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Prediction of leukocyte 
counts during paediatric acute 
lymphoblastic leukaemia 
maintenance therapy
Santeri Karppinen1*, Olli Lohi2 & Matti Vihola1

Maintenance chemotherapy with oral 6-mercaptopurine and methotrexate remains a cornerstone of 
modern therapy for acute lymphoblastic leukaemia. The dosage and intensity of therapy are based on 
surrogate markers such as peripheral blood leukocyte and neutrophil counts. Dosage based leukocyte 
count predictions could provide support for dosage decisions clinicians face trying to find and maintain 
an appropriate dosage for the individual patient. We present two Bayesian nonlinear state space 
models for predicting patient leukocyte counts during the maintenance therapy. The models simplify 
some aspects of previously proposed models but allow for some extra flexibility. Our second model is 
an extension which accounts for extra variation in the leukocyte count due to a treatment adversity, 
infections, using C-reactive protein as a surrogate. The predictive performances of our models are 
compared against a model from the literature using time series cross-validation with patient data. In 
our experiments, our simplified models appear more robust and deliver competitive results with the 
model from the literature.

Acute lymphoblastic leukaemia (ALL) is the most common cancer in childhood. In the Nordic countries, approx-
imately 210 children are diagnosed yearly and patients are treated with chemotherapeutic drugs according to 
the ALL protocols of the Nordic Society of Paediatric Haematology and Oncology (NOPHO)1. The last phase of 
the treatment, maintenance therapy (MT), continues until 2 to 3 years from diagnosis. During MT, patients are 
treated orally with daily 6-mercaptopurine (6 MP) and weekly methotrexate (MTX).

Conventional MT starts with a standard 6 MP/MTX dose defined in the protocol. After initialisation of 
treatment, the dosage of the cytotoxic drugs is adjusted to reach a degree of myelosuppression, reflected in the 
NOPHO ALL-2008 protocol by targeting a leukocyte count of 1.5–3.0 × 109/L, while keeping the neutrophil 
count above 0.5 × 109/L2. Individual adjustments of 6 MP/MTX doses are necessary due to substantial interindi-
vidual variability in 6 MP/MTX bioavailability and cellular pharmacokinetics, and a narrow therapeutic index.

Finding the right 6 MP/MTX dosage may be challenging because there is a substantial delay before steady-state 
response in the leukocyte count is reached. Furthermore, many other factors, such as infections, can cause leuko-
cyte fluctuations, and the dosage decisions during MT may be made by clinicians who have limited prior experi-
ence with 6 MP/MTX chemotherapy. Making the right decisions is crucial, as excessive dosage is associated with 
acute toxicity3 and the risk of second cancers4, whereas insufficient dosage results in poor treatment outcomes5–7.

In this work, we develop statistical models for predicting leukocyte counts based on the doses administered 
during MT. One motivation for our work is a potential future application, where predictive modelling would be 
a part of a dosage decision support system, which automatically fits the model with data accumulated for the 
patient so far. The system then provides the clinician with an interactive visualisation of the patient’s data, and 
leukocyte count predictions under alternative future dosing scenarios. This offers the clinician an analytical look 
on the data, and reassurance on her dosage decision. Ideally, the system could provide reliable predictions for 
most of the patients, but the clinician’s expertise would remain essential for decision-making under exceptional 
scenarios such as patients with rare genotypes that affect 6 MP metabolism or patients with an infection.

1University of Jyväskylä, Department of Mathematics and Statistics, Jyväskylä, FI-40014, Finland. 2Tampere Center 
for Child Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University 
Hospital, Tampere, FI-33521, Finland. *email: santeri.j.karppinen@jyu.fi

OPEN

https://doi.org/10.1038/s41598-019-54492-5
mailto:santeri.j.karppinen@jyu.fi


2Scientific Reports |         (2019) 9:18076  | https://doi.org/10.1038/s41598-019-54492-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

The scope of this work is in the development of the predictive models, and in the evaluation of their predictive 
accuracies. We do not consider the implementation of the models into the clinical practice, or suggest alternative 
dosing strategies. We focus on the mathematical modelling related to the prediction of leukocyte counts in the 
context of ALL, but our developments may also be relevant outside this context, for instance in computational 
personalised medicine regarding other myelosuppressive medication. Currently, there are two published works 
where leukocyte counts during ALL MT are predicted8,9. Here, we present two statistical models following a struc-
ture similar to the existing models, but instead of using ordinary differential equation models, we use nonlinear 
Gaussian state space models10 that stem from analogous stochastic differential equations. Our models introduce 
two simplifications, on the pharmacokinetic model for 6 MP11 and on the leukopoiesis model8,12. Our second 
model, an extension of the first, incorporates C-reactive protein (CRP) measurements as a surrogate for infections 
and models the effect of an infection as extra variation in (or discrepancy from) the leukopoiesis model.

Methods
The patient data were collected from historical medical records and consist of 23 patients under the age of 18 
who had received MT under the NOPHO ALL-2000 or ALL-2008 treatment protocols at the Tampere University 
Hospital in Finland. This registry study (R16527) was accepted by the director of the Science Center in the 
Tampere University Hospital according to the local practice, and the data were anonymized before further analy-
sis. The treatment length per patient varies from 227 to 524 days, with most of the patients receiving MT for more 
than 400 days. For each patient, the data contain the daily 6 MP dosage prescribed, as well as the leukocyte count 
and the CRP measurements made typically during weekly or biweekly visits to the hospital or the laboratory. The 
height and weight of each patient is also available at the start of MT. We used the Mosteller formula13 to calculate 
the body surface area (BSA) for all patients during the treatment. The height and weight gain of the patients dur-
ing the treatment was estimated by interpolating median growth curves obtained from the Centers for Disease 
Control and Prevention14. Because the patients’ genders are not available in the data, average growth curves over 
boys and girls aged under 20 years were used. For each patient, the interpolation was begun from the height and 
weight values recorded in the data. The patientwise time series of the leukocyte counts, 6 MP, CRP and BSA are 
in the Supplementary Dataset 1.

To compare the models, we use the root mean squared error (RMSE) and the mean absolute error (MAE). In 
addition, we compute α% coverage probabilities, that is, = ∑ ∈α

α
= y1CP { I }

n i
n

i i
1

1  for α ∈ {50, 90}, where yi 
denotes observation number i and αIi  denotes the α% probability interval for observation yi. This metric is used to 
evaluate the ability of the models to quantify the uncertainty related to the point predictions. All of the metrics are 
computed out-of-sample and in-sample.

The out-of-sample metrics are of most interest, as they are computed using data not used in the model fitting 
and are directly tied to the predictive performance of the models. In a time series context, a natural way to com-
pute them is to use time series cross-validation15 (TSC). In a single round of TSC, we partition the data to a train-
ing set with data up to time t, and a prediction horizon immediately following the training set. The model is fit 
using the training set and the observations that fall into the prediction horizon are predicted using the fitted 
model. The training dataset is then augmented with observations in the prediction horizon and the process 
repeats until the data have been exhausted. After TSC, we compute the metrics using the obtained predictions and 
the corresponding observations. In the in-sample case, the metrics are computed based on model fits to full data-
sets by predicting all of the observations that were also used in the model fitting.

In the following subsections, we discuss the predictive models and estimation methods. We denote model 
state variables with capital letters, and parameters and data values in lowercase. A glossary and details regarding 
symbols used in the model definitions are also given in the Supplementary Tables 1–5.

Jayachandran et al. model (JM).  The model from the literature, which we refer to as JM, is a joint 
8-compartment model based on the work of Jayachandran et al.8,11 The model consists of two submodels, the 
first of which is the 3-compartment pharmacokinetic model11 for the metabolisation of 6 MP to red blood cell 
6-thioguanine (TGNRBC):
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The authors assume TGNRBC to be associated with the toxicity in the bone marrow due to 6 MP and hence 
model the variable as a surrogate for the myelosuppressive effect of 6 MP. The dataset in the article contained the 
administered 6 MP doses and the measured TGNRBC concentrations. The compartments Xgut and Xplasma repre-
sent 6 MP in gut and plasma, Xtgn is the TGNRBC compartment, d t( ) is the dose input at time t and the remaining 
symbols are parameters. The functional form of d t( ) was not given8,11. Hence, we assume d t( ) equals zero unless a 
dose is given exactly at time t.

The second submodel is the leukopoiesis model by Jayachandran et al.8, which is a modification of the widely 
used 5-compartment model introduced by Friberg et al.12. We detail the model for log-transformed state variables:
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Here, the state variables form a maturation chain from stem cells (S) to leukocytes in circulation (L) through three 
maturation phases denoted by the compartments =C i, 1, 2, 3i( ) . TGNRBC (Xtgn) is assumed to diminish the 
rate of stem cell production. The remaining symbols are parameters.

As no information regarding the initial values of (1) or (2) is given8,11, we assume that the patient’s system 
starts in a steady state where no change in the cell concentrations is occuring initially. The steady state initialisa-
tion is obtained by setting the time derivatives at the start of the treatment (time zero) to zero. This is achieved by:
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whenever <k ktr pl
max. Furthermore, we assume no 6 MP or TGNRBC exists in the patient’s system at the begin-

ning of MT, i.e. = = =X X X(0) (0) (0) 0gut plasma tgn .
The log-leukocyte count measurements of a patient, ≥l( )k k 1, observed at times tk, are assumed i.i.d. with 

Gaussian errors:

θ σ∼ ˆl N L t d( ( , , ), ), (4)k k k leuk1:
2

where θL̂ t d( , , )k k1:  is the solution of the state variable L at time tk, dependent on patient specific parameters θ and 
administered doses up to time index k, d k1: .

2-compartment model (TCM).  Our first model, denoted TCM, can be seen as a K-PD model16. TCM has 
a structure similar to that of JM, which it simplifies in two ways.

First, the pharmacokinetic model (1) is replaced with the pharmacokinetic model
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The model reflects changes in the cytotoxicity induced by 6 MP, M, in response to the 6 MP dose administered 
to the patient. The value of M models the direct effect of chemotherapy, and is the counterpart of the term 

+

e X
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in (2). The value of the drug input function at time t, d t( ), equals the last 6 MP dose administered during the last 
24 (Tdur) hours normalised by the patient’s BSA, and zero if no dose was given. While this leads to noticeably dif-
ferent behaviour compared to (1) in the hourly time scale, the average daily behaviour of M t( ) remains very 
similar to that of Xtgn. A similar observation is made by Le et al.9, who note that varying Tdur  does not have a 
strong influence on the concentration of TGNRBC in a prior pharmacokinetic model introduced by Jayachandran 
et al.8, which is very similar to (1). Like the pharmacokinetic model of JM, (5) concentrates on the cytotoxic effect 
of 6 MP, and does not include MTX. We return to this matter in the discussion.

The parameters etgn and h play roles similar to kcm and k in (1) as is evident from the similar functional form of 
(5) and the differential equation for Xtgn. Furthermore, the parameter kme  is equivalent in (1) and (5). 
Jayachandran et al. reported a very high posterior correlation between the parameters kme and kcm in (1) 11. We 
incorporate kme into the first term of (5) as this reduces the correlation between kme and etgn. The simplified form 
of (5) is motivated by simulation and parameter estimation, which reveal that the functional form of (5) is flexible 
enough to match solutions of Xtgn when most of the parameters in (1) are fixed as in the analysis of Jayachandran 
et al.

The second simplification concerns the leukopoiesis model (2), which is replaced with a stochastic differential 
equation analogue of the equation for S:

ρ
ρ
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(6)
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where Bt
L( ) is the Brownian motion and the parameter σL is the leukopoiesis standard deviation. The parameter ktr 

in the equation for S is substituted by the leukocyte elimination rate kL in (6), as (6) is a model for leukocyte 
counts. The leukopoiesis model (6) eliminates the cell maturation chain in (2) and models the effect of chemo-
therapy directly on the leukocytes in circulation. Unlike in (2), the drug effect is linear.

https://doi.org/10.1038/s41598-019-54492-5


4Scientific Reports |         (2019) 9:18076  | https://doi.org/10.1038/s41598-019-54492-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

To obtain the state equation of TCM, (7), we solve the piecewise linear differential Eq. (5) at each interval 
−t t[ , )k k1  with the initial condition =− −M t M( )k k1 1, and apply the Euler-Maruyama discretisation17 to (6), which 

results in
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where =− −d d t( )k
BSA

k1 1 , ∆ = − −t t tk k k 1, and ζk are standard normal random variables for all k. Initial distributions 
∼M N(0, 0)1  and ∼ .L N l( , 0 5)1 1  are assumed for the state variables.
The log-leukocyte counts are related to the state variable L with the observation equation

ε ε σ= + ∼ .l L N, (0, ) (8)k k k
leuk

k
leuk

leuk
2

2-compartment model with incorporated CRP (TCM-CRP).  Our second model, denoted TCM-CRP, 
is an extension of TCM, where the leukopoiesis standard deviation σL is inflated in case of infection, for which the 
patient CRP measurements are taken as a surrogate.

TCM-CRP appends the state Eq. (7) with a third equation concerning an additional state variable, V, the level 
of infection. We model V using an Ornstein-Uhlenbeck process:

θ σ= + =dV V dt dB V v[ ] , , (9)t ou t ou t
V( )

0 0

where t denotes time, Bt
V( ) is the Brownian motion, and θou and σou are parameters. Conditional on the previous 

value in the series, V in (9) is Gaussian18, which leads to the following state equation:

σ θ η= + −θ θ θ
−

− ∆ − − ∆ ∆V V e e e(2 ) 1 , (10)k k
t

ou ou
t t

k1
1/2 2ou k ou k ou k

where k denotes the index of the time point and ηk are standard normal random variables for all k. The only mod-
ification to (7) in TCM-CRP is that σL is set to depend on Vk and parameters σL

0 and βcrp by

σ σ β=V V( ) exp( ), (11)L k L crp k
0

making TCM-CRP a stochastic volatility type model. The state equation for TCM-CRP then consists of (7) mod-
ified with (11), and (10). The distribution of V1 is set to the stationary distribution of (9),

σ
θ
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and the distributions for M1 and L1 remain as in TCM.
Finally, TCM-CRP incorporates the +xlog( 1)-transformed CRP measurements, vk, into the observation Eq. (8) 

by setting

ε ε σ= + ∼ .v V N, (0, ) (12)k k k
crp

k
crp

crp
2

Naive mean model (NM).  The fourth model we consider is a naive mean model (NM), which assumes that 
the leukocyte counts are i.i.d. and follow the normal distribution µ σN( , )nm nm

2 . This model is an oversimplification, 
as it does not take into account the dosage given to the patient. Hence, we consider NM as a baseline for the mod-
els TCM, TCM-CRP and JM, and not as a realistic model candidate for predicting leukocyte counts.

Estimation methods.  To estimate the parameters of the models TCM, TCM-CRP and JM, we use maxi-
mum a posteriori (MAP) estimation, where the posterior density

θ θ θ| ∝ |p y p y p( ) ( ) ( ), (13)

is maximised with respect to the logarithm of the free parameters, θ, in the model. In (13), y denotes the dataset 
for a single patient.

The value of θ|p y( ) in (13) for JM and a given θ stems from (4). We use the Rosenbrock23 method19 of the 
DifferentialEquations.jl package20 in the Julia programming language21 to solve the systems of differential equa-
tions. The predictions for JM are obtained by estimating the free parameters with data up to time index k, y k1: , and 
solving the resulting system of differential equations on the interval + +t t[ , ]k k h1 pred

, where hpred denotes the length 
of the prediction horizon.

To compute θ|p y( ) and the predictions for TCM and TCM-CRP, we use the extended Kalman filter (EKF) 
which is an approximate method for computing the filtered state distributions for state space models with nonlin-
ear dynamics in the state and observation equations10,22.
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In all maximisation problems, we assume the joint prior distribution θp( ) in (13) consists of vague independ-
ent N(0, 10) distributions for each free parameter. The Nelder-Mead method23,24 in the Optim.jl package25 is used 
for the computation.

To estimate the parameters of the model NM, we compute the sample mean and variance of the leukocyte 
counts.

Results
With JM, we attempted to reproduce the analysis of Jayachandran et al.8,11 as accurately as possible and hence 
estimated parameters kcm in (1) and ktr, kpl

max, kL, γ and emax in (2). These parameters were found to have the great-
est influence on the fitted values of JM’s submodels in sensitivity analyses conducted in both articles8,11. In addi-
tion, the parameter σleuk was estimated. The remaining parameters were fixed to the values reported by 
Jayachandran et al.

With TCM, the parameters etgn, h, kpl
max, kL and σL were estimated. The common parameters with JM, kpl

max and 
kL, were estimated, but we fixed γ to a value reported by Jayachandran et al.8, because estimating it resulted in fits 
with oscillating behaviour not visible in the datasets. Furthermore, we estimated the leukopoiesis standard devi-
ation σL, but fixed the measurement standard deviation σleuk to a literature value of 0.057 for the accuracy of 
measuring neutrophil counts26. The remaining parameters, kme and ρ, were fixed to the same values as in JM. The 
discretisation ∆tk was set to 0.25.

TCM-CRP was treated similarly to TCM, with the parameter σL
0 as the equivalent of σL. However, to maintain 

the same amount of free parameters as in TCM, we fixed the additional parameters σcrp, σou, θou and βcrp. As the 
coefficient of variation for measuring CRP at 3.5 mg/l is close to 10%27 and + ≈x xlog( 1) log( ) when ≥ .x 3 5, 
we fixed σ = .0 1crp  (note that if µ σ∼X N( , )2 , µ > 0 and σ2 sufficiently small, then µ σ µ∼X Nlog( ) (log( ), ( / ) )2  
approximately). The remaining parameters, θ σ θ β= ( , , )V ou ou crp , were fixed to estimates obtained by maximising 
the objective

∏ θ θ θ θ|p y p( , ) ( , )
(14)i

i i V i V

with respect to θ θ θ θ…( , , , , )V1 2 23 . In (14) each patient is indexed with i; yi and θi denote the dataset and the 
parameter vector of the free parameters in TCM for patient i. The joint approach for obtaining an estimate of θV  
was motivated by the fact that if θV  were estimated individually for each patient, inadequate estimates of βcrp were 
obtained for patients with mild or no infections during their treatment.

For all models, TSC was carried out such that the first training dataset for each patient was set to contain the 
first 8 weeks of the patient’s data. In one case however, the first 8 weeks contained only one measured leukocyte 
count, and hence the first training set was extended to include two observations. For all models, TSC was run 
twice, with a prediction horizon of two and four weeks. The TSC schemes were completed successfully for the 
models TCM and TCM-CRP. With the two and four week schemes of JM, there were 31 and 19 TSC rounds where 
optimisation did not converge or prediction failed with a solver error. The patients who had at least one conver-
gence or prediction failure during TSC with any horizon were 1, 4, 6, 7, 8, 11, 12, 20 and 22. Furthermore, when 
the models were fit to the full datasets, the optimisation of the parameters of JM did not converge for patient 6. In 
the summary tables that follow, the problematic TSC rounds and fits have been removed prior to computing the 
metrics. In the patientwise listings, these have not been removed.

The out-of-sample metrics with both of the prediction horizons are given in Table 1. The tabulated values are 
means over the metrics computed for each patient (underlying data available in the Supplementary Dataset 2). To 
compute the values, the logarithmic scale predictions of the models TCM, TCM-CRP and JM have been trans-
formed to the linear scale. In the table, the means of RMSE and MAE suggest that the point predictive accuracies 
of TCM and TCM-CRP are slightly greater than the predictive accuracy of JM regardless of the prediction hori-
zon. The baseline model NM performs surprisingly well and is roughly as accurate as JM.

The widths of the predictive probability intervals are closer to their target values for TCM and TCM-CRP than 
JM: in the case of the two week horizon, we observe discrepancies of 4–6% vs. 8% for CP50 and discrepancies of 
10–11% vs. 14% for CP90. The respective discrepancies increase to about 6–7% vs. 10% for CP50 and 13–14% vs. 
18% for CP90, when the horizon is extended to four weeks. The models TCM, TCM-CRP and JM underestimate 
the width of the intervals. This is likely a consequence of using MAP estimation, which does not account for 

2 weeks 4 weeks

TCM TCM-CRP JM NM TCM TCM-CRP JM NM

CP50 0.457 (0.13) 0.442 (0.13) 0.421 (0.13) 0.514 (0.15) 0.443 (0.15) 0.428 (0.14) 0.402 (0.15) 0.507 (0.15)

CP90 0.795 (0.11) 0.787 (0.11) 0.761 (0.14) 0.873 (0.09) 0.767 (0.13) 0.759 (0.13) 0.722 (0.17) 0.863 (0.09)

MAE 0.860 (0.33) 0.870 (0.35) 0.964 (0.42) 0.986 (0.43) 0.896 (0.34) 0.914 (0.38) 1.016 (0.45) 1.001 (0.44)

RMSE 1.232 (0.51) 1.244 (0.53) 1.387 (0.66) 1.308 (0.57) 1.278 (0.55) 1.309 (0.64) 1.430 (0.68) 1.326 (0.59)

Table 1.  The out-of-sample metrics for the models (TCM, TCM-CRP and JM) and the baseline model NM with 
both of the prediction horizons: means of coverage probability (CP), mean absolute error (MAE) and root mean 
squared error (RMSE). Standard deviations are in parentheses. Similar means are obtained if the metrics are 
computed modelwise without considering the patients separately.
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the uncertainty in the model parameters. A more accurate representation of the uncertainty in the predictions 
could be obtained for example by using Markov chain Monte Carlo methods28 that produce samples from the full 
posterior.

The predictive metrics are examined further in Fig. 1, which plots the patientwise MAE of the models in case 
of the two week prediction horizon. The plot shows that for most of the patients, TCM and TCM-CRP deliver pre-
dictions that are 5–20% more accurate than those of JM. For patients 7 and 15, however, the prediction accuracy is 
25% and 35% better, respectively. Compared to TCM and TCM-CRP, JM performs slightly better for patients 11, 
14, 21 and 4, who favour JM by 5–12%. In 13 cases out of 23, the predictive performance of JM appears better than 
that of NM. The figure with the four week prediction horizon, with similar findings, is given in the Supplementary 
Fig. 1.

Table 2 (underlying data available in the Supplementary Dataset 3) shows the in-sample metrics. The 
in-sample RMSE and MAE are computed between the ‘fitted mean‘ and the observed leukocyte counts. For TCM 
and TCM-CRP, we refer to the fitted mean as the exponentiated filtered mean of the state variable L obtained by 
first estimating the model parameters from the patient’s full dataset and then running EKF with all leukocyte 
counts set to missing, conditional on the estimated parameter values. For JM, the fitted mean is simply the expo-
nentiated solution of L conditional on the parameter vector estimated from the full patient dataset, and for NM, 
the fitted mean is the estimate of µnm. The in-sample means of RMSE, MAE and the coverage probabilities are very 
similar for JM, TCM and TCM-CRP, with JM reaching a slightly better value for CP50. As expected, the point 
predictions of TCM, TCM-CRP and JM are better than those of NM.

For many patients, the in-sample fits of JM exhibit oscillating behaviour, which by visual inspection is not 
present in the datasets. An example is shown in Fig. 2, which plots the fit of JM with TCM. In contrast, the fit of 
TCM is smoother and only captures the average behaviour of the leukocyte counts. See Supplementary Figs. 2–24 
for graphical comparisons for all of the patients. The fits of the models TCM, TCM-CRP and JM to the full patient 
datasets are also given in the Supplementary Dataset 4.

Inspecting the predictions made during TSC in a similar manner, we found that the weaker out-of-sample 
metrics for JM are partly explained by the fact that for many patients, the model produces unstable predictions 

Figure 1.  The patientwise out-of-sample mean absolute error for the models (TCM, TCM-CRP, JM) and the 
baseline model NM (top), and the relative error with respect to JM (bottom). The black line in the bottom plot 
depicts the line of equal predictive accuracy with JM. The out-of-sample values are from time series cross-
validation with the two week prediction horizon. Each model is represented by a color. The patients have been 
ordered with increasing mean MAE over the models.

TCM TCM-CRP JM NM

CP50 0.571 (0.08) 0.572 (0.08) 0.545 (0.07) 0.583 (0.11)

CP90 0.904 (0.03) 0.906 (0.03) 0.904 (0.03) 0.921 (0.03)

MAE 0.795 (0.31) 0.800 (0.31) 0.812 (0.32) 0.924 (0.36)

RMSE 1.195 (0.56) 1.203 (0.57) 1.199 (0.56) 1.304 (0.58)

Table 2.  The in-sample metrics per model: means of coverage probability (CP), mean absolute error (MAE) 
and root mean squared error (RMSE). Standard deviations are in parentheses.
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especially in the beginning of the treatment when only a few measurements are available for parameter estima-
tion. Figure 3 shows an example of this by plotting the predictions of JM and TCM from cross-validation with the 
four week prediction horizon. Here, the predictions of JM appear unstable until treatment day 175 while the pre-
dictions of TCM appear more consistent. The unstability is unfortunate, since in the beginning of the treatment 
there is a lot of uncertainty in how the treatment will affect the patient. Hence, good predictions in this period of 
treatment are particularly important. The figure also shows some of the estimation problems we faced with JM, 
since the differential equation solver was unable to make a prediction for treatment days 275–350. The similar 
figures for all the patients are shown in the Supplementary Figs. 25–47.

Based on Table 1 and Fig. 1, there appears to be little difference between the out-of-sample metrics of TCM 
and TCM-CRP, with TCM reaching slightly better values than TCM-CRP. However, TCM-CRP has an interesting 
property that is not visible in the predictive metrics. This is showcased in Fig. 4 where the fit of TCM is compared 
to that of TCM-CRP in the case of a patient with infections during the treatment. Here, accounting for the infec-
tion induced variability in the leukocyte count results in narrower probability intervals for TCM-CRP, when 
infection is not present. Furthermore, when compared to TCM, the fitted mean of TCM-CRP is slightly shifted 
away from leukocyte counts measured during infection, indicating that the model is downweighting observations 
that occur during infection.

Figure 2.  The models TCM (top) and JM (bottom) fit to the full dataset of patient 20 with time in days on the 
x-axis and leukocyte count on the y-axis. The fitted mean is the black line and probability intervals (50%, 90%) 
are plotted in green. The 6 MP dosage for the depicted patient was intensified incrementally to 50 mg during 
the first 200 days of treatment. After this, no dose was given for approximately 20 days. The dosage was then 
incrementally intensified back to 50 mg until treatment day 275 and kept constant until the end of the treatment. 
Further dose intensification was not possible due to low neutrophil counts.

Figure 3.  Predictions for patient 7 at each round of time series cross-validation with the four week prediction 
horizon for the models TCM (top) and JM (bottom). The plot for JM lacks predictions for treatment days 
275–350, since the differential equation solver could not solve JM conditional on the parameter estimates found 
during optimisation. The 6 MP dosage for the depicted patient was intensified incrementally to 62.5 mg during 
the treatment. The dosage was not intensified further due to low neutrophil counts.
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Discussion
In this work, we present two Bayesian nonlinear state space models, TCM and TCM-CRP, for predicting leuko-
cyte counts during ALL MT. A predictive comparison between the models, and the model from the literature, 
JM, is then carried out. In prior works, predictive models for leukocyte counts during ALL MT have not been 
compared against each other according to their out-of-sample predictive performance. We argue that the devel-
opment of predictive models should be guided by model comparison using out-of-sample metrics. Whenever 
possible, predictive models can also be validated by relating properties of the models to values available in the 
clinical literature. An approach like this was recently undertaken in a similar work29 related to acute myeloid leu-
kaemia, where leukocyte count recovery times were used to discriminate between model candidates with similar 
predictive power.

The best-performing model according to our results, TCM, simplifies the model from the literature, JM, in 
the pharmacokinetic and the leukopoiesis model, and delivers a prediction accuracy competitive with JM. The 
simplification in the pharmacokinetic model results in a focus on the daily behaviour of the cytotoxicity induced 
by 6 MP, which is in contrast with the pharmacokinetic model of JM that models the pharmacokinetics in the 
hourly granularity. We believe that such a fine time scale is unnecessary, when predictions are required on a daily 
or weekly basis, as in the present application. Similarly, the simplification of the leukopoiesis model changes the 
focus from the daily granularity to the weekly, which is justified since the leukocyte counts are typically measured 
at this rate. Despite these simplifications, we argue that TCM still captures the most important features of the phe-
nomenon: the effect of 6 MP on the level of cytotoxicity, and the effect of the cytotoxicity on the leukocyte counts. 
The simplifications also reduce the number of parameters to be estimated, which allows for robust estimation of 
the model with sparse clinical datasets.

In our experiments, we found that JM was difficult to estimate reliably with our heterogeneous dataset and 
we had issues with optimisation and prediction. In absence of better initial values for the parameters, we used 
the estimates reported by Jayachandran et al.8,11. If these estimates are far from adequate for the patients in our 
dataset, they can play a role in the estimation problems. However, in general almost any variation of the model 
we attempted to fit during the process of preparing this work had estimation problems for at least some patients. 
Perhaps related to the estimation problems, the computation time to produce the cross-validation results with 
the two week prediction horizon, for example, was roughly hundredfold for JM compared to that of TCM 
(16.55 hours vs. 0.15 hours).

A comment by a reviewer led us to realise that the initial values of the state variables of the JM leukopoiesis 
model seem to play a significant role on how the model performs. When we initialised them by estimating a com-
mon value for every state variable, there were less TSC rounds with convergence or prediction issues. However, 
this initialisation resulted in a lower predictive accuracy than the model presented, and hence we chose the steady 
state initialisation. Lately, the impact of the initialisation has also been noted in a similar work29, where models 
similar to the JM leukopoiesis model were investigated. It is possible that the alternative initialisation strategies 
found in the work might further improve the performance of JM.

Another noteworthy point regarding JM is that Jayachandran et al.8,11 had additional TGNRBC measurements 
in their dataset, which our dataset does not contain. Fitting the model without these measurements might have 
implications for the identifiability of the model, and hence the observed predictive performance. Furthermore, 
the dataset of Jayachandran et al.11 contains adults, and the pharmacokinetic profiles of adults and children differ. 
Allometric scaling30 could improve the model, and allow for more immediate interpretation.

Figure 4.  The fit of the models TCM (top) and TCM-CRP (middle) to the dataset of patient 4. The +xlog( 1)
-transformed CRP measurements are shown at the bottom. The dotted line in the plot for TCM-CRP is the fitted 
mean of TCM.
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The baseline model NM was found to perform on par with JM and have point predictive metrics not far from 
those of TCM. This is surprising, as the model does not account for the dosage administered to the patient. We 
suspect that the success of this over-simplified model might be explained by our data, where for many patients, 
the treatment was successful and the leukocyte counts were centered around a common value, which makes their 
mean a relatively good prediction. With data having little variation in the leukocyte counts and/or dosage, it is 
difficult to improve the predictive performance.

The model TCM-CRP extends TCM by incorporating C-reactive protein (CRP) measurements into the model 
as a surrogate for infections. To our knowledge, TCM-CRP is the first model to attempt the inclusion of infection 
information to a leukopoiesis model. In our dataset, 65% of the patients have at least one infection during their 
treatment (by counting patients who have at least one CRP measurement greater than or equal to 10 mg/L), high-
lighting the prevalence of infections in MT. Furthermore, as there is an evident relationship between CRP and the 
leukocyte count (see Fig. 4), we argue that infections should be accounted for in ALL MT predictive modelling. In 
previous works, patients with infections during the treatment have been excluded from analysis8,9.

Figure 4 shows a promising fit of TCM-CRP, but in general the parameter estimates computed for the model 
during TSC were similar to those of TCM, leading to similar predictions. This is likely because the state variable 
V in TCM-CRP does not directly influence the mean of the state variable L, but controls its variability instead. 
We modelled infection this way, because the relationship between CRP and the leukocyte count appears hard to 
predict: at least in our data, elevated CRP seems to be associated with both increased and decreased leukocyte 
counts, with no apparent pattern. This is not surprising, since it is well known that CRP is nonspecific and can 
exhibit variable behaviour in different kinds of inflammatory states. Hence, our modelling strategy for infections 
did not aim to utilise CRP as a regressor (or predictor) for leukocyte counts, but rather to improve the robustness 
of the model against infections by downweighting the outlying leukocyte counts when CRP is elevated. Our hope 
was that this would result in a model that better predicts data measured when no infection is present. Based on 
the obtained results, this was not entirely successful, perhaps due to the proposed Ornstein-Uhlenbeck model 
and possibly the functional form of σL being inadequately specified. The approximate nature of EKF can also 
play a role here, and better results for TCM-CRP could possibly be obtained by using more accurate estimation 
methods, such as particle Markov chain Monte Carlo31.

The existing models predicting leukocyte counts during ALL MT use ordinary differential equation models8,9. 
In contrast to that approach, the nonlinear state space models we use allow for additional stochasticity in the state 
equation of the model, which we believe helps account for unmodelled variations in the data more accurately.

The leukopoiesis models of Jayachandran et al.8 and Le et al.9 extend the well-known 5-compartment struc-
ture introduced by Friberg et al.12, for 6 MP (and MTX). It is worth mentioning that the chemotherapy drugs 
considered by Friberg et al. do not include 6 MP (or MTX), and are given in pulses, which is in contrast with the 
continuous low-dose administration of 6 MP in ALL MT. This may explain why our simpler one-compartment 
leukopoiesis model provided an improved predictive model in our experiments, and suggests that the commonly 
used 5-compartment model might not be optimal for all applications.

Little is known about the adequacy of pharmacokinetic models of 6 MP too, as datasets with recorded 6 MP 
doses and metabolites are rare and sparse, making model validation difficult. We are only aware of the works of 
Jayachandran et al.8,11 and Hawwa et al.32 where the dataset contained data on both administered 6 MP doses 
and TGNRBC. Furthermore, out-of-sample model comparison was only performed by Hawwa et al. Although 
TGNRBC was previously found to be associated with myelosuppression33, later research has shown TGNRBC 
to be only weakly related to levels of DNA-thioguanine (TGNDNA), the main mediator of the cytotoxicity of 6 
MP34. Hence, modelling TGNRBC as the end point of the pharmacokinetic model might not provide optimal 
predictions when the model is used in conjunction with a leukopoiesis model.

Recently, there has been increased interest in TGNDNA, as a study has found higher TGNDNA concentra-
tions associated with improved relapse-free survival2 and dosage could potentially be guided better by monitoring 
TGNDNA concentrations, as factors such as age, ethnicity and time of year confound the leukocyte counts35,36. 
However, to our knowledge, pharmacokinetic models for 6 MP with TGNDNA as the end point have not yet 
emerged and present an interesting prospect for future research regarding predictive modelling in the context of 
ALL MT. Moreover, if data with TGNDNA concentrations and leukocyte counts were available, the modelling 
framework of nonlinear state space models used in this work could readily incorporate the metabolite measure-
ments into the model, and would in theory allow for the simultaneous prediction of the leukocyte count and the 
TGNDNA concentration, providing the clinician with extra information for decision-making.

In this work, we considered modelling the leukocyte counts based on 6 MP dosage only. We did not attempt 
to include MTX into our models, because the 6 MP and MTX dosages are strongly linked in our data, making 
reliable estimation of a joint model difficult. The concurrent work of Le et al.9 incorporated patient MTX doses 
into their leukopoiesis model. While a comparison of the model to a model without MTX was not shown, incor-
porating MTX is likely an important step forward in ALL MT predictive modelling. However, we note that the 
rationale of MTX dosage in ALL MT is mainly that the drug increases the bioavailability of 6 MP37,38, and only 
partially the cytotoxic effects of the drug itself. Hence, rather than incorporating the metabolites of MTX into the 
function edrug  as was done by Le et al., our intuition is that the MTX metabolites should rather be a covariate in the 
pharmacokinetic model for 6 MP, perhaps related to the value of the parameter etgn in (7) or similar in another 
model.

Another interesting work in the literature is the work of Hawwa et al.32, who investigated population phar-
macokinetic models for 6 MP. The authors incorporated patient thiopurine methyltransferase (TPMT) genotype 
and BSA as covariates into their model and found that both variables reduced the interindividual variability in 
the model parameters significantly. We did not include the TPMT genotype to our pharmacokinetic model as the 
data were missing for 13 of the 23 patients, and of the remaining patients, 9 were of TPMT wildtype, only one was 
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TPMT heterozygous and there were no TPMT homozygotes. Hence, with the current data available, our model 
is representative of patients who are of TPMT wildtype, the genotype that covers 86–97%39 of the population.

Combining our work with the work of Le et al.9 and Hawwa et al.32, it is possible to envision a model with the 
important covariates taken into account, improving the leukocyte count predictions. However, availability and 
sparseness of datasets remains a problem. Further improvements to the predictive performance could likely be 
obtained with hierarchical models linking the parameter vectors of the individual patients with hyperparameters. 
Such joint modelling has, to our knowledge, only been conducted in the context of ALL MT by Hawwa et al. with 
their pharmacokinetic model. In the course of preparing this work, we attempted to fit such models, but faced 
unresolvable computational problems likely due to the lack of 6 MP metabolite measurements in the dataset. 
Simpler joint models assuming the same values for a subset of parameters across patients were estimatable, but 
did not produce better predictive results than fitting the models to each dataset individually, likely due to the high 
interindividual variability in the parameters.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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