace the TrulyProtect hypervisor once it
is set.

Once a trustworthy hypervisor is running, it can protect the keys.

3 Related works

Many researched techniques for trusted execution, in this section, we describe some.

3.1 TEE in ARM

Ekberg et al [43] discuss TEE in mobile devices as having strict requirements that date
back to the beginning of the mobile device industry and describes the various techniques of
protection, a chain of trust, trusted storage, and others. They also mention virtualization as
a means of protection through the use of a VMM (Virtual Machine Monitor). These VMMs
run several concurrent guests isolated one from the other. The TrulyProtect thin hypervisor
does not rely on a VMM and is not considered a guest.

3.2 Code obfuscation and DRM

A program can be obfuscated to diminish the chances of successful reverse engineering
and discovery of its trade secrets, modification, etc. There has been significant work on
systems to obfuscate and de-obfuscate code. Vot4CS [46] is a relatively recent obfuscation
for C# that survives many de-obfuscation attempts. Kevin Coogan et al [7] and Kalysch [42]
describes means to attack such obfuscators. Szor [36] discusses automatic de-obfuscation in
order to detect computer viruses. Such methods allow code to execute on a target machine
and make reverse engineering much more challenging. However, code obfuscation is bound
to fail eventually [47]. In practice, experience shows that by investing time and dedication,
these methods can frequently be broken faster than people think. For example, the Nintendo
Wii-U DRM system is notorious for being broken less than one month after the platform
was released despite Nintendo having full control on the hardware operating system and the
software [38].

DRM [17] techniques require protection against reversing as they are a frequent target
of reversing and removal attempts. TEE and reverse engineering technologies can be used
on many entertainment systems for DRM protection. Devices such as smart TVs, handheld
devices, TV set-top boxes and game consoles [6] are all examples of using modern hardware
for these purposes. Hardware modern security features are used to prevent copying whenever
such features are available.

3.3 Intel SGX

Intel SGX [1] is a set of instructions added to the processor that enables the use of protected
and isolated memory regions knows as "enclaves." Access to such enclaves requires special
software tools and expertise.

6

3.4 OKL4 Microvisor

OKL4 Microvisor [18] is a secure hypervisor supported by Cog Systems. The OKL4 mi-
crovisor supports both para-virtualization and pure virtualization. It is designed for the IoT
industry, and supports ARMv6, ARMv5, ARMv7-ve [4] and ARMv8-a [5]. Unlike Tru-
lyProtect, the OKL4 microvisor is a full kernel executing in HYP mode. Cog Systems also
offers an SDK called “D4 secure SDK” and an RTOS.

4 Anti-reverse engineering

TrulyProtect [3] for the ARM thin hypervisor offers an easy way to execute code in a secure
environment in ARMv8-a, and does so in a way that does not require the user to modify the
code. Unlike QSEE [20,21], the interaction with the secured area does not require any spe-
cial preparations. TrulyProtect is a real thin hypervisor, i.e., its footprint is less than 100kB
when counting the AES decryption. It does not offer a system-wide solution but focuses on
protecting distinct parts of the program. Memory protection, anti-reverse engineering and
protection of keys are all implemented like other platforms supported by TrulyProtect.

5 Innovation

In this section, we detail the proposed system for anti-reverse engineering in ARM.

5.1 Program protection in ARM

We now examine the anti-reverse engineering process. Anti-reverse engineering is often
achieved using obfuscation; however, here, we want to prevent the reverse engineering of
software by encrypting the software code before deployment and deploying only the en-
crypted software. We make the following assumptions:

– The encryption function we use is safe and cannot be broken. We use AES [22]; Nev-
ertheless, if in the future, AES is broken [23] then the encryption function can easily be
replaced with an elliptic curve [24] or any other encryption function. (We do not assume
anything about the encryption function.)

– The CPU itself is sufficiently complex to prevent the attacker from “looking” inside the
CPU.

– We assume the CPU works according to the specifications and no hidden modes allow
internal CPU structures to be read.

5.2 The proposed system

Under the above assumptions, we provide evidence that the decrypted software is not avail-
able to the normal operating system, and the hypervisor will undertake the protection for the
software and the decryption keys. This proposed system is composed of two phases.

1. Static encryption
We choose which functions we wish to encrypt and obtain a binary copy of the program.
Then we use TrulyProtect’s instrumentation tool to encrypt the chosen functions.

7

2. Runtime execution
The program runs as-is. Each time the processes access the encrypted function, the pro-
cessor drops to HYP mode, decrypts the function, and executes it.

5.2.1 Static encryption

As noted earlier, a program protection framework in ARM mimics the way TrulyProtect
protects programs in x86. However, because the ARM hypervisor differs greatly from other
hypervisors (such as the x86 hypervisor), we will describe how it is being undertaken in
detail.
Figure 2 depicts the first stage of the encryption of a single function. An ELF ARM binary
is processed, and the instructions of the function foo() are replaced with a trap code, the
"BRK" instruction.

400610: foo:
400614: stp x16, x30, [sp,#-16]!
400618: adrp x16, 0x41161c
40061c: ldr x0, [sp,#8]
400620: add x16, x16, 0xba8
400624: br x17
400628: ret

400610: foo:
400614: brk 0x3
400618: brk 0x3
40061c: brk 0x3
400620: brk 0x3
400624: brk 0x3
400628: brk 0x3

Static Encryption

Fig. 2 Static Encryption - replace a function

We chose the "BRK" instruction for two reasons:

1. It easy to configure to trap into the HYP mode by setting the mdcr_el2 register.
2. It does not change any value of the general purpose registers; thus, when trapping to the

hypervisor, the program’s context can be saved.

The addresses from the left are relocatable, meaning that the actual addresses are not
known at the static encryption phase. It is important to note that the ARMv8-a exception
level model dictates that only positive addresses, i.e., userspace addresses can be executed
in EL2, and not negative (kernel addresses).
Static encryption also includes the addition of the new encrypted function foo(). The en-
crypted version of the function is added to the ELF binary as a new segment, as depicted in
Figure 3.

8

.data 9100

.dynamic 01d0

.bss 3100

.symtab 05d0

.strtab 0032

.data 9100

.dynamic 01d0

.bss 3100

.symtab 05d0

.strtab 0032

.trulyP2 0032

Static Encryption

Fig. 3 Static Encryption - additional segment

5.2.2 Runtime decryption

The next phase is when the program is loaded and executed. To understand this phase we
need to explain ARM’s memory model. But first, we start with the x86 memory model.
In x86 accessing a process or a kernel’s virtual memory from HYP mode does not require
mapping (Figure 4).

Process P
01010101..

MMU

Root mode.
Process P
01101011

mmu
abort

mmu
abort

Fig. 4 x86 model. A single translation table

However, in ARM it is required to map the designated pages to the hypervisor translation
table. For this reason, when we want to access EL0 code or data from EL2, we must first
map the pages to the hypervisor. As a result, a page is mapped twice: one to each of two
distinct memory tables of the same process, as shown in Figure 5.

9

Process P 010101011..

Hyp mode Process

P 01010100011..

EL1 Translation Table

EL2 Translation Table

mmu abort

mmu abort

Fig. 5 ARM model. Translation tables are not shared

Thus, when any arbitrary program executes, the kernel searches in the ELF segments for
the segment .trulyP2, and if it is found, then the kernel calls the hypervisor to enable trapping
the "BRK" instruction. As long this process runs, any time the processor executes "BRK", it
will trap into HYP mode. The hypervisor verifies that the current position of the instruction
pointer is in foo(), and if so, it decrypts the encrypted version of foo() accommodated in
.trulyP2 onto its original position. Then it starts executing from where the trap was and
continues to execute in EL2 until one of the followings occurs:

1. foo() reaches its end, performs the ret instruction, and returns to the hypervisor. The
hypervisor flushes the caches and TLBs, put back the trap code and return to EL0.

2. foo() accesses unmapped memory which results in an EL2 MMU abort (Figure 6.)
3. foo() performs an svc (a system call).

The ARM memory model poses a problem in MMU aborts. If there is an MMU data
abort in EL2, then the unmapped region must also be mapped to EL0 memory page tables
if it was not already mapped before. For this reason, we only map the trap-code (the code
that generates the exceptions), the encrypted code, and the stack. This way, we know that the
MMU aborts because of an unmapped region in EL2 while the region is mapped in EL1/EL0
(or will be mapped). As we show later, this approach has a severe performance penalty. For
this reason, we tried a different approach - a real-time mapping, referred to here as Rt-map.

400610: foo:
400614: stp ..
400618: adrp x16, 0x41161c
400620: add...
400624: br x17
400628: ret

Kernel
Exit to EL1

Instruction 400618 generated an MMU
abort because address 0x41161c was not
mapped to EL2

Fig. 6 Real-time mapping in EL2

In Rt-map mode, when an MMU abort takes place in EL2, we exit to EL1 and access the
faulting address to map it to EL0/EL1 (assuming it was not already mapped); then, we map

10

the faulted address to EL2 and continue execution in EL0. With this approach, the next time
this code is accessed in EL2, it will not MMU-abort in EL2 as previously but will continue to
execute until the next MMU abort. This way, most of the process’s address space gradually
maps to EL2 as the process executes. Consequently, the process exits to EL0 (and then EL1)
only when it performs a system call (Figure 7). Thus, an interposition is kept between the
EL2 and EL0 processes.

400610: foo:
400614: stp ..
400618: adrp...
40061c: svc
400620: add...
400624: br x17
400628: ret

Kernel
Exit to EL1

The SVC is designed to exit from EL2 to EL0. The program counter
is programmed to re-execute the SVC in EL0 again so that the SVC
trap would be generated from EL0 to EL1

Fig. 7 System call in EL2

This way, the decrypted content is never available to the operating system. If a user tries
to dump the memory image of the process while it is in EL2, then the processor would leave
HYP mode and, consequently, put back the trap-code.

5.3 The hyplet

Protecting EL1
The hyplet is a generic term we use to describe programs that partly execute in EL0 or EL1
and partly in EL2. The technique we introduce in this paper is a special case of an encrypted
hyplet. The hyplet as a general term is not part of the paper, but we provide some details for
how it works. It is a challenging task to protect device drivers in ARM8v-a. For this reason,
we developed the hyplet ISR (Interrupt Service Routine), in short hypISR. The hypISR is a
means to move from EL1 to the userspace program without a noticeable penalty. A hyplet-
ed program is a program that constantly accommodates EL2 translation table, and is not
evacuated from EL2’s MMU.
Whenever an interrupt is being processed by the processor; if the data or code need to be
protected, then the processor moves to EL2 and from there to the userspace program that
handles it. The callback function that processes this interrupt routine is the hyplet. Through
this dedicated userspace process, sensitive data can be protected by reading it into a pro-
tected memory region.

To ensure that both the program code and data are always accessible, it is essential
to disable evacuation of the program’s translation table from the processor. Therefore, we
chose to constantly accommodate the code and data in the hypervisor translation registers
(Figure 8) [4]. To map a userspace program, we modified the Linux ARM-KVM mapping
infrastructure to map userspace code with kernel-space data [37].

11

Process

EL0

EL1

EL2MMU EL2

MMU EL1

Fig. 8 Asymmetric dual view

Figure 8 shows identical addresses mapped to different virtual addresses in two separate
exception levels. The small square subsection is mapped to EL2 and is therefore accessible
from EL2. Usually, when executing in EL2, EL1 data is not accessible without premature
mapping to EL2. This mapping extends the ability of a Linux process to execute from two
exception levels to three.
Protecting the hypervisor MMU
In the standard method for memory mapping, EL1 is responsible for EL1/EL0 memory
tables, and EL2 is responsible for its own memory table, in the sense that each privileged
exception level accesses and manages its own memory tables (Figure 9).

EL1mmu EL2mmu

Fig. 9 Memory table access

This approach, however, puts the microvisor at risk because it might overwrite or otherwise
garble its own page tables. As noted earlier, ARM8v-a hypervisor has a single memory
address space (unlike TrustZone that has two, for the kernel and the userspace). The ARM
architecture does not coerce an exception level to control and access its own memory tables,
allowing the ARM architecture to map the EL2 page table in EL1 (Figure 10). As such, only
EL1 can manipulate the microvisor page tables.

EL1mmu EL2mmu

EL2 table descriptors

Fig. 10 Memory table access for hyplets

12

5.4 OS dependence

The ARM hypervisor is designed to be distinct in execution and memory context from other
exception levels. As a result, whenever the hypervisor needs to access EL0 pages, it must
map them to its own translation table. However, for that to happen, the hypervisor must
implement its own page allocation system because there might be a need to allocate a table.
However, we refrain from accessing the translation tables of EL2 in EL2 to reduce risks.
Also, it is better to re-use the KVM-ARM [37] allocation system because it is a mature
software. For these reasons, we decided to use KVM-ARM; thus, the hypervisor in this
paper refers only to Linux implementations.

6 Evaluation

In the following sections, we estimate our microvisor overhead. we evaluate IPA overhead
and TrulyProtect technology to TrustZone based solutions and measure encrypted program
execution overhead. We measure the penalty of the repeated encryption, cache and TLB
evacuations that are caused by system calls or minor page faults in EL2. We test the micro-
visor in typical I/O operations and under CPU loads. We also describe the means to mitigate
these penalties.
The measures presented in the tests are averages, standard deviations, minimum and maxi-
mum. Each experiment was performed five times.
The tests were conducted in a Lenovator “Hikey” board. A Hikey is a small system-on-a-
chip ARM-based computer manufactured by LeMaker. Hikey’s processor is an ARMv8-a.

SoC HiSilicon Kirin 620

Number of CORES 8

Frequency 1.2 GHz

RAM 2GB

RAP-TYPE LPDDR3 1.6 GHz

Table 1 Test Hardware

The software used was:

Linux Kernel Version 4.4.11

Distribution Debian

Compiler gcc-linaro-4.9-2015.02

Table 2 Test Software

13

6.1 IPA overhead

We wish to evaluate the cost of using the Intermediate Physical Address (IPA) [39]. The
IPA is a second stage of translation and is used to separate the guest operating system from
the physical memory by a double memory fault mechanism.

We measured the overhead of a two-stage translation compared with a single stage trans-
lation. The test software was RAMspeed.

The tests were conducted by two kernels with the same configuration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10

Log2 KiloByte

G
B

/s

Dual Stage Translation
Single Stage Translation

Fig. 11 IPA vs Native, WRITE access

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

Log2 KiloByte

G
B

/s

Dual Stage Translation
Single Stage Translation

Fig. 12 IPA vs Native, READ access

In Figure 4 we attempt to simulate more closely the real-world computing load. A, B,
and C are locations in the memory; M in SCALE is a constant.

14

SCALE A = m*B

ADD A + B = C

COPY A=B

Table 3 IPA Tests explained

Single stage COPY SCALE ADD

Avg 2.03 1.60 1.65
StdDev 0.01 .0.1 0.008
Max 2.05 1.62 1.66
Min 2.02 1.59 1.64

Dual stage COPY SCALE ADD

Avg 2.08 1.62 1.69
StdDev 0.01 0.005 0.008
Max 2.1 1.63 1.7
Min 2.08 1.62 1.68

Table 4 Real Load GB/s

Evidently, there is no difference between using a two-stage translation and a single stage
translation. We have shown that IPA does not influence the memory access performance.

6.2 TEE enter/exit overhead

The common way to enter TrustZone is when the processor executes the SMC call from
EL1. In TrulyProtect, the processor traps to EL2 when it executes the "BRK" instruction.
TrustZone implementations include a kernel space driver and the data are passed through
ioctl(2)s operations that use SMC. In this test, we evaluate how costly the "BRK" trap is,
when it traps to EL2, compared with the SVC/HVC (SVC is a system call to EL1 and HVC
is a hypervisor call to EL2) and ioctl (2) [41] system call. We assume the HVC overhead is
similar to SMC.

Trap BRK trap Pure SVC call Ioctl syscall

Avg 92 ns 92 ns 490 ns
StdDev 41 ns 41 ns 65 ns
Max 156 ns 156 ns 550 ns
Min 52 ns 52 ns 440 ns

Table 5 BRK vs. SVC & Ioctl

There is a very little difference when comparing a trap to a typical SVC call. Executing
ioctl that does nothing costs on average about 500ns without pre-emption. This is because
there are many operations undertaken by the kernel before it returns. Since executing a

15

"BRK" trap takes on average 100ns and an ioctl takes 500 ns, we can say that the TrulyPro-
tect mechanism for entering and exiting the TEE is five times faster than TrustZone-based
technologies.

6.3 Encrypted code CPU use

We have used an FFT (Fast Fourier Transformation) program as a benchmark. The FFT
program is a CPU-intensive program. This program does not perform any IO-related tasks.
We chose this program because it traps to EL2 when it first enters the encrypted function
and then continues to run until it reaches its end, and returns to TrulyProtect’s hypervisor.
There are no traps from EL2 to EL2 in this test. The following presents several decryption
strategies.

– Native A clear-text run.
– Live-decrypt Decrypts in real time and flushes the instruction cache on exit from HYP

mode. When the hypervisor is entered again, it decrypts again.
– Cache The first time the hypervisor enters the encrypted code, it caches the decrypted

code into a temporary protected buffer and from now on the buffer is copied onto the
trap-code each time the hypervisor is entered for execution. On exit, the function’s
decrypted instructions are flushed from the L1 instruction cache. (non-transient write-
back).

– RT-map In addition to caching the decrypted data, i.e.; the "cache" mode, the hypervisor
maps other parts of the process’s address space into the hypervisor in real time to reduce
exits from HYP mode. Reducing the exits reduces the cache flushes and copying.

6.3.1 First execution overhead

We measured the duration of an encrypted function when it first entered. The overhead
includes the context switch to hypervisor mode and the time required for the decryption.

The first execution of an encrypted code segment bears the penalty of the decryption;
therefore, we assume the performance penalty of running encrypted code will be larger.
Table 6 shows the duration of the first and single call to FFT in each of the configurations
aforementioned.

Avg StdDev Max Min

Native 4.6 0.54 5 4

Live-decryptc 460 27 480 421

Cache 407 28 456 385

RT-map 476 14 485 451

Table 6 Duration of a single FFT in microseconds

As can be seen, the first call to FFT is time-consuming. In the best case, it is 80 times
worse than the reference test, which is five microseconds.

16

6.3.2 Repeated execution overhead

We measured the time for additional executions of encrypted code beyond the first. In the
cached and real-time mapping modes, after the first run, the overhead with additional calls
includes the overhead of the context switch to HYP mode but does not include the time
required for the decryption, as this work was already completed earlier.

In Table 7 we executed the FFT after the function was decrypted into a temporary buffer
(in the cache and RT-map cases). We benchmarked 1,000 consecutive calls to the FFT func-
tion.

Avg StdDev Max Min

Native 888 5 896 884

Live-decrypt 398914 2717 402444 396012

Cache 7323 346 7712 6800

RT-map 928 3 934 926

Table 7 Duration of a 1000 FFT calls in microseconds

From Table 7, we see that the fastest mode is the real-time mapping, and has the smallest
deviation. In the live-decrypt mode, the overhead is caused by the constant decryption, when
entering the hypervisor, as well as putting back the pad code when exiting the hypervisor
back to EL0 and, lastly, flushing the cache. In the cache mode, we can see how the overhead
of the repeated decryption impacts the speed. In real-time mapping, we gradually map the
process’s address space to the hypervisor, so there is no exit from the hypervisor except
when the process exits. Because the program is running without any interrupts and exits the
hypervisor only a single time, we obtain an execution time close to the Native execution
time. We can also see that in real-time mapping execution time is more predictable than the
other alternatives.

We, therefore, conclude that it is best to remain in EL2 as much as possible. The cost of
constantly decrypting and padding back is significant.

6.4 Predictability

To show the RT-map mode is faster than the Native mode because it runs without interrupts,
we performed an additional test. Figure 13 is a CPU-intensive FFT function being executed
in a tight loop. We generated a large number of interrupts (approximately 3,000 network
interrupts/second, while in idle state is approximately 300 network interrupts/second) and
then we executed a simple FFT function one thousand times. The interruptless mode is when
we executed FFT through a hypervisor without any decryption. The reference test is when
we executed FFT as a standard Linux function.

17

0 2 4 6 8
160

170

180

190

200

210

220

230

240

250

#test

100K iterations, 3000 network interrupts/sec

Interruptless
Clear

Fig. 13 FFT duration in milliseconds

Figure 13 shows a gap of over 28% between the two runs. We, therefore, conclude that
the difference between RT-map to Native in Table 7 is due to the execution conditions.
Next, we want to measure more realistic loads. We measure malloc(3) [41] and free(3) [41],
disk IO, file open(2) and close(2), memory access, and all these operations combined.
It is important to note that the proposed system supports the use of any of these operations
(malloc(3), open(2), write(2)) in an encrypted context; however, it does not offer to obfuscate
them. This system localizes the obfuscation to some functions in a program.
The next tests were performed only in RT-map mode.

6.5 Stack access overhead

In Table 8, we measure a real-life performance of memory access, read, and write when
the memory is allocated on the stack. We encrypted a small function so the overhead of
decryption and cache eviction would be low.

18

Iterations Measure Encrypted Clear

1
Avg 325 25
StdDev 43 0.9
Max 378 26
Min 280 24

10
Avg 328 28
StdDev 23 1.7
Max 365 30
Min 304 26

100
Avg 388 58
StdDev 34 1
Max 423 60
Min 351 57

1000
Avg 676 377
StdDev 16 10
Max 694 390
Min 661 370

Table 8 Duration of stack access in microseconds

Stack access (Table 8) is an essential test because the stack is being mapped in real-time
to the microvisor and the kernel (EL1). In this test, we used a stack of 10 pages. We wanted
to evaluate how costly overhead of real-time mapping. As we can see, the first run is 13
times slower than the non-encrypted program with a 14% standard deviation. However, as
the number of iterations grows, the overhead mitigates. In 1000 iterations it is 80% with 2%
standard deviation. We, therefore, conclude it is best to use a pre-mapped memory, and if
possible, pre-map the stack or any other memory that is accessed in the hypervisor.

6.6 A RAM access overhead

In Table 9, we access a heap memory randomly. We did not test the malloc(3) itself but only
the memory access: a read and a write.

19

Iterations Measure Encrypted Clear

1
Avg 369 163
StdDev 27 0.7
Max 402 164
Min 342 162

10
Avg 1758 1566
StdDev 28 6
Max 1791 1578
Min 1718 1562

100
Avg 15551 15481
StdDev 24 21
Max 15585 15513
Min 15529 15459

1000
Avg 153461 154338
StdDev 28 152
Max 153502 154610
Min 153439 154247

Table 9 Duration of RAM access in microseconds

In Table 9, we access a large amount of data (1MB), so the first MMU aborts duration is
negligible compared to the memory access duration. When running 1000 iterations before
exiting the hypervisor, the overhead of exiting the hypervisor is not noticeable.

Evidently, the less we exit the hypervisor, the lower the penalty. In general, it is best to
map the heap memory to the hypervisor as early as possible, to reduce MMU aborts to EL2.

6.7 malloc(3)/free(3) overhead

We have benchmarked the standard memory allocator under Linux. In Table 10, we test the
cost of malloc(3) and free(3) without accessing memory, i.e., we call malloc(3) and free(3)
repeatedly.

20

Iterations Measure Encrypted Clear

1
Avg 224 117
StdDev 53 7
Max 279 124
Min 136 110

10
Avg 483 145
StdDev 21 6
Max 520 150
Min 465 135

100
Avg 462 161
StdDev 35 6
Max 522 169
Min 434 156

1000
Avg 734 409
StdDev 14 15
Max 752 430
Min 713 395

Table 10 Duration of malloc(3)/free(3) access in microseconds

Here (Table 10), the overhead for a single iteration is 200% and is gradually reduced to
80% over 1000 iterations. This code does not perform any page faults as it does not access
the allocated memory at all. Like in the FFT and the Stack access tests, we can see that the
repeated decrypting, cache and TLB evacuation is approximately 80% for small functions.

In real-time sensitive programs, it is best to avoid malloc(3) and free(3) as much as
possible. Because a CPU-bound program is unlikely to perform memory allocations in real
time, this overhead can be avoided by using pre-allocation and prematurely mapping the
RAM to the hypervisor.

6.8 A File open/close overhead

Table 11 presents measures of I/O performance associated only with opening and closing
a file over Linux and the standard ext4 file system. The test opens and closes a single file
1,10...1000 times repeatedly.

21

Iterations Measure Encrypted Clear

1
Avg 170 26
StdDev 27 1.8
Max 212 29
Min 137 25

10
Avg 315 84
StdDev 28 2.1
Max 345 345
Min 278 278

100
Avg 1070 632
StdDev 15 7.5
Max 1094 641
Min 1057 623

1000
Avg 8768 5982
StdDev 73 33
Max 8890 6034
Min 8697 5929

Table 11 Duration of open/close in microseconds

There is an overhead of 30% in favour of running the clear text in 1000 iterations. Like in
the previous tests, the overhead decreases as the number of iterations grows, this is because
for each open(2) and close(2) the hypervisor exits, and the duration of these system calls is
small compared with the decryption of the test function.

In general, we can expect system calls to have some impact on performance due to
context switches. We should try to decrease the code that produces system calls as much
as possible. For instance, getting the time is extensively used in programs, so it is best to
avoid getting the time through a system call but rather by accessing the timer clock register
cntvct_el0 directly.

6.9 A file write overhead

Table 12 measures IO performances associated with file writes under Linux and, the standard
ext4 file system. In Table 12, we measure most of the above operations in addition to file
writing operations. The test included memory allocation, file opening and closing, random
memory allocation, memory access and memory freeing. The test was performed from a
single file, up to 10 files.

22

#Files Measure Encrypted Clear

1
Avg 3513 4497
StdDev 417 158
Max 4166 4769
Min 3121 4395

2
Avg 9135 8494
StdDev 418 200
Max 9880 8849
Min 8910 9381

3
Avg 11758 11876
StdDev 1492 470
Max 13577 12715
Min 9885 11595

4
Avg 15724 15208
StdDev 158 660
Max 15965 16387
Min 15552 14862

5
Avg 19130 18235
StdDev 138 167
Max 19280 18376
Min 18983 17945

6
Avg 22678 21674
StdDev 209 43
Max 23006 21707
Min 22488 21599

7
Avg 25913 25875
StdDev 139 1378
Max 26046 27419
Min 25684 24766

8
Avg 29305 29220
StdDev 146 1531
Max 29475 30906
Min 29142 28000

9
Avg 33273 32061
StdDev 1253 1347
Max 35453 34432
Min 32410 31173

10
Avg 33156 34890
StdDev 2402 214
Max 38084 35099
Min 30005 34563

Table 12 Duration of IO write in microseconds

23

It is noticeable that the more IO is processed, the less the difference between the two ex-
ecutions. In Table 12, the effect of running our security hypervisor is unnoticeable. Encryp-
tion works with a negligible overhead in most cases. The decryption and cache invalidation
penalties are negligible compared to the long duration of the IOs.

7 Future work

We intend to examine [48] on the ARM platform. This method offers performance benefit
on Intel architecture, and we intend to examine it on ARM architecture as well.

We expect further work to be undertaken in the ARM microvisor area.
We intend to utilize the microvisor in other ways. The hyplet presented in this paper is
rapidly evolving in new directions. To name a few, we present the hyplet as a means to run
userspace interrupts without overhead in Linux, and as an extremely fast remote procedure
call (RPC). C-FLAT [44] - a control attestation system for embedded systems, was devel-
oped for TrustZone in devices with a minimal operating system. We will present an innova-
tive technique to run C-FLAT in Linux with our new RPC. Kiperberg et al [45] presents a
hypervisor-assisted atomic memory acquisition for the x86 architecture, we intend to present
a port for hypervisor memory acquisition tool in ARM through the use of a microvisor.

The offline scheduler [40] is a technique to execute programs in an unplugged processor
in Linux. We intend to demonstrate an evolution of the offline scheduler in the form of the
offline microvisor.

8 Summary

This paper is a proof of concept that reverse engineering protection in ARM is applicable
for CPU intensive workloads with minimal overhead. We achieved that by minimizing the
number of context switches between the hypervisor and EL0. We can also assume that the
encrypted sections are significant, and as such, the padding and the decrypting takes longer
as the function size increases. For this, we recommend to minimize system calls and pre-map
any memory that is accessed in the HYP context. For I/O intensive programs, we showed
that the encryption penalty is relatively small compared to the I/O penalty, so our technology
is most suitable for programs with high I/O rate.
Our solution proved stable during our internal testing. However, we also note that our ARM-
based technology has not passed the same level of stability testing and penetration testing
that the Intel solution has.

9 Compliance with Ethical Standards

Raz Ben Yehuda and Nezer Jacob Zaidenberg both declare that they own stock in TrulyPro-
tect.
Ethical approval: This article does not contain any studies with human participants or ani-
mals performed by any of the authors.

References

1. Victor Costan and Srinivas Devadas, Intel sgx explained, IACR Cryptology ePrint Archive, 2016:86, 2016.

24

2. Balaji Balakrishnan, Matthew Hosburgh, and Patrick Neise, Securing the windows 10 GIAC enterprise
endpoint.

3. Amir Averbuch Michael Kiperberg and Nezer Jacob Zaidenberg, Truly-protect: An efficient VM-based
software protection. IEEE Systems Journal, 7(3):455–466, 2013

4. Niels Penneman Danielius Kudinskas Alasdair Rawsthorne Bjorn De Sutter and Koen De Bosschere,
Formal virtualization requirements for the arm architecture, Journal of Systems Architecture, 144 - 154,
2013

5. Shaked Flur Kathryn E Gray Christopher Pulte Susmit Sarkar Ali Sezgin, Luc Maranget Will Deacon and
Peter Sewell, Modelling the ARMv8 architecture, operationally: concurrency and ISA, In ACM SIGPLAN
Notices, volume 51, pages 608–621. , 2016

6. HM Cantero S Peter and Segher Bushing, Console hacking 2010–ps3 epic fail, Chaos Communication
Congress (December 2010), 2010.

7. Kevin Coogan Gen Lu and Saumya Debray, Deobfuscation of virtualization-obfuscated software: a
semantics-based approach, In Proceedings of the 18th ACM conference on Computer and communications
security, pages 275–284. ACM, 2011.

8. Rutkowska Joanna, Introducing blue pill, The official blog of the invisible things, volume 22, pages 23,
2006

9. Eldar Avigdor and Herbert Howard C and Goel Purushottam and Blumenthal Uri and Hines David and
Smith Carey, Provisioning active management technology (AMT) in computer systems, Google Patents,
US Patent 8 438 618, 2013

10. SMM loader and execution mechanism for component software for multiple architectures, Zimmer, Vin-
cent J, Google Patents, 2005, US Patent 6848046

11. Winter Johannes, Proceedings of the 3rd ACM workshop on Scalable trusted computing, Trusted com-
puting building blocks for embedded Linux-based ARM trustzone platforms, pages= 21–30, 2008, ACM

12. Winter Johannes, Trusted computing building blocks for embedded Linux-based ARM trustzone plat-
forms, Proceedings of the 3rd ACM workshop on Scalable trusted computing, pages=21–30, 2008, ACM

13. Heiser Gernot and Leslie, Ben, The OKL4 Microvisor: Convergence Point of Microkernels and Hyper-
visors, Proceedings of the First ACM Asia-Pacific Workshop on Workshop on Systems, 19–24, 2010

14. Bernard Ngabonziza Daniel Martin Anna Bailey Haehyun Cho and Sarah Martin, Trustzone explained:
Architectural features and use cases, Collaboration and Internet Computing (CIC), 2016 IEEE 2nd, Inter-
national Conference on, pages 445–451. IEEE, 2016.

15. Amit Resh Michael Kiperberg Roee Leon and Nezer Zaidenberg, System for executing encrypted native
programs, International Journal of Digital Content Technology and its Applications, 11, 2017.

16. Amit Resh Michael Kiperberg Roee Leon and Nezer J Zaidenberg, Preventing execution of unauthorized
native-code software. International Journal of Digital Content Technology and its Applications, 11, 2017.

17. William Rosenblatt Stephen Mooney and William Trippe, Digital rights management: business and tech-
nology, John Wiley & Sons, Inc., 2001.

18. Gernot Heiser and Ben Leslie, The okl4 microvisor: Convergence point of microkernels and hypervisors,
Proceedings of the first ACM Asia-Pacific workshop on Workshop on systems, pages 19–24. ACM, 2010

19. Thom, Stefan, Jeremiah Cox, David Linsley, Magnus Nystrom, Himanshu Raj, David Robinson, Stefan
Saroiu, Rob Spiger, and Alastair Wolman. "Firmware-based trusted platform module for arm processor
architectures and trustzone security extensions." U.S. Patent 8,375,221, issued February 12, 2013.

20. Nikolay Elenkov, Android security internals: An in-depth guide to Android’s security architecture, No
Starch Press, 2014.

21. Dan Rosenberg, QSEE trustzone kernel integer overflow vulnerability, Black Hat conference, page 26,
2014.

22. Prerna Mahajan and Abhishek Sachdeva, A study of encryption algorithms AES, DES and RSA for
security, Global Journal of Computer Science and Technology, 2013

23. Amir Moradi, Mohammad T Manzuri Shalmani, and Mahmoud Salmasizadeh, A generalized method
of differential fault attack against AES cryptosystem, International Workshop on Cryptographic Hardware
and Embedded Systems, pages 91–100. Springer, 2006

24. Darrel Hankerson, Alfred J Menezes, and Scott Vanstone, Guide to elliptic curve cryptography, Springer
Science & Business Media, 2006.

25. Asaf David and Nezer Zaidenberg, Maintaining streaming video DRM, In Proceedings of The Interna-
tional Conference on Cloud Security Management ICCSM-2014, page 36, 2014.

26. Marc Eisenstadt and Mike Brayshaw, The transparent prolog machine (TPM): an execution model and
graphical debugger for logic programming, The Journal of Logic Programming, 5(4):277–342, 1988.

27. Rick Kennell and Leah H Jamieson, Establishing the genuinity of remote computer systems, In USENIX
Security Symposium, pages 295–308, 2003

28. Michael Kiperberg and Nezer Zaidenberg, Efficient remote authentication, In Proceedings of the 12th
European Conference on Information Warfare and Security: ECIW 2013, page 144. Academic Conferences
Limited, 2013.

25

29. Kari Kostiainen N Asokan and Jan-Erik Ekberg, Practical property-based attestation on mobile devices,
In International Conference on Trust and Trustworthy Computing, pages 78–92. Springer, 2011.

30. Karsten Sohr Tanveer Mustafa and Adrian Nowak, Software security aspects of java-based mobile
phones, In Proceedings of the 2011 ACM Symposium on Applied Computing, pages 1494–1501. ACM,
2011.

31. Haryadi S Gunawi, Mingzhe Hao Tanakorn Leesatapornwongsa Tiratat Patana-anake Thanh Do Jeffry
Adityatama Kurnia J Eliazar Agung Laksono Jeffrey F Lukman Vincentius Martin, et al, What bugs live
in the cloud? a study of 3000+ issues in cloud systems. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–14. ACM, 2014.

32. Amit Vasudevan Jonathan M McCune and James Newsome, Trustworthy execution on mobile devices,
Springer, 2014

33. Jinmok Kim Donguk Kim Jinbum Park Jihoon Kim and Hyoungshick Kim, An efficient kernel intro-
spection system using a secure timer on trustzone. Journal of the Korea Institute of Information Security
and Cryptology, 25(4):863–872, 2015.

34. Min Zhu Bibo Tu Wei Wei and Dan Meng HA-VMSI, A lightweight virtual machine isolation approach
with commodity hardware for ARM, In Proceedings of the 13th ACM SIGPLAN/SIGOPS International,
Conference on Virtual Execution Environments, pages 242–256. ACM, 2017

35. Nelson Elhage, Virtualization under attack: Breaking out of KVM, DEF CON, 19, 2011.
36. Peter Szor. The art of computer virus research and defense, Pearson Education, 2005.
37. Christoffer Dall and Jason Nieh, KVM/ARM: the design and implementation of the Linux ARM hyper-

visor, ACM SIGARCH Computer Architecture News, 42(1):333–348, 2014.
38. Marcan Sven and Comex, Console hacking 2013–u fail it, In 30th Chaos Communication Congress

(December 2013), 2013.
39. Roberto Mijat and Andy Nightingale, Virtualization is coming to a platform near you. ARM white paper,

20, 2011.
40. Ben-Yehuda and Wiseman(2013) The offline scheduler for embedded vehicular systems, International

Journal of Vehicle Information and Communication Systems, Volume 3 pages 44–57
41. Maurice J Bach et al, The design of the UNIX operating system, volume 1, Prentice-Hall Englewood

Cliffs, NJ, 1986.
42. Anatoli Kalysch, Johannes Götzfried, and Tilo Müller, Vmattack: Deobfuscating virtualization-based

packed binaries. In Proceedings of the 12th International Conference on Availability, Reliability and Secu-
rity, page 2. ACM, 2017

43. Jan-Erik Ekberg Kari Kostiainen and N Asokan, The untapped potential of trusted execution environ-
ments on mobile devices, IEEE Security & Privacy, 12(4):29–37, 2014.

44. Abera, Asokan, Davi, Ekberg, Nyman, Paverd, Sadeghi, and Tsudik. C-flat: control-flow attestation for
embedded systems software, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 743-754, 2016

45. Kiperberg, Leon, Resh, Algawi, and Zaidenberg, Hypervisor-assisted atomic memory acquisition in
modern systems,

46. Sebastian Banescu Ciprian Lucaci Benjamin Krämer, and Alexander Pretschner, Vot4cs: A virtualization
obfuscation tool for c. In Proceedings of the 2016 ACM Workshop on Software PROtection, pages 39–49.
ACM, 2016.

47. Boaz Barak Oded Goldreich Rusell Impagliazzo Steven Rudich Amit Sahai Salil Vadhan and Ke Yang,
On the (im) possibility of obfuscating programs, In Annual International Cryptology Conference, pages
1–18. Springer, 2001.

48. Kiperberg, Michael, Roee Leon, Amit Resh, Asaf Algawi, and Nezer J. Zaidenberg. "Hypervisor-based
Protection of Code." IEEE Transactions on Information Forensics and Security (2019).

	Introduction
	Background
	Related works
	Anti-reverse engineering
	Innovation
	Evaluation
	Future work
	Summary
	Compliance with Ethical Standards

