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Abstract
Freshwater ecosystems represent a significant natural source of methane (CH4). CH4 produced through anaerobic decom-
position of organic matter (OM) in lake sediment and water column can be either oxidized to carbon dioxide (CO2) by 
methanotrophic microbes or emitted to the atmosphere. While the role of CH4 oxidation as a CH4 sink is widely accepted, 
neither the magnitude nor the drivers behind CH4 oxidation are well constrained. In this study, we aimed to gain more spe-
cific insight into CH4 oxidation in the water column of a seasonally stratified, typical boreal lake, particularly under hypoxic 
conditions. We used 13CH4 incubations to determine the active CH4 oxidation sites and the potential CH4 oxidation rates in 
the water column, and we measured environmental variables that could explain CH4 oxidation in the water column. Dur-
ing hypolimnetic hypoxia, 91% of available CH4 was oxidized in the active CH4 oxidation zone, where the potential CH4 
oxidation rates gradually increased from the oxycline to the hypolimnion. Our results showed that in warm springs, which 
become more frequent, early thermal stratification with cold well-oxygenated hypolimnion delays the period of hypolimnetic 
hypoxia and limits CH4 production. Thus, the delayed development of hypolimnetic hypoxia may partially counteract the 
expected increase in the lacustrine CH4 emissions caused by the increasing organic carbon load from forested catchments.
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Introduction

Freshwater ecosystems cover 3.7% of the Earth’s non-gla-
ciated land area (Verpoorter et al. 2014), and they are one 
of the largest natural sources of the global greenhouse gas 

(GHG) methane (CH4) (Bastviken et al. 2011). Approxi-
mately half of the lake surface area is located at northern 
latitudes (Wik et al. 2016), where small lakes in particu-
lar tend to have high CH4 emissions per unit area (Juutinen 
et al. 2009). Processes producing GHGs in lakes are con-
nected to their proximate terrestrial environments, because 
lakes receive terrestrially fixed carbon (C) and emit part of 
it back to the atmosphere as CH4 and carbon dioxide (CO2) 
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(Algesten et al. 2003). These processes are especially pro-
nounced in boreal lakes with high loads of dissolved organic 
matter (DOM) from forested, peat-dominated catchment 
areas (Kortelainen 1993). Recent studies have shown an 
increasing trend in the lake and stream water dissolved 
organic C (DOC) concentrations throughout the boreal zone 
(Sarkkola et al. 2009; Couture et al. 2012; Pumpanen et al. 
2014). This increase is mainly driven by changes in hydro-
meteorology, i.e. precipitation and air temperature (Sarkkola 
et al. 2009; Pumpanen et al. 2014); thus, the significance 
of terrestrial organic C load to aquatic ecosystems might 
further increase under a changing climate.

In freshwater lakes, dissolved oxygen (DO) depletion due 
to the decomposition of organic matter (OM) creates suitable 
redox conditions for methanogenesis, in which CH4 is the 
final product of anaerobic OM decomposition in the absence 
of alternative electron acceptors (EAs), e.g. nitrate (NO3

−), 
sulphate (SO4

2−) and iron (Fe3+) (Capone and Kiene 1988). 
However, several studies have also reported methanogenesis 
in oxic freshwaters (Schulz et al. 2001; Bogard et al. 2014). 
Once formed in lake sediment or water column, CH4 can 
be either oxidized to CO2 by methane-oxidizing microbes, 
assimilated to biomass, or released to the atmosphere (Kuiv-
ila et al. 1988; Bastviken et al. 2002; Kankaala et al. 2006; 
Wik et al. 2016). The production and oxidation of CH4 are 
controlled by different environmental factors, such as tem-
perature and the availability of oxygen (O2), nutrients and 
OM (Zeikus and Winfrey 1976; Juutinen et al. 2009; Duc 
et al. 2010; Borrel et al. 2011; West et al. 2016). Besides the 
production-oxidation processes, it is important to understand 
CH4 transport from the sediment to the atmosphere by dif-
fusion and/or ebullition (Bastviken et al. 2008), which may 
be linked to energy input after ice-out (Wik et al. 2014), 
changes in the air pressure (Bastviken et al. 2004) and basin 
morphometry (Rasilo et  al. 2015). During the summer 
stratification, formation of an anoxic hypolimnion typically 
results in high CH4 concentrations near the bottom due to 
favorable conditions for methanogenesis, and less favorable 
conditions for CH4 oxidation (Kankaala et al. 2007). How-
ever, this does not necessarily increase CH4 emissions to the 
atmosphere, because often a significant fraction of CH4 is 
oxidized in the overlying oxic water column before it enters 
the surface water (Bastviken et al. 2002; Kankaala et al. 
2006; West et al. 2016).

Highest CH4 oxidation rates are detected near the oxy-
cline (Rudd et al. 1974; Fallon et al. 1980; Kankaala et al. 
2006; Bastviken et al. 2008), which can occur within the 
water column or at the sediment–water interface. In the oxy-
cline, O2 is available as EA and CH4 as C and energy source 
(Rudd, Hamilton and Campbell 1974; Fallon et al. 1980). 
However, recent studies have also found anaerobic oxidation 
of methane (AOM) by anaerobic methane-oxidizing archaea 
(ANME) in sediments (Schubert et al. 2011) and in stratified 

water columns of freshwater lakes (Eller et al. 2005). While 
SO4

2−-dependent AOM is an efficient CH4 sink in marine 
environments (Knittel and Boetius 2009), several EAs, such 
as NO3

−, nitrite (NO2
−), SO4

2−, Fe3+ and manganese (Mn4+), 
have been demonstrated to be important drivers of AOM in 
freshwaters (Sivan et al. 2011; Deutzmann et al. 2014; Norði 
and Thamdrup 2014; Timmers et al. 2017). Nevertheless, the 
relevance of AOM in reducing CH4 emissions from freshwa-
ter lakes is still unclear and needs further research; e.g. Ris-
sanen et al. (2017) did not detect AOM coupled to any of the 
inorganic alternative EAs in the sediments of two shallow 
boreal lakes in Finland, while significant AOM was observed 
in 13 out of 14 study lake sediments in the temperate, arctic 
and tropical zone (Martinez-Cruz et al. 2018).

Before the end of the century, the annual CH4 emissions 
from boreal lakes are projected to increase by 20–54% 
due to warming climate and longer ice-free seasons (Wik 
et al. 2016). Improved estimates of lacustrine CH4 dynam-
ics are still required to forecast the future contributions of 
boreal lakes to the global CH4 budgets in a changing cli-
mate. Therefore, we applied stable isotope methods with 
13C-labeled CH4, as well as measurements of natural abun-
dance of 13C-CH4 and 13C-DIC (dissolved inorganic C), to 
reveal the controlling factors for CH4 production and oxida-
tion in the water column of a typical seasonally O2-stratified 
boreal lake. Lake Kuivajärvi is a representative example of 
the numerous small brown-water lakes, that is located in 
a boreal landscape with managed coniferous forests and 
peatland and has high DOC concentrations (Miettinen et al. 
2015). Previous work in Lake Kuivajärvi has focused on 
the lacustrine GHG fluxes, while the drivers behind these 
processes remain unknown. The objectives of this study 
were (1) to estimate CH4 production and oxidation during 
the development of summer stratification, and hypolimnetic 
hypoxia, and (2) to determine the environmental and bio-
logical factors that may explain CH4 oxidation in the water 
column. We hypothesized that the CH4 oxidation takes place 
in the hypolimnion, when O2 is below the detection limit of 
traditional O2 measurement techniques (hypoxia).

Materials and methods

Site description and measurements

Lake Kuivajärvi is a typical humic mesotrophic lake 
located in the boreal zone in central Finland (61° 50′ 
N, 24° 17′ E) close to the SMEAR II measuring station 
(Station for Measuring Ecosystem-Atmosphere Relations; 
Hari and Kulmala 2005). The lake, which has a northern 
and southern basin, has a surface area of 0.62 km2, length 
of 2.6 km and maximum depth of 13 m (Miettinen et al. 
2015). The study area has mean annual temperature of 
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3.5 °C and precipitation of 711 mm (Pirinen et al. 2012). 
Each year the lake is frozen for approximately 5 months, 
and it is dimictic with complete turnover occurring imme-
diately after ice-out and in the autumn (Heiskanen et al. 
2015). The size of the catchment area is approximately 
9.4 km2 and it consists of managed forests as well as 
peat- and agricultural land. For more information and 
e.g. bathymetric map of Lake Kuivajärvi, see Heiskanen 
et al. (2015). For total annual GHG fluxes as well as the 
timing of emissions from Lake Kuivajärvi, see Miettinen 
et al. (2015).

Water sampling was carried out four times between 
May and September in 2016 at the deepest point (13 m) 
of the southern basin of the lake. Sediment sampling was 
carried out in August. The sampling dates and measured 
variables (Table 1) were chosen to follow the development 
of the thermal stratification and the hypolimnetic hypoxia 
until the autumn turnover. The sampling was done on the 
measuring platform in the middle of the lake (Heiskanen 
et al. 2015). Data for weather conditions were obtained 
from the measuring station of Finnish Meteorological 
Institute (FMI) close to the SMEAR II station (Fig. S1; 
available at https​://en.ilmat​ietee​nlait​os.fi/open-data).

O2 concentration, water temperature and pH 
measurements

Vertical profiles of dissolved O2 concentration (mg 
l−1), O2 saturation (%) and water temperature (°C) 
were measured manually with a field meter YSI 
ProODO Optical Dissolved Oxygen Instrument (Yel-
low Springs Instruments, Yellow Springs, OH, USA; 
accuracy ± 0.2 °C, ± 0.1 mg O2 l−1 or ± 1% of reading). 
The measurements were done at 0.5 m intervals, starting 
from the surface water and continuing close to the bot-
tom (12 m) without disturbing the sediment. The pH was 
measured in situ from samples taken with Limnos water 
sampler (length 30 cm, volume 2.0 dm3) at 1 m intervals 
using WTW ProfiLine pH 3110 (Xylem Inc., Weilheim, 
Germany).

Nutrient and DOC analyses

Samples for nutrient and DOC analyses were collected at 
1 m intervals from the surface water close to the bottom 
(11.5–11.75 m) by using Limnos water sampler. The sam-
ples were filtered through a plankton net (mesh size 25 μm) 
and a filter unit (pore size 0.22 μm, Millipore®, Sterivex, 
Darmstadt, Germany). The samples for nutrient analyses 
were stored frozen (−18 °C) until the further analysis with 
Ion Chromatograph (Dionex DX-120; Thermo Co., Bremen, 
Germany) for the SO4

2− concentrations, and colorimetric 
analysis for the NO2

− + NO3
− (NOx

−; Miranda et al. 2001) 
and NH4

+ concentrations (Fawcett and Scott 1960). The 
samples for DOC analyses were stored at +4 °C until analy-
sis with a standard method (SFS-EN 1484), using Shimadzu 
TOC-VCPH (Shimadzu Corp., Kyoto, Japan). The concentra-
tions of total iron (Tot Fe)/ferrous iron (Fe2+) (the depths of 
0–11.5 m) and sulphide (S2

−) (the depths of 8–11.5 m) were 
determined with LCK320 and LCK653 cuvette test reagents, 
respectively, using Hach Lange DR2800 spectrophotometer 
(Hach Co., Loveland, CO, USA).

The concentrations of CH4 and CO2 and stable 
isotopic analyses

The samples for the concentrations of CH4 and CO2 and sta-
ble isotopic analyses of CH4 were collected at 1 m intervals 
from the surface water close to the bottom (11.5–11.75 m) 
by using Limnos water sampler and processed as described 
in Miettinen et al. (2015). The CH4 and CO2 concentrations 
were measured using Agilent 7890B Gas Chromatograph 
(Agilent Technologies, Palo Alto, CA, USA) equipped with 
Gilson liquid handler GX271 autosampler (Gilson Inc., Mid-
dleton, WI, USA). The concentrations of CH4 and CO2 were 
calculated based on a one-point calibration with standard 
gas (AGA, Lidingö, Sweden), using Henry’s Law and the 
appropriate temperature relationships (Stumm and Morgan 
1981). The δ13C-CH4 stable isotopes were analysed with 
Isoprime100 IRMS (Elementar UK Ltd., Cheadle, UK) cou-
pled to an Isoprime TraceGas pre-concentration unit and 
calibrated using a standard gas mixture with known isotopic 
value for CH4 (− 46.7 ‰).

Table 1   Sampling schedule and the measured variables during each sampling of this study in 2016

Sampling date Measured variables

25 May Temperature, pH, the concentrations of O2, CH4 and CO2

18 July Temperature, pH, the concentrations of O2, CH4, CO2, NOx
−, NH4

+ and SO4
2−, δ13C-CH4, δ13C-DIC

15 August Temperature, pH, the concentrations of O2, CH4, CO2, NOx
−, NH4

+, SO4
2− and DOC, δ13C-CH4, 

δ13C-DIC, 13C-CH4 oxidation experiment
5 September Temperature, pH, the concentrations of O2, CH4, CO2, NOx

−, NH4
+, Fe, SO4

2−, S2
− and DOC, 

δ13C-CH4, δ13C-DIC, 13C-CH4 oxidation experiment

https://en.ilmatieteenlaitos.fi/open-data
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Water samples for the natural abundance of δ13C-DIC 
were collected at 1  m intervals from the surface water 
close to the bottom (11.5–11.75 m) and 3 ml of sample was 
injected into pre-evacuated 12 ml Labco Exetainers® (over-
pressure released before injection). Exetainers® contained 
300 μl of H3PO4 (85%) to ensure the transformation of bicar-
bonate ions to CO2. The samples were then stored upside 
down at +4 °C until the analysis. The samples from July 
were analysed with Delta Plus XP GC-IRMS (Thermo Co., 
Bremen, Germany), and the samples from August and Sep-
tember were analysed with Isoprime100 IRMS. The δ13C-
DIC measurements were calibrated according to Coplen 
et al. (2006). The isotope results are reported in δ units 
(‰) relative to the international Vienna Pee Dee Belemnite 
(VPDB) standard.

13CH4 incubation experiment

The samples for 13CH4 oxidation measurement were col-
lected from the water column from depths chosen on the 
basis of vertical profiles of O2. In August, the samples 
were collected at 6 m (2.48 mg l−1 O2), 11.5 m (1.35 mg l−1 
O2) and the sediment surface (0.59 mg l−1 O2), and in 
September at 8 m (1.72 mg l−1 O2), 10 m (0.59 mg l−1 
O2) and 11.5 m (0.44 mg l−1 O2). The sample water was 
transferred from Limnos sampler to 12 ml Exetainers® 
without a headspace and allowed to overflow. In August, 
the sediment samples were collected from the sediment 
surface (top 1 cm) by using Limnos sediment sampler 
with a slicing system and mixed with water collected right 
above the sediment surface at 1:4 ratio (2.4 ml of sedi-
ment and 9.6 ml of water). After 12 h pre-incubation in 
the dark at +4 °C to remove any traces of O2 introduced 
during the sampling, 0.1 ml of 13CH4 trace gas mixture 
was injected to each sample and the vials were shaken 
vigorously, resulting in the estimated final concentration 
of 25 µmol l−1 CH4 in each vial. 13CH4 trace gas mixture 
contained 140 ml of N2 and 10 ml of 99% 13C-CH4 in 
a N2-flushed, O2-free glass bottle with NaOH powder to 
remove any contaminating CO2. The disappearance of the 
13CH4 bubble with sample water was observed visually 
for each vial. In August, there were four replicates and 
two non-labeled background samples for each sampling 
depth and time point. In September, each sampling depth 
had two replicates for 0 h time point, six replicates for 8, 
16 and 24 h time points, and one non-labeled background 
sample for each time point. The incubations at +4 °C were 
terminated at 8-h intervals (0, 8, 16 and 24 h) by injecting 
3 ml of incubated sample into evacuated 12 ml Exetain-
ers® (over-pressure released before injection) that had 
300 μl of H3PO4 (85%) in the bottom. The samples were 
analyzed for 13C-DIC with Isoprime100 IRMS. The excess 
13C-DIC was calculated from the difference between the 

background 13C-DIC and the measured 13C-DIC for each 
time point. The excess 13C-DIC concentrations of each 
sampling depth were then plotted against time, and the 
slope of the line was used to describe the potential CH4 
oxidation rate (nmol l−1 day−1). Considering that the incu-
bations were amended with 13C-CH4 above ambient lev-
els (0.02–0.9 µmol l−1 in Lake Kuivajärvi), and that the 
proportion of CH4-C bound to the microbial biomass was 
not measured, these values represent a potential or con-
servative rate.

Statistical analysis

Two-tailed Spearman correlations were calculated between 
the gas concentrations/stable isotope values and variables 
such as depth, O2, temperature, pH, NOx

−, NH4
+, Fe3+, 

SO4
2−, and DOC. Spearman’s rank correlation coefficient 

was chosen based on the Kolmogorov–Smirnov and Shap-
iro–Wilk normality test results (non-parametric data). Fur-
thermore, simple linear regression analysis was used to study 
the relationship between the excess 13C-DIC production and 
incubation time in the 13CH4 oxidation experiments. Statisti-
cal analyses were performed with IBM SPSS Statistics 23.

Results

Thermal stratification associated development 
of hypolimnetic hypoxia

The depths of the warmer epilimnion and cooler hypolim-
nion were defined by assuming the metalimnion (ther-
mocline) at the depth with a temperature change of more 
than 1 °C per meter. Water temperature in the epilimnion 
was highest in July (Fig.  1b) and lowest in September 
(Fig. 1d), while the hypolimnetic temperature was stable 
at about +6–7 °C throughout the study period. A thermo-
cline varied in depth with changing seasons. In May, the 
thermal stratification was strongest, and temperature steeply 
decreased between 3 and 4 m (Fig. 1a), while in July there 
was no steep thermocline (Fig. 1b). In August, the tempera-
ture decreased after 5 m depth (Fig. 1c) and in September, 
there was a steep decrease of temperature at 8 m depth 
(Fig. 1d).

The whole water column was oxygenated in July 
(Fig. 1b), and the hypolimnetic hypoxia developed late in 
summer 2016. The oxycline ascended from the sediment to 
the water column during the development of summer stratifi-
cation. Hypoxic conditions (< 2 mg l−1) were detected below 
6 m depth in August (Fig. 1c), and below 8 m depth in the 
beginning of September (Fig. 1d).
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Depth profiles of water‑quality variables

In every sampling occasion, the NOx
− concentrations peaked 

in the hypolimnion (max. 3.5 µmol l−1), while the concen-
trations were mainly < 1 µmol l−1 at the depths of 0–8 m in 
August and September (Fig. 2b, c), and below the detection 
limit in July (Fig. 2a). The NH4

+ concentrations remained 
mainly at < 2.5 µmol l−1, but in September, the hypolimnetic 
concentrations peaked to 5 µmol l−1 (Fig. 2c). In Septem-
ber, Total Fe concentrations slightly increased towards the 
hypolimnion (max. 27 µmol l−1; Fig. 2c). The SO4

2− con-
centrations stayed mainly between 30–45 µmol l−1 through-
out the water column, except in July when the hypolimnetic 
concentrations of SO4

2− peaked to 94 µmol l−1 (Fig. 2a). In 
September, S2

− was not detected in the water column. DOC 
concentrations remained at < 1.1 mmol l−1, being highest in 
the epilimnion (Fig. 2b, c).

Depth profiles of CH4 and CO2

The epilimnetic CH4 concentrations were stable at approxi-
mately 0.1 μmol l−1 during the whole study period, while 
the concentrations in the metalimnion and hypolim-
nion changed seasonally. In early summer, the CH4 

concentrations were highest in the upper water column; 
the water column maxima occurred at 3 m depth in May 
(0.115 ± 0.002 μmol l−1; Fig. 3a) and at 6 m depth in July and 
August (0.151 ± 0.013 μmol l−1 and 0.132 ± 0.002 μmol l−1; 
Fig. 3b, c). Below the peak, the CH4 concentrations started 
to decrease towards the bottom, until they slightly increased 
again at 11 m depth. In contrast, the CH4 concentrations 
in September were relatively low in the epilimnion and 
metalimnion but peaked in the hypoxic hypolimnion 
(0.91 ± 0.07 μmol l−1; Fig. 3d). The CH4 concentration cor-
related positively with water temperature, pH and the NH4

+ 
concentration, and negatively with the water column depth 
and the concentrations of NOx

− and SO4
2− (Table 2).

There was a negative correlation between the CH4 and 
CO2 concentrations (Table 2), their depth profiles being 
reflections of each other’s, particularly in May (Fig. 3a), but 
also during other sampling months. The epilimnetic CO2 
concentrations remained stable from May to September, 
while the CO2 concentrations in the hypolimnion clearly 
increased from spring (0.179 ± 0.004 mmol l−1; Fig. 3a) to 
autumn (0.370 ± 0.008 mmol l−1; Fig. 3d). In May and July, 
the CO2 concentrations started to increase below 3 m depth 
(Fig. 3a, b), whereas in August and September, the CO2 con-
centrations increased simultaneously with the decreasing O2 

Fig. 1   Depth profiles of water temperature (°C) and O2 concentration (mg l−1) in a May, b July, c August and d September
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concentrations (Fig. 3c, d). Throughout the sampling period, 
the CO2 concentration correlated negatively with water tem-
perature, pH and the O2 concentration. There was also a 
positive correlation for CO2 with the water column depth, 
NOx

− and SO4
2−. In addition, the CO2 and Fe3+ concentra-

tions correlated positively in September (Table 2).

Depth profiles of δ13C‑CH4 and δ13C‑DIC

There was a substantial temporal variation in the depth pro-
files of δ13C-CH4. In the hypolimnion, δ13C-CH4 decreased 
from − 36.8 ± 0.2 ‰ in July (Fig. 4a) to − 71.5 ± 1.8 ‰ in 
September (Fig. 4c). In August and September, the maxi-
mum δ13C-CH4 values were detected close to the oxycline 
at 9 m depth (− 51.8 ± 1.2 ‰ and − 37.6 ± 2.0 ‰, respec-
tively). There was a significant negative correlation for the 
δ13C-CH4 with water temperature, pH, DOC concentration 
and CH4 concentration, while the δ13C-CH4 correlated posi-
tively with the SO4

2− concentration (Table 2).
Similarly to the profiles of CO2 and CH4, the depth pro-

files of δ13C-CH4 and δ13C-DIC were reflections of each 
other, and the δ13C-DIC values generally decreased from 
summer to autumn. The δ13C-DIC ranged from − 6.8 ± 0.7 
to − 17.5 ± 0.9 ‰ in the epilimnion, and from − 21.5 ± 0.4 
to − 29.3 ± 0.1 ‰ in the hypolimnion. In August and Sep-
tember, a notable decrease of δ13C-DIC occurred at the 
depths of 6–7 m (Fig. 4b, c), simultaneously with sudden 
O2 depletion, while in July the decrease of δ13C-DIC towards 
the bottom was more stable (Fig. 4a). The δ13C-DIC values 
correlated positively with water temperature, the O2 concen-
tration and pH, whereas the δ13C-DIC correlated negatively 
with water column depth and the concentrations of NOx

−, 
Fe3+, SO4

2− and CO2 (Table 2).

The extent and potential rates of CH4 oxidation

In August, the estimated fraction of CH4 oxidized in the 
water column was 34% (calculated from the difference 
between δ13C-CH4 at the bottom and the maximum value of 
δ13C-CH4 at 9 m, as described in Kankaala et al. 2007). In 
September, the corresponding proportion was 91%.

Potential CH4 oxidation was detected in Septem-
ber. Potential CH4 oxidation rates increased with depth 
from 10.8 ± 3.4 nmol  l−1 day−1 at 8 m (p < 0.006**) to 
34.8 ± 12.3 nmol l−1 day−1 at 11.5 m (p < 0.012*; Fig. 5). 
In contrast, the results from August did not show clear evi-
dence of CH4 oxidation, since the tracer addition did not 
cause significant linear increase with time in samples from 
6 m depth (p > 0.134) and sediment surface (p > 0.113). 
At 11.5 m depth, the values (Atom%) of labeled samples 

Fig. 2   Concentrations of NOx
−, NH4

+ and SO4
2− in a July, b August and c 

September, concentrations of DOC in b August and c September, and concen-
trations of Tot Fe in c September. Note different scales on X-axis
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increased linearly with time (p > 0.349), but the large variation between replicates complicated interpretation of 
results and thus, CH4 oxidation during August cannot be 
confirmed (Fig. S2).

Fig. 3   Depth profiles of CH4 and CO2 in a May, b July, c August and d September. Concentrations are presented as averages ± standard devia-
tions (n = 2 or 3)

Table 2   Spearman’s rank 
correlations between the average 
gas concentrations (n = 52) and 
stable isotopic values (n = 39) 
of CH4 and CO2, water column 
depth, temperature, the O2 
concentration, pH (n = 52), 
and the concentrations of DOC 
(n = 23), NOx

−, NH4
+, SO4

2− 
(n = 39) and Fe3+ (n = 13)

* Correlation is significant at the p < 0.05 level (2-tailed)
** Correlation is significant at the p < 0.01 level (2-tailed)

CH4 −concentration CO2 concentration δ13C-CH4 δ13C-DIC

Depth − 0.490** 0.884** n.s − 0.872**
Temperature 0.638** − 0.839** − 0.332* 0.927**
O2 n.s − 0.776** n.s 0.975**
pH 0.625** − 0.773** − 0.347* 0.813**
DOC n.s n.s − 0.444* n.s
NOx

− − 0.403* 0.519** n.s − 0.494**
NH4

+ 0.396* n.s n.s n.s
SO4

2− − 0.330* 0.705** 0.351* − 0.652**
Fe3+ n.s 0.863** n.s − 0.802**
CH4 − 0.462** − 0.726** n.s
CO2 − 0.462** n.s − 0.946**
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Discussion

The vertical distribution of CH4 in the water column

The epilimnetic concentrations of CH4 were similar to those 
previously recorded in Lake Kuivajärvi (Miettinen et al. 
2015) and in Finnish lakes in general (e.g. 207 lakes studied 

by Juutinen et al. 2009). The hypolimnetic CH4 concentra-
tions, however, were relatively low, even in September, when 
the hypolimnetic hypoxia created favorable conditions for 
methanogenesis (Capone and Kiene 1988). The low concen-
trations of CH4 were probably caused by the well-oxygen-
ated water column in early summer.

From May to August, the highest concentrations of CH4 
occurred in the upper water layers and the lowest concentra-
tions in the hypolimnion. Even though the CH4 concentra-
tions are expected to decrease in the well-oxygenated water 
column due to the methanotrophic activity (Kankaala et al. 
2006; Bastviken et al. 2008), the lateral transport of CH4 
from the littoral zone or surrounding peatlands (Murase 
et al. 2003; Ojala et al. 2011; Lopéz Bellido et al. 2013; 
Miettinen et al. 2015), as well as a rapid vertical release 
of CH4 from the sediment to the surface layers by ebulli-
tion (McGinnis et al. 2006), could cause such profiles. Also, 
internal lake oscillations might have contributed in vertical 
transfer of CH4 to the upper layers (Heiskanen et al. 2014; 
Stepanenko et al. 2016). Since there were no extreme rain 
events during the sampling periods to enable efficient lateral 
transport, an internal source for CH4 in the oxic water col-
umn seems more likely.

Although the CH4 concentrations did not correlate with 
the O2 conditions, simultaneous changes in the depth profiles 
of CH4 and nutrients (i.e. NOx

−, NH4
+ and SO4

2−; Table 2) 
suggest that the availability of O2 was a major factor regulat-
ing both CH4 and nutrient concentrations in the water col-
umn. In the summer, well-oxygenated water column created 
favorable conditions for aerobic nitrification and oxidation of 
S2

− to SO4
2−, while these conditions were less favorable for 

Fig. 4   Depth profiles of δ13C-CH4 and δ13C-DIC (‰) in a July, b 
August and c September. Values are presented as averages ± standard 
deviations (n = 2 or 3)

Fig. 5   The O2 concentration (mg l−1) and the potential CH4 oxidation 
rates (nmol C l−1 d−1) ± standard errors determined with 13C-CH4-
tracer in September (n = 18 at the depths of 8 and 11.5 m, and n = 17 
at 10 m depth)
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methanogenesis. Conversely, hypolimnetic hypoxia in Sep-
tember probably stimulated methanogens and ammonium-
producing microbes simultaneously with denitrifying and 
sulphate-reducing bacteria.

The measured δ13C-CH4 values agreed with previous 
studies in boreal lakes (e.g. Bastviken et al. 2002, 2008; 
Kankaala et  al. 2007). The δ13C-CH4 decreased with 
increases in CH4 concentration. Also, increases in tempera-
ture and DOC were associated with decreasing δ13C-CH4 
values, as they are the key controlling factors for metha-
nogenesis (Table 2; Bastviken et al. 2004, 2008; Duc et al. 
2010). In August and September, CH4 production at the 
lake bottom was visible from the δ13C-CH4 profiles. The 
hypolimnetic decrease of δ13C-CH4 was substantial, par-
ticularly with maximum CH4 concentrations in Septem-
ber, which is consistent with biogenic CH4 being strongly 
13C-depleted due to fractionation (Whiticar 1999). In July, 
13C-enriched values of CH4 (− 37 ‰) at the lake bottom 
indicate that most of CH4 was formed and consumed within 
the sediment (Whiticar 1999).

Throughout the study period, the increases in CO2 with 
depth, simultaneously with decreasing δ13C-DIC and O2 
concentration, indicate consumption of O2 and production 
of CO2 through in situ decomposition of OM in the hypolim-
nion (Miettinen et al. 2015). Furthermore, the decomposition 
of OM releases nutrients, such as NO3

− (McManus, Heinen 
and Baehr 2003), thus explaining the positive relationship 
between CO2 and NOx

−.
In this study, we did not directly estimate the lake-

atmosphere C gas exchange in Lake Kuivajärvi. However, 
the measured surface water CH4 and CO2 concentrations 
together with a 2-year (2011–2012) data set on atmospheric 
fluxes of C gases (Miettinen et al. 2015) confirm that Lake 
Kuivajärvi acts as a source of CH4 and CO2 to the atmos-
phere (the 2-year mean for CH4 approx. 0.06 mol m–2 y–1 
and for CO2 25.5 mol m–2 y–1).

Water column CH4 oxidation and future perspectives 
in a changing climate

The transition of the active CH4 oxidation zone was clearly 
indicated by the δ13C-CH4 profiles. In July, CH4 remained 
13C-enriched at the bottom, suggesting that CH4 was already 
oxidized in the sediment, because CH4 oxidation leaves a 
residual CH4 enriched in 13C (Whiticar 1999). During 
August and September, the most 13C-enriched values of CH4 
were detected close to the oxycline, indicating the transition 
of CH4 oxidation from the sediment to the water column.

The estimated proportion of CH4 oxidized within the 
water column was 34% in August and 91% in September. 
The high efficiency of CH4 oxidation agrees well with previ-
ous studies, where the proportions of CH4 oxidized within 
the water column during summer stratification have ranged 

from 50 to 80% (Kankaala et al. 2006; Bastviken et al. 
2008). Even though lakes generally represent an important 
natural source of atmospheric CH4, these results show that 
methanotrophic activity substantially reduces CH4 emissions 
from this typical, seasonally stratified lake.

In September, the potential CH4 oxidation rates gradu-
ally increased from the oxycline (8  m) to the hypoxic 
hypolimnion (11.5 m). Simultaneously, δ13C-CH4 strongly 
decreased, while δ13C-DIC remained stable. Although the 
highest CH4 oxidation rates are typically observed at the 
oxycline in the presence of O2 (Kankaala et al. 2006; Oswald 
et al. 2015), the maximum rates in the hypolimnion could 
be explained by the higher ambient concentration of CH4 
(0.9 µmol l−1) at 11.5 m depth sustaining a larger population 
of methanotrophs (Sundh et al. 2005; Bastviken et al. 2008). 
However, the CH4 pool turnover time in September, calcu-
lated by dividing the CH4 concentration with the potential 
CH4 oxidation rate (e.g. Lin et al. 2005), was most rapid near 
the oxycline at the depths of 8–10 m (< 8 days), and slowest 
at 11.5 m (26 days).

When comparing the potential CH4 oxidation rates in 
Lake Kuivajärvi to other stratified systems (Milucka et al. 
2015; Oswald et al. 2015, 2016), and assuming that the 
potential CH4 oxidation rate is proportional to the concen-
tration of the added 13CH4 tracer, the maximum CH4 oxida-
tion rates in Lake Kuivajärvi were approximately 5–8 times 
lower than in those lakes. Again, the higher ambient concen-
trations of CH4 (10–100-fold) in those systems most likely 
sustained a larger population of methanotrophs, thus leading 
to higher CH4 oxidation rates.

As noted in previous anoxic incubation studies (Blees 
et al. 2014; Norði and Thamdrup 2014; Rissanen et al. 2017), 
possibility of minor O2 contamination from the tracer injec-
tion cannot be excluded even with originally anoxic fresh-
water samples. Also, there might have been some residual 
O2 available for CH4 oxidation close to the detection limit 
of O2 sensor. Indeed, the maximum CH4 oxidation rates in 
the hypolimnion imply that episodic appearance of O2 (e.g. 
downwelling of oxygenated water) in otherwise hypoxic lay-
ers potentially fueled methanotrophy below the oxycline, 
thus stimulating microaerobic CH4 oxidation (Kalyuzhnaya 
et al. 2013; Blees et al. 2014; Kits et al. 2015). Recently, 
aerobic gamma-proteobacterial methanotrophs have been 
reported to almost exclusively dominate the methanotrophic 
community in both oxic and anoxic layers of boreal and tem-
perate lakes (Milucka et al. 2015; Oswald et al. 2016; Ris-
sanen et al. 2018). Further research identifying the microbial 
communities involved in these processes is required to con-
firm whether the metabolism of methane-oxidizing microbes 
in Lake Kuivajärvi was aerobic or anaerobic.

In the future, as the aquatic systems in the boreal zone 
are exposed to increasing terrestrial organic C load due to 
climate-induced changes in precipitation and air temperature 
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(Lepistö et al. 2008; Sarkkola et al. 2009; Couture et al. 
2012; Pumpanen et al. 2014; Kiuru et al. 2018), the accel-
erated decomposition of OM might emphasize the role of 
alternative inorganic EAs in CH4 oxidation. The develop-
ment of summer stratification, on the other hand, suggests 
that the annual CH4 emissions will remain largely regulated 
by aerobic CH4 consumption due to the well-oxygenated 
water column throughout the summer.

Potential effects of warming climate on the onset 
of thermal stratification and hypolimnetic hypoxia

As a consequence of warm spring, Lake Kuivajärvi began 
to thermally stratify soon after ice-out and rapidly formed a 
warm epilimnetic layer, while the bottom waters remained 
cold and oxygenated. Long-term trends of thermal condi-
tions have previously shown an extension of the summer 
stratification period in dimictic lakes of the boreal and tem-
perate region (Gerten and Adrian 2002; Rösner et al. 2012; 
Magee and Wu 2017). Browning of boreal lakes together 
with warming climate causes earlier thermal stratification 
due to dark humic waters absorbing solar radiation (Heis-
kanen et al. 2015). Since the mean air temperatures during 
spring months from March to May have clearly increased in 
Finland (Mikkonen et al. 2015) and will continue to increase 
in the future (Ruosteenoja et al. 2016), this kind of early 
thermal stratification is becoming more common in boreal 
brown-water lakes (Heiskanen et al. 2015; Davidson et al. 
2018; Kiuru et al. 2018; Mammarella et al. 2018). Since 
the hypolimnetic hypoxia did not begin until early autumn, 
it most likely lasted only few weeks before the autumn 
turnover. Previously, the duration of hypolimnetic hypoxia 
in Lake Kuivajärvi has varied from 3 weeks to more than 
2 months (Miettinen et al. 2015), after which the autumn 
turnover has taken place in the beginning of October (e.g. 
Heiskanen et al. 2015). The results of this experiment rep-
resent the future O2 conditions in boreal lakes, showing that 
earlier thermal stratification with cold hypolimnion delays 
the period of hypolimnetic hypoxia and thus limits CH4 
production.

Conclusions

The zone of CH4 oxidation ascended from the sediment to 
the water column in the late phases of summer stratification, 
and our results showed that the CH4 oxidation potential was 
highest in the hypoxic hypolimnion. During hypolimnetic 
hypoxia, 91% of available CH4 was oxidized in the active 
CH4 oxidation zone, while 9% was potentially released to 
the atmosphere. Even though lakes represent an impor-
tant natural source of atmospheric CH4 due to their large 
areal extent, our results demonstrate that earlier thermal 

stratification with cold, well-oxygenated hypolimnion will 
delay the period of hypolimnetic hypoxia, thus limiting CH4 
production. Moreover, changes in the stratification dynamics 
of boreal lakes are expected due to the higher atmospheric 
temperatures and brownification. Therefore, the expected 
increase in the lacustrine CH4 emissions as a consequence of 
increasing organic C load from forested catchments may be 
partially counteracted by the later development of hypoxia.
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