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Fengyu Cong, Senior Member, IEEE, Yu-Ping Wang , Senior Member, IEEE,

and Vince D. Calhoun , Fellow, IEEE

Abstract— Canonical polyadic decomposition (CPD) of
multi-subject complex-valued fMRI data can be used
to provide spatially and temporally shared components
among groups with both magnitude and phase information.
However, the CPD model is not well formulated due to
the large subject variability in the spatial and temporal
modalities, as well as the high noise level in complex-
valued fMRI data. Considering that the shift-invariant CPD
can model temporal variability across subjects, we pro-
pose to further impose a phase sparsity constraint on the
shared spatial maps to denoise the complex-valued com-
ponents and to model the inter-subject spatial variability as
well. More precisely, subject-specific time delays are first
estimated for the complex-valued shared time courses in
the framework of real-valued shift-invariant CPD. Source
phase sparsity is then imposed on the complex-valued

Manuscript received June 19, 2019; revised August 2, 2019 and
August 5, 2019; accepted August 12, 2019. Date of publication August 19,
2019; date of current version April 1, 2020. This work was supported
in part by the National Natural Science Foundation of China under
Grant 61871067, Grant 61379012, Grant 61901061, Grant 61671106,
Grant 61331019, and Grant 81471742, in part by the NSF under
Grant 1539067, Grant 0840895, Grant 1539067, and Grant 0715022,
in part by the NIH Grant R01MH104680, Grant R01MH107354, Grant
R01EB005846, and Grant 5P20GM103472, in part by the Fundamen-
tal Research Funds for the Central Universities, China, under Grant
DUT14RC(3)037, and in part by the Supercomputing Center of Dalian
University of Technology. (Corresponding author: Qiu-Hua Lin.)

L.-D. Kuang is with the School of Information and Communication
Engineering, Dalian University of Technology, Dalian 116024, China,
and also with the School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha 410114,
China (e-mail: kuangld@csust.edu.cn).

Q.-H. Lin and X.-F. Gong are with the School of Information and
Communication Engineering, Dalian University of Technology, Dalian
116024, China (e-mail: qhlin@dlut.edu.cn; xfgong@dlut.edu.cn).

F.-Y. Cong is with the School of Biomedical Engineering, Dalian
University of Technology, Dalian 116024, China, and also with the Depart-
ment of Mathematical Information Technology, University of Jyväskylä,
40014 Jyväskylä, Finland (e-mail: cong@dlut.edu.cn).

Y.-P. Wang is with the Department of Biomedical Engineering, Tulane
University, New Orleans, LA 70118 USA (e-mail: wyp@tulane.edu).

V. D. Calhoun is with the Tri-Institutional Center for Translational
Research in Neuroimaging and Data Science (TReNDS), Georgia State
University, Georgia Institute of Technology, Emory University, Atlanta,
GA USA (e-mail: vcalhoun@gsu.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2019.2936046

shared spatial maps. A smoothed �0 norm is specifically
used to reduce voxels with large phase values after phase
de-ambiguity based on the small phase characteristic of
BOLD-related voxels. The results from both the simulated
and experimental fMRI data demonstrate improvements
of the proposed method over three complex-valued algo-
rithms, namely, tensor-based spatial ICA, shift-invariant
CPD and CPD without spatiotemporal constraints. When
comparing with a real-valued algorithm combining shift-
invariantCPD and ICA, the proposed method detects 178.7%
more contiguous task-related activations.

Index Terms— Canonical polyadic decomposition (CPD),
complex-valued fMRI data, source phase sparsity,
shift-invariant, spatiotemporal constraints.

I. INTRODUCTION

TENSOR decomposition applied to multi-subject func-
tional magnetic resonance imaging (fMRI) data is of

growing interest, as such approaches enable us to make use
of the multiway structure of fMRI data in terms of space,
time and subject/trial [1]–[3]. Canonical polyadic decompo-
sition (CPD), also called CANDECOMP or parallel factor
analysis (PARAFAC), is a common method for tensor decom-
position [4], [5] because it can provide a unique decompo-
sition under mild conditions [6], [7]. CPD has been widely
applied to multi-trial/subject fMRI data since 2004 to extract
shared spatial maps (SMs), shared time courses (TCs), and
trial/subject-specific intensities [1], [2], [8]–[11]. CPD is a
complementary method to independent vector analysis (IVA),
which emphasizes the capture of inter-subject variability and
the decomposition of multi-subject fMRI data into individual
SMs and TCs [12].

CPD was first applied to the analysis of fMRI data in [1].
The multi-trial fMRI data from a single subject generally
accords with the CPD model that decomposes a K -way tensor
into a linear combination of a series of rank-one tensors, and
each rank-one tensor is the out product of K loading vectors.
By contrast, multi-subject fMRI data tend to violate the
CPD model since the data involve larger inter-subject spatial
and temporal variability than multi-trial fMRI data. For this
reason, some constraints on spatial and temporal modalities
were imposed to make the CPD model more rigid. Most
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studies have focused on imposing spatial constraints on CPD.
Beckmann and Smith proposed a tensor-based spatial inde-
pendent component analysis (ICA) (T-sICA) algorithm, which
imposed spatial independence on the SMs of multi-subject
fMRI data via ICA, followed by a rank-one approximate of
CPD to obtain shared TCs and subject-specific intensities [2].
Zhou and Cichocki proposed a novel CPD algorithm incorpo-
rating a priori knowledge about the components in one mode,
thus the spatial independence can be readily constrained by
extracting a factor matrix using ICA [10]. De Vos et al. also
proposed a CPD algorithm where independence is imposed
on the factors in one mode [13]. This algorithm may require
heavy computation in the analysis of multi-subject fMRI data
due to working with the covariance matrix and fourth-order
cumulant tensor.

In addition to the spatial variability, time shifts occur
naturally in multi-subject fMRI data and even in multi-
trial fMRI data from an individual, due to the hemody-
namic delay. As such, Mørup et al. extended the CPD
model to incorporate time shifts, called shift-invariant CPD,
and then applied the algorithm to detect variable latencies
in multi-trial fMRI data from one single subject [8]. The
shift-invariant CPD employs a frequency-domain method to
estimate time shifts since the exhaustive searching strategy is
time-consuming in the time domain when many time delays
are involved [14]. The frequency-domain method estimates
more accurate time delays and uses less computation time than
the time-domain algorithm [8]. Under the same experimental
conditions, the inter-subject temporal variability from multi-
subject fMRI data tends to be larger than the inter-trial tempo-
ral variability from single-subject fMRI data, due to different
response times or hemodynamic delays for different subjects.
As such, we leveraged both inter-subject spatial and temporal
variability and proposed an improved method combining ICA
and shift-invariant CPD (named ICA-sCPD) for analyzing
multi-subject fMRI data. The results showed that our method
outperformed T-sICA and shift-invariant CPD [11].

To our best knowledge, CPD has not yet been applied
to complex-valued multi-subject fMRI data. Motivated by
the benefits of using both magnitude and phase information
in fMRI data [15]–[20], we propose to exploit the phase
in a CPD algorithm to take advantage of the full brain
information contained in complex-valued fMRI data. Different
from spatial independence, we propose the incorporation of a
spatial sparsity constraint on CPD. The consideration is that
the spatial sparsity is in line with the intrinsic characteris-
tic of brain activation [21]–[23], and sparse representation
utilizing the SM sparsity exhibited promising results in the
analysis of magnitude-only fMRI data [24]–[29]. Because
magnitudes of complex-valued SM components are highly
noisy, we seek to utilize the small phase characteristic of
blood oxygenation-level dependent (BOLD)-related voxels.
Specifically, BOLD-related voxels show small phase changes
within the range of [−4/π, 4/π], while unwanted voxels tend
to have large phase changes relative to a baseline phase image
([−π,−4/π) and (4/π, π]) [15]. We call the phase map of
the complex-valued SM component the spatial source phase,
to distinguish it from the observed phase data. In addition,

time shifts are still used to incorporate a temporal constraint.
Simulated fMRI data with different SM and TC changes and
noise levels as well as experimental fMRI data are used to
examine the performance of our proposed method.

To summarize, our contributions are as follows:
(1) We propose to exploit the spatial source phase

in the CPD algorithm with spatiotemporal constraints for
decomposing complex-valued multi-subject fMRI data into
shared SMs, shared TCs, and subject-specific time delays and
intensities.

(2) We propose to use the sparsity of the spatial source
phase to constrain the complex-valued shared SM in the CPD
algorithm. After performing phase de-ambiguity for complex-
valued SM estimates, the voxels with larger phase values are
reduced based on the smoothed �0 norm [31].

(3) We derive the update rule to estimate subject-specific
time delays for complex-valued shared time courses in the
framework of a real-valued shift-invariant CPD algorithm [8].

The remainder of this paper is organized as follows.
Section II describes the details of our proposed method.
Section III introduces the simulated and experimental fMRI
dataset as well as the performance indices for algorithm eval-
uation. Section IV gives the experimental results to exhibit the
advantage of our proposed method. A discussion is included
in Section V.

II. METHODS

In this section, we first present the complex-valued, shift-
invariant CPD algorithm (named csCPD). We then impose a
phase sparsity constraint on the shared SMs of the csCPD
(named pcsCPD) to form our proposed method. Finally,
we present a detailed implementation of the proposed pcsCPD
algorithm.

Notations: The scalars, vectors, matrices and tensors are
denoted by italic lower-case letters (e.g., a), bold lower-
case letters (e.g., a), bold upper-case letters (e.g., A), and
underlined bold capital letters (e.g., A), respectively. The
n-mode matricizing of the tensor is A(n). Superscripts “T ”,
“∗”, “H ” and “†” denote the transpose, conjugate, conjugate
transpose, and pseudo-inverse, respectively. “�·�” is a �2 norm
function. “Re(·)”, “Im(·)”, “|·|” and “θ(·)” denote the real,
imaginary, magnitude, and phase parts of a complex-valued
variable, respectively.

A. Complex-Valued Shift-Invariant CPD Algorithm
1) The Model: Let the three-way (voxel × time × subject)

multi-subject fMRI data be X = {xv, j,k} ∈ CV×J×K , where V
is the number of in-brain voxels, J is the number of time points
for each subject, K is the number of subjects, v = 1, · · · , V ,
j = 1, · · · , J , and k = 1, · · · , K . Assume N is the number
of components, and S � [s1, · · · , sN ] = {sv,n} ∈ CV×N , B �
[b1, · · · , bN ] = {b j,n} ∈ CJ×N and C � [c1, · · · , cN ] =
{ck,n} ∈ CK×N (n = 1, · · · , N) correspond to shared SMs,
shared TCs, and subject-specific intensities, respectively. The
model for csCPD is as follows [8], [11]:

xv, j,k =
�N

n=1
sv,nbn( j − τk,n)ck,n + ev, j,k, (1)

where T = {τk,n} ∈ RK×N is the time delays for N
components of K subjects; bn( j − τk,n) denotes b j,n with the
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time delay τk,n , and τk,n is the time delay for component n of
subject k. We, thus, have the shared TCs with time delays for
subject k B(k) � [b(k)

1 , · · · , b(k)
N ] = {bn( j − τk,n)} ∈ CJ×N .

If τk,n > 0, b(k)
n = [bn(1 − τk,n), · · · , bn(J − τk,n)]T is

obtained by cyclic left shifting bn with τk,n points, otherwise
it is obtained by cyclic right shifting bn with τk,n points.
E = {ev, j,k} ∈ CV×J×K is the residual reflecting the inter-
subject variability effect.

Performing a discrete Fourier transform on (1), we have
the model for the csCPD algorithm in the frequency domain,
as follows:

x̃v, f,k =
�N

n=1
sv,nb̃ f,nck,n exp

�
−i2π

f − 1

J
τk,n

�
+ ẽv, f,k,

(2)

where f = 1, · · · , F is the frequency point, and here,
we let F = J ; X̃ = {x̃v, f,k} ∈ CV×F×K , B̃ �
[b̃1, · · · , b̃N ] = {b̃ f,n} ∈ CF×N and Ẽ = {ẽv, f,k} ∈
CV×F×K are the frequency-domain forms of X, B and E,
respectively; i = √−1; exp{·} denotes the exponential func-
tion, and b̃ f,n exp{−i2π( f − 1)τk,n/J } is the frequency form
of bn( j − τk,n).

In the csCPD algorithm, the loading matrices S, B, C and T
are unknown. Thus, we randomly initialize S, B, C, and T , and
then update these four loading matrices in each iteration until
convergence or reaching the number of maximum iterations.
We first present update rules for S, B, and C, and then derive
the update rule for T in the framework of the real-valued
shift-invariant CPD method [8].

2) Updates of S, B, and C: Assume vectors sv , x(1)v and
e(1)v are constructed by the vth row of S, X(1) ∈ CV×J K ,
and E(1) ∈ CV×J K ; b̃ f , x̃(2) f and ẽ(2) f by the f th row of B̃,
X̃(2) ∈ CF×V K , and Ẽ(2) ∈ CF×V K ; and ck , x(3)k and e(3)k

by the kth row of C, X(3) ∈ CK×J V , and E(3) ∈ CK×J V ,
respectively. Based on (1) and (2), the csCPD model can be
further rewritten as follows:

x(1)v = Zsv + e(1)v, (3)

x̃(2) f = (C̃( f ) � S)b̃ f + ẽ(2) f , (4)

x(3)k = (B(k) � S)ck + e(3)k, (5)

where Z ∈ CJ K×N is the aggregating mixing matrix and its
element is z j+k(J -1),n = ck,nbn( j − τk,n), i.e., the Khatri-
Rao product between C and B(k)(k = 1, · · · , K ); C̃( f ) =
C · exp{−i2π( f − 1)T /J }, and ‘·’ is the dot product. Thus,
the alternative least squares (ALS) updates of S, B and C can
be derived from (3) to (5) [8] as follows:

sv ← Z†x(1)v, (6)

b̃ f ←
�

C̃( f ) � S
�†

x̃(2) f , (7)

ck ←
�

B(k) � S
�†

x(3)k, (8)

where S and C are updated in the time domain, while B is
updated in the frequency domain.

3) Update of Subject-Specific Time Delays T : As stated
earlier, T = {τk,n} ∈ RK×N totally includes K × N time
delays. Each of the time delays is optimized using the rule

of ALS, i.e., the remaining time delays are fixed when a
time delay is updated. Next, we take an exampling time
delay τk,n� for component n� (n� = 1, · · · , N) of subject k
(k = 1, · · · , K ) to derive the update rule.

Referring to (5), the update of the time delay τk,n� minimizes
the following least squared error:

arg min
τk,n�

||x(3)k − (B(k) � S)ck ||2. (9)

Because the shared SMs S ∈ CV×N is not relevant to T , and
the number of in-brain voxels V is very large (usually larger
than 5×104), we project (3) into the S subspace to reduce the
dimensionality of the tensor as follows:

ST X(1) = ST (SZT + E(1)) = ŜZT + Ê(1) = X̂(1). (10)

Transform X̂(1) ∈ CN×J K into a new tensor X̂ ∈ CN×J×K .

The size of X̂ is significantly smaller than that of X ∈
CV×J×K , as N 	 V . As a result, the estimate of T is
accelerated and the computation memory is saved.

With the new tensor X̂, we rewrite (5) as follows:

x̂(3)k = (B(k) � Ŝ)ck + ê(3)k, (11)

where x̂(3)k ∈ CJ N and Ŝ = ST S ∈ CN×N . We then have
the following vector presentation for the Khatri-Rao product
between B(k) and Ŝ:

x̂(3)k =
�N

n=1
ck,n(b(k)

n � ŝn)+ ê(3)k. (12)

To explicitly show the time delay τk,n� , we rewrite (9) based
on (12) as follows:

arg min
τk,n�

||x̂(3)k −
�

n 
=n�
ck,n(b(k)

n �ŝn)− ck,n� (b
(k)
n� �ŝn� )||2.

(13)

Let q(k)
n� = x̂(3)k−�

n 
=n� ck,n(b(k)
n � ŝn) denote the remaining

signal when projecting all but component n� (n� = 1, · · · , N)
out of x̂(3)k, thus (13) becomes the following:

arg min
τk,n�

||q(k)
n� − ck,n� (b

(k)
n� � ŝn� )||2

= arg min
τk,n�

⎡
⎢⎢⎣
||q(k)

n� ||2 + ||ck,n�(b
(k)
n� � ŝn�)||2

−2Re{q(k)T
n� }Re{ck,n� (b

(k)
n� � ŝn� )}

−2Im{q(k)T
n� }Im{ck,n� (b

(k)
n� � ŝn� )}

⎤
⎥⎥⎦

(14)

In the square brackets of (14), the first term does not contain
the information of τk,n� , and the second term does not vary
with τk,n� , as b(k)

n� is cyclic shifted based on the time delay τk,n� .
Thus, the update of the time delay τk,n� maximizes the sum
of the third and fourth terms as follows:

arg max
τk,n�

�
Re{q(k)T

n� }Re{ck,n� (b
(k)
n� � ŝn� )}

+Im{q(k)T
n� }Im{ck,n�(b

(k)
n� � ŝn�)}

�
(15)

By expanding each term in (15) to extract the time delay,
τk,n� is finally obtained by the following:

τ̂k,n� = arg max
1≤ j≤J

��ϕk,n� ( j)
�� , τk,n� = τ̂k,n� − J + 1. (16)
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The detailed derivation of (16) from (15) can be found in the
supplementary materials. 1

The time delay we estimate here is an integer. A non-
integer time delay can also be estimated using a gradient based
iteration update, but this can result in a local minima [30] and,
therefore, be time-consuming.

B. Phase Sparsity Constraint on Shared Spatial Maps S

In the above-described csCPD algorithm, the shared SMs S
is estimated using (6). However, each component of S includes
a large number of high-magnitude unwanted voxels due to the
high noise nature of complex-valued fMRI data [15]. As such,
we propose the addition of a sparsity constraint on S to remove
these unwanted voxels.

The sparsity constraint is usually imposed on the magnitude
of a complex-valued signal. However, the high-magnitude,
unwanted voxels involved in the shared SM components lead
to the failure of placing a sparsity constraint directly on the
magnitude. For this reason, we propose to impose sparsity
on the phase of shared SMs according to the small phase
characteristic of BOLD-related voxels [15]. To achieve more
direct and efficient effects on the newest estimate of shared
SMs, the phase sparsity constraint is performed as a sequential
update for S, instead of being incorporated into the csCPD
algorithm given in (1). Next, we obtain the corrected phase
of shared SMs via phase de-ambiguity; we then present the
model of phase sparsity constraint based on the smoothed �0
norm and the second update rule of S.

1) Phase de-Ambiguity: Given a shared SM component sn =
[s1,n, · · · , sV ,n]T of S (n = 1, · · · , N), its associated TC
estimate is zn , the nth column of the aggregating mixing

matrix Z. The rotation angle
�

θ n for sn is determined by
maximizing the power of the real part of the rotated zn as
follows [15]:

�

θ n = arg max
0≤θ≤π

�Re{exp{−iθ}zn}�2 . (17)

The phase without ambiguity (i.e., spatial source phase) for sn

is then obtained as follows [15]:

θ(sn) = θ
�

exp{i�

θn}sn

�
. (18)

Note that the phase de-ambiguity in (18) does not change
the magnitude

��sv,n
�� but it changes the phase θ(sv,n) of

each voxel in S. The phase θ(sv,n) ∈ [−π, π] is capable
of identifying the BOLD-related voxels (with smaller phase
θ(sv,n) ∈ [−4/π, 4/π]) from the unwanted voxels (with larger
phase θ(sv,n) ∈ [−π,−4/π), or θ(sv,n) ∈ (4/π, π]). As such,
the phase sparsity constraint can be imposed on the voxels
with larger θ(sv,n) in the shared SMs.

2) The Phase Sparsity Constraint Model: Given sv =
[sv,1, · · · , sv,N ] estimated by (6), we use a smoothed �0 func-
tion to minimize large-phase voxels in sv with an additional
regularization term satisfying (3), as follows:⎧⎨

⎩
arg min

sv

�V
v=1 Fσ

�|sv | , θ(sv,n)
�

s.t. x(1)v = Zsv + e(1)v,
(19)

1Supplementary materials are available in the supporting documents/
multimedia tab.

where

Fσ

�|sv | , θ(sv,n)
� =�N

n=1
fσ

���sv,n
�� , θ(sv,n)

�
, (20)

and

fσ
���sv,n

�� , θ(sv,n)
�

=
�

1− exp
�
−��sv,n

��2
/2σ 2

�
,

��θ(sv,n)
�� ≥ θ th

n

1,
��θ(sv,n)

�� < θ th
n

(21)

where θ th
n denotes a threshold of

��θ(sv,n)
�� ∈ [0, π] for adding

a sparsity constraint on the unwanted voxels in sn . Although
larger phase changes of the unwanted voxels account for
theoretically 75% (

��θ(sv,n)
�� ∈ (π/4, π]) and actually 60–70%

of the full phase changes [15], a smaller percentage of the
voxels should be removed in the separation process to retain
more BOLD-related voxels. Here, we select θ th

n as the phase
value segmenting the largest V/3 values of

��θ(sv,n)
��. As a

result, only 33% of the total voxels are gradually removed in
the separation process via phase sparsity.

The function Fσ {|sv |, θ(sv,n)} in (19) is equivalent to the
minimization of the �0 norm for a sufficiently small σ . When
|sv,n| 	 σ , | fσ {|sv,n|, θ(sv,n)}| → 0, while when |sv,n| � σ ,
| fσ {|sv,n|, θ(sv,n)}| → 1. The larger the value of σ is,
the smoother the fσ {|sv,n|, θ(sv,n)} is, i.e., the smaller the
value of σ is, the closer the behavior of fσ {|sv,n|, θ(sv,n)} is to
the �0 norm [31], [32], lim

σ→0
fσ {|sv,n|, θ(sv,n)} = ||sv,n||0 [31].

3) Update of S Based on Phase Sparsity: For the model of
the phase sparsity constraint given in (19), we use the steepest
descent method to minimize the smoothed �0 function on the
feasible set satisfying x(1)v = Zsv + e(1)v . The update rule for
sv is obtained as follows:�

sv ← sv − λ
sv

sv ← sv − Z†(Zsv − x(1)v),
(22)

where


sv =
⎡
⎢⎣

exp{θ(sv,1)} f �σ
���sv,1

�� , θ(sv,1)
�

...
exp{θ(sv,N )} f �σ

���sv,N
�� , θ(sv,N )

�
⎤
⎥⎦ , (23)

f �σ {|sv,n|, θ(sv,n)} = ∂ fσ {|sv,n|, θ(sv,n)}/∂|sv,n| is the first
deviation of fσ {|sv,n|, θ(sv,n)}:

f �σ {|sv,n|, θ(sv,n)}=

⎧⎪⎪⎨
⎪⎪⎩

��sv,n
��

σ 2 exp

�
−

��sv,n
��2

2σ 2

�
,

���θ(
�
s v,n)

���≥ θ th
n

0,
���θ(

�
s v,n)

���< θ th
n ,

(24)

and λ is a positive step size.
In summary, the proposed algorithm updates S twice by

using (6) and (22), correspondingly. To escape from local
minima and singular values, σ in (24) should be slowly
decreased [31], [32]. We let σiter = γ σiter-1, where ‘iter’
denotes the iteration index, γ is the decrease rate, and 0.9 <
γ < 1 (we set γ = 0.99). The update order for each iteration
is B, T , S, and C. A detailed procedure for the proposed
algorithm is described in Table I.
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TABLE I
IMPLEMENTATION OF THE PROPOSED ALGORITHM

III. EXPERIMENTAL METHODS

To evaluate the efficacy of the proposed pcsCPD method,
we carry out extensive experiments using both simulated and
experimental complex-valued fMRI data, with comparison to
the following three algorithms: (1) csCPD (without a spatial
constraint, see subsection II.A); (2) CPD (without spatiotem-
poral constraints) using the COMFAC algorithm, which is a
fast implementation of trilinear ALS [33]; and (3) T-sICA
using the complex-valued entropy bound minimization (EBM)
algorithm [34] to perform ICA. Each algorithm is repeated
20 times for each case. The estimated integer time delays range
from –10 points to 10 points. We test σ0 values from 0.5 to
20 and λ values from 0.1 to 5 according to the suggestions
in [31], [32] and finally select σ0 = 1 and λ = 0.5 for the
simulated fMRI data, as well as σ0 = 2 and λ = 4 for the
experimental fMRI data. In addition, we choose 
εiter_min =
10−6, εiter_min = 10−4 and itermax = 500 for csCPD, CPD,
and pcsCPD.

For each of shared SM estimate, i.e., sn , phase de-ambiguity
is first performed using (17) and (18) to obtain θ(sv,n), phase
de-noising is then performed based on θ(sv,n). Specifically,
a binary mask mn = {mn(v)}, v = 1, · · · , V , is generated as
follows:

mn(v)

=
�

1, if |θ(sv,n)| ≤ π/4 and |sv,n| ≥ 0.5

0, otherwise

(25)

The phase-denoised sn is obtained by masking the following:

sn = sn ·mn. (26)

Each shared TC estimate bn is also phase corrected. Replacing

zn in (17) with bn to estimate its rotation angle
�

θ n , we obtain
the phase corrected TC as follows:

bn = exp{−i
�

θn}bn . (27)

The denoised SMs sn by (26) and the phase-corrected TCs bn

(n = 1, · · · , N) are used for evaluating the performance of
the proposed algorithm.

When comparing with magnitude-only fMRI data analysis,
we select the real-valued ICA-sCPD algorithm, which simul-
taneously utilizes spatial independence and temporal delay
constraints [11]. Comparisons with real-valued sCPD [8] and
CPD are provided in the supplementary materials. 1 The ICA
in ICA-sCPD is selected as the fastICA algorithm in deflation
mode with a “tanh” nonlinearity function. The stopping crite-
rion is set to less than 10−6 or a maximum iteration of 1000.

A. Simulated fMRI Data
We generate simulated complex-valued fMRI data sets

with K = 10 subjects, and each subject includes eight
fMRI-like complex-valued sources (http://mlsp.umbc.edu/
resources.html). One is task-related (S1), two are transiently
task-related (S2, S6), and five are artifact related (S3, S4,
S5, S7, and S8). Each simulated source is a spatial map of
V = 60 × 60 voxels with a time course of J = 100 time
points. Reshaping each spatial map into a one-dimensional
vector (8 × 3600) and mixing with eight time courses
(100 × 8), we obtain simulated complex-valued fMRI data
sets (3600 × 100 × 10). To simulate the experimental fMRI
data with spatial and temporal variability, we further change
the above-generated ideal SMs and TCs by adding various
spatial changes and different time delays for each subject.
Specifically, we randomly decrease the activated SM voxels in
the range of 0% (no change), 10%, 20%, and 30% (denoted
as 
s = 0, 1, 2, 3), with respect to the original dataset.
As the periods of the task-related and transiently task-related
TCs are 25 points and 20 points, respectively, we randomly
shift the time courses in the range of 0%, 2%, 4%, 8%
and 10% (denoted as 
t = 0, 1, 2, 3, 4), with respect
to the total points of 100. Thus, the time delay change is
within [–10, 10]. Moreover, we add complex-valued Gaussian
noise to the simulated fMRI data with different signal-to-
noise ratio (SNR) levels from –20 dB to 20 dB with a
2.5 dB interval (a total of 17 different levels of SNR). The
SNR is defined as 20 lg(σ̂s/σ̂n), where σ̂s and σ̂n are the
temporal standard deviations of the source signal and Gaussian
noise, respectively. We set the number of components for each
algorithm to be the true number of components N = 8.

We use the simulated fMRI data to evaluate the effects of
spatial and temporal changes and the noise effect on pcsCPD,
csCPD, CPD, and T-sICA.

B. Experimental fMRI Data
In this study, we use complex-valued fMRI data sets from

10 subjects performing a finger-tapping motor task while
receiving auditory instructions [15], [35]. All participants
signed IRB-approved informed consent at the University of
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Fig. 1. Comparison of pcsCPD, csCPD, CPD and T-sICA in terms of the mean and standard deviation of |ρ̄c| for the SM and TC estimates of all
eight components, under 20 cases of spatial and temporal changes (Δs = 0, 1, 2, 3 and Δt = 0, 1, 2, 3, 4) and three levels of noise. (1) SNR =
10 dB, (2) SNR = 0 dB, (3) SNR = –10 dB.

New Mexico. The experimental paradigm is a block design
with alternating periods of 30 seconds on (finger tapping) and
30 seconds off (rest). The experiments were performed with
a 3T Siemens TIM Trio system with a 12-channel receive
coil. The fMRI experiment used a standard Siemens gradient-
echo EPI sequence modified to store real and imaginary
data separately. The following parameters were used: field-
of-view = 24 cm, slice thickness = 3.5 mm, slice gap =
1 mm, number of slices = 32, matrix size = 64 × 64,
TE = 29 ms, TR = 2 s, and flip angle = 70 degrees. The
Statistical Parametric Mapping (SPM) software package was
used to perform the preprocessing of the data. The magnitude
datasets were coregistered to compensate for movements in the
fMRI time series images. The images were then spatially nor-
malized into standard Montreal Neurological Institute space.
Following spatial normalization, the data (real and imaginary)
were slightly resampled using trilinear interpolation, resulting
in 53 × 63 × 46 voxels. Motion correction and spatial
normalization parameters were calculated from the magnitude
data and applied to the phase data. Both the real and imaginary
images were then spatially smoothed with a 10 × 10 ×
10 mm3 full-width-at-half-maximum Gaussian kernel.

Prior to the analysis, we filtered the experimental fMRI
data by an 8–150 mHz band-pass filter [36], [37]. The model
order of each algorithm was obtained by first estimating the
model order for each single subject of fMRI data using the
minimum description length (MDL) criterion with a sub-
sampling scheme [40] and then averaging over 10 subjects.
The final model order was set to 50, which is consistent with
our previous study [35].

C. Performance Indices
We calculate (1) the absolute correlation coefficient |ρc|

between the estimates of the shared SM and TC, the subject-
specific time delay and intensity and their corresponding refer-
ences; and (2) the mean and standard deviation of |ρc| over all
20 runs for each case, to evaluate the algorithm performance
for both the simulated and experimental fMRI data.

The simulated fMRI data includes references as the ground
truth. For the experimental fMRI data, we use the model TC
as the reference for the task-related TC, which is acquired

by convolving the stimuli with the canonical SPM hemody-
namic response function; and we use a group general linear
model (GLM) map as the reference for the task-related SM.
The GLM reference is specifically obtained by performing
one sample t-test (p < 0.05) on the single-subject GLM
results [11], [15]. The time delay reference is the estimates
corresponding to the largest |ρc| values between the lag-shifted
TC estimates of complex-valued EBM and the model TC. The
subject intensity is measured via the similarity between the
proposed method and the other algorithms in terms of |ρc|.

In addition, the quality of the phase of the SM and TC
estimates is evaluated by the performance indices described
above for the experimental fMRI data. Since the SM phase
has frequently varying polarity, we use the source phase mask
mn given in (25) to calculate the correlation with the GLM
reference.

IV. RESULTS

A. Simulated fMRI Data
We first compare the proposed pcsCPD with csCPD, CPD

and T-sICA under 20 cases of spatial and temporal changes
(
s = 0, 1, 2, 3; 
t = 0, 1, 2, 3, 4), and take SNR =
–10 dB, 0 dB and 10 dB as examples to test the noise
effects. Fig. 1 shows the results. The average |ρc| over all
eight components is analyzed and denoted as |ρ̄c|. We observe
from Fig. 1 that our proposed algorithm yields the highest
means and the lowest standard deviations of |ρ̄c| for all cases
when compared with the other three algorithms. CPD can
obtain better performance for the case of 
s, 
t = 0 where
the simulated fMRI data conforms to the CPD model, but it
sharply degrades with the increase in 
s and 
t .

We examine the effects of spatial and temporal changes
on the algorithms by considering the case of SNR = 10 dB,
as shown in Fig. 1(1). The proposed approach exhibits the
slightest effects, whereas CPD shows the most severe effects
in terms of both the means and standard deviations of |ρ̄c|.
As expected, csCPD without a spatial constraint demonstrates
larger degradation with the increase in 
s than in 
t .
In contrast, T-sICA without a temporal constraint illustrates
a larger degradation with the increase in 
t than in 
s.
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Fig. 2. The t-values of a two-sample t-test for evaluating the difference
in the mean |ρ̄c| values for 20 cases of spatial and temporal changes,
as displayed in Fig. 1, between pcsCPD and csCPD/CPD/T-sICA, under
three noise levels. The t-value= 2.093 (p-value= 0.05, df= 19) is shown
as a threshold.

Generally speaking, T-sICA is better than csCPD in detecting
SM, while csCPD is better than T-sICA in detecting TC.

We investigate the effects of the noise levels on the algo-
rithms by decreasing the SNR from 10 dB to 0 dB and –10 dB,
see Figs. 1(2) and (3). T-sICA shows considerable degradation
for SNR = –10 dB, while the other three algorithms exhibit
reasonable decreases in the means and standard deviations of
|ρ̄c| for the shared SM and TC estimates.

Fig. 2 includes t-values calculated by a two-sample t-test
for evaluating the difference in the mean |ρ̄c| for all 20 cases of
spatial and temporal changes under SNR = –10 dB, 0 dB and
10 dB, as displayed in Fig. 1, between the proposed pcsCPD
and each of the csCPD, CPD and T-sICA. The t-values range
from 3.913 to 140.812, all of which are larger than 2.093
(p-value = 0.05, degree of freedom = 19). This result verifies
that the proposed approach achieves significant improvements
over csCPD, CPD and T-sICA.

We further present the results of the noise influence from
–20 dB to 20 dB (17 levels of SNR) in two example cases,
a smaller spatial and temporal change case (
s = 1, 
t = 1)
and a larger spatial and temporal change case (
s = 2,

t = 3). Fig. 3 includes the means and standard deviations of
the |ρ̄c| values for all four algorithms. The proposed algorithm
exhibits the highest mean |ρ̄c| values with smaller standard
deviations for the two cases. CPD and T-sICA alternatively
obtain the lowest mean |ρ̄c| values from high to low noise
levels. The csCPD algorithm obtains moderate performance
among these four algorithms.

For the larger spatiotemporal change (
s = 2, 
t = 3),
the distinction between the algorithms becomes wider than
the smaller spatiotemporal change (
s = 1, 
t = 1). T-sICA
benefits from incorporating spatial independence in estimating
the shared SMs (see Fig. 3B(1)), whereas csCPD benefits
from incorporating the time delay in estimating the shared
TC (see Fig. 3B(2)). The t-value of the two-sample t-test
ranges from 5.927 to 16.335, all of which are larger than 2.120
(p-value = 0.05, df = 16), as displayed in Fig. 4, confirming
the significant improvement of the proposed pcsCPD over
csCPD, CPD and T-sICA.

Finally, we compare the means and standard deviations
of the |ρc| values for the shared SM and TC, and the
subject-specific time delay and intensity estimates obtained
in two example cases, i.e., an easy case 
s = 1, 
t = 1,

Fig. 3. Comparison of noise effects on pcsCPD, csCPD, CPD and T-sICA
in terms of the mean and standard deviation of |ρ̄c| computed for the
(1) SM and (2) TC estimates from all eight components. (A) Smaller
spatiotemporal change (Δs = 1, Δt = 1). (B) Larger spatiotemporal
change (Δs = 2, Δt = 3).

Fig. 4. The t-values of the two-sample t-test for evaluating the difference
in the mean |ρ̄c| values for the two cases, as displayed in Fig. 3, between
pcsCPD and csCPD/CPD/T-sICA. The t-value = 2.120 (p-value = 0.05,
df =16) is shown as a threshold.

SNR = 10 dB, and a relatively hard case 
s = 2, 
t = 3,
SNR = –10 dB. Components 1, 6 and 8 are selected to
represent the task-related, transiently task-related, and noise
components, respectively. Fig. 5 shows the results. The pro-
posed method yields the best performance for the three types
of components under the two cases. In contrast, CPD, csCPD
and T-sICA show sensitivity to the type of components, and
the sensitivity increases in the hard case. Generally speaking,
these three algorithms obtain the best estimations for the task-
related component, which is a component of interest with a
higher SNR for task fMRI data.

B. Experimental fMRI Data

We examine the task-related component for motor task
fMRI data and analyze the magnitude and phase of the task-
related SM and TC. Table II illustrates the means and standard
deviations of |ρc| for our proposed pcsCPD, as well as the
csCPD, CPD and T-sICA. Our approach yields the highest
average |ρc| values, followed by T-sICA, csCPD and CPD.
In addition, the proposed method achieves relatively lower
standard deviations compared to the other three algorithms.
CPD obtains the worst performance in terms of both the
means and standard deviations of |ρc|, indicating that the
experimental fMRI data does not conform to the CPD model.

Fig. 6 shows the magnitude and phase images of the
shared SM estimates (|Z | ≥ 0.5). For the SM magnitudes
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Fig. 5. Comparison of pcsCPD, csCPD, CPD, and T-sICA in terms of
the mean and standard deviation of |ρc| computed for (A) SM, (B) TC,
(C) Time delays, and (D) Subject intensities from Components 1, 6
and 8 under (1) Δs = 1, Δt = 1, SNR = 10 dB and (2) Δs = 2, Δt = 3,
SNR = –10 dB.

TABLE II
COMPARISON OF PCSCPD, CSCPD, CPD, AND T-SICA FOR

ANALYZING THE EXPERIMENTAL MULTI-SUBJECT FMRI DATA

OVER 20 RUNS IN TERMS OF THE MEAN AND STANDARD

DEVIATION OF |ρc| FOR THE MAGNITUDE AND PHASE OF

THE SHARED TASK-RELATED SM AND TC ESTIMATES.
THE BOLD VALUES ARE THE LARGEST MEANS AND

THE LOWEST STANDARD DEVIATIONS IN EACH ROW

Fig. 6. Magnitude (1) and phase (2) maps of the shared task-related SMs
estimated from the experimental fMRI data by (a) pcsCPD, (b) csCPD,
(c) CPD, and (d) T-sICA. The absolute Pearson correlation coefficients
(|ρc|) with the GLM reference are also shown.

given in Fig. 6 (1), the proposed method detects the largest
contiguous and reasonable activations in the left primary
motor areas (LPMA), right primary motor areas (RPMA),
and supplementary motor areas (SMA). T-sICA is better than

TABLE III
COMPARISON OF PCSCPD, CSCPD, CPD, AND T-SICA IN TERMS OF

THE TOTAL NUMBER OF ACTIVATED VOXELS AND THE VOXELS

INSIDE AND OUTSIDE THE GLM MASK FOR THE SM
MAGNITUDES DISPLAYED IN FIG. 6(1)

Fig. 7. Comparison of pcsCPD, csCPD, CPD, and T-sICA for the
experimental fMRI data. (1) Magnitude and (2) phase parts of the TC
estimates as well as their absolute Pearson correlation coefficients (|ρc|)
with the model TC. (3) Subject-specific time delays estimated by pcsCPD
and csCPD. (4) Magnitude of the subject-specific intensities. Note that
the amplitudes of the original magnitude and phase parts of the TC
estimates and subject-specific intensities are 0-1 normalized before
making comparisons among the four methods.

csCPD in terms of having less noisy voxels involved. CPD
ranks last due to fewer motor-related activations and more
noisy voxels. Table III includes the number of total activated
voxels and the voxels inside and outside the GLM mask. Our
proposed approach detects the highest number of voxels both
inside and outside the GLM mask compared to T-sICA, and
the voxels outside the GLM mask are mostly located in motor-
related areas (see the supplementary materials for details 1).
CPD provides the largest number of total activated voxels, but
with the minimal number of voxels inside the GLM mask and
the maximal number of voxels unrelated to motor activations.
When observing the SM phase maps shown in Fig. 6(2),
the proposed pcsCPD obtains the highest |ρc| value, followed
by T-sICA, csCPD, and CPD.

The shared TC, subject-specific time delay and intensity
estimates are shown in Fig. 7. The proposed method yields the
highest |ρc| values for the TC magnitude and phase compared
to the other three algorithms. The TC phase is highly corre-
lated with the model TC (|ρc| = 0.76), which is consistent
with previous studies [38]. Fig. 7(3) displays the time delays
estimated by the proposed pcsCPD and csCPD. The average
|ρc| values between the time delay estimates and the references
from all subjects are 0.78 for the proposed method and 0.31 for
csCPD. The time delays are accurately estimated for 5 subjects
by pcsCPD and for 2 subjects by csCPD. Finally, the subject
intensities are shown in Fig. 7(4). The |ρc| values between our
method and the other three algorithms are 0.76 for T-sICA,
0.54 for CPD, and 0.32 for csCPD. The higher |ρc| between
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Fig. 8. Comparison of the task-related magnitude maps estimated by (1)
pcsCPD from the complex-valued fMRI data and (2) ICA-sCPD from the
magnitude-only fMRI data. The |ρc| values and the number of activated
voxels (shorted as “V”) are shown. The maps and number of voxels
detected by pcsCPD (in red), by ICA-sCPD (in green), or by both (in
blue) are also compared for the task-related regions (3) RPMA+SMA
and (4) LPMA, respectively.

pcsCPD and T-sICA indicates the high quality of the subject
intensity estimates, as these two methods provide better results
than csCPD and CPD for the SM and TC estimates.

C. Comparison With the Magnitude-Only Method
Fig. 8 shows the comparison of the proposed method

with ICA-sCPD in terms of the magnitude maps, |ρc| values
and the number of activated voxels for the shared task-
related SM estimates (|Z | ≥ 0.5). The proposed method
obtains a lower |ρc| value but a larger number of activated
voxels than ICA-sCPD, as shown in Figs. 8(1) and 8(2).
Figs. 8(3) and 8(4) show the activated voxels detected by the
proposed pcsCPD (in red), by ICA-sCPD (in green), or by
both (in blue) in task-related regions, including RPMA and
SMA (denoted as “RPMA+SMA”) and LPMA. The num-
ber of voxels detected individually by the proposed method
is much larger than ICA-sCPD. More precisely, the pro-
posed algorithm detects 73.9% more contiguous voxels in
RPMA+SMA (932 vs. 536) and 746.5% more contiguous
voxels in LPMA (838 vs. 99) than ICA-sCPD. In sum-
mary, our proposed method extracts 178.7% more contiguous
task-related activations than ICA-sCPD, consistent with the
previous finding that phase data provides additional brain
information [15], [18], [20], [35], [39].

V. DISCUSSION

This study proposes the use of the spatial source phase in
the complex-valued CPD algorithm for decomposing complex-
valued multi-subject fMRI data into shared SMs and TCs and
subject-specific time delays and intensities. The spatial source
phase sparsity and inter-subject temporal delays are simultane-
ously incorporated to address the inter-subject spatiotemporal
variability among multi-subject fMRI data. The results from
both the simulated and experimental fMRI data demonstrate
the improvements of the proposed pcsCPD method over the
complex-valued T-sICA, csCPD, and CPD algorithms, as well
as the real-valued ICA-sCPD algorithm, in detecting more
contiguous task-related activations.

The incorporation of spatial source phase sparsity is one
contribution of this study to the analysis of complex-valued
fMRI data. Although the spatial sparsity yields promising
results in the magnitude-only analysis [24]–[29], it is not
straightforward to incorporate sparsity for the high noise

complex-valued fMRI data analysis. A huge number of
unwanted voxels have magnitude values as high as or even
much higher than the BOLD-related voxels in the complex-
valued SMs [15]. Therefore, the magnitude sparsity does not
hold for complex-valued components as magnitude-only com-
ponents do. Fortunately, the spatial source phase is qualified
due to the small-phase characteristic of the BOLD-related
voxels after phase de-ambiguity [15], which facilitates the
sparse representation of complex-valued fMRI data to examine
the intrinsic characteristic of brain activation.

In the proposed method, the spatial activation is mainly
affected by three phase-sparsity-related parameters, the thresh-
old θ th

n for adding the sparsity constraint on the unwanted vox-
els in sn , the initial σ (σ0) in the smoothed �0 function given
σ is slowly decreased, and the step size λ in the second update
of S based on phase sparsity. The selection of these parameters
has a more dramatic influence on the experimental fMRI data
than the simulated one because the simulated fMRI data have
much sparser spatial activations than the experimental data.
A reasonable criterion for choosing θ th

n is removing a smaller
percentage (here 33%) of the total voxels in the separation
process to retain more BOLD-related voxels. A larger θ th

n leads
to the loss of BOLD-related voxels, while a smaller one causes
the interference of unwanted voxels. In addition, a different
sparsity of the shared SMs supports a different selection of σ0
and λ for the simulated and experimental fMRI data. Larger
σ0 and λ values should be used for the experimental fMRI
data to encourage greater sparsity.

Imposing both spatial and temporal constraints is essential
for analyzing multi-subject complex-valued fMRI data. The
CPD without spatiotemporal constraints obtains the worst sep-
aration performance. T-sICA shows better SM estimates than
csCPD when the spatial changes are larger due to imposing
the spatial independence constraint, and csCPD exhibits better
TC estimates than T-sICA when the TC changes are larger
due to incorporating the inter-subject TC delays. In view
of the performance of the above three compared algorithms,
our proposed method demonstrates the least sensitivity to
spatiotemporal changes and robustness to noise in both the
simulated and experimental fMRI data experiments, indicating
the match between the multiple-subject fMRI data and the
CPD model with spatiotemporal constraints.

Our previous studies have verified that the complex-
valued fMRI data analysis can detect more contiguous
and reasonable activations than magnitude-only fMRI data
analysis [15], [18], [20], [35]. By using complex-valued
ICA and IVA algorithms, the complex-valued analyses
extracted 139% more voxels for ICA and 393% more voxels
for IVA than the magnitude-only analyses for the task fMRI
data [15], [35]. The proposed method also extracts more con-
tiguous task-related activations (73.9% more for RPMA+SMA
and 746.5% more for LPMA) than the magnitude-only
ICA-sCPD method, supporting the uniqueness and comple-
mentarity of phase fMRI data to the magnitude fMRI data.

The use of the number of activated voxels and spatial cor-
relation as performance metrics may be a possible limitation
of the study. Future work includes the following: exploiting
new parameter metrics; applying our proposed method to
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resting-state fMRI data, which are more easily obtained and
analyzed from patients with neurological disorders, to exact
shared spatial activations and shared time courses with subject-
specific time delays; examining how well a complex-valued
approach can predict, e.g., patients from controls compared
to a magnitude-only approach; and incorporating the iden-
tification of the real rank before calculating the loading
matrices [41], [42]. Adaptive selection of the threshold of the
spatial source phase in imposing the phase sparsity constraint
on spatial maps also deserves future investigation.
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