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Abstract. Musical training causes structural and functional changes
in the brain due to its sensory-motor demands. This leads to differ-
ences in how musicians perceive and process music as compared to non-
musicians, thereby providing insights into brain adaptations and plas-
ticity. Correlational studies and network analysis investigations have in-
dicated the presence of large-scale brain networks involved in the pro-
cessing of music and have highlighted the differences between musicians
and non-musicians. However, studies on functional connectivity in the
brain during music listening tasks have thus far focused solely on static
network analysis. Dynamic Functional Connectivity (DFC) studies have
lately been found useful in unearthing meaningful, time-varying func-
tional connectivity information in both resting-state and task-based ex-
perimental settings. In this study, we examine DFC in the fMRI obtained
from two groups of participants, 18 musicians and 18 non-musicians,
while they listened to a musical stimulus in a naturalistic setting. We
utilize spatial Group Independent Component Analysis (ICA), sliding
time window correlations, and a deterministic agglomerative clustering of
windowed correlation matrices to identify quasi-stable Functional Con-
nectivity (FC) states in the two groups. To compute cluster centroids
that represent FC states, we device and present a method that primar-
ily utilizes windowed correlation matrices occurring repeatedly over time
and across participants, while excluding matrices corresponding to spon-
taneous fluctuations. Preliminary analysis indicate states with greater
visuo-sensorimotor integration in musicians, larger presence of DMN
states in non-musicians, and variability in states found in musicians due
to differences in training and prior experiences.

Keywords: Dynamic Functional Connectivity · Clustering · ICA · State
Characterization · Musicians vs. Non-Musicians

1 Introduction

Professional musicians typically undergo an intensive formal training period that
lasts several years. The training is followed by consistent practice and perfor-
mance, often running into several hours per week. This intensive sensory-motor



training causes structural [10,12] and functional [4,9] changes in the brain. Mu-
sicians also have different cerebral characteristics which correlate with the age
of commencement of training and also the intensity/frequency of training [13].
This makes music a great tool to study brain adaptation, and musicians an ideal
group to study brain changes driven by experience, especially when contrasted
with a non-musicians group.

Moreover, since music is inherently multidimensional in nature, there has
been an increased focus on the use of naturalistic stimulus in continuous music
listening settings (emulating real-life listening experiences). These investigations
have been shown to present a more holistic picture of the neural underpinnings
of music processing, as against those performed in controlled auditory settings
where musical features are often presented in isolation and manipulated artifi-
cially. Correlational studies following this paradigm have indicated the presence
of large-scale brain networks (involving the recruitment of cognitive areas of the
cerebellum, sensory and DMN cerebrocortical areas, and motor and emotion-
related circuits), in musicians, involved in the processing of musical features like
Timbre, Rhythm and Tone [3,6,18]. Furthermore, network studies have also been
conducted to highlight functional networks and key hubs recruited during music
listening [19,14]. In a study which is more in line with our work, static whole-
brain functional connectivity analyses revealed group-differences between musi-
cians and non-musicians, with the primary hubs of the musicians consisting of
the cerebral and cerebellar sensorimotor regions, and those of the non-musicians
consisting of DMN-related regions [2]. Network investigations in this domain
have thus far been restricted to static Functional Connectivity (FC) analysis.

However, assessment of FC in these studies has largely been limited by an
assumption of spatial and temporal stationarity throughout the fMRI scan pe-
riod. While this presents a simple template for static whole brain connectivity
analysis, it comes at the cost of an inability to study FC patterns across scan
timecourses. To enable dynamic temporal analysis, researchers have suggested
various methods to identify and characterize FC states leading to interesting find-
ings in FC patterns over time, in task-based and resting-state analyses [17,11,5].
In this study, we utilize and extend the theoretical model and framework pro-
posed by Allen et al., [1] on fMRI data obtained in a task-free, continuous music
listening setting.

We begin by identifying Intrinsic Connectivity Networks (ICNs) using a
group-level (musicians and non-musicians) ICA analysis on the fMRI data. We
perform sliding window correlation computations on the time-courses of the
back-reconstructed ICNs. Finally, to identify quasi-stable states which repeat
across participants in the group, we adopt an agglomerative clustering approach
to cluster windowed correlation matrices across all participants of the group. In
earlier work [1,8], all of the matrices were used in the computation of centroids.
Deviating from this, we hypothesize that FC states are of two types: ones which
recur over time and across participants, and ones which are spontaneous fluctu-
ations that do not represent generalizable group characteristics. To account for
this, we include a step to identify and select matrices which repeat over time and



Fig. 1: An overview of our study.

occur across participants, and exclude outliers corresponding to subject specific
activations and spontaneous fluctuations. We then find community structures in
these FC states through the Louvain modularity-maximization method.

2 Methods

2.1 Participants, Stimulus, fMRI data acquisition

The participant pool consisted of 18 musically trained (9 female, mean age:
28) and 18 untrained (10, 29) participants. Both groups were comparable with
respect to cognitive measures (WAIS-WMS III scores) and socioeconomic status
(Hollingshead’s FFI). The total number of years of training for musicians was 16
± 5.7 years. The number of hours spent practicing music on average per week
was 16.6 ± 11. The data was collected as part of a broader project (“Tunteet”)
involving other tests (neuroimaging and neurophysiological measures) The study
protocol was approved by the ethics committee of the Coordinating Board of the
Helsinki and Uusimaa Hospital District. Written consent was obtained from all
the participants. They were asked to listen to an instrumental nuevo tango piece
- Adios Nonino by Astor Piazzolla. This piece consisted of a high amount of
variation in acoustic features such as timbre, tonality, rhythm etc., and was
8 minutes in duration. Participants’ brain responses were acquired while they
listened to the musical stimulus. Their only task was to attentively listen to the
music delivered via MR-compatible insert earphones. MRI data was collected
at the Advanced Magnetic Imaging Centre, Aalto University, Finland, on a 3T
Siemens Skyra, TR = 2s, TE = 32ms, whole brain, voxel size: 2 × 2 × 2 mm3, 33
slices, FoV: 192 mm (64 × 64 matrix), interslice skip = 0 mm. fMRI scans were
preprocessed on Matlab using SPM8, VBM5 and custom scripts. Normalization
to MNI segmented tissue template was carried out. Head movement related



Fig. 2: Lateral views of the left (at top) and right (at bottom) hemispheres for
both the groups indicating the spatial maps of the ICNs grouped as indicated
(views show the union of the ICNs for each grouping). The numbers indicate
the number of selected ICNs which belong to that group. Most of the regions
are common to both the Mus and NMus groups and are indicated in the middle
row.

components were regressed out, followed by spline interpolation and filtering.
Then, the voxel time series was Z-scored.

2.2 Group ICA and Postprocessing

Functional data from both the groups were separately analyzed using spatial
Group ICA (GICA) implemented in the GIFT toolbox [7]. We chose not to group
data from both groups before GICA as that would result in reduced sensitivity
to between-group differences [15], more so when finding statistically significant
group differences is not the objective of our work. A subject-level PCA step was
first used to reduce 232 time point data (464 seconds of music at TR = 2s) into
180 dimensions. This data was concatenated across time (over subjects) and a
group PCA step reduced this stacked matrix into 100 components. 100 inde-
pendent components (aggregated across 10 runs) were obtained from the group
PCA reduced matrix using the Infomax algorithm. Per participant spatial maps
(SMs) and time courses (TCs) were obtained using the spatiotemporal regres-
sion back reconstruction approach [7]. Per participant SMs and TCs underwent



post-processing as described in [1]. ICNs were identified using thresholded one
sample t-test maps resulting in Cmus = 42 and Cnmus = 43 ICNs (stability in-
dex Iq > 0.9) chosen out of the 100 independent components. The ICNs were
grouped into 7 groups indicative of Subcortical (SC), Auditory (AU), Sensori-
motor (SM), Visual (VI), Cognitive Control (CC), Default Mode Network (DM),
and Cerebellar (CE) regions as shown in Fig. 2.

2.3 DFC and Clustering

As in Allen et al., and Damaraju et al., [1,8], for each subject i = 1 ... N , we es-
timate Dynamic FC using a sliding window approach, where covariance matrices
are computed from windowed segments of Ri (Fig. 1). We utilize a tapered rect-
angular sliding window (Fig. 1) of 30 TRs, slid in steps of 1 TR, and convolved
with a Gaussian of σ = 3 TRs (to obtain edge tapering), resulting in 202 windows
per participant. Covariance was estimated from the regularized inverse covari-
ance matrix (ICOV) using the graphical LASSO framework. An additional L1
norm constraint was imposed on the covariance matrix to enforce sparsity. After
computing DFC values for each subject, these covariance values were Fisher-Z
transformed. These matrices are henceforth referred to as correlation matrices.

As many DFC patterns recur within subjects across time, and also occur
across subjects, we performed a group level (musicians and non-musicians) clus-
tering analysis to identify the states represented by these recurring patterns. Per
group, we cluster all the 3636 (18 subjects × 202 matrices = 3636) correlation
matrices computed earlier. We deviate from prior work with regard to the clus-
tering technique and the distance metric used. We chose to adopt Agglomerative
Clustering with complete linkage, using cosine distance. Agglomerative Cluster-
ing is a deterministic method which has an added advantage of being able to
provide a dendrogram to visualize cluster spreads and the hierarchy leading to
the formation of FC states. Euclidean distance metrics do not lend themselves
well in a sparse, high dimensional setting [20] (in our setting, we have 3636 vec-
tors with each being 903 dimensional (

(
43
2

)
= 903)). A cosine distance metric

is better suited in such cases. We also wanted to capture similar states across
the entire group, and not long chains of FC windows from individual partic-
ipants (the chosen time step of 1TR leads to high autocorrelation in the FC
timeseries). Hence we utilized complete linkage as against single/average link-
age (Ward’s method is ruled out due to our choice of a cosine distance metric).
The optimal number of clusters (k) was determined using the standard elbow
criterion. We also validate our choice by visually inspecting the clustering using
the dendrogram. At an optimal k, splitting the dendrogram at a lower posi-
tion (greater k value) gives rise to repeated centroid states at the same level
in the tree. Using this method we find 4 clusters in the musicians and 3 in the
non-musicians.

Each of these k clusters is composed of two broad types of correlation matrices
- those which recur over time and across participants (these are precisely the
matrices which are indicative of quasi-stable FC states and should be included in
centroid computation) and those which correspond to subject specific activations



Fig. 3: Correlation heatmaps and Modularity partitions for the cluster centroids
ordered by their percentage of occurrence. MCD values indicate the mean cosine
distance of all the points in the cluster from the centroid. NSUB values indicate
the number of subjects who have atleast one window in that cluster. NMOD
indicates the number of modules in the Modularity partition.

and spontaneous fluctuations (which should ideally be excluded from centroid
computation). We perform the following steps:

1. At this stage, in each group, the windowed correlation matrix timeseries of
each subject is composed of strips of contiguous matrices belonging to one
of the k clusters. For subject i, we denote the 202 matrices as mi1, mi2,
... mi202. We consider strips with atleast 10 (chosen empirically) contiguous
correlation matrices belonging to the same cluster and denote them per
subject as si1 ... sij when j = 1 .. J such strips exist for participant i. We
denote the median correlation matrix (ordered by time) for each such sij as
medij . For eg: m3 17 - m3 37 could belong to cluster k = 2 for subject 3 in
the musicians group. The median matrix med3j for strip s3j would be m3 27.

2. To get a better estimate of the cluster center for cluster k, we choose one
median matrix per subject, such that the pairwise-sum of the cosine dis-
tances between the chosen matrices is minimized. Formally, we choose me-



dian matrices med1j′ ... medNmaxj′′ , one per subject (for each subject i,
medij could belong to any chosen strip sij containing ≥ 10 contiguous matri-

ces), such that
∑Nmax−1

a=1

∑Nmax

b=a+1 CosineDistance(medaj′ ,medbj′′) is mini-
mized. Here, Nmax = number of subjects with atleast one strip containing
≥ 10 contiguous matrices in cluster k. By considering the median (ordered
by time) matrix, which corresponds to a window in time when the FC state
was most stable, we ensure that we are closer to the true cluster center. By
not weighting the medians with the length of the strips (number of matrices
in the strip), we ensure that the objective function does not end up solely
selecting small length strips.

3. We compute the center of the cluster k as the mean of the chosen median
matrices. We then sort all the matrices (from all subjects) belonging to
cluster k based on their cosine distances from the computed center.

4. We consider an appropriate percentile (chosen based on the first derivative
of the distance series - i.e. rate of change of distance from the cluster center)
of matrices from the above sorted order and use these windowed correlation
matrices for centroid computation. The cluster centroids thus computed in-
dicate quasi-stable FC states.

The centroids of clusters which contain most of the data (states 1 and 2
for both Mus and NMus) are fully reproducible across bootstrap resamples of
participants. To find community structures, the cluster centroids, which are in-
dicative of recurring DFC states, were partitioned into modules using multiple
runs of the Louvain modularity-maximization algorithm.

3 Results and Discussion

Preliminary analysis reveals that overall, we observe more states in the musi-
cians group, and a higher NSUB value (no. of subjects who have atleast one
window in that cluster) on average for the non-musicians. This could be hy-
pothesized to be attributed to greater similarities in listening strategies among
non-musicians (simpler sensory bottom-up listening) as against musicians who
utilize finetuned top-down analytic listening strategies depending on their varied
training methods, leading to differences in underlying neural correlates.

In the most common state (state 1) of both the groups, for musicians we find
a coupling between the visual and the sensorimotor regions (both are parts of
module 2), while in non-musicians, the auditory regions and the sensorimotor
regions lie in the same module (parts of module 2) with the visual regions ly-
ing in a separate module 3. This is in line with the action-perception coupling
found in the musicians, wherein experience with a sensorimotor task such as
instrument playing leads to a strong coupling of sensory (visual/auditory) and
motor regions [16]. Studies have shown correlations in activations in sensorimo-
tor regions and visual representation of music/instrument playing. On the other
hand coupling between the auditory and sensorimotor regions in non-musicians
can be attributed to reactionary responses to acoustic features such as rhythm.



Fig. 4: Amplitude of FC oscillations - higher end of the scale indicates greater
variability in connectivity over the course of time between the corresponding
ICNs.

For both groups, state 1 lacks coupling of the DMN regions, indicating that this
state represents most of the active listening period with a high cognitive load.

For musicians, it can be suggested that state 3 is representative of the DMN
related default state (DMN regions occur in the same module 3), representative
of times of low cognitive load. State 2 and state 4 could be hypothesized to cor-
respond to other states of active music listening, where state 4 is observable in a
less number of subjects (training/prior experience dependent). State 2 presents
greater integration of the auditory, visual and sensorimotor regions (module 1)
as compared to state 1. State 4 indicates a few differences from state 1 - the sub-
cortical regions along with the putamen/angular gyri and the inferior/superior
frontal regions are grouped together (module 3).

For non-musicians, state 2 is primarily indicative of the grouping of DMN
regions together (module 1), suggesting that this state corresponds to times of
low cognitive load. The presence of this state for a reasonably large percentage
of time as against in musicians, indicates a greater tendency to fall back to the
default state in non-musicians in times of low auditory cognitive load. State 3
exhibits a separate module for visual regions (module 3), and also coupling of
DMN regions. This, along with small-negative correlations of the visual regions
with the other regions in the centroid FC matrix calls for further investigation.

In terms of temporal variability, musicians indicated a larger number of stable
(less variable) (over the time course) ICN pairs, primarily associated with the
Subcortical, Auditory, DMN and Cerebellar regions. Non-musicians exhibited
a large number of fluctuating (more variable) connections between ICN pairs,
primarily associated with the DMN, Visual and Sensorimotor regions.

To conclude, we are the first to analyze DFC in musicians and non-musicians
in fMRI data collected in a naturalistic setting. We utilize spatial GICA, sliding
time window correlations, and a deterministic agglomerative clustering of win-
dowed correlation matrices to identify quasi-stable FC states in the two groups.



We extend upon existing DFC analysis frameworks and present a method to
choose appropriate matrices (corresponding to states which recur over time and
across participants) for cluster centroid computation. Preliminary analysis in-
dicate states with greater visuo-sensorimotor integration in musicians, larger
presence of DMN states in non-musicians, and variability in states found in mu-
sicians due to differences in training and prior experiences. Further analysis to
unearth more details about these states is called for.
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