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Abstract. Matrix factorization (MF) is one of the most effective cate-
gories of recommendation algorithms, which makes predictions based on
the user-item rating matrix. Nowadays many studies reveal that the ulti-
mate goal of recommendations is to predict correct rankings of these un-
rated items. However, most of the pioneering efforts on ranking-oriented
MF predict users’ item ranking based on the original rating matrix,
which fails to explicitly present users’ preference ranking on items and
thus might result in some accuracy loss. In this paper, we formulate a
novel listwise user-ranking probability prediction problem for recommen-
dations, that aims to utilize a user-ranking probability matrix to predict
users’ possible rankings on all items. For this, we present LwRec, a novel
listwise ranking-oriented matrix factorization algorithm. It aims to pre-
dict the missing values in the user-ranking probability matrix, aiming
that each row of the final predicted matrix should have a probability
distribution similar to the original one. Extensive offline experiments on
two benchmark datasets against several state-of-the-art baselines demon-
strate the effectiveness of our proposal.

Keywords: Recommender systems, Collaborative Filtering, Ranking

1 Introduction

Conventional recommendation algorithms like collaborative filtering follow a
rating-oriented paradigm. They generally learn a recommendation model with
users’ observed historical ratings, using which they predict users’ ratings on their
unrated items. Nowadays, ranking-oriented recommender systems are receiving
increasing attention from both academic communities and industry. Many stud-
ies reveal that the ultimate goal of recommendations is to predict correct rank-
ings of these unrated items, and prediction of accurate ranking is more important
than predicting accurate rating scores [1, 2]. Accurate prediction of ratings does
not necessarily imply improvement in the ranking results.

To elaborate, let us consider items: {a, b, c} with their correct ratings R :
{5, 4, 3} and two rating predictions P1 : {3, 4, 5} and P2 : {3, 2, 1}. A rating ori-
ented approach would prefer P1 over P2, since predicted ratings in P1 are more
accurate, being closer to the ratings in R. However, the order in P1 (a < b < c)
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is completely opposite to the desired order (a > b > c). In contrast, a rank-
ing oriented approach would prefer P2, as it predicts the correct ranking, i.e.
(a > b > c). This would generate desirable results (correct order of items), in
spite of having lower accuracy in predicted ratings.

Given the above argument, some pioneering efforts on ranking-oriented rec-
ommendation algorithms have been proposed. Due to the effectiveness of matrix
factorization (MF) algorithms in rating-oriented recommender systems, a few
ranking-oriented MF algorithms have been presented, reporting state-of-the-art
results. However, most of the pioneering efforts on ranking-oriented MF predict
users’ item ranking based on rating scores, failing to explicitly present users’
preference ranking on items and thus possibly resulting in some accuracy loss.

Therefore, we define a novel listwise user-ranking probability prediction prob-
lem for recommendations. We utilize the listwise user-ranking probability matrix
[3] to explicitly characterize users’ preference on items. Given a set of rating
scores on items, each ranking on items might be possible, where “correct” rank-
ings (higher scores are ranked at top positions) receive greater probabilities. Thus
for each user, the probabilities on users’ all possible rankings could formulate as a
user-ranking probability matrix, where each element presents a probability that
certain user holds certain ranking on items. Thus each row of the user-ranking
probability matrix consists of users’ probabilities on different item rankings,
forming a distribution. With the initial probabilities of users’ possible rankings
on their rated items, the listwise user-ranking probability prediction problem
aims to predict probabilities of users’ possible rankings on all items. Meanwhile,
the predictions should satisfy the requirements of probability distributions: each
element in the probability matrix should be between 0 and 1, and sum of each
row should be 1.

Given a collection of items, there might be a very large number of possible
rankings (i.e. n! rankings for n items), resulting in a extremely huge ranking
probability matrix and calculations in training. In this study, we only consider
the top-k ranked items in rankings, and the size of the matrix could be shrinked
significantly, especially the size of the ranking probability matrix is equal to
that of the user-item rating matrix when k = 1. Based on this matrix, we then
present LwRec, a novel listwise ranking-oriented MF algorithm, which minimizes
the difference between the initial distribution on the known rankings and the
final distribution on all items with predictions for each user. Considering the
non-negative property for each element, we adapt non-negative MF to implement
LwRec. Our experimental results on benchmark datasets demonstrate significant
performance gains over state-of-art recommender algorithms.

To summarize, our contributions are as follows. (1) We define a novel list-
wise user-ranking probability prediction problem for recommendations. (2) We
present an effective algorithm to solve the problem based on non-negative MF.
(3) We achieve significant performance gains against state-of-the-art recommen-
dation algorithms on benchmark datasets.

The rest of the paper is organized as follows. Section 2 briefly presents the
related work and Section 3 describes the problem formulation. Then, we explain
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the LwRec approach in Section 4 followed by experimental setup in Section 5.
Finally, Section 6 presents the results and Section 7 concludes the paper.

2 Related Work

This section presents related work for collaborative filtering (CF) recommenda-
tion algorithms, which use only the ratings given by the users for the items, and
do not need the domain knowledge. They are mainly of two types: rating ori-
ented and ranking oriented. While rating oriented algorithms predict unknown
item ratings for each user, ranking oriented algorithms predict item rankings.
Both of them can be further categorized as memory-based or model based.

Rating Oriented Algorithms: Memory-based rating oriented algorithms are
either user-based CF [4], that utilize similarities between users on the basis of
available ratings; or item-based CF [5], that utilize similarities between items.
Various advanced versions of this approach have been introduced. For example,
SLIM [6] directly learns from the data, a sparse matrix of aggregation coefficients
that are analogous to the traditional item-item similarities. FISM [7] learns the
item-item similarity matrix as a product of two low-dimensional latent factor ma-
trices. Model-based rating oriented algorithms aim to predict ratings by learning
a model from observed ratings. Traditional model of this type is matrix factor-
ization (MF) [8], that uses dimensionality reduction to decrease the distance
between predicted and observed rating matrices. Some of the models that are
based on matrix factorization are: Probabilistic MF [9], Non-negative MF [10],
Factorization Machines [11], Hierarchical Poisson MF [12] and LLORMA [13].

Ranking Oriented Algorithms: EigenRank [14] is a well known ranking ori-
ented memory based CF algorithm that follows the pairwise approach. It employs
a greedy aggregation method to aggregate predicted pairwise preferences of items
into total ranking. VSRank [15] represents users’ pairwise preferences for items
by using vector space model and utilizes the relative importances of each pair-
wise preference. Moreover, various model-based ranking oriented CF algorithms
have been introduced that try to optimize a ranking oriented objective function.
Some of the notable algorithms of this type are: CLiMF [16], CoFiRank [17],
ListCF [3] and GBPR [18].

3 Problem Formulation

3.1 User-Ranking Probability Matrix

Considering m users and n items, for each user there are obviously n! possible
rankings of items. Given a set of rating scores on items, each ranking on items
might be possible, where “correct” rankings (higher scores are ranked at top
positions) receive greater probabilities. The probability of item rankings could
be derived with the Plackett-Luce model [19], which is a widely used permutation
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(each permutation is actually a ranking) probability model in various domains.
Each ranking ρ can be represented as an ordered list (ρ1, ρ2 . . . ρn), where ρi
represents the item at the ith position, and positions of the items are unique.
Hence, the probability of the ranking ρ can be calculated as:

Prob(ρ) =

n∏
i=1

γ(rρi)∑n
j=i γ(rρj )

, (1)

where rρi is the rating for the item ρi and γ(r) = er.
Since, there are n! rankings of items, which is a large number of rankings

even for a small value of n, it makes the computation impractical. Hence, we
employ the same approach as Huang et al. [3], that uses an alternative efficient
method introduced by Cao et al. [20]. The approach focuses only on top k items
in the rankings, leading to n!

(n−k)! different top k sets. So, the probability of the

rankings ρS whose top-k items are exact S = {i1, i2 . . . ik} can be calculated as:

Prob(ρS) =

k∏
j=1

γ(rij )∑n
l=j γ(ril)

(2)

We have m users and for each user we have p = n!
(n−k)! ranking sets for top

k items. Now, we construct the user-ranking probability matrix Θm×p. In Θ,
each row corresponds to a particular user and contains the probabilities for the
p rankings. To clarify, if Probui

(Sj) represents the probability of ranking Sj

calculated for the user ui (where 1 ≤ j ≤ p and 1 ≤ i ≤ m), then:

Θi,j =Probui(Sj), if ratings of all items in Sj are known,

⊥, otherwise
(3)

Especially when k = 1, i.e. when we consider only the top-1 items in all
rankings, the size of Θ is equal to that of the user-item rating matrix. This is
because, in this case, p = n!

(n−1)! = n.

3.2 Objective and Constraints

Given the matrix of known top k probabilities of items: Θm×p, where p = n!
(n−k)! ,

we aim to predict the unknown probabilities, that in turn can be used to gen-
erate recommendations. This can be achieved by using a listwise loss function
and optimizing it using matrix factorization. For this, we define the following
objective and the two related constraints:
Objective: Using two matrices Uz×m and Gz×p that construct the predicted
probability matrix U�G, utilize a listwise loss function and matrix factorization
to minimize the distance between Θ and U�G.
C1: Values in U�G should be in the range 0 to 1 (as they are probabilities). i.e.
0 ≤ Uij ≤ 1, ∀i = 1 . . . z and ∀j = 1 . . .m.
C2: Sum of each row of U�G should be 1 (as a row contains probabilities of
rankings for a particular user, that should sum up to 1). i.e.

∑p
j=1(U

�G)ij =
1, ∀i = 1 . . .m.
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Definition 1 (Listwise User-Ranking Probability Prediction). Given a
user-ranking probability matrix Θ, where each observed element of Θi,p indicates
certain user’s probability for her certain (top-k) preference ranking on her rated
items, and each row of Θ forms a probability distribution. The listwise user-
ranking probability prediction problem aims to predict each user’s probability of
her top-k preference ranking on all items, where each row of U�G forms a prob-
ability distribution as well after prediction, and each user’s two distributions,
observed and predicted, should be as similar as possible. Formally,

argmin
U,G

m∑
i=1

diff (Θi, (U
�G)i),

s. t. 0 ≤ (U�G)ij ≤ 1, i = 1, 2, . . . ,m, and j = 1, 2, . . . , p (C1)
p∑

j=1

(U�G)ij = 1, i = 1, 2, . . . ,m (C2)

(4)

Here diff (Θi, (U
�G)i) is the difference between two distributionsΘi and (U�G)i,

i.e. the ith row of the user-ranking probability matrix before and after prediction.

4 Prediction Method

In this section, we present LwRec to solve our listwise user-ranking probability
prediction problem. We use Kullback-Leibler divergence [21], a commonly used
measure for calculating difference between probability distributions, to compute
diff (Θi, (U

�G)i). In LwRec, we utilize non-negative matrix factorization (MF)
[10] to implement our proposed algorithm, which can generate non-negative el-
ements for U and G. Thus the elements of the user-ranking probability matrix
U�G are all non-negative. In order to satisfy the constraint C2, we introduce a
collection of Lagrange penalty terms in the objective function

∑p
j=1(U

�G)ij = 1
where i = 1 . . .m. In standard Lagrange methods, the coefficients of Lagrange
penalty terms could be either positive or negative, but in non-negative MF, all
of the parameters have to be non-negative. Thus we introduce two non-negative
vectors α and β, and regard (αi − βi) that can be either positive or negative, as
the coefficient of the ith Lagrange penalty term to formulate our loss function.
Moreover, addressing constraint C2 together with ensuring that the values in
U�G are non-negative, also satisfies constraint C1 (i.e. values in U�G should be
in range 0 to 1). The formulation of our loss function can be presented formally
as follows:

L(U,G, α, β) =−
m∑
i=1

p∑
j=1,Θij �=⊥

Θij log
(U�G)ij∑p

l=1,Θil �=⊥(U
�G)il

+

m∑
i=1

(αi − βi)

( p∑
j=1

(U�G)ij − 1

)
+

λ1

2
||U ||2 + λ2

2
||G||2,

(5)

In Equation 5, the first term represents the main optimization objective from
Equation 4, which defines the divergence between U�G and observed probability
matrix Θ. The second term is the weighted cumulative Lagrange penalty term
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for constraint C2. The last two terms are l2-norms of U and G to avoid over-
fitting, where λ1 and λ2 are the respective coefficients. By expanding the log in
L(U,G, α, β) and considering that the sum of each row in Θ is 1, the function
can be reformulated as:

L(U,G, α, β) =

m∑
i=1

log

( p∑
l=1,Θil �=⊥

(U�G)il

)
−

m∑
i=1

p∑
j=1,Θij �=⊥

Θij log
(
(U�G)ij

)

+
m∑
i=1

(αi − βi)

( p∑
j=1

(U�G)ij − 1

)
+

λ1

2
||U ||2 + λ2

2
||G||2

(6)

To minimize the loss function using gradient descent, we compute its gradients
with respect to the variables U , G, α and β and derive the following updates:

Uia ← Uia − ηu

( ∑p
l=1,Θil �=⊥ Gal∑p

l=1,Θil �=⊥(U
�G)il

−
p∑

j=1,Θij �=⊥

ΘijGaj

(U�G)ij

+ (αi − βi)

p∑
j=1

Gaj + λ1Uia

)
,

Gaj ← Gaj − ηg

( m∑
i=1

Uia∑p
l=1,Θil �=⊥(U

�G)il
−

m∑
i=1,Θij �=⊥

ΘijUia

(U�G)ij

+

m∑
i=1

(αi − βi)Uia + λ2Gaj

)
,

αi ← αi − ηα

( p∑
j=1

(U�G)ij − 1

)
and βi ← βi − ηβ

(
1−

p∑
j=1

(U�G)ij

)

(7)

where, ηu, ηg, ηα and ηβ are the step sizes. Now, using non-negative matrix
factorization [10], we choose the step sizes such that:

ηu =
Uia

∑p
l=1,Θil �=⊥ Gal

∑p
l=1,Θil �=⊥(U�G)il

+ αi

∑p
j=1 Gaj + λ1Uia

,

ηg =
Gaj∑m

i=1
Uia∑p

l=1,Θil �=⊥(U�G)il
+

∑m
i=1 αiUia + λ2Gaj

,

ηα =
αi∑p

j=1(U
�G)ij

and ηβ = βi

(8)

Substituting these values of the steps in updation formulas in Equations 7, we
derive the following multiplicative updates:

Uia ← Uia

∑p
j=1,Θij �=⊥

ΘijGaj

(U�G)ij
+ βi

∑p
j=1 Gaj

∑p
l=1,Θil �=⊥ Gal

∑p
l=1,Θil �=⊥(U�G)il

+ αi

∑p
j=1 Gaj + λ1Uia

,

Gaj ← Gaj

∑m
i=1,Θij �=⊥

ΘijUia

(U�G)ij
+

∑m
i=1 βiUia∑m

i=1
Uia∑p

l=1,Θil �=⊥(U�G)il
+

∑m
i=1 αiUia ++λ2Gaj

,

αi ← αi∑p
j=1(U

�G)ij
and βi ← βi

p∑
j=1

(U�G)ij

(9)
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Algorithm 1: LwRec Algorithm

Input: Ratings for n items by m users, values k and z
1 Initialize Θm×p, where p = n!

(n−k)!
(See Equation 3)

2 Randomly initialize Uz×m, Gz×p, αm and βm with non-negative values
3 repeat
4 Update U , G, α and β according to Equation 9
5 until Reach convergence or the max iteration;

6 return U�G

On optimizing U and G, The rows of U�G would contain predicted probabil-
ity distributions of top k rankings for users, that can be utilized to generate
recommendations. Algorithm 1 summarizes our method.

5 Experimental Setup

5.1 Datasets

For our experiments, we use two MovieLens3 data sets: MovieLens-100K and
MovieLens-1M. MovieLens-100K dataset contains 100,000 ratings given by 943
users on 1682 movies. MovieLens-1M dataset is larger with 1,000,000 ratings
given by 6040 users on 3952 movies. In MovieLens-100K as well as MovieLens-
1M the ratings are given on an integer scale from 1 to 5. For both the datasets
we assign 10 ratings for each user for testing and the rest for training.

5.2 LwRec Setup

For both datasets, we consider top 1 item rankings (i.e. k = 1), since the topmost
position in a ranking is the most important one. Moreover, it also makes our
experiments computationally inexpensive since when k = 1, p = n!

(n−1)! = n

(number of items). A higher value of k, would make the value of p huge. For
example, for MovieLens-1M (n = 3952), when k = 2, p ≈ 1.56×107 and for k = 3,
p ≈ 6.17 × 1010. Probably higher values of k could result in some performance
gains, but in this study we restrict the scope to experiment with k = 1. Moreover,
for the matrices U and G, we have used the column length of 10 (i.e. z = 10).

We generate the probability distributions of known item rankings i.e. Θ using
the training set and then generate the matrix of predicted probabilities i.e. U�G
(Algorithm 1). Since we use k = 1, each row of U�G would contain probabilities
for n items (as each item ranking has only one item in this case). Therefore, items
in the test set can be simply ordered by their decreasing predicted probabilities.

5.3 Baselines

We used the following state-of-the-art algorithms as our comparison partners:

3 http://grouplens.org/datasets/movielens/
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1. CF: CF [22] calculates the similarity between users, and ranks the items
according to the predicted ratings for each user.
2. Matrix Factorization (MF): User matrix U and item matrix I are op-
timized in MF [8], to minimize the difference between their product UIT and
rating matrix R. UIT regenerates the rating matrix to predict unknown ratings.
3. EigenRank: EigenRank [14] is a pair-wise ranking-oriented algorithm that
employs a greedy aggregation method to aggregate the predicted pairwise pref-
erences of items into total ranking.
4. ListRankMF: ListRankMF [23] minimizes a loss function representing un-
certainty between training and output lists produced by a MF ranking model.
5. FISM: Factored Item Similarity Models (FISM) [7] learn the item-item sim-
ilarity matrix as a product of two low-dimensional latent factor matrices. While
FISMrmse computes loss using sqaured error loss function, FISMauc consid-
ers a ranking error based loss function.
6. LLORMA: Local Low-Rank Matrix Approximation (LLORMA) [13] ap-
proximates the observed matrix as a weighted sum.
7. ListCF: ListCF [3], a ranking oriented CF algorithm, predicts item order for
a user, based on similar users probability distributions over item permutations.

5.4 Evaluation Metrics.

We use the standard ranking accuracy metric called normalized discounted cu-
mulative gain (NDCG@1-10) [24] that is able to handle multiple levels of rele-
vance, to evaluate item rankings generated by LwRec and the baselines.

Statistical significance of observed differences between the performance of
two runs is tested using a two-tailed paired t-test and is denoted using � (or �)
for strong significance for α = 0.01; or � (or �) for weak significance for α = 0.05.

6 Results

In Table 1, we can see that LwRec outperforms the comparison partners for
all the metrics (NDCG@1 to 10) for MovieLens-100K as well as MovieLens-
1M. ListCF is the second best followed by LLORMA and FISMrmse, for both
datasets. For MovieLens-100K, EigenRank and ListRankMF have comparable
performances followed by MF and FISMauc. For MovieLens-1M, ListRankMF
performs better than FISMauc followed by MF.

We also calculate statistical significance of LwRec against ListCF which is
our best performing comparison algorithm. The results for MovieLens-100K show
weak to strong statistical significance for most metrics and for MovieLens-1M
the results have strong statistical significance in almost all cases.

7 Conclusion

In this paper, we defined a novel listwise user-ranking probability prediction
problem. Then we described LwRec, a listwise recommendation algorithm, that
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Table 1. Ranking Performance of LwRec against baselines

Statistical significance shown for LwRec against LLORMA

Performance for MovieLens-100K

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

CF 0.5990 0.6394 0.6707 0.6938 0.7182 0.7442 0.7705 0.7970 0.8245 0.8546

MF 0.6629 0.6711 0.6918 0.7158 0.7373 0.7651 0.7895 0.8154 0.8418 0.8683

EigenRank 0.6734 0.6799 0.6972 0.7192 0.7408 0.7634 0.7889 0.8146 0.8407 0.8701

ListRankMF0.6769 0.6792 0.6989 0.7140 0.7316 0.7532 0.7772 0.8057 0.8368 0.8684

FISMauc 0.6480 0.6681 0.6912 0.7132 0.7363 0.7598 0.7826 0.8086 0.8360 0.8661

FISMrmse 0.6735 0.6868 0.7060 0.7246 0.7475 0.7684 0.7914 0.8164 0.8431 0.8726

LLORMA 0.6794 0.6898 0.7092 0.7264 0.7488 0.7705 0.7950 0.8219 0.8462 0.8738

ListCF 0.6846 0.6897 0.7100 0.7274 0.7500 0.7732 0.7982 0.8243 0.8499 0.8752

LwRec 0.69300.69910.7200� 0.7422� 0.7643� 0.7844� 0.8059� 0.8287 0.8527 0.8801�

Performance for MovieLens-1M

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

CF 0.6214 0.6498 0.6710 0.6954 0.7189 0.7437 0.7708 0.7981 0.8272 0.8589

MF 0.6619 0.6649 0.6802 0.7008 0.7238 0.7483 0.7741 0.8026 0.8322 0.8642

EigenRank 0.6486 0.6571 0.6746 0.6958 0.7190 0.7428 0.7688 0.7966 0.8268 0.8608

ListRankMF0.7084 0.7078 0.7203 0.7342 0.7532 0.7736 0.7972 0.8225 0.8498 0.8803

FISMauc 0.6784 0.6951 0.7109 0.7315 0.7526 0.7750 0.7983 0.8235 0.8493 0.8770

FISMrmse 0.7157 0.7178 0.7279 0.7440 0.7634 0.7849 0.8071 0.8315 0.8569 0.8847

LLORMA 0.7116 0.7174 0.7303 0.7479 0.7672 0.7878 0.8100 0.8340 0.8587 0.8854

ListCF 0.7204 0.7243 0.7359 0.7504 0.7685 0.7895 0.8136 0.8384 0.8627 0.8876

LwRec 0.72040.72810.7428� 0.7600� 0.7777� 0.7988� 0.8207� 0.8436� 0.8667� 0.8906�

solves the problem by minimizing a listwise loss function using non-negative ma-
trix factorization. Our experimental results on benchmark datasets show signifi-
cant performance gains of LwRec over state-of-the-art recommender algorithms.

In this study, we have experimented for top k item rankings, for k = 1. In
the future, we would like to explore the effect on results on using higher value of
k. Moreover, we have used column length 10 for the matrices U and G. It would
be interesting to see the changes in results on varying this column length.
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