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Abstract. In this article we analyse quantitative approximation properties

of a certain class of nonlocal equations: Viewing the fractional heat equation

as a model problem, which involves both local and nonlocal pseudodifferential
operators, we study quantitative approximation properties of solutions to it.

First, relying on Runge type arguments, we give an alternative proof of certain

qualitative approximation results from [9]. Using propagation of smallness
arguments, we then provide bounds on the cost of approximate controllability

and thus quantify the approximation properties of solutions to the fractional

heat equation. Finally, we discuss generalizations of these results to a larger
class of operators involving both local and nonlocal contributions.

1. Introduction. This article is dedicated to qualitative and quantitative approxi-
mation properties of solutions to certain mixed local-nonlocal equations. As a model
problem, we consider the heat equation for the fractional Laplacian with s ∈ (0, 1),

(∂t + (−∆)s)u = 0 in B1 × (−1, 1),

u = f in (Rn \B1)× (−1, 1),

u = f in Rn × {−1},
(1)

and study the quantitative approximation properties of the mapping

L2((−1, 1), C∞c (W )) 3 f 7→ Psf = u|B1×(−1,1) ∈ L2(B1 × (−1, 1)). (2)

Here W ⊂ Rn is an open, bounded Lipschitz set, such that W ∩ B1 = ∅. The
precise mapping properties of the solution map Ps for the problem (1) are discussed
in Section 2.

Due to the work of Dipierro, Savin and Valdinoci [9] (c.f. also [10]), it is known
that the mapping Ps has a dense image (even in suitable Hölder spaces). More
precisely, the authors show the following result:
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1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 ANGKANA RÜLAND AND MIKKO SALO

Theorem ([9], Theorem 1). Let B1 ⊂ Rn be the unit ball, s ∈ (0, 1), k ∈ N and
h : B1 × (−1, 1) → R with h ∈ Ck(B1 × [−1, 1]). Fix ε > 0. Then there exists
uε = u ∈ C∞(B1 × (−1, 1)) ∩ C(Rn+1) which is compactly supported in Rn+1 and
such that the following properties hold true:

∂tu+ (−∆)su = 0 in B1 × (−1, 1),

and ‖u− h‖Ck(B1×(−1,1)) ≤ ε.

Let us recall that this approximation property crucially relies on the nonlocality
of the operator under consideration. Indeed, solutions to the corresponding local
equation (for which s = 1) are very rigid; for instance they satisfy the strong
maximum principle and Harnack’s inequality locally. In contrast, solutions of the
nonlocal problem are much more flexible. The maximum principle for example in
general only holds on global scales, which does not rule out local oscillations [20, 34].
Further than that, a central, and at first sight surprising finding in [9] shows that
the approximation properties of equations like (1) are solely determined by their
nonlocal part. In particular, in the framework of [9] parabolicity is not needed, it
would for instance also be possible to consider wave type operators, c.f. Section 5
below.

While proving the density of the image of the mapping (2), the argument in
[9] left open the question on more quantitative approximation properties: In the
argument from [9], the underlying domain geometry and the structure of the explicit
fundamental solution for the stationary problem play an important role, and the
size of the support of u is not explicitly controlled. In the present article, we address
these more quantitative properties. Here our contributions are two-fold: First, by
extending the qualitative Runge approximation arguments from [17] to the case of
more general nonlocal equations, we obtain precise control on the support of u.
Our argument, which relies on duality, is very flexible and can also deal with more
general operators e.g. with variable coefficients and lower order contributions, c.f.
Section 5.3. Secondly, as the main contribution of this article, we quantify the cost
of approximating a given function h ∈ L2(B1× (−1, 1)). More precisely, we address
the following question:

Q: Given an error threshold ε > 0 and a function h ∈ L2(B1×(−1, 1)), how large
is the value of a suitable norm of a possible control function f , which is such
that Psf approximates h up to the error threshold ε?

In the context of the model problem (1) our main result on this can be formulated
as the following proposition:

Main Theorem (Cost of approximation). Let h ∈ H1
0 (B1 × (−1, 1)) and ε > 0.

Let W ⊂ Rn \ B1 be a Lipschitz domain with W ∩ B1 = ∅. Then there exists a
control function f ∈ L2((−1, 1), C∞c (W )) such that

‖h− Psf‖L2(B1×(−1,1)) ≤ ε,

‖f‖L2(W×(−1,1)) ≤ Ce
C(1+‖h‖σ

H1(B1×(−1,1))
)ε−σ‖h‖H1(B1×(−1,1)),

(3)

where the constants C > 1 and σ > 0 only depend on n, s, and W . Moreover, we
note that f can be expressed in terms of the minimizer of a suitable “energy” (more
precisely of the functional (21)).

The question on quantitative properties for operators like the heat operator with
fractional diffusion was partly motivated by stability results in inverse problems for
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nonlocal operators. Indeed, in [37] similar quantitative approximation properties
allowed us to derive quantitative stability properties in the fractional Calderón
problem, which had been introduced in [17]. Relying on an elliptic analogue of
Theorem 1, we could show that in spite of the nonlocality of the operator, the
associated stability estimates are only of logarithmic type. By virtue of [38] this
is optimal. Based on the main results of the present article, it is thus probable
that also for related inverse problems with more general nonlocal operators only
logarithmic stability properties are available.

The quantitative study of these approximation properties can further be consid-
ered as a continuation of the investigation started in [36], which was motivated by
problems from medical imaging. Here stability and invertibility properties of the
truncated Hilbert transform were studied.

We remark that similar quantitative questions are also of relevance in control
theory: Indeed, the result of [9] can be read as an approximate controllability re-
sult, showing that by applying suitable controls from the exterior any function (in
a suitable function space) can be approximated by solutions to the fractional heat
equation. Theorem 1 then quantifies this and estimates the cost of the approxi-
mation by measuring the size of the exterior data that are needed for the given
solution to be sufficiently close to the desired function (in terms of the error thresh-
old ε). While authors in the control theory community are however often interested
in approximating a given datum by steering an equation within a given time to a
desired final state (c.f. for instance [11, 13, 27, 25, 31, 32, 33, 41] and in particular
[2, 30, 29] for the setting of non-local equations and the references therein), in the
present article, motivated by applications to inverse problems, we seek to approxi-
mate a given function at each time slice by choosing suitable exterior data. In spite
of this difference, our problem shares many features with the described problem
from the control theory community. In particular, in addressing our main question,
we borrow tools and ideas from control theory, in particular from [15].

Let us comment on the result of Theorem 1: In the model setting of the heat equa-
tion for the fractional Laplacian it quantifies an L2 version of the result from [9]. The
condition that h vanishes on the boundary does not pose serious restrictions com-
pared to the result of [9], as this can always be achieved after a suitable extension.
Indeed, it is always possible to reduce to the situation where h ∈ H1

0 by considering
the control problem in a slightly larger Lipschitz domain Ω× (−2, 2) ⊂ B2× (−2, 2)
(where Ω is adapted to the geometry of B1 and W ) and by extending the given func-

tion h ∈ H1(B1 × (−1, 1)) to a function h̃ ∈ H1
0 (Ω × (−2, 2)) with the properties

that h̃|B1×(−1,1) = h and

‖h̃‖H1(Ω×(−2,2)) ≤ C(W,B1)‖h‖H1(B1×(−1,1)).

Considering an analogue of (1) and Theorem 1 in Ω × (−2, 2) then implies the L2

version of the approximation result from [9] for the fractional heat equation.
Regarding the dependences on ε and h in the estimate (3) in Theorem 1, we

expect that the exponential dependence on ε > 0 is indeed necessary. In the elliptic
counterpart this was indeed recently established by the authors [38, Theorem 2].
We expect that similar arguments persist in the parabolic case. Although it is
natural that higher order norms of h appear in the estimate, we do not believe
that the norms, which are used in (3), are optimal (for instance, by the scaling of
the equation, one might expect that one can work with parabolic Sobolev spaces).
Yet we hope that the ideas introduced here are robust enough to be extended to a



4 ANGKANA RÜLAND AND MIKKO SALO

number of other problems in which both local and nonlocal operators are involved.
A number of further operators for which these ideas are applicable are discussed in
Section 5.

Similarly as in [36], our approach to the question on the cost of control relies on

(i) a propagation of smallness result,
(ii) quantitative unique continuation properties of the adjoint equation (9),

(iii) the variational technique from [15],
(iv) and on a global estimate for solutions to (9) (c.f. equation (18)).

As in the qualitative density result, it is the underlying nonlocal operator, whose
properties we mainly exploit (c.f. ingredients (i)-(iii)). The parabolic character of
the problem only enters by invoking global estimates. It is therefore possible to
extend this result to a much richer class of local-nonlocal operators (c.f. Section 5).

The remainder of the article is structured as follows: In Section 2 we first discuss
the qualitative approximation properties of the fractional heat equation. This is
based on Runge type approximation arguments. Next, in Section 3, we address the
quantitative uniqueness properties for the fractional heat equation with s ∈ (0, 1).
Here we rely on propagation of smallness estimates. In Section 4 we introduce a
variational approach to the approximation problem and prove Theorem 1. Finally,
in Section 5, we explain how to extend the presented arguments to more general
(variable coefficient) local-nonlocal operators.

2. Qualitative Approximation and Weak Unique Continuation. In this sec-
tion, we discuss the qualitative approximation properties of the mapping (2). As the
main result, we recover an L2 version of certain approximation properties identified
in [9]. Instead of relying on boundary asymptotics of the problem, we however use
Runge type approximations as introduced in [17] (c.f. also [24, 4, 5] for similar ideas
in the setting of different local equations). In principle this could be upgraded to
(stronger) approximation properties in Hölder spaces (c.f. Section 6 in [17] and [9]).
As we are however mainly interested in the quantitative approximation properties
outlined in the next section, we do not pursue this here.

2.1. Notation and well-posedness. In the following we will mainly rely on two
definitions of the fractional Laplacian: On the one hand, we regard it as a Fourier
multiplier in Rn, i.e. for u ∈

⋃
α∈R

Hα(Rn) we have (−∆)su = F−1(|ξ|2s F u), where

F u(k) =
∫
Rn
e−ix·ku(x)dx denotes the Fourier transform. We will mainly use this

definition of the fractional Laplacian in the discussion of the mapping properties of
the fractional heat equation.

In our argument leading to an estimate of the quantitative cost of approximation,
it will however be convenient to work with a local operator. To this end, we recall
that by virtue of [7] it is possible to realize the nonlocal operator (−∆)s with
s ∈ (0, 1) as a local operator by adding an additional dimension: Given a function
v ∈ L2(Rn), and writing x = (x′, xn+1) ∈ Rn+1, we have that for some constant
cs ∈ R \ {0}

(−∆)sv(x′) = ∂sn+1v(x′) := cs lim
xn+1→0

x1−2s
n+1 ∂n+1v(x′, xn+1), (4)
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where the function v̄ is a solution to

∇ · x1−2s
n+1 ∇v = 0 in Rn+1

+ ,

v = v on Rn × {0}.

Here ∇ = (∂1, . . . , ∂n+1)t denotes the full gradient in n + 1 dimensions (i.e. in the
tangential and normal directions). If convenient, we also abbreviate the tangential
part of it by ∇′. In the sequel, we will use the convention that for a function
v ∈ L2(Rn) we denote its Caffarelli-Silvestre extension into Rn+1

+ by v. We refer to
[23] for further equivalent definitions of the fractional Laplacian.

As in [17] and [37] we will mainly use energy spaces. To that end, we recall that
for s ∈ R

H̃s(B1) := closure of C∞c (B1) in Hs(Rn),

Hs(B1) := {u|B1
: u ∈ Hs(Rn)},

and that

(H̃s(B1))∗ = H−s(B1).

We denote the corresponding homogeneous spaces by adding a dot to these
spaces, e.g. Ḣs(Rn). As we are working with a time dependent problem, we will
also use the corresponding Bochner spaces, which are associated with the energy
spaces of our equations.

Having introduced the previous notation, we discuss the well-posedness of equa-
tions as in (1). Here we restrict our attention to standard regularity assertions in
the energy space as this suffices for our purposes. For more refined results we refer
to for instance [14, 21, 26, 3, 18]. We remark that the operator (−∆)s is always
understood to act in the variable x ∈ Rn.

Lemma 2.1. Let n ≥ 1 and s ∈ (0, 1). Then for any F ∈ L2((−1, 1), H−s(B1)) and
any f ∈ L2((−1, 1), Hs(Rn)) with f |B1×(−1,1) = 0, there exists a unique function

u = f + v, where v ∈ L2((−1, 1), H̃s(B1)) ∩ C([−1, 1], L2(Rn)), satisfying

(∂t + (−∆)s)u = F in B1 × (−1, 1),

u = f in (Rn \B1)× (−1, 1),

v = 0 in Rn × {−1}.
(5)

Moreover,

‖u(t)‖L2(B1) + ‖u‖L2((−1,1),Hs(Rn)) + ‖u′‖L2((−1,1),H−s(B1))

≤ C(‖F‖L2((−1,1),H−s(B1)) + ‖f‖L2((−1,1),Hs(Rn))).

Remark 1. We refer to the function u as a weak solution of (5). Note also that
changing t to −t, we obtain an analogous solvability result for the problem

(−∂t + (−∆)s)u = F in B1 × (−1, 1),

u = f in (Rn \B1)× (−1, 1),

v = 0 in Rn × {1}.
(6)
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Proof. We first note that writing v = u − f and invoking the support assumption
for f , the problem reduces to finding v solving

(∂t + (−∆)s)v = F̃ in B1 × (−1, 1),

v = 0 in Rn × {−1},

v ∈ L2((−1, 1), H̃s(B1)) ∩ C([−1, 1], L2(Rn)),

(7)

where F̃ := F − (−∆)sf is another function in L2((−1, 1), H−s(B1)). Now if v is
such a function solving (7), then multiplying the equation by v, integrating over
(−1, t)× Rn, and using that v(−1) = 0 gives the initial estimate

1

2
‖v(t)‖2L2(B1) + ‖v‖2

L2((−1,1),Ḣs(Rn))

≤ ‖F̃‖L2((−1,1),H−s(B1))‖v‖L2((−1,1),H̃s(B1)).

The Hardy-Littlewood-Sobolev inequality gives ‖w‖L2(B1) ≤ C‖w‖
L

2n
n−2s

≤ Cn,s‖w‖Ḣs
for w ∈ H̃s(B1) (if n = 1 and s ≥ 1/2, one can interpolate the easy L2 → L2 and

Ḣ1 → L∞ bounds). Using this and Young’s inequality yields that

‖v(t)‖L2(B1) + ‖v‖L2((−1,1),Hs(Rn)) ≤ Cn,s‖F̃‖L2((−1,1),H−s(B1)),

and using the equation once more implies the energy estimate

sup
t∈(−1,1)

‖v(t)‖L2(B1) + ‖v‖L2((−1,1),Hs(Rn)) + ‖∂tv‖L2((−1,1),H−s(B1))

≤ Cn,s‖F̃‖L2((−1,1),H−s(B1)) (8)

for solutions of (7).
Now (8) implies uniqueness as well as norm estimates for a solution u = f + v

of (5), using the triangle inequality and the support assumption for f . Hence, it
remains to discuss existence of solutions. This follows from a Galerkin approxima-
tion. To that end, we consider an eigenbasis {ϕk}∞k=1 associated with the Dirichlet
fractional Laplacian in B1, i.e.

(−∆)sϕk = λkϕk in B1,

ϕk = 0 in Rn \B1.

We normalize these eigenfunctions so that they form an orthonormal basis of H̃s(B1)
and an orthogonal basis of L2(B1). Thus, writing αk(t) = (v(t), ϕk)L2(B1), testing
the equation (7) with ϕk, and requiring αk(−1) = 0 results in the ODE

α′k(t) + λkαk(t) = F̃k(t) for t ∈ (−1, 1),

αk(−1) = 0,

where F̃k(t) := F̃ (t)(ϕk). If αk(t) solve these ODE, we define

vN (x, t) :=

N∑
k=1

αk(t)ϕk(x).

This function solves (7) with F̃ replaced by F̃N :=
∑N
k=1 F̃k(t)ϕk(x). Since {ϕk} is

an orthonormal basis of H̃s(B1), functions of the form w(t, x) =
∑M
k=1 wk(t)ϕk(x)
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are dense in the space L2((−1, 1), H̃s(B1)). Consequently ‖F̃N‖L2((−1,1),H−s(B1)) ≤
‖F̃‖L2((−1,1),H−s(B1)) for each N , and the energy estimate (8) applied to vN yields

sup
t∈(−1,1)

‖vN (t)‖L2(B1) + ‖vN‖L2((−1,1),Hs(Rn)) + ‖∂tvN‖L2((−1,1),H−s(B1)) ≤ C.

This yields enough compactness to extract a weak limit v as N →∞. Testing the

equation for v with functions of the form w(t, x) =
∑M
k=1 wk(t)ϕk(x), which form a

dense set, we obtain a solution v to (7) satisfying the desired a priori bounds.

For later reference, we also note the following spatial higher regularity result:

Lemma 2.2. Let u be a weak solution to (5) or (6) with f = 0 and F ∈ L2(B1 ×
(−1, 1)). Assume that W ⊂ Rn is a Lipschitz set with W ∩B1 = ∅. Then, for any
r ≥ 0

‖(−∆)su‖L2((−1,1),Hr(W )) ≤ C‖F‖L2(B1×(−1,1)).

Proof. By Lemma 2.1 we have (−∆)su ∈ L2((−1, 1), H−s(Rn)). Since for x ∈ W
the assumption that u(x, t) = 0 implies that

(−∆)su(x, t) = p.v. cs,n

∫
Rn

u(x, t)− u(y, t)

|x− y|n+2s
dy = −p.v. cs,n

∫
Rn

u(y, t)

|x− y|n+2s
dy,

we have for k ≥ 0 that ‖(−∆)su‖L2((−1,1),Hk(W )) ≤ Ck‖u‖L2((−1,1)×Rn). The

claimed estimate follows from the L2((−1, 1), Hs(Rn)) bound in Lemma 2.1.

2.2. Qualitative approximation. We next approach the qualitative density prop-
erties of the fractional heat equation. By means of a duality argument as in [17]
this is reduced to unique continuation properties of the fractional Laplacian.

Theorem 2.3. Let s ∈ (0, 1) and consider the operator Ps from (2). Assume that
W ⊂ Rn is a Lipschitz set with W ∩B1 = ∅. Define

R := {u|B1×(−1,1) : u = Psf, f ∈ C∞c (W × (−1, 1))}.

Then the set R is dense in L2(B1 × (−1, 1)).

Remark 2. We emphasize that the choice of the spatial domain B1 is not essential
in our argument. It is for instance possible to consider more general, bounded
Lipschitz domains.

Proof. By the Hahn-Banach theorem, it is enough to show that if v ∈ L2(B1 ×
(−1, 1)) satisfies

(Psf, v)L2(B1×(−1,1)) = 0 for all f ∈ C∞c (W × (−1, 1)),

then v ≡ 0. Now let v be such a function. We consider the dual problem to (1). It
is given by

(−∂t + (−∆)s)ϕ = v in B1 × (−1, 1),

ϕ = 0 in (Rn \B1)× (−1, 1),

ϕ = 0 in Rn × {1}.
(9)

We note that by virtue of Lemma 2.1 and Remark 1, both (1) and (9) are well-posed.
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Let now f ∈ C∞c (W × (−1, 1)), let u solve (1), and let ϕ solve (9). Since u − f
vanishes outside B1 × (−1, 1), it follows that

(Psf, v)L2(B1×(−1,1)) = (u− f, (−∂t + (−∆)s)ϕ)L2(Rn×(−1,1))

= −(f, (−∆)sϕ)L2(W×(−1,1)).
(10)

In the last equality we used that u is a solution, that u(−1) = ϕ(1) = 0, and the
support conditions on ϕ and f .

Since (Psf, v)L2(B1×(−1,1)) = 0 for all ϕ ∈ C∞c (W × (−1, 1)), the above compu-
tation yields that

ϕ = (−∆)sϕ = 0 in W × (−1, 1).

By weak unique continuation for the fractional Laplacian (for each fixed time slice),
see e.g. [17, Theorem 1.2], this implies that ϕ(·, t) = 0 in Rn×{t} for all t ∈ (−1, 1)
and hence v = 0. By the Hahn-Banach theorem this thus yields the desired density
property.

Remark 3. The adjoint property (10) can also be inferred using the Caffarelli-
Silvestre extension, see (4) and Section 3. Denoting the Caffarelli-Silvestre extension
associated with ϕ(x, t) by ϕ(x, xn+1, t) and using the notation from (4), the equation
(9) can be formulated as

(∂n+1x
1−2s
n+1 ∂n+1 + x1−2s

n+1 ∆′)ϕ = 0 in Rn+1
+ × (−1, 1),

(∂sn+1 − ∂t)ϕ = v in B1 × {0} × (−1, 1),

ϕ = 0 in (Rn \B1)× {0} × (−1, 1),

ϕ = 0 in Rn × {0} × {1}.

(11)

With this notation, we then have

(v, Psf)L2(B1×(−1,1)) = ((−∂t + (−∆)s)ϕ, Psf)L2(B1×(−1,1))

= (ϕ, ∂tu)L2(B1×(−1,1)) + (∂sn+1ϕ, u)L2(Rn×{0}×(−1,1))

− (∂sn+1ϕ, u)L2(W×{0}×(−1,1))

= (ϕ, ∂tu)L2(B1×(−1,1)) + (ϕ, ∂sn+1u)L2(Rn×{0}×(−1,1))

− (∂sn+1ϕ, u)L2(W×{0}×(−1,1))

= (ϕ, ∂tu)L2(B1×(−1,1)) + (ϕ, (−∆)su)L2(B1×(−1,1))

− ((−∆)sϕ, f)L2(W×(−1,1))

= −((−∆)sϕ, f)L2(W×(−1,1)).

(12)

Here we first integrated by parts in time, then used that ϕ and u are solutions to
the Caffarelli-Silvestre extension for each fixed time slice and finally exploited that
u obeys (1).

Remark 4. The argument of Theorem 2.3 shows that also in the case, in which
a local operator is combined with a nonlocal operator, the density properties of
R are purely determined by the nonlocal component of the operator: The local
part of the operator does not play a role in the reduction to the weak unique
continuation principle and only the weak unique continuation properties of the
underlying nonlocal operator are of relevance.

In particular, this implies that as in [9] the parabolic character of the problem
at hand was not essential in the qualitative density argument. The same strategy
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can be pursued for more general operators, e.g. the fractional wave equation (c.f.
Section 5).

In analogy to the notation from in control theory we use the following convention
in the sequel:

Definition 2.4. Let Ps for s ∈ (0, 1) be as in (2). Given a function h ∈ L2(B1 ×
(−1, 1)) and an error threshold ε > 0, we refer to a function fε,h, which satisfies

‖h− Psfε,h‖L2(B1×(−1,1)) < ε,

as a control function for h with error threshold ε > 0. If there is no danger of
confusion, we also simply refer to it as a control.

3. Propagation of smallness. With the qualitative behaviour from the previous
section at hand, we now proceed to quantitative aspects of these approximation
results. We begin our analysis by deducing a central propagation of smallness
property, which quantifies the weak unique continuation result used in Section 2
and provides the basis for the proof of Theorem 1. This result is stated in terms of
the Caffarelli-Silvestre extension (c.f. [7]), which we have recalled in the beginning
of Section 2.

Proposition 1. Let n ≥ 1, s ∈ (0, 1), and let W ⊂ Rn be a bounded Lipschitz
domain with B1 ∩W = ∅. There exist constants Cj ≥ 1, µj ∈ (0, 1), and σj > 0,
only depending on n, s, and W , such that whenever v ∈ L2(B1 × (−1, 1)), ϕ is the
solution of (9) associated with v, and δ ∈ (0, 1/2), one has

‖ϕ‖L2(B1×{δ}×(−1,1)) ≤ C1δ
s−1‖∂sn+1ϕ‖

µ1δ
σ1

L2(W×{0}×(−1,1))‖v‖
1−µ1δ

σ1

L2(B1×(−1,1)),

‖x1−2s
n+1 ∂n+1ϕ‖L2(B1×{δ}×(−1,1)) ≤ C2δ

−s‖∂sn+1ϕ‖
µ2δ

σ2

L2(W×{0}×(−1,1))‖v‖
1−µ2δ

σ2

L2(B1×(−1,1)).

We prove these estimates as a consequence of a combination of bulk and boundary
three balls inequalities and a global estimate for solutions to (9).

Proof. Step 1: Estimate for ϕ. We first consider the estimate for ϕ. We fix t ∈
(−1, 1) for the time being. Note that the function ϕ̄( · , t) solves the degenerate
elliptic equation

∇ · x1−2s
n+1 ∇ϕ̄( · , t) = 0 in Rn+1

+ , ϕ̄( · , t)|xn+1=0 = ϕ( · , t).
In particular, ϕ( · , t)|(Rn\B1)×{0} = 0. We wish to propagate the possible smallness

of ∂sn+1ϕ( · , t) on W × {0} to an estimate for ϕ( · , t) on B1 × {δ}.
We recall the following generalization of the three spheres inequality (c.f. [1]

for a survey of these bounds in the case s = 1/2) and of the Lebeau-Robbiano
boundary-bulk interpolation estimate (c.f. [25] for the case s = 1/2) to solutions of
the degenerate elliptic equation:

(i) Setting

Qr,t(x0) := Br(x
′
0)× ((x0)n+1 + r, (x0)n+1 − r)× {t},

the following (weighted) three balls estimate holds (c.f. Propositions 5.3 and
5.4 in [37])

‖x
1−2s

2
n+1 ϕ‖L2(Q+

2r,t(x0)) ≤ Cs‖x
1−2s

2
n+1 ϕ‖αL2(Q+

r,t(x0))
‖x

1−2s
2

n+1 ϕ‖
1−α
L2(Q+

4r,t(x0))
.

Here α = α(s) ∈ (0, 1) and C = C(s) > 1, Q+
2r,t := Q2r,t ∩ Rn+1

+ and either

x0 ∈ Rn × {0} and B′4r(x
′
0) ⊂ Rn \B1, or (x0)n+1 ≥ 5r.
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(ii) We have the following fractional bulk-boundary interpolation estimate due to
Proposition 5.6 together with Remark 5.2 in [37],

‖x
1−2s

2
n+1 ϕ‖L2(W/2×[`/2,`]×{t}) ≤ C‖ϕ‖1−µH1(Rn+1

+ , x1−2s
n+1 dx)

‖∂sn+1ϕ‖
µ
L2(W×{0}×{t}),

where ` ∈ (0, 1], µ ∈ (0, 1) and C > 1 are constants depending on n, s and
W , and W/2 := {x ∈W : dist(x, ∂W ) > (maxz∈W dist(z, ∂W ))/2}. We have
also written

‖ϕ‖H1(Rn+1
+ , x1−2s

n+1 dx) := ‖x
1−2s

2
n+1 ϕ‖L2(Rn+1

+ ×{t}) + ‖x
1−2s

2
n+1 ∇ϕ‖L2(Rn+1

+ ×{t}).

Thus, using that ϕ is a Caffarelli-Silvestre extension of ϕ, for each fixed time
t ∈ (−1, 1) and each radius r with 0 < r ≤ (x0)n+1/5, we can apply the three
spheres inequality from (i) in the spatial variables x = (x′, xn+1) in the form

‖x
1−2s

2
n+1 ϕ‖L2(Q2r,t(x0))

‖x
1−2s

2
n+1 ϕ‖L2(Rn+1

+ )

≤ C1

‖x 1−2s
2

n+1 ϕ‖L2(Qr,t(x0))

‖x
1−2s

2
n+1 ϕ‖L2(Rn+1

+ )

α . (13)

We consider a chain of N balls, K :=
N⋃
i=1

Qri,t(xi), which connects W × [`/2, `]×{t}

with B1× [δ/2, 2δ]×{t} (see e.g. [37, proof of Theorem 5.5] for more details on this
argument). Due to the constraint (xi)n+1 ≥ 5ri, we note that the constant N can
be chosen to be of the order

N ∼ C| log(δ)|, (14)

where C > 1 is a constant that only depends on n, s, W and may change from line
to line.

Applying (13) iteratively along this chain, we infer that

‖x
1−2s

2
n+1 ϕ‖L2(B1×[δ/2,2δ]×{t}) ≤ C2‖x

1−2s
2

n+1 ϕ‖α
N

L2(W/2×[`/2,`]×{t})‖x
1−2s

2
n+1 ϕ‖

1−αN

L2(Rn+1
+ ×{t}),

(15)

where ` ∈ (0, 1] is as in (ii), and C2 ≤ CC1+α+...+αN−1

1 ≤ CC
1

1−α
1 so C2 is indepen-

dent of N . By Caccioppoli’s inequality [37, Lemma 4.5], (15) can be upgraded to
read

‖x
1−2s

2
n+1 ϕ‖L2(B1×[δ/2,2δ]×{t}) + δ‖x

1−2s
2

n+1 ∇ϕ‖L2(B1×[3δ/4,δ]×{t})

≤ C‖x
1−2s

2
n+1 ϕ‖α

N

L2(W/2×[`/2,`]×{t})‖x
1−2s

2
n+1 ϕ‖

1−αN

L2(Rn+1
+ ×{t}).

Combining this with a simple trace estimate (using the fundamental theorem of
calculus) also yields

δ
1−2s

2 ‖ϕ‖L2(B1×{δ}×{t}) ≤ Cδ
−1/2‖x

1−2s
2

n+1 ϕ‖α
N

L2(W/2×[`/2,`]×{t})‖x
1−2s

2
n+1 ϕ‖

1−αN

L2(Rn+1
+ ×{t}).

Combining this with (ii), i.e. the analogue of the bulk-boundary interpolation esti-
mate of Lebeau and Robbiano [25], further yields

‖ϕ‖L2(B1×{δ}×{t}) ≤ Cδ
s−1‖∂sn+1ϕ‖

µαN

L2(W×{0}×{t})‖ϕ‖
1−µαN

H1(Rn+1
+ , x1−2s

n+1 dx)
. (16)

Here we have used that ϕ = 0 on W × {0} × {t}.
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Integrating the square of (16) in time for t ∈ (−1, 1) and applying Hölder’s
inequality then gives

‖ϕ‖L2(B1×{δ}×(−1,1)) ≤ Cδs−1‖∂sn+1ϕ‖
µαN

L2(W×{0}×(−1,1))

× ‖ϕ‖1−µα
N

L2((−1,1),H1(Rn+1
+ , x1−2s

n+1 dx))
.

(17)

By energy estimates for solutions to (9) (c.f. Lemma 2.1) we further have

‖ϕ‖L2((−1,1),Hs(Rn)) ≤ C‖v‖L2(B1×(−1,1)). (18)

Combining this with a boundary estimate for the Caffarelli-Silvestre extension, i.e.,

‖ϕ‖L2((−1,1),H1(Rn+1
+ , x1−2s

n+1 dx)) ≤ C‖ϕ‖L2((−1,1),Hs(Rn)),

and with equation (17), then allows us to conclude that

‖ϕ‖L2(B1×{δ}×(−1,1))

≤ Cδs−1‖∂sn+1ϕ‖
µαN

L2(W×{0}×(−1,1))‖v‖
1−µαN
L2(B1×(−1,1)).

(19)

Recalling the bound from (14) for N therefore yields the claimed inequality for ϕ.

Step 2: Estimate for x1−2s
n+1 ∂n+1ϕ. With the strategy from Step 1 at hand, we

explain the necessary modifications for the estimate for ψ(x) := x1−2s
n+1 ∂n+1ϕ(x). To

this end we use duality, which gives that if ϕ is a solution to

∇ · x1−2s
n+1 ∇ϕ = 0 in Rn+1

+ , lim
xn+1→0

x1−2s
n+1 ∂n+1ϕ = g on Rn × {0},

then ψ(x) := x1−2s
n+1 ∂n+1ϕ is a solution to

∇ · x1−2s̃
n+1 ∇ψ = 0 in Rn+1

+ , ψ = g on Rn × {0},

with s̃ = 1 − s (c.f. [7] and [6]). Thus, in the interior of the upper half-plane we
can argue analogously as in Step 1 and infer that with the notation of Step 1

‖ψ‖L2(B1×{δ}×{t}) ≤ Cδ
s̃−1‖x

1−2s̃
2

n+1 ψ‖α
N

L2(W/2×[3`/4,7`/8]×{t})‖x
1−2s̃

2
n+1 ψ‖

1−αN

L2(Rn+1
+ ×{t}).

Spelling out the definition of ψ then yields

‖x1−2s
n+1 ∂n+1ϕ‖L2(B1×{δ}×{t})

≤ Cδ−s‖x
1−2s

2
n+1 ∂n+1ϕ‖α

N

L2(W×[3`/4,7`/8]×{t})‖x
1−2s

2
n+1 ∂n+1ϕ‖1−α

N

L2(Rn+1
+ ×{t}).

Invoking Caccioppoli’s inequality thus entails

‖x1−2s
n+1 ∂n+1ϕ‖L2(B1×{δ}×{t})

≤ Cδ−s‖x
1−2s

2
n+1 ϕ‖α

N

L2(W×[`/2,`]×{t})‖x
1−2s

2
n+1 ∂n+1ϕ‖1−α

N

L2(Rn+1
+ ×{t}).

This, however, is in a form which allows us to apply the bulk-boundary interpolation
estimate from (ii), whence

‖x1−2s
n+1 ∂n+1ϕ‖L2(B1×{δ}×{t})

≤ Cδ−s‖∂sn+1ϕ‖
µαN

L2(W×{0}×{t})‖ϕ‖
1−µαN

H1(Rn+1
+ , x1−2s

n+1 dx)
.

(20)

Combining this with the energy estimate from (18) therefore leads to the desired
estimate for x1−2s

n+1 ∂n+1ϕ.
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Remark 5. The argument for Proposition 1 can be regarded as consisting of two
main ingredients: On the one hand, we exploit (interior and boundary) three balls
arguments and propagation of smallness properties for solutions to (11). This leads
to the bound in (17) and only depends on the underlying nonlocal operator (and its
localization by means of the harmonic extension). On the other hand, we combine
these propagation of smallness results with a global energy estimate, c.f. (18). It is
only at this point, at which we have made use of the full equation with its local and
nonlocal contributions, i.e. only at this point the parabolic nature of the problem
is exploited.

4. Proof of Theorem 1. With the quantitative uniqueness result from Proposi-
tion 1 at hand, we now proceed to quantitative approximation results. Here we are
interested in estimating the cost of approximation: More precisely, for a given func-
tion h ∈ L2(B1 × (−1, 1)) and an error threshold ε > 0, we seek to derive bounds
on the size of suitable norms of a possible control function fε,h (in dependence of
suitable norms of h and of ε > 0). This will prove the main approximation result
of Theorem 1.

We follow the variational approach presented in [15]. We thus characterise fε,h
in terms of the minimizer of the functional

Jε,h,s(v) =
1

2

∫
W×(−1,1)

|η(−∆)sϕ|2 dx dt+ ε‖v‖L2(B1×(−1,1))

−
∫

B1×(−1,1)

hv dx dt.

(21)

Here ϕ and v are related through (9), and η ∈ C∞c (W ) is a cutoff function satisfying
0 ≤ η ≤ 1 and η = 1 on W/2 := {x ∈W : dist(x, ∂W ) > (maxz∈W dist(z, ∂W ))/2}.
If 0 < s < 1/2 we could replace η by the characteristic function χW , but if s ≥ 1/2
then χW is not a pointwise multiplier on Hs(Rn) and we need to use a smooth
cutoff.

In order to prove the result of Theorem 1, we argue in three steps, which we
split into three lemmata: We first show that, for a given function h and an error
threshold ε > 0, a unique minimizer v̂ of the functional (21) exists (Lemma 4.1).
This is a consequence of the weak unique continuation properties of the fractional
Laplacian. Secondly, if ϕ̂ is the solution of (9) corresponding to v̂, we argue that
f := −η2(−∆)sϕ̂ is a control for h corresponding to an error threshold ε > 0 (i.e.,
that it satisfies the first estimate in (3)). This follows from minimality (Lemma
4.2). Finally, in the last step (Lemma 4.3), we provide the bound on the cost of
approximation (i.e., the second estimate in (3)). This relies on the estimates from
Proposition 1.

Lemma 4.1 (Existence of minimizers). Let s ∈ (0, 1), n ≥ 1, ε > 0. Assume that
h ∈ H1

0 (B1 × (−1, 1)). Let

Jε,h,s : L2(B1 × (−1, 1))→ R ∪ {±∞}, v 7→ Jε,h,s(v)

be as in (21). Then there exists a unique minimizer v̂ ∈ L2(B1 × (−1, 1)) of Jε,h,s.

Proof. It is enough to prove that Jε,h,s is strictly convex, continuous, and coercive,
since then it will have a unique minimizer (see e.g. [12, Section II.1]). The functional
Jε,h,s is convex since it is the sum of three convex functionals, and it is strictly convex
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since v 7→ ‖η(−∆)sϕ‖2L2(W×(−1,1)) is strictly convex (this uses again weak unique

continuation for the fractional Laplacian). In addition, Jε,h,s is continuous since it is
the sum of three continuous functionals: The fact that v 7→ ‖η(−∆)sϕ‖2L2(W×(−1,1))

is continuous follows since (−∆)sϕ is evaluated at W × (−1, 1), where ϕ = 0 and
where according to Lemma 2.2 strong elliptic regularization is present.

Hence, it suffices to prove coercivity of (21) to obtain the existence of mini-
mizers. This will be reduced to the weak unique continuation property for the
fractional Laplacian. To this end, let vk ∈ L2(B1× (−1, 1)) be a sequence such that
‖vk‖L2(B1×(−1,1)) →∞. We seek to show that

Jε,h,s(vk)→∞ as k →∞.

Abbreviating the corresponding normalized functions by v̂k := vk
‖vk‖L2(B1×(−1,1))

and

the associated solutions to (9) by ϕ̂k, we have that

Jε,h,s(vk)

‖vk‖L2(B1×(−1,1))
=
‖vk‖L2(B1×(−1,1))

2
‖η(−∆)sϕ̂k‖2L2(W×(−1,1)) + ε

−
∫

B1×(−1,1)

hv̂k dx dt.

We now distinguish two scenarios: If on the one hand

lim inf
k→∞

‖η(−∆)sϕ̂k‖L2(W×(−1,1)) > 0,

then the normalization of v̂k and the divergence of ‖vk‖L2(B1×(−1,1)) imply that

lim inf
k→∞

Jε,h,s(vk)

‖vk‖L2(B1×(−1,1))
→∞,

which proves the desired coercivity.
If on the other hand, lim

k→∞
‖η(−∆)sϕ̂k‖L2(W×(−1,1)) = 0 (here and below we

understand that we have passed to a suitable subsequence), we deduce coercivity
from the weak unique continuation property of the limiting problem as k → ∞.
More precisely, we note that:

• By virtue of the normalization and the Banach-Alaoglu theorem,

v̂k ⇀ v̂ in L2(B1 × (−1, 1))

for some v̂ ∈ L2(B1 × (−1, 1)).
• Energy estimates and the weak form of the equation imply that

‖ϕ̂k‖L2((−1,1),Hs(Rn)) ≤ C <∞

uniformly in k ∈ N (c.f. (18) and Lemma 2.1). Thus,

ϕ̂k ⇀ ϕ̂ in L2(Rn × (−1, 1)) ∩ L2((−1, 1), H̃s(B1))

for some ϕ̂ ∈ L2(Rn×(−1, 1))∩L2((−1, 1), H̃s(B1)) with ϕ̂|(Rn\B1)×(−1,1) = 0.

This also implies that (−∂t+(−∆)s)ϕ̂k → (−∂t+(−∆)s)ϕ̂ in D′(Rn×(−1, 1)).
Since ϕ̂k is a solution corresponding to v̂k we obtain that

(−∂t + (−∆)s)ϕ̂ = v̂ in B1 × (−1, 1).

• Since further η(−∆)sϕ̂k → 0 in L2(W × (−1, 1)), this discussion shows that

ϕ̂ = 0 and (−∆)sϕ̂ = 0 in W/2× (−1, 1).
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As (−∆)sϕ̂ ∈ L2((−1, 1), H−s(Rn)), (spatial) weak unique continuation applied at
a.e. time slice (see e.g. [17, Theorem 1.2]) however implies that ϕ̂ = 0 for a.e.
t ∈ (−1, 1) and thus v̂ = 0. As a consequence,

∫
B1×(−1,1)

hv̂k dx dt → 0, so that for

a sufficiently large choice of k ∈ N

Jε,h,s(vk)

‖vk‖L2(B1×(−1,1))
≥
‖vk‖L2(B1×(−1,1))

2
‖η(−∆)sϕ̂k‖2L2(W×(−1,1)) +

ε

2
≥ ε

2
,

which also implies the claimed coercivity.

With existence of a minimizer at hand, we address the approximation property:

Lemma 4.2 (Approximation). Let s ∈ (0, 1), n ≥ 1, ε > 0. Assume that h ∈
H1

0 (B1 × (−1, 1)). Let Jε,h,s be the functional from (21) and let v̂ be its unique
minimizer. Denote by ϕ̂ the solution to (9) with inhomogeneity v̂, and let f :=
−η2(−∆)sϕ̂. Then the solution u of (1) satisfies

‖u− h‖L2(B1×(−1,1)) ≤ ε. (22)

Moreover, f ∈ L2((−1, 1), C∞c (W )) and

‖f‖2L2(W×(−1,1)) ≤ −2Jε,h,s(v̂).

Proof. Let v̂ be the minimizer of the problem (21) and let ϕ̂ be the corresponding
solution of (9).

The approximation property in (22) then follows from spelling out the minimality
condition

Jε,h,s(v̂ + µv)− Jε,h,s(v̂) ≥ 0,

for all µ ∈ R, combined with the triangle inequality to estimate the difference of
the L2 norms and by passing to the limit µ→ 0±. Indeed,

0 ≤ 1

2
‖η(−∆)s(ϕ̂+ µϕ)‖2L2(W×(−1,1)) −

1

2
‖η(−∆)sϕ̂‖2L2(W×(−1,1))

+ ε‖v̂ + µv‖L2(B1×(−1,1)) − ε‖v̂‖L2(B1×(−1,1)) − µ
∫

B1×(−1,1)

hv dx dt

≤ µ
∫

W×(−1,1)

η2(−∆)sϕ̂(−∆)sϕdx dt+
µ2

2

∫
W×(−1,1)

η2|(−∆)sϕ|2 dx dt

+ ε|µ|‖v‖L2(B1×(−1,1)) − µ
∫

B1×(−1,1)

hv dx dt. (23)

Dividing by µ 6= 0 and passing to the limits µ→ 0±, we obtain∣∣∣∣∣∣∣
∫

W×(−1,1)

η2(−∆)sϕ̂(−∆)sϕdx dt−
∫

B1×(−1,1)

hv dx dt

∣∣∣∣∣∣∣ ≤ ε‖v‖L2(B1×(−1,1)). (24)

Here ϕ denotes the solution to (9) corresponding to v ∈ L2(B1× (−1, 1)). Defining
f := −η2(−∆)sϕ̂ and denoting the associated solution to (1) by u, an analogous
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computation as in (12) implies that (24) turns into∣∣∣∣∣∣∣
∫

B1×(−1,1)

(u− h)v dx dt

∣∣∣∣∣∣∣ ≤ ε‖v‖L2(B1×(−1,1)). (25)

By duality this yields (22). One also has f ∈ L2((−1, 1), C∞c (W )) by Lemma 2.2.
We note that choosing v = v̂ and repeating the argument leading to (23) (where

one now avoids the triangle inequality) gives for |µ| small

0 ≤ µ‖η(−∆)sϕ̂‖2L2 +
µ2

2
‖η(−∆)sϕ̂‖2L2 + εµ‖v̂‖L2 − µ

∫
B1×(−1,1)

hv̂ dx dt.

Dividing by µ 6= 0 and letting µ→ 0± implies that∫
W×(−1,1)

|η(−∆)sϕ̂|2 dx dt+ ε‖v̂‖L2(B1×(−1,1)) −
∫

B1×(−1,1)

hv̂ dx dt = 0,

which directly leads to

Jε,h,s(v̂) = −1

2
‖η(−∆)sϕ̂‖2L2(W×(−1,1)).

Finally, since 0 ≤ η ≤ 1 we have

‖f‖2L2(W×(−1,1)) =

∫
W×(−1,1)

η4|(−∆)sϕ̂|2 dx dt ≤ ‖η(−∆)sϕ̂‖2L2(W×(−1,1))

= −2Jε,h,s(v̂).

Last but not least, we estimate the cost of control.

Lemma 4.3 (Cost of control). Let s ∈ (0, 1), n ≥ 1, ε > 0. Assume that h ∈
H1

0 (B1 × (−1, 1)). Let Jε,h,s be the functional from (21) and let v̂ be its unique
minimizer. Denote by ϕ̂ the solution to (9) with inhomogeneity v̂. Then we have
that f := −η2(−∆)sϕ̂ satisfies, for some C and σ only depending on n, s,W ,

‖f‖L2(W×(−1,1)) ≤ Ce
C(1+‖h‖σ

H1(B1×(−1,1))
)ε−σ‖h‖H1(B1×(−1,1)). (26)

Proof. In order to finally provide the estimate on the cost of control, we consider a
second functional in addition to Jε,h,s(v):

Jε,h,s,δ(v) :=
1

2

∫
W×(−1,1)

|η(−∆)sϕ|2 dx dt+
ε

2
‖v‖L2(B1×(−1,1))

−
∫

B1×(−1,1)

h[(−∂t + ∂sn+1)ϕ](x, δ, t) dx dt,

where, with slight abuse of notation, we write ∂sn+1ϕ(x, δ, t) := csδ
1−2s∂n+1ϕ|(x,δ,t)

and ∂sn+1ϕ(x, 0, t) = cs∂
s
n+1ϕ(x, t) (in the sense of Section 2). As in [15] we rewrite
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our original functional from (21) as

Jε,h,s(v) = Jε,h,s,δ(v) +
ε

2
‖v‖L2(B1×(−1,1))

+

∫
B1×(−1,1)

h(−∂t + ∂sn+1)[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt.

Here we used that ϕ(x, 0, t) = ϕ(x, t) and that ϕ solves (9). If we can ensure that

ε

2
‖v‖L2(B1×(−1,1)) +

∫
B1×(−1,1)

h(−∂t + ∂sn+1)[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt ≥ 0, (27)

we then obtain that

I1 := min
v∈L2(B1×(−1,1))

Jε,h,s(v) ≥ I2 := inf
v∈L2(B1×(−1,1))

Jε,h,s,δ(v).

Since by Lemma 4.2, ‖f‖2L2(W×(−1,1)) ≤ −2 min Jε,h,s(v) = −2I1, this translates

into

‖f‖2L2(W×(−1,1)) ≤ −2I2.

It thus remains to estimate I2 and to ensure (27). We split the argument for this
into two steps.

Step 1: Estimate for I2. This follows from Proposition 1 (applied with W/2) and
the assumption that h ∈ H1

0 (B1 × (−1, 1)). Indeed, if δ ∈ (0, 1/2), we have∫
B1×(−1,1)

h(x, t)[(−∂t + ∂sn+1)ϕ](x, δ, t) dx dt

=

∫
B1×(−1,1)

(∂th)(x, t)ϕ(x, δ, t) dx dt+

∫
B1×(−1,1)

h(x, t)∂sn+1ϕ(x, δ, t) dx dt

≤ ‖h‖H1(B1×(−1,1))(‖ϕ‖L2(B1×{δ}×(−1,1)) + ‖∂sn+1ϕ‖L2(B1×{δ}×(−1,1)))

≤ ‖h‖H1(B1×(−1,1))(C1δ
s−1‖∂sn+1ϕ‖

µ1δ
σ1

L2(W/2×{0}×(−1,1))‖v‖
1−µ1δ

σ1

L2(B1×(−1,1))

+ C2δ
−s‖∂sn+1ϕ‖

µ2δ
σ2

L2(W/2×{0}×(−1,1))‖v‖
1−µ2δ

σ2

L2(B1×(−1,1))).

Applying Young’s inequality in the form ab ≤ (p′r)−p/p
′
ap/p + rbp

′
, and choosing

r = ε̃/4 where ε̃ = ‖h‖−1
H1(B1×(−1,1))ε, implies that the first term on the right satisfies

C1δ
s−1‖∂sn+1ϕ‖

µ1δ
σ1

L2(W/2×{0}×(−1,1))‖v‖
1−µ1δ

σ1

L2(B1×(−1,1))

≤
(

ε̃

4(1− µ1δσ1)

)− 1−µ1δ
σ1

µ1δ
σ1

(µ1δ
σ1)(C1δ

s−1)1/(µ1δ
σ1 )‖∂sn+1ϕ‖L2(W/2×{0}×(−1,1))

+
ε̃

4
‖v‖L2(B1×(−1,1))

≤ eC(1+| log(ε̃)|)/δσ‖∂sn+1ϕ‖L2(W/2×{0}×(−1,1)) +
ε̃

4
‖v‖L2(B1×(−1,1)).
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Arguing similarly for the second term, and recalling the definition of ε̃, we obtain∫
B1×(−1,1)

h(x, t)[(−∂t + ∂sn+1)ϕ](x, δ, t) dx dt

≤ ‖h‖H1(B1×(−1,1))e
C(1+| log(ε‖h‖−1

H1(B1×(−1,1))
)|)/δσ‖∂sn+1ϕ‖L2(W/2×{0}×(−1,1))

+
ε

2
‖v‖L2(B1×(−1,1)).

Therefore, Young’s inequality, and the fact that η = 1 on W/2, yield

I2 ≥ inf
v∈L2(B1×(−1,1))

(
1

2
‖η(−∆)sϕ‖2L2(W×(−1,1)) +

ε

2
‖v‖L2(B1×(−1,1))

− ‖h‖H1(B1×(−1,1))e
C(1+| log(ε‖h‖−1

H1(B1×(−1,1))
)|)/δσ‖(−∆)sϕ‖L2(W/2×(−1,1))

− ε
2
‖v‖L2(B1×(−1,1))

)
≥ −eC(1+| log(ε‖h‖−1

H1(B1×(−1,1))
)|)/δσ‖h‖2H1(B1×(−1,1)).

(28)

Step 2: Ensuring (27). In order to conclude the proof of Theorem 1, it suffices
to ensure that (27) is satisfied and to deduce from this the resulting requirements
on ε and δ. To this end, we observe that

I :=

∫
B1×(−1,1)

h(−∂t + ∂sn+1)[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt

=

∫
B1×(−1,1)

(∂th)[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt

+

∫
B1×(−1,1)

h∂sn+1[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt,

(29)

where we integrated by parts. We discuss these contributions separately in the
sequel.
On the one hand, the fundamental theorem of calculus yields∣∣∣∣∣∣∣

∫
B1×(−1,1)

∂th(ϕ(x, δ, t)− ϕ(x, 0, t)) dx dt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

B1×(−1,1)

∂th

δ∫
0

∂zϕ(x, z, t) dz dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

B1×(−1,1)

∂th

δ∫
0

z
2s−1

2 z
1−2s

2 ∂zϕ(x, z, t) dz dx dt

∣∣∣∣∣∣∣
≤ (2s)−1/2δs‖∂th‖L2(B1×(−1,1))‖x

1−2s
2

n+1 ∂n+1ϕ‖L2(Rn+1
+ ×(−1,1))

≤ Cδs‖∂th‖L2(B1×(−1,1))‖v‖L2(B1×(−1,1)).

In the last line we here used the energy estimate (18) to infer the bound

‖x
1−2s

2
n+1 ∂n+1ϕ‖L2(Rn+1

+ ×(−1,1)) ≤ C‖v‖L2(B1×(−1,1)).
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On the other hand,∣∣∣∣∣∣∣
∫

B1×(−1,1)

h∂sn+1[ϕ(x, δ, t)− ϕ(x, 0, t)] dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

B1×(−1,1)

h

δ∫
0

∂z(z
1−2s∂zϕ) dz dx dt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

B1×(−1,1)

h

δ∫
0

z1−2s∆′ϕdz dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

B1×(−1,1)

∇′h ·
δ∫

0

z
1−2s

2 z
1−2s

2 ∇′ϕdz dx dt

∣∣∣∣∣∣∣
≤ ‖∇′h‖L2(B1×(−1,1))(2− 2s)−1/2δ1−s‖z

1−2s
2 ∇′ϕ‖L2(Rn+1

+ ×(−1,1))

≤ Cδ1−s‖∇′h‖L2(B1×(−1,1))‖v‖L2(B1×(−1,1)).

Thus, inserting this into (27), we obtain the following condition on δ, ε:

0 < δ ≤
(

ε

C‖h‖H1(B1×(−1,1)) + 1

) 1
max{s,1−s}

.

Defining δ as saturating the upper bound in this estimate and plugging it into (28)
then finally results in

‖f‖L2(W×(−1,1)) ≤ C exp

(
1 + ‖h‖H1(B1×(−1,1))

ε

)σ
‖h‖H1(B1×(−1,1)),

where C > 1 and σ > 0 depend on n, s, and W .

As an immediate consequence of Lemmas 4.1-4.3 we infer the result of Theorem
1.

Proof of Theorem 1. Theorem 1 follows by combining Lemmas 4.1-4.3.

Remark 6. We remark that the above proof shows that the dependences on the
domain W are explicit and could in principle be tracked.

5. Extensions to More General Operators. The arguments presented in Sec-
tions 2-3 extend to a much more general class of operators. In the sequel, we briefly
comment on some of these.

5.1. Qualitative approximation. As already pointed out in Remark 4 the qual-
itative approximation argument does not use any regularizing properties of the
underlying (nonlocal) equation. It only exploits the weak unique continuation prop-
erties of the fractional Laplacian and is hence a purely nonlocal phenomenon (in the
sense that the unique continuation properties of the nonlocal operator determine
the approximation properties independently of which additional local contributions
are involved in the equation). Provided that the associated problem is well-posed
(i.e. that the boundary data are prescribed correctly), it is therefore possible to
prove these qualitative approximation properties for general operators of the form
L+(−∆)s, where L is an arbitrary local differential operator. This recovers (a part
of) the result of [9].

In general, qualitative approximation results which are obtained by means of the
Runge approximation, require two ingredients:
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(a) well-posedness of the underlying equation and its adjoint,
(b) weak unique continuation for the associated nonlocal operator.

We again emphasize that in (b) only the weak unique continuation properties of
the nonlocal operator are of relevance. As the weak unique continuation property
is such a crucial ingredient, it is an interesting question to ask for which nonlocal
operators it is valid. A large class of operators for which this holds is identified by
Isakov:

Lemma 5.1 ([19], Lemma 3.5.4). Let µj, j ∈ {1, 2}, be measures with supp(µj) ⊂
Br. Let E ∈ S ′(Rn). Assume that F(E) cannot be written as the sum of a meromor-
phic function (in Cn) and a distribution supported on the zero set of some nontrivial
entire function. Then if E ∗ (µ1−µ2) = 0 in Rn \Br, we have that µ1 = µ2 globally.

For convenience, we recall the proof of Isakov.

Proof. As µj , j ∈ {1, 2}, and E ∗ (µ1 − µ2) are compactly supported, the Paley-
Wiener theorem asserts that F(µ1−µ2) and F(E ∗(µ1−µ2)) are analytic functions.
But we have that

F(E ∗ (µ1 − µ2)) = F(E)F(µ1 − µ2).

Thus, on the set in which the entire function F(µ1 − µ2) does not vanish, we have
that

F(E) =
F(E ∗ (µ1 − µ2))

F(µ1 − µ2)
.

The right hand side is by definition a meromorphic function in Cn (and thus by [28]
defines an element of D′(Rn)). As a consequence, F(E) can be written as

F(E) =
F(E ∗ (µ1 − µ2))

F(µ1 − µ2)
+ h,

where the first term on the right hand side is a meromorphic function, while the
second term h is a distribution supported on the zero set of the entire function
F(µ1 − µ2). This is a contradiction to the assumption of the lemma unless F(µ1 −
µ2) = 0 globally.

Due to the presence of a branch-cut, Isakov’s lemma for instance applies to
operators of the form L : D(Rm1 × · · · × Rmk)→ D(Rm1 × · · · × Rmk) given by

L̄ =

k∑
j=1

aj(−∆Xj )
sj , (30)

for Xj ∈ Rmj , aj ∈ R and sj ∈ (0, 1). In particular, these operators need not be
elliptic. We will give the proof for more general operators of the form

L̃ := (−∆X1
)s1 +m(DX2

),

where m(DX2) is a Fourier multiplier in the X2 variable with at most polynomial
growth in Fourier space, i.e., there exists N ∈ N such that

F(m(DX2
)u) = m(η)û(η), |m(η)| ≤ C(1 + |η|)N .

Corollary 1. Let s1 ∈ (0, 1), n1, n2 ∈ N∪{0}, n1 ≥ 1 and let m(DX2
) be a Fourier

multiplier. Let n = n1 + n2 and ϕ : Rn = Rn1 × Rn2 → R, ϕ ∈ H−s(Rn) for some
s > 0, be such that for some r > 0

supp(((−∆X1
)s1 +m(DX2

))ϕ) ⊂ Br, supp(ϕ) ⊂ Br,
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R

iR

b
k̃1 = i|k0|

Figure 1. The annulus from the proof of Corollary 1. The shaded
area corresponds to the annulus AR1(k̃1),R2(k̃1)(k̃1) with k̃1 chosen

to be i|k0|. The bold red line (see the online version for a colour
figures) indicates the discontinuity line of the function

es1 log(k21+|k0|2).

where X = (X1, X2) ∈ Rn1 × Rn2 . Then we have that ϕ = 0.

Proof. Instead of reducing the corollary to the statement of Lemma 5.1, we prove
it directly by a similar argument. By virtue of our assumptions and by the Paley-
Wiener theorem, we first infer that the functions ϕ̂(k, η) and (|k|2s1 +m(η))ϕ̂(k, η)
are real analytic and have entire analytic extensions into Cn. With slight abuse
of notation, we do not change the notation for the analytic extensions, i.e., for
instance the function ϕ̂(k, η) denotes both the original function defined on Rn and
its analytic extension onto Cn (which of course is consistent by restriction).

Let us next assume that the statement of the corollary were wrong, i.e. that
ϕ 6≡ 0 as a function on Rn and hence also ϕ̂ 6≡ 0 as a function on Cn. This
implies that there exists a vector ξ′ = (k0, η0) ∈ Rn1−1 × Rn2 = Rn−1 such that
ϕ̂(k1, ξ

′) 6≡ 0 as a function of k1 ∈ R (and hence also as a function of k1 ∈ C). As
ϕ̂ is analytic as a function in each of its variables, this entails that ϕ̂(k1, ξ

′), as a
function on C, only has a countable discrete set Z ⊂ C of zeroes. In particular,
for each k̃1 ∈ C there exist radii R1(k̃1) > R2(k̃1) > |k̃1| such that on the open

annulus AR1(k̃1),R2(k̃1)(k̃1) := BR1(k̃1)(k̃1)\BR2(k̃1) centered at k̃1 ∈ C the function

ϕ̂(k1, ξ
′) does not have any zeroes and such that AR1(k̃1),R2(k̃1)(k̃1)∩R is a relatively

open, nonempty set (else it would be possible to construct an accumulation point of

zeroes by considering a decreasing sequence (R
(j)
2 ) of radii with R

(j)
2 → R1 and by

invoking the theorem of Bolzano-Weierstraß). But for some analytic function g(ξ)
with ξ′ = (k0, η0) we have that

(|(k1, k0)|2s1 +m(η0))ϕ̂(k1, ξ
′) = g(k1, ξ

′) on AR1(k̃1),R2(k̃1)(k̃1) ∩ R.

Therefore, on the one hand, for each k̃1 ∈ C we can define an analytic continuation
of the function f(k1) := |(k1, k0)|2s1 +m(η0) on AR1(k̃1),R2(k̃1)(k̃1) by setting f(k1) =
g(k1,ξ

′)
ϕ̂(k1,ξ′)

. This defines a holomorphic function on AR1(k̃1),R2(k̃1)(k̃1). On the other
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hand, for the standard choice of the logarithm (where the branch cut is located

on the negative real axis), the function k1 7→ es1 log(k21+|k0|2) + m(η0) is analytic in
C\{±iα ; α ≥ |k0|} and hence this function is also obtained by analytic continuation

from the restriction of f(k1) onto AR1(k̃1),R2(k̃1)(k̃1) ∩ R. By uniqueness of the

analytic extension we thus deduce that

f(k1) = es1 log(k21+|k0|2) +m(η0) on AR1(k̃1),R2(k̃1)(k̃1) \ {±iα ; α ≥ |k0|}.

But as the logarithm is discontinuous at its branch points on R− ×{0} ⊂ C and as

s1 ∈ (0, 1), the function es1 log(k21+|k0|2) is discontinuous along the line iR++i|k0| ⊂ C
(c.f. Figure 1). If we choose k̃1 = i|k0|, this yields a contradiction to the analyticity

of f(k1) on AR1(k̃1),R2(k̃1)(k̃1).

Thus, the contradiction assumption must have been wrong and hence ϕ = 0,
proving the desired result.

Remark 7. We remark that technically an important ingredient in our argument
was the reduction to the one-dimensional situation, which allowed us to invoke
properties of holomorphic functions in a single complex variable instead of working
with several complex variables.

Remark 8. The requirement s1 ∈ (0, 1) can be relaxed; all powers s ∈ R, which
ensure the presence of a branch-cut for the continuation of |ξ|2s can be used in the
argument from above.

As discussed in [19], Lemma 5.1 does not only apply to the specific class of
nonlocal operators from (30), but also to other interesting operators.

If the underlying equations are well-posed, the Runge-type arguments from above
yield for instance the following Corollary:

Corollary 2. Let s1 ∈ (0, 1), n, n1, n2 ∈ N with n = n1+n2 and let B1 ⊂ Rn1×Rn2 .

Let L̃ be as in (30) where the Fourier multiplier m is real, i.e. m(η) ∈ R for all

η ∈ Rn2 . Assume that for some s > 0, L̃ is bounded Hs(Rn)→ H−s(Rn), and that
the problem

L̃h = v in B1, h = 0 in Rn \B1

has a unique solution h ∈ Hs(Rn) for any function v ∈ L2(B1). Denote by PL̃f :

C∞c (Rn \B1)→ Hs(Rn) the corresponding solution operator to the problem

L̃u = 0 in B1, u = f in Rn \B1.

Then we have that for any R > 1 the set

R := {u|B1 : u = PL̃f, f ∈ C
∞
c (Rn \BR)}

is dense in L2(B1).

Proof. Arguing similarly as in Theorem 2.3, by a Hahn-Banach argument, the den-
sity result reduces to the weak unique continuation property of the nonlocal operator
L̃ in Rn \BR. This however follows from Corollary 1.

More precisely, we show that if v ∈ L2(B1) is such that (PL̃f, v)L2(B1) = 0 for

all f ∈ C∞c (Rn \ BR), then necessarily v = 0. Indeed, using the assumed well-

posedness, we define h ∈ H̃s(Rn) by the requirement

L̃h = v in B1, h = 0 in Rn \B1.
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Then,

0 = (PL̃f, v)L2(B1) = (PL̃f, L̃h)L2(B1)

= (PL̃f, ((−∆X1
)s1 +m(DX2

))h)L2(B1)

= (PL̃f − f, ((−∆X1
)s1 +m(DX2

))h)L2(Rn)

= (((−∆X1)s1 +m(DX2))(PL̃f − f), h)L2(Rn)

= −(((−∆X1
)s1 +m(DX2

))f, h)L2(Rn)

= −(f, ((−∆X1
)s1 +m(DX2

))h)L2(Rn).

(31)

Here we used that PL̃f − f ∈ H̃s(B1) and h ∈ H−s(Rn), that L̃ is bounded
Hs → H−s, and that m(DX2) is self-adjoint. As a consequence, we infer that

h = 0 in Rn \B1, ((−∆X1
)s1 +m(DX2

))h ∈ Rn \BR.

Corollary 1 then implies that ϕ = 0, which entails that v = 0.

Remark 9. Assuming the validity of the corresponding well-posedness theory and
further supposing that the local and nonlocal contributions act in different variables,
it is straightforward to extend the statement of Corollary 2 to a combination of
local and nonlocal operators. This follows by observing that as in the case of the
fractional heat equation, the local terms “disappear” on the right hand side of the
analogue of the duality argument outlined in (31). As in the setting of the heat
equation, the variables on which the local operators act are then simply treated as
parameters in the unique continuation properties of the nonlocal operators.

5.2. Further constant coefficient operators. In contrast to the discussion on
qualitative approximation in Section 2, the arguments on the quantitative approxi-
mation in Section 3 also relied on properties of the underlying operator (including
the local terms). Here we made use of two main ingredients: We combined

• quantitative weak unique continuation properties (where the main thrust orig-
inated from the nonlocal part of the operator),

• with specific (regularity) properties of the full underlying operator, in the form
of (global) energy estimates, c.f. (18) and Remark 5.

These properties are for instance reflected in the respective norms of h, which arise
in the estimate on the cost of approximation (c.f. the bounds in Step 3 in the proof
of Theorem 1). While this entails that in contrast to the qualitative approximation
properties their quantitative counterparts depend more delicately on the structure
of the underlying operator – also on the elliptic/parabolic/hyperbolic nature of
the local part of the operator – the overall strategy of proof is very robust. It
can be applied to a large class of equations, including elliptic/parabolic/hyperbolic
ones. To illustrate this, we remark that analogous arguments as outlined above
with the same energy functional (21) (but where ϕ now solves the dual problem for
the fractional wave equation) lead to quantitative approximation properties for the
fractional wave equation

(∂2
t + (−∆)s)u = 0 in B1 × (−1, 1),

u = f in (Rn \B1)× (−1, 1),

u = f, ∂tu = ∂tf on Rn × {−1}.
(32)
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Here W ⊂ Rn\B1 is a bounded Lipschitz set. Arguing by a Galerkin approximation,
this problem is well-posed. We consider the Poisson operator for (32),

Pws : L2((−1, 1), C∞c (W ))→ L2(B1 × (−1, 1)), f 7→ Pws f = u|B1×(−1,1).

In the setting of the wave equation the energy estimates replacing (18) become

sup
t∈[−1,1]

(
‖∂tϕ‖L2(B1) + ‖ϕ‖Hs(B1)

)
≤ C‖v‖L2((−1,1),L2(B1)).

As a consequence of the arguments leading to Theorem 1, we also infer a result
on the cost of approximation for the wave equation:

Theorem 5.2 (Cost of approximation for the wave equation). Let h ∈ H2
0 (B1 ×

(−1, 1)) and ε > 0. Let W ⊂ Rn \B1 be a bounded Lipschitz domain with W ∩B1 =
∅. Then there exists a control function f ∈ L2((−1, 1), C∞c (W )) such that

‖h− Pws f‖L2(B1×(−1,1)) ≤ ε,

‖f‖L2(W×(−1,1)) ≤ Ce
C(1+‖h‖σ

H2(B1×(−1,1))
)ε−σ‖h‖H2(B1×(−1,1)),

for constants C > 1 and σ > 0, which only depend on n, s, and W .

We remark that the control f can be obtained by a similar minimization problem
as the one in (21).

5.3. Variable coefficient operators. Last but not least, we emphasize that the
described techniques permit us to deal with variable coefficient perturbations of the
local and nonlocal parts of the operator (c.f. also the recent article [16] for qualita-
tive statements). Here the variable coefficient nonlocal operators can for instance be
understood as in [39], [8]. As in [35], Section 6, and [36], Section 4, the correspond-
ing estimates carry over to this regime, if the coefficients are suitably regular (c.f.
Section 6 in [35] or also [40] for weak and strong unique continuation properties of
the variable coefficient fractional Laplacian and the associated necessary regularity
assumptions on the coefficients).

For simplicity we only discuss the simplest possible extensions. Operators which
for instance involve lower order contributions can also be dealt with in this frame-
work. Let L = ∂n+1x

1−2s
n+1 ∂n+1 + x1−2s

n+1 ∂ia
ij∂j , where i, j ∈ {1, . . . , n} and aij :

Rn → Rn×nsym is a positive definite, symmetric, Lipschitz continuous matrix field.
Then, following [7], [39], [8], we define

(−∆aij )
su(x′) := lim

xn+1→0
x1−2s
n+1 ∂n+1ū(x′, xn+1),

where ū solves the equation

Lū = 0 in Rn+1
+ , ū = u on Rn × {0}.

The operator (−∆aij )
s is self-adjoint. Considering the problem

(∂t + (−∆aij )
s)u = 0 in B1 × (−1, 1),

u = f in (Rn \B1)× (−1, 1),

u = f in Rn × {−1},

recalling (a slight modification of) the well-posedness theory for the mixed Dirichlet-
Neumann problem from [22] and denoting the corresponding Poisson operator by
Ps,aij , we obtain the direct analogue of Theorem 1:
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Theorem 5.3 (Cost of approximation for variable coefficients). Let h ∈ H1
0 (B1 ×

(−1, 1)) and ε > 0. Let W ⊂ Rn \ B1 be a Lipschitz domain with W ∩ B1 = ∅.
Then there exists a control function f ∈ L2(W × (−1, 1)) such that

‖h− Ps,aijf‖L2(B1×(−1,1)) ≤ ε,

‖f‖L2(W×(−1,1)) ≤ Ce
C(1+‖h‖σ

H1(B1×(−1,1))
)ε−σ‖h‖H1(B1×(−1,1)),

where C > 1 and σ > 0 depend on n, s, W , and the Lipschitz norm of aij.

Proof. We only give a sketch of the argument, as there are no major changes with
respect to the proof of Theorem 1. For the qualitative approximation property, it
suffices to note that the crucial identity

(v, Ps,aijf)L2(B1×(−1,1)) = −((−∆aij )
sϕ, f)L2(Rn)

remains valid. This can for instance be inferred by the extension definition of the
operator.

Next we note that the quantitative propagation of smallness result which is based
on three balls and boundary-bulk interpolation arguments is also true in this set-
up. This then allows to argue variationally as previously. Here we consider the
functional

Jε,h,s(v) =
1

2

∫
W×(−1,1)

|η(−∆aij )
sϕ|2 dxdt+ ε‖v‖L2(B1×(−1,1))

−
∫

B1×(−1,1)

hv dx dt,

(33)

where ϕ and v are related through

(−∂t + (−∆aij )
s)ϕ = v in B1 × (−1, 1),

ϕ = 0 in (Rn \B1)× (−1, 1),

ϕ = 0 in Rn × {1}.
(34)

This then concludes the argument.
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