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A hierarchical cluster analysis to determine whether injured runners exhibit 

similar kinematic gait patterns.

Abstract

Previous studies have suggested that runners can be subgrouped based on homogeneous gait 

patterns, however, no previous study has assessed the presence of such subgroups in a 

population of individuals across a wide variety of injuries. Therefore, the purpose of this 

study was to assess whether distinct subgroups with homogeneous running patterns can be 

identified among a large group of injured and healthy runners and whether identified 

subgroups are associated with specific injury location. Three-dimensional kinematic data 

from 291 injured and healthy runners, representing both sexes and a wide range of ages (10-

66 years) was clustered using hierarchical cluster analysis. Cluster analysis revealed five 

distinct subgroups from the data. Kinematic differences between the subgroups were 

compared using one-way analysis of variance (ANOVA). Against our hypothesis, runners 

with the same injury types did not cluster together, but the distribution of different injuries 

within subgroups was similar across the entire sample. These results suggest that 

homogeneous gait patterns exist independent of injury location and that it is important to 

consider these underlying patterns when planning injury prevention or rehabilitation 

strategies. 

Keywords: Running, Injury, Kinematics, Unsupervised machine learning 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Introduction

Running is a popular sport for developing and maintaining cardiovascular fitness1,2, despite 

a relatively high injury rate. Estimates of the annual prevalence of lower extremity running related 

injuries (RRI) vary between 19.4% to 79.3%3, while a widely accepted estimate is that 50% of 

runners experience an RRI annually1. Naturally, with such a high injury rate, the etiology of RRIs 

has received much attention within the gait analysis community to determine injury etiology for 

specific RRIs. 

Multiple studies have suggested that there are similar kinematic gait patterns for runners 

with similar injury locations. For example, studies involving common knee RRIs, such as 

patellofemoral pain (PFP)4–7 and iliotibial band syndrome (ITBS)8,9 have reported that runners 

exhibit increased peak hip adduction and peak knee internal rotation. As well, similarities in 

ankle-related RRIs have been reported in individuals with Achilles tendinopathy (AT)10 and those 

with posterior tibial tendon dysfunction7 suggesting these injured runners exhibit increased time to 

peak pronation10. However, a recent study by Bramah et al.11 investigated 72 injured runners, with 

PFP, ITBS, AT, and medial tibial stress syndrome (MTSS), and 36 healthy runners and reported 

that all injured runners exhibited greater contralateral pelvic drop and forward trunk lean as well 

as more knee extension and ankle dorsiflexion at initial contact irrespective of injury location. 

Therefore, further research is necessary to determine if common kinematic gait patterns exist for 

specific injuries and/or anatomical location of injuries.

One method in which to gain some understanding as to the etiology of RRIs may be to 

examine whether unsupervised machine learning techniques can identify homogenous subgroups 

within a large population of injured runners and healthy individuals. Unsupervised machine 

learning works by discovering underlying patterns and associations in datasets without any a priori 

information aside from a set of input variables12. These statistical methods have demonstrated 

success in uncovering underlying structure within datasets in previous sport science research13–17. 

For example, race patterns in elite swimmers13, different golf swing patterns14, and different gait 

patters in injured and healthy runners15–17, have all been successfully identified using unsupervised 

machine learning methods. Another study used unsupervised machine learning to create a 

movement profile for healthy controls walking and assessed the deviation of patients with gait 

problems from this profile18. However, to our knowledge very few studies have utilized this 

approach for a large population of injured and healthy runners. Recognition of distinct gait A
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patterns can be utilized in injury rehabilitation protocols and in future biomechanical 

investigations seeking to better understand injury etiology.

Thus, the main purpose of this exploratory study was to investigate whether a large group 

of injured and healthy runners can be clustered into subgroups of homogeneous gait patterns based 

on 3D kinematic data. We hypothesized that runners with injuries at similar locations would 

exhibit similarities in gait patterns and consequently be identified within the same homogenous 

subgroups. Similarly, we assumed the gait pattern of healthy runners would be distinct from those 

identified within injured homogenous subgroups. A secondary purpose was to analyze differences 

in 3D kinematics between the formed subgroups to better understand differences in running 

kinematics between the subgroups.

Materials and methods

Participants

A sample of 291injured and healthy runners were queried from an existing database of running 

kinematics19,20. Participants were recruited through standard advertisements (e.g., posters, 

facebook posts) approved by the Ethics Board. In this study, runners were identified for inclusion 

provided they: (i) had 3D gait analysis performed by the same experienced clinician using the 

same motion capture system, (ii) were known to be injury free for the 6 months preceding data 

collection (25 runners) or were suffering some form of lower body injury at the time of data 

collection (266 runners) and (iii) contained complete kinematic data with no missing values. A 

standard approach to define RRI based on Yamato et al. was used “Running-related 

musculoskeletal pain in the lower limbs that causes a restriction on or stoppage of running 

(distance, speed, duration, or training) for at least 7 days or 3 consecutive scheduled training 

sessions, or that requires the runner to consult a physician or other health professional."23. 

The runners (146 females, age 39.51±11.21 years) were defined either as competitive (n=57) or 

recreational (n=234)22 based on age, sex, and most recent race performance (10 km, half-

marathon, or marathon) and the World Masters Association Age Grading Performance Tables1. 

Injuries were diagnosed and injury history was collated by a licensed health professional (e.g., 

physiotherapist, medical doctor, athletic therapist). Injuries were grouped by location with: 72 

1 http://www.usatf.org/Resources-for---/Masters/LDR/Age-Grading.aspx. Accessed May 21, 2019.A
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knee, 58 ankle/foot, 51 hip/pelvis, 42 thigh, 39 lower leg (shin) identified. Across the 266 injured 

runners, a wide variety of RRI were reported. However, the main injuries included patellofemoral 

pain (n=44), iliotibial band syndrome (n=29), achilles tendinopathy (n=15), plantar fasciitis 

(n=14), and medical tibial stress syndrome (n=12). The occurrence and distribution of these main 

injuries were consistent with previously reported epidemiological investigations24. Other injuries 

included specific muscle strains (e.g. gastrocnemius, hamstring, hip flexor), tendinopathies (e.g. 

tibialis posterior tendinopathy, patellar tendinopathy), as well as generalized joint pain. None of 

the injured participants described any pain during the treadmill running procedure. 

Twenty-five individuals were confirmed as injury free for at least six months prior to data 

collection. Participant characteristics are summarized by injury location in Table 1. Data 

collection was approved by the University of Calgary’s Conjoint Health Research Ethics Board 

(CHREB: REB15- 0557). Before data collection, all participants provided a written informed 

consent to participate.

[Table 1 somewhere here]

Data collection

Three-dimensional (3D) marker trajectory data were captured via an 8-camera VICON 

motion capture system (MX3+, Vicon Motion Systems Oxford, UK) at 200 Hz while participants 

ran on a treadmill (Bertec Corporation, Columbus, OH). Spherical retro-reflective markers were 

placed on anatomical landmarks and rigid plates with clusters of 3-4 markers were placed on each 

of seven lower body segments as per Pohl et al.25. Anatomical markers and segmental clusters 

were placed by a single examiner with over twenty years’ experience in clinical gait analysis and 

physical therapy26,27. This marker-set consisted of seven rigid segments and has been reported to 

produce reliable kinematic waveforms25. To allow for unobstructed movement during running, 

anatomical markers were removed following a one second static trial where subjects stood upon a 

template with their feet positioned straight ahead and 0.3m apart with arms crossed over their 

chest. 

Following a warmup period of 2-5 minutes, kinematic data were collected for 

approximately 60 seconds while participants ran at a constant self-selected speed between 1.84 

and 3.37 m/s. In order to standardize the footwear condition, each participant wore the same shoes 

(Pegasus, Nike, Beaverton, USA). It should be noted that while the use of standardized shoes has A
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advantages, it might also alter running patterns as it is possible that some participants may not be 

accustomed to the shoes.

Data processing

Key gait events, foot strike and toe off were identified using a Principal Component 

Analysis (PCA) approach as described elsewhere28,29. Joint angles within each movement plane 

were extracted using 3D GAIT custom software (Running Injury Clinic Inc., Calgary, Alberta, 

Canada), and time normalized to 100 data points per gait cycle: 35 data points for stance and 65 

data points for the swing phase.

Each subject’s running pattern was described by the median for each of 62 kinematic (e.g., 

peak knee flexion and adduction angles, heel strike angle) and functional variables (e.g., step 

width, vertical oscillation, stride rate and length) extracted from each gait cycle. A minimum of 

ten gait cycles were included but generally approximately 30–40 consecutive running strides were 

collected for processing and analysis. All variables were extracted from frontal and sagittal plane 

motion given the limited reliability of transverse plane angles during motion capture 

analysis27,30,31. A full description of these variables is provided in Table A1 found in the 

appendices. 

A matrix (291 subjects x 62 variables) was created with each column normalized to have a 

mean of zero and standard deviation of one. A PCA was performed on the data to reduce multi-

collinearity between biomechanical variables. A subset of principal components (PCs) were 

chosen so that 80% of the total variance in the dataset was explained by the selected PCs32. 

Cluster analysis

A hierarchical cluster analysis (HCA) was used to identify subgroups with homogeneous 

gait patterns. A hierarchical cluster tree, a dendrogram, was formed with the linkage-function in 

Statistics and machine learning toolbox 11.0 of MATLAB. The function was used with the 

Ward’s linkage method and Euclidean distance. The subgroups were formed in an agglomerative 

manner, i.e. starting with each observation as their own subgroup and at every step pairing the two 

closest subgroups together until only one group remains. The final number of subgroups was 

chosen based on a stopping rule (a large percentage decrease in the coefficient followed by a 

plateau)33,34. The number of subgroups was also confirmed by visual inspection of the A
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dendrogram16,17.

Interpretation and comparison of subgroups

After forming the subgroups, a univariate analysis of variance (ANOVA) was used to 

determine which PCs separated each subgroup from the others17. The PCs were then interpreted by 

calculating the loadings of variables to determine which variables comprised the PCs35. 

Demographic information (height, weight, age, and running speed) of the subgroups were also 

compared using ANOVA. Normality of variables was tested via a Shaphiro-Wilk test and equal 

variances with Levene’s test and in the cases where assumptions were not met, non-parametric 

Kruskal Wallis tests were used instead. When significant differences occurred, post-hoc tests were 

performed using Tukey’s test. The proportion of injuries and males/females in subgroups were 

compared using Chi-squared test. For all tests, a significance limit of α=0.05 was chosen and 

adjusted with Bonferroni's correction and Cohen’s effect size d was calculated where 

appropriate36.

The injury distribution of the formed subgroups was assessed with the adjusted Rand 

index37. The Rand index objectively measures the similarity between two different clusterings of 

the same data. If  is the set of observations and  and 𝑋 = {𝑥1,𝑥2,…, 𝑥𝑛} 𝑃 = {𝑃1,𝑃2,…,𝑃𝐾1
} 𝑃′ =

 are two different partitions of , where  is the number of observations in data and {𝑃′1,𝑃′2,…,𝑃′𝐾2}  𝑋 𝑛

 and  are the number of subgroups in partitions  and  respectively, the Rand Index is 𝐾1 𝐾2 𝑃 𝑃’

calculated by using all possible pairs of observations in . Defining  as the number of pairs that 𝑋 𝑠

are clustered to the same subgroup in both  and , and as the number of pairs that are not 𝑃 𝑃’ 𝑑 

clustered to the same subgroup in either  or , finally the Rand Index can be written as , 𝑃 𝑃’ 𝑅 =  
𝑠 + 𝑑

(𝑛
2)

where the denominator is the total number of pairs. Simply put, the index measures the proportion 

of similar pairings, over all possible pairs of observations. The index receives a value between 1 

and 0, with 1 indicating the clusterings are exactly the same while 0 indicates that clustering do 

not agree on any parts. The adjusted version works similarly but is corrected for chance. The index 

was calculated between the clustering labels and the injury class labels with a custom Matlab 

script2. All data processing and analysis were performed on MATLAB R2016b (MathWorks Inc).

2 https://se.mathworks.com/matlabcentral/fileexchange/49908-adjusted-rand-index. Accessed May 21, 2019.A
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Results

The first 16 PCs, explaining 80.98% of the total variance, were chosen as input for the 

HCA method. The dendrogram for the clustering results is outlined in Figure 1. Between four and 

five subgroups, there was a large decrease in the agglomeration coefficients (21.0% based on min–

max normalized linkage distances), followed by a plateau between five and six (6.0%). Therefore, 

the number of subgroups was set to five and the result was also confirmed by visual inspection of 

the dendrogram.

[Figure 1 somewhere here]

Despite five distinct subgroups being identified (average linkage distance of 39.32 between 

subgroups), the population of injured and healthy runners was randomly dispersed amongst the 

subgroups and this was confirmed with the very low Rand index score of r=0.012 when the cluster 

partition and the original injury classification were compared. The proportion of injured and 

healthy runners was not different between the subgroups ( =0.53, p=0.99) and similarly there 𝑋2

was no evidence to suggest a difference in any of the injury types/locations between the subgroups 

( =20.20, p=0.251). 𝑋2

The demographics of the subgroups are described in Table 2. The proportion of males and 

females was different between the subgroups ( =53.85, p<0.01) with the proportion of males in 𝑋2

S1 (73.7%) being higher ( =35.00, p<0.01, d=0.80) compared to other subgroups and similarly, 𝑋2

the proportion of females in S5 (63.3%) was higher ( =31.03, p<0.01, d= 0.81). There was 𝑋2

evidence to suggest differences in weight ( =61.80, p<0.01), height ( =22.30, p<0.01), and 𝑋2 𝑋2

running speed ( =56.18, p<0.01), but not in age (F=2.47, p=0.18).𝑋2

[Table 2 somewhere here]

There were differences between the subgroups in the five first PCs. The amount of 

variance explained by the individual PCs was 13.44, 12.34, 10.01, 6.53, and 6.06 percent for the 

first five PCs respectively. PC1 was primarily loaded on frontal plane hip variables and stride rate, 

vertical oscillation, and swing time. PC2 consisted of frontal plane knee variables, stride length, 

vertical oscillation, and swing time. PC3 was comprised of ankle and foot frontal plane variables. A
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PC4 consisted of variables describing ankle eversion, excursion and peak eversion velocity. PC5 

consisted of heel strike angle and knee adduction excursion. Clear differences in running 

biomechanics between the subgroups were found.

Subgroup 1

S1 was separated from the other subgroups by PC2 (p<0.001, F=135.13, d=2.08) 

Compared to the other four subgroups, S1 had the largest peak knee adduction (-3.16±4.08 deg), 

the least knee abduction (-8.60±4.32 deg), and exhibited greater knee flexion (-49.01±4.03 deg). 

S1 also exhibited the second largest stride length (1.97±0.17 m), vertical oscillation (89±14.32 m), 

and swing time (0.45±0.03 s) compared to the other subgroups. Also, 73.68% of runners in S1 

were males.

Subgroup 2

Subgroup S2 was separated from the other subgroups by PC1 (p<0.001, F=109.69, d=2.05) 

and PC2 (p<0.001, F=33.72, d=1.16). S2 exhibited the smallest knee flexion peak (-44±5.47 deg), 

second smallest hip adduction (8.87±3.95 deg) and knee abduction (-11.79±4.00 deg). The S2 

subgroup also exhibited the highest stride rate (87.12±4.42 strikes/min) as well as the lowest 

swing time (0.40±0.03 s), stride length (1.66±0.16 m), and vertical oscillation (72.04±10.10 m) 

compared to the other subgroups.

Subgroup 3

S3 was separated from the other subgroups by PC1 (p<0.001, F=92.27, d=2.12). The S3 

subgroup exhibited the second highest hip adduction peak (12.07±4.00 deg), hip adduction 

excursion (10.13±2.79 mm), and hip abduction velocity peak (160.76±44.96 deg). They also had 

the lowest stride rate (77.12±3.25 strikes/min), highest swing time (0.47±0.03 s), and the most 

vertical oscillation (104±13.10 m) compared to the other four subgroups.

Subgroup 4

S4 was separated from the others by PC3 (p<0.001, F=25.44, d=1.20), PC4 (p<0.001, F= 

32.53, d=1.30), and PC5 (p<0.001, F= 20.14, d=1.04). Compared to the other four subgroups, S4 

had the largest heel strike angle (17.10±4.90 deg) and largest foot progression angle (-15±4.96 

deg) along with the second largest offset (42.27±8.40 % of gait cycle) and onset (13.96±2.67 % of 

gait cycle) rearfoot eversion. A
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Subgroup 5

Subgroup S5 was separated by PC1 (p<0.001, F= 30.65, d=1.10), PC2 (p<0.001, F=36.05, 

d=1.17), and PC3 (p<0.001, F=103.80, d=1.75). S5 exhibited the highest offset (54.95±17.13 % of 

gait cycle) and onset (15.66±3.86 % of gait cycle) rearfoot eversion, longest time to peak 

pronation (0.29±0.13 % of gait cycle) as well as the smallest foot progression angle (-8.45±4.54 

deg) compared to the other four subgroups. S5 also demonstrated the largest hip adduction 

velocity peak (173.87±52.67 deg /s), hip adduction excursion (10.61±3.16 mm), and hip adduction 

peak (13.03±4.28 deg). Also, 78.95% of the runners in S5 were females.

[Figure 2 somewhere here]

Discussion

The primary purpose of our study was to investigate whether distinct subgroups with 

homogeneous running gait patterns could be identified from a large group of injured and healthy 

runners using an unsupervised hierarchical cluster analysis. Five subgroups were identified, 

however, contrary to our initial hypothesis, individuals with similar injuries (or no injury) did not 

cluster together. Instead, different types of injuries, and healthy control subjects, were evenly 

distributed across the five subgroups. 

These results support previous research that has shown that there are similarities in 

kinematics between individuals with different injuries11 and refutes the premise that injury 

location is related to similarities in gait kinematic patterns. Moreover, the gait pattern of healthy 

runners was not distinct of that of the injured and suggests that there is not a single ’protective gait 

pattern’ reducing the likelihood of developing RRI. However, future prospective studies are 

necessary to support or refute this premise. Regardless, our results also show that in a large group 

of runners with different injuries, representing both sexes and a wide distribution of ages, exhibit 

biomechanical running patterns that can be subgrouped into five distinct patterns.

Specific gait patterns can be observed within each subgroup. Specifically, S1 consisted of 

mostly male runners whose knee collapsed and flexed the most during running and ran at the 

fastest pace. Runners in S2 exhibited overall limb stiffness, observed as the least amount of peak 

knee flexion as well as second least amount of hip adduction and knee abduction. Runners in S3 

had the second largest hip adduction peak angle, hip adduction excursion and hip abduction peak A
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velocity. S4 consisted of runners that exhibited a pronounced heelstrike and a large foot 

progression angle during running. Runners in S5 had the highest hip adduction peak and hip 

adduction excursion as well as the smallest foot progression angle, as well as the most rearfoot 

eversion and time to peak pronation. S5 also had a high ratio of females and they ran at the 

slowest pace.

The results of the current study suggest that it is possible that the traditional method of 

creating a “cluster” of subjects based on a pre-defined injury does not consider that variance of 

gait biomechanical patterns exists independent of the injury location/category. Thus, we propose 

that in order to discover these inter-relationships between movement patterns and injuries better, it 

is necessary to segment, or sub-type, according to gait patterns as an initial step in developing 

rehabilitation protocols and with respect to future biomechanical investigations seeking to better 

understand injury etiology. We also suggest that future prospective studies should employ PCA 

and HCA approaches for large cohorts of injured and pain-free runners in order to determine 

whether biomechanical sub-types, or unique homogeneous clusters, are potentially related to 

higher rates of injury. 

Previous studies have suggested that atypical biomechanical patterns can lead to injuries 

by causing excessive repetitive tissue loading during running10,38. In addition, associations 

between certain injuries and kinematic gait patterns have been detected in multiple studies4,6,10. In 

support of this premise, a study by Braham et al.11 reported that runners with different injuries all 

exhibited similar patterns among each other. However, this study11 only involved 72 injured 

runners and 36 healthy controls and a simple logistic regression model to determine which 

kinematic parameters could best separate the two groups. In contrast, the results of the current 

study used a much larger cohort and employed an unsupervised machine learning approach to 

reveal that certain running patterns cannot be conclusively linked to injury location and that 

homogeneous kinematic subgroups exist regardless of injury location. 

Our study benefits from a large cohort of injured and healthy runners along with robust 

data collection procedures. Moreover, all data were collected by a single examiner with over 20 

years’ experience. This is an especially important point when using unsupervised machine 

learning methods to identify subgroups, as these methods might pick up patterns originating from 

subtly different marker placements resulting from different examiners39,40. Specifically, Osis et 

al.26 reported that a novice examiner, with 6-years of experience and trained by the same expert 

examiner used in the current study, made improvements in their consistency over the course of A
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one-year of training. However, systematic differences were apparent in data collected during the 

end of the year. Thus, future research involving a large cohort should take into consideration the 

number of people collecting the data and/or use appropriate feedback methods40,41 to minimize 

marker placement error.

Limitations in the current study are acknowledged. First, given our data source was created 

by amalgamating data collected for specific purposes, running speed was not uniformly controlled 

within this study. Deviations from preferred or self-selected speed have been shown to result in 

deviations from typical gait patterns in walking42 and future research should consider this factor. 

Second, the variables were averaged over the gait cycles, while variability in movement patterns 

has been associated with injuries in previous studies43–45. Future studies could benefit from 

considering the variability across gait cycles. Second, the current study was retrospective in nature 

and future research should prospectively follow runners to determine whether similar subgroups 

exist prior to injury development. In addition, each injury group included several types of injuries, 

that might have different effects on gait. Lastly, the data for the present study were collected in a 

laboratory setting whilst running on a treadmill. Previous studies46,47 have suggested that a 

laboratory-based setting limits our ability to study the multifactorial nature of RRIs. Therefore, 

future studies should utilise inertial measurement units (IMUs) to quantify running gait patterns in 

real-world environments and determine whether these homogenous subgroups exist.

Perspective

This study showed that among a large population of runners with different injuries, representing 

both sexes and a wide distribution of ages, distinct subgroups exist with homogeneous running 

gait patterns. Interestingly, these patterns were not related to injury location, but different type of 

injuries were randomly distributed throughout the subgroups, together with healthy individuals. 

These results suggest that the location of injury is not related to specific gait kinematic patterns 

and this should be considered when planning future research studies or when developing 

rehabilitation and injury prevention strategies.  Therefore, we recommend that when performing a 

clinical examination of an injured runner, individual presentation plays a larger role than 

attempting to determine whether they are exhibiting a gait pattern previously associated with a 

specific injury. Finally, based on the results of this study, prediction of injuries, based on whether 

or not an individual exhibits specific kinematic gait patterns, is not supported.A
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Tables

Table 1: Characteristics of participants in each injury group. 

Knee Ankle/foot Hip/Pelvis Thigh Lower leg Healthy Other injuries

Male-

female

38-34 24-34 20-31 24-18 21-18 14-11 4-0

Age 

(years)

37.06±12.95 41.10±11.74 40.00±10.42 39.83±8.98 39.46±9.67 40.52±11.94 45.25±8.85

Height 

(cm)

173.53±9.31 170.35±9.70 171.07±13.34 172.95±7.78 171.54±9.58 172.87±9.14 178.08±10.23

Weight 

(kg)

69.80±12.27 71.78±17.12 70.53±13.32 71.00±13.23 71.24±11.46 70.81±10.68 78.15±11.22

Running 

speed 

(m/s)

2.49±0.26 2.46±0.31 2.49±0.31 2.55±0.24 2.52±0.28 2.59±0.25 2.67±0.22
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Table 2: Characteristics of the five identified subgroups. Significant differences identified: * p<0.05, **p<0.01. Mean standard ±

deviation for continuous variables, count (portion in that cluster) for the injury locations.

Subgroup S1 S2 S3 S4 S5

Size 95 60 32 28 76

Male/Female 70-25** 22-38 21-11 15-13 16-60**

Age (years) 40.01±10.29 42.48±13.11 37.03±10.93 40.72±9.15 37.14±11.06

Height (cm) 176.45±7.74** 166.17±12.36** 177.32±8.14** 171.84±7.54 169.29±8.70**

Weight (kg) 73.13±12.17** 65.29±11.58** 74.67±12.37** 74.75±13.45 69.50±15.09

Speed (m/s) 2.65±0.25** 2.41±0.26** 2.63±0.23** 2.50±0.27 2.37±0.25**

Healthy 11 (11.6%) 6 (10.0%) 0 (0.0%) 3 (10.7%) 5 (6.6%)

Knee 25 (26.3%) 10 (16.7%) 14 (43.8%) 4 (14.3%) 17 (22.4%)

Ankle/foot 16 (16.8%) 18 (30.0%) 3 (9.4%) 7 (25.0%) 16 (21.1%)

Hip/pelvis 12 (12.6%) 10 (16.7%) 8 (25.0%) 7 (25.0%) 13 (17.1%)

Thigh 18 (19.0%) 7 (11.7%) 4 (12.5%) 4 (14.3%) 10 (13.1%)

Lower leg 12 (12.6%) 7 (11.7%) 3 (9.4%) 3 (10.7%) 14 (18.4%)
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Figure legends

Figure 1: Dendrogram of the hierarchical cluster analysis. Linkage distance on the y-axis and 

individual runners on the x-axis. The five identified subgroups are identified by color. For clarity, 

not all runners are plotted on the dendrogram and the x-axis labels are omitted.

Figure 2: Boxplots highlighting the kinematics for subgroup 1 (left) to subgroup 5 (right). The 

vertical dashed line corresponds to the average of the study population and values have been 

normalized to have a mean of zero and standard deviation 1.
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Appendices  

Table A1: Kinematic and functional variables used to describe each subject’s running pattern:  
 Joint Variable Description 

F
u

n
ct

io
n

al
 

Left/Right 

Side 

Step Width Side-to-side distance between left and right footsteps (m) 

Stride Rate Number of foot strikes per minute (strikes per min) 

Stride Length For-aft distance between left and right footfalls (m) 

Swing Time Length of time (s) subject spent during the swing phase of gait. 

Stance Time Length of time (s) subject spent during the stance phase of gait. 

Maximum Heel Whip  Difference between foot external rotation (deg) from toe-off to the point of maximal external rotation during swing phase. 

Vertical Oscilliation Vertical oscillation of the center of mass (m) during complete gait cycle. 

K
in

em
at

ic
 

Left/Right 

Foot 

Progression Angle Angle of foot relative to direction of movement (deg) during stance phase of gait cycle. 

Heel Strike angle Sagittal plane angle of foot at heel strike (deg). 

Left/Right 

Ankle 

Peak Dorsiflexion Maximum dorsiflexion angle (deg) experienced during complete gait cycle. 

Peak Eversion Maximum eversion angle (deg) experienced during complete gait cycle. 

Time to peak pronation The amount of time (% gait cycle) to reach peak pronation 

Eversion excursion Difference between eversion angle at toe-off to peak eversion angle (deg). 

Peak eversion velocity Maximum eversion angle (deg/s) subject experienced during complete gait cycle. 

Onset of Pronation Point at which the foot reaches a pronated position (% of gait cycle) 

Offset of pronation Point at which the foot leaves a pronated position (% of gait cycle) 

Left/Right 

Knee 

Peak flexion Angle Maximum knee flexion angle (deg) experienced during complete gait cycle. 

Peak adduction angle Maximum knee adduction angle (deg) experienced during complete gait cycle. 

Adduction excursion Distance (mm) of knee adduction excursion. 

Peak adduction velocity Maximum knee adduction velocity (deg/s) experienced during complete gait cycle. 

Peak Abduction angle Maximum knee abduction angle (deg) experienced during complete gait cycle. 

Abduction excursion Difference between minimum and maximum knee abduction during stance (deg). 

Peak abduction velocity Maximum knee abduction angle (deg) experienced during complete gait cycle. 

Left/Right Hip 

Peak extension angle Maximum hip extension angle (deg) experienced during complete gait cycle. 

Peak adduction angle Maximum hip adduction angle (deg) experienced during complete gait cycle. 

Adduction excursion Distance (mm) of hip adduction during gait cycle. 
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Peak abduction velocity Maximum hip adduction velocity (deg/s) experienced during complete gait cycle. 

Peak adduction velocity Maximum hip adduction velocity (deg/s) experienced during complete gait cycle. 

Left/Right 

Pelvis 

Peak Pelvic Drop Maximum frontal plane angle of pelvis segment relative to horizontal (deg) experienced during complete gait cycle. 

Pelvic Drop Excursion Difference between minimum and maximum pelvic drop during stance phase (deg). 

Peak Pelvic Drop Velocity Maximum pelvic drop angle velocity (deg/s) experienced during stance. 
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