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Abstract:19

The design of water treatment plants requires simultaneous analysis of technical, economic and20

environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages21

of an interactive multiobjective optimization (MOO) method over a posteriori methods in an unexplored22

field, namely the design of a biological treatment plant for drinking water production, that tackles the23

process drawbacks, contrarily to what happens in a traditional volumetric-load-driven design procedure.24

Specifically, we consider a groundwater denitrification biofilter, simulated by the Activated Sludge25

Model modified with two-stage denitrification kinetics. Three objectives were defined (nitrate removal26

efficiency, drawbacks on produced water, investment and management costs) and the interactive27

method NIMBUS applied to identify the best-suited design without any a priori evaluation, as for28

volumetric-load-driven design procedures. When compared to an evolutionary MOO algorithm, the29

interactive solution process was faster, more understandable and user-friendly and supported the30

decision maker well in identifying the most preferred solution (main design/operating parameters) to31

be implemented. Approach strength has been proved through both sensitivity analysis and positive32

experimental validation through a pilot scale biofilter operated for three months. In synthesis, without33

any “a priori” evaluation based on practical experience, the MOO design approach allowed obtaining a34

preferred Pareto optimal design, characterized by volumetric loading in the range 0.85-2.54 kgN m-3 d-35

1 (EBCTs: 5-15 min), a carbon dosage of 0.5-0.8 gC,dos/gC,stoich, with SRTs in the range 4-27 d.36

37

Keywords: Water treatment; Interactive method; NIMBUS method; IND-NIMBUS; Decision support;38

Pareto optimality.39

40

1. Introduction41

Designing a water treatment plant involves selecting the best process and defining the optimal42

configuration to guarantee the required removal efficiency at the lowest global cost, standing for43

economic and environmental costs at the same time. An effective plant design should manage multiple44

aspects, such as water quality, available treatment technologies, operational constraints, construction45

challenges, regulatory requirements, consumer/environmental concerns and economic feasibility46
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(Crittenden et al., 2012). Even when considering only the last aspect, one must balance between47

treatment efficacy, investment and operational costs for treatment unit realization and running, and both48

investment and operational costs for additional treatment units that could be required as a consequence49

of specific drawbacks of the selected process (such as water pH variation, biomass leakage, biological50

or chemical reactions by-products in the treated effluent) (AWWA and ASCE, 2005). Experience-based51

design approaches, such as volumetric-load-driven procedures for biological treatment processes, do52

not optimize design cases from both investment and management points of view, as they are based on53

average behavior considerations (Rivas et al., 2008).54

Thus, designing a water treatment plant represents a complex decision problem involving multiple55

conflicting criteria (Crittenden et al., 2012). Indeed, decision support tools and methods (Hakanen et56

al., 2013; Hamouda et al., 2009; Hartikainen et al., 2015; Maier et al., 2014; Nicklow et al., 2010; Poch57

et al., 2004; Reed et al., 2013) are needed to support the choice of the best design highlighting the trade-58

offs involved. Despite the broad literature on applying decision support tools for water management59

problems (Brown et al., 2015), tools to support treatment unit design are limited and most references60

focus on water resource systems and wastewater treatment applications. However, drinking water61

treatment design has specificities that do not allow the direct application of results from the wastewater62

field. For instance, adopting a biological process for drinking water treatment requires the careful63

evaluation of typical process drawbacks that are usually neglected in the wastewater field, such as by-64

products of (incomplete) biological reactions or biomass leakage in treated water.65

An example of applying a biological process for drinking water production is contamination of the66

water supply source by nitrate. Pollution by nitrate endangers public health (Dahab and Lee, 1988;67

Kapoor and Viraraghavan, 1997; Soares, 2000; Shrimali and Singh, 2001; Magram, 2010, Sharma and68

Sobti, 2012) and regulation limits have been imposed by US Environmental Protection Agency (US69

EPA) and the European Commission: in Italy, the regulatory limit is set at 50 mg/L for nitrate and70

0.5 mg/L for nitrite in drinking water. Nitrate removal is attainable through different treatment71

processes, as catalysis, reverse osmosis, ion exchange, and heterotrophic denitrification (Kapoor and72

Viraraghavan, 1997; Soares, 2000; Shrimali and Singh, 2001). Among the full-scale applied73

alternatives, biodenitrification is the most cost-effective, as operational costs are minimized by the74
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absence of any brine to be disposed of or treated (Soares, 2000; Shrimali and Singh, 2001; Aslan, 2008).75

Biodenitrification exploits the bacteria ability to reduce nitrates to gaseous nitrogen in an anoxic76

environment, given the presence of biodegradable organic carbon which ensures anoxic conditions and77

acts as the electron donor (Rittman and McCarty, 2001). The main weakness of biodenitrification78

applied to drinking water production is the sensitivity to variations in feeding and operating conditions,79

which can affect the overall process performance, enhancing the accumulation of nitrite. Besides, two80

aspects have to be considered in the risk of bacterial regrowth in distribution networks, which are81

usually neglected in case of wastewater: the release of biomass and the presence of readily82

biodegradable organic carbon in the effluent from the biological reactor. These two represent further83

parameters to be considered in process evaluation.84

Tools that support optimization of multiple conflicting objectives belong to the field of multiobjective85

optimization (MOO). MOO methods optimize mathematical models involving multiple conflicting86

objective functions and allow the identification of so-called Pareto optimal solutions, reflecting the87

trade-offs among the conflicting objectives. A solution is called Pareto optimal if none of the objective88

function values can be improved without impairing at least one of the other objectives. When89

considering two solutions P1 and P2, P1 is said to be dominated by P2 if P2 is better than P1 with respect90

to at least one objective and not worse than P1 with respect to all other objectives. Thus, a Pareto optimal91

solution is not dominated by any other solution.92

A MOO problem can be formulated as (Miettinen, 1999):93

,൯ݔଵ൫ݖ൛݁ݖ݅݉݅݊݅݉ … , ,൯ݔ௝൫ݖ … , ൯ൟݔ௠൫ݖ (1)

subject to94

ݔ = ,ଵݔ) … , ௜ݔ , … , (௡ݔ ∈ ܵ, (2)

where95

ܵ = ൛ݔ ∈ ℝ௡| (݈ܾ௜ ≤ ௜ݔ ≤ ௜ܾݑ , ݅ = 1, … ,݊) ܽ݊݀ ൫݌௞൫ݔ൯ = 0, ݇ = 1, … , ൯ݍ݁ ܽ݊݀ ൫ݍ௛൫ݔ൯ ≤

0,ℎ = 1, … .൯ൟݍ݁݅
(3)

The real-valued objective functions :௝ݖ ܵ → ℝ are simultaneously optimized in the feasible region ܵ ⊂96

ℝ௡, which is a set in the design space defined by the lower (݈ܾ௜) and upper (ܾݑ௜) bounds for the n design97
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variables constraints. By mapping a design variable vector98 (௛ݍ) and inequality (௞݌) ௜ as well as equalityݔ

with the objective functions, objective vectors in the m-dimensional objective space are obtained. In99

what follows, we use the terms solution and design as synonyms. The whole set of Pareto optimal100

solutions is referred to as a Pareto front. Because the objective functions in MOO problems are typically101

conflicting, there exist several different Pareto optimal solutions and additional preference information102

from a human decision maker (DM) is needed to identify the most preferred solution.103

Many MOO methods have been developed to solve complex design optimization problems and the104

choice depends on the characteristics of the problem to be solved (Miettinen, 1999; Miettinen et al.,105

2008; Miettinen and Hakanen, 2017); such as the number and the form of objective functions, design106

variables and the type of preference information available from the DM (e.g., desired values of107

objectives or acceptable trade-offs).108

MOO methods can be classified on how they involve the DM’s preferences (Miettinen, 1999): before109

running the optimization algorithm (“a priori” methods), after having found a set of Pareto optimal110

solutions (“a posteriori” methods) or during an iterative optimization process where the DM’s111

preferences are used to find more preferred solutions (interactive methods). Brown et al. (2015) reported112

a dramatic increase in the use of a posteriori methods in water systems in recent years. In particular, so-113

called evolutionary multiobjective optimization (EMO) algorithms have been assessed in water114

resource management considering algorithmic performance evaluation and identifying future research115

challenges (Maier et al., 2014; Reed et al., 2013). In the above-mentioned papers, decision making and116

interactive approaches are briefly mentioned as future challenges (e.g. support through visualization).117

Additionally, Brown et al. (2015) summarized the short history of water resource systems and118

highlighted the use of progressive articulation of preference information in MOO (Singh et al., 2008)119

and indicated it as an emerging research area. An example of an interactive approach is the Modelling120

to Generate Alternatives (MGA) method and related approaches (Brill et al., 1990; Zechman and121

Ranjithan, 2007) that have reached main stream in environmental decision making with a nice122

connection between interactive MOO and sensitivity analysis (Reed et al., 2013). In the MGA method,123

a small amount of solutions is given to the DM, who can provide additional information not modeled124

or quantified. In interactive MOO methods, such information is assumed to be the preferences of the125
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DM. Brill et al. (1990), showed that “human-machine decision-making system will perform better when126

the human is presented with a few different alternatives than when presented with a homogeneous set127

of alternatives, as might result from sensitivity analysis”. Similarly, interactive MOO methods have128

been seen to perform better than generating a large set of Pareto optimal solutions for the DM (Miettinen129

et al., 2008). However, literature of drinking water treatment design rarely focuses on applying130

interactive methods or do not consider Pareto optimality of the obtained results (Monarchi et al., 1973).131

This paper is focused on the optimization of the design of a biological treatment plant for drinking water132

production that tackles the process drawbacks, contrarily to what happens in a traditional volumetric-133

load-driven design procedure. In detail, a groundwater biodenitrification filter is considered as a case134

study for nitrate removal, taking into account two important drawbacks: effluent quality, requiring135

specific monitoring and post-treatments, and investment and management costs. Indeed, as for the136

former aspect, products of incomplete biological reactions and biomass leakage in treated water cannot137

be neglected in a biofilter design for drinking water treatment. To find an optimal design to our case138

study by active guidance of the DM, we applied the interactive NIMBUS method (Miettinen and139

Mäkelä, 2006), implemented in the IND-NIMBUS software (Miettinen, 2006). The reason for using140

IND-NIMBUS is that it is one of the few available implementations of interactive MOO methods and141

it has been successfully applied to practical problems in various domains (Hakanen et al., 2013;142

Hartikainen et al., 2015; Ojalehto et al., 2014; Steponavičė et al., 2014). In addition, we compared the143

efficacy of IND-NIMBUS and an EMO algorithm NSGA-II (Deb et al., 2002) with its implementation144

NGPM (Lin, 2011) to see the effect of incorporating DM’s preferences into the optimization process145

and could identify several benefits. The biological process was modelled modifying the Activated146

Sludge Model 1 (ASM1) (Henze et al., 2000) to take into account nitrite formation, which is usually147

neglected in biological processes for wastewater treatment. A pilot scale biofilter, managed for about148

three months, gave data for the validation of the optimization outputs. This work explores the149

application of interactive MOO methods as supporting tools for process design in a novel field: drinking150

water treatment. This application lead to new insights on the integration of MOO approaches with151

conventional process design which can be extended to similar problems, highlighting advantages and152

helping the choice of the most appropriate decision support tool.153
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2. Material and Methods154

2.1 Design problem definition155

The design of the denitrification biofilter has been tailored to remove nitrate from groundwater pumped156

by Milan city supply wells, characterized by the simultaneous presence of organic pollutants, mainly157

volatile organic compounds and pesticides. Table 1 reports the main characteristics of groundwater158

observed during a 70 days monitoring period (three analyses per week).159

As for the design problem, an upflow submerged biofilter (influent flow rate of 0.6 m3/h) was160

considered, with the dosage of sodium acetate as organic carbon source to support biomass growth,161

with stoichiometric carbon requirements of 0.70 gC/gDO, 1.69 gC/gNO3-N and 1.27 gC/gNO2-N (C: total162

organic carbon, DO: dissolved oxygen, NO3-N: nitrate, NO2-N: nitrite), as recommended by Henze et163

al. (2008). Analyses were performed according to Standard Methods (APHA, 2012).164

165

Table 1. Main characteristics of groundwater to be treated in a biofilter. Active biomass, described as166

suspended mgCOD/L (COD: Chemical Oxygen Demand), is calculated based on VSS (Volatile167

Suspended Solids) measures considering biomass molecule as C5H7O2N according to bioenergetic168

evaluation by Henze et al. (2008).169

Symbol Unit Number
of data Mean Standard

Deviation Minimum Maximum

Temperature T °C 31 17.4 1.08 14.6 18.8
pH pH - 31 7.3 0.12 7.0 7.5
Dissolved Oxygen (DO) So,in mgDO/L 29 6.2 0.55 5.0 7.2
Nitrate SNO3,in mgNO3-N/L 30 8.9 0.65 7.7 10.0
Nitrite SNO2,in mgNO2-N/L 24 0.01 0.025 0.00 0.09
Total Organic Carbon
(TOC) SS,in mgC/L 4 < 1 - - -

Active biomass XBH,in mgCOD/L 19 0.81 0.090 0.00 0.28
170

The design optimization was performed through an iterative procedure involving the biofilter simulation171

model (Section 2.2), the optimizer (Section 2.3) and two data exchanger tools (Supporting Information172

S1). After system initialization (Section 2.4), MOO methods were applied. By systematically varying173

the design variable values, the optimizers generated different designs whose performance was evaluated174
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by the simulation model in terms of the objective and constraint function values, finally, leading to a175

Pareto optimal design.176

A pilot scale groundwater denitrification biofilter was built for the validation of MOO outputs: a177

biological upflow submerged filter (Biofor®, Degrémont; V = 0.2 m3) with expanded clay as biomass178

support (Biolite®, Degrémont; d50 = 3.5 mm). The flow rate was maintained constant at 0.6 m3/h,179

implying an upflow rate of 8.3 m/h. In addition to organic carbon dosage, phosphorus (P) was dosed180

setting the phosphorus to nitrogen (N) ratio at 0.05 gP/gN, to consider both aerobic and anoxic181

metabolism requirements (Tang et al., 2011). Thus, the validation of the optimization results was done182

through data collected during tracer tests (Supporting Information S2) and during a stationary phase of183

the biological processes that lasted about three months.184

2.2 Biofilter simulation model185

The modeling of the denitrification biofilter was performed through AQUASIM 2.0 - EAWAG186

(Reichert, 2008). Biofilter hydraulics was modeled through a series of eight Continuously Stirred Tank187

Reactors (CSTRs), which permits easy simulation of a Plug Flow Reactor with a low to moderate axial188

dispersion (d = 0.05 - 0.07) (Tchobanoglous et al., 2014). Each CSTR had the same constant volume189

(Vcstr) 12.5% of the reactor volume (Vr). A fraction (Qrec) of the influent flow rate was assumed to be190

recirculated to simulate biomass retention in each compartment and calculated from Vr and sludge191

retention time (SRT) as:192

Q୰ୣୡ =
V୰

SRT
. (4)

Biological processes occurring in the reactor were modeled through a modification of ASM1. They are193

biological growth in aerobic and anoxic conditions (both on nitric and nitrous nitrogen), biomass decay194

and organic compounds hydrolysis, as reported in Supporting Information S3 together with195

stoichiometric coefficients, process rates and parameters.196

The ASM1 process rates were modified with 2-step denitrification kinetics from Magrì and Flotats197

(2008) and Kornaros and Lyberatos (1998), describing respectively a denitrifying biomass with a nitrite198

reduction rate considerably greater than the nitrate reduction rate and a nitrite accumulating biomass199

(nitrite reduction kinetic inhibited by nitrate presence). The modified model was formulated to predict200
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incomplete denitrification both in terms of nitrate residuals with complete degradation of nitrite and201

nitrite accumulation. Once having set influent water inflow (Q) and characteristics (Table 1), design202

and operating parameters, the model calculates the state variable values of the biological system at the203

stationary phase. The state variables were the concentration of dissolved nitrate (SNO3), nitrite (SNO2),204

oxygen (SO) and organic substrate (SS) as well as the content of active biomass (XBH), particulate non-205

biodegradable products arising from biomass decay (XP) and slowly biodegradable substrate arising206

from particulate decay (XS).207

2.3 Multiobjective design optimization problem208

The aim of the optimization of the biofilter design was minimizing nitrate concentration in the effluent,209

investment and maintenance costs and effluent quality, in terms of carbon and nitrite concentration, in210

order to contain post-treatment requirements. To formulate this problem, three design variables (DVs)211

and three objective functions (OBJs) were identified.212

The design variables represent design and operating parameters most significantly affecting the design213

performances:214

- DV1: reactor volume Vr (ranging between 50 L and 1200 L),215

- DV2: readily biodegradable substrate being externally added Cdos (dosed carbon, as COD, ranging216

between 0 mgCOD/L and 200 mgCOD/L),217

- DV3: sludge retention time SRT (ranging between 1 d and 100 d).218

The objective functions are:219

- OBJ1: nitrate removal efficiency, as the residual concentration in the effluent (NO3-N,out),220

- OBJ2: total cost of the plant considering both investment and operating costs (Costs),221

- OBJ3: quality of the biofilter effluent, both in terms of organic carbon and nitrite concentration222

(CODout).223

A detailed description of their definition is reported in Supporting Information S4.224

Functions OBJ1 to OBJ3 to be minimized are respectively expressed as nitric nitrogen concentration in225

the effluent:226

ଵܬܤܱ = ܱܰଷ − ௢ܰ௨௧ൣ
݉݃ே

ൗܮ ൧ = ܵேைଷ , (5)
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as the sum of costs of reactor realization, reagent consumption for carbon supply, energy consumption227

for backwashing and sludge disposal:228

ଶܬܤܱ = [€]ݏݐݏ݋ܥ

= 0.8
€
ܮ
∙ ோܸ + ݎݕ10

∙ ቆܥௗ௢௦ ∙ 27.92
€ ∙ ܮ

ݎݕ ∙ ݉݃
+

1
௖௬௖௟௘ݐ

∙ 160.3
€ ∙ ℎ
ݎݕ

+
ை்,௕௪்ܯ∆

௖௬௖௟௘ݐ
∙ 1.314

∙ 10ିଷ
€ ∙ ℎ

ݎݕ ∙ ݉݃
ቇ

(6)

and as the sum of organic carbon and nitrous nitrogen concentrations in the effluent as COD:229

ଷܬܤܱ = ௢௨௧ൣܦܱܥ
݉݃஼ை஽

ൗܮ ൧ = ௌܵ + ܵேைଶ ∙ 1.71௠௚಴ೀವ
௠௚ಿ

. (7)

The symbols used have already been introduced, except for DMtot,bw, in (6) which is sludge removal for230

a single backwashing and tcycle which is the treatment cycle duration, both calculated from the definition231

of SRT and the backwashing procedure reported by Richard (Richard, 1989) on real scale Biofor(R)232

through equations detailed in Supporting Information S4.233

Constraints were set on state variables influencing the biological system and the OBJ values to consider234

two conditions that cannot be violated, but that are not already stated in the simulation model:235

- CONSTR1: maximum acceptable particulate matter accumulation:236

:ଵܴܱܶܵܰܥ ்ܺை்തതതതതതത ≤ 6750
݉݃஼ை஽
ܮ

(8)

- CONSTR2: maximum acceptable value for nitric nitrogen concentration in the effluent:237

:ଶܴܱܶܵܰܥ ܵேைଷ ≤ 8.5݉݃ே ൗܮ . (9)

The first constraint limits particulate matter concentration under the value corresponding to 75% of238

reactor voids filled by particulate matter; while the second constraint assures a nitric nitrogen239

concentration lower than 75% of the regulation limit on drinking water.240

It has to be noted that no constraint has been set on nitrous nitrogen and organic carbon concentrations241

in the effluent, even though a regulation limit does exist especially for nitrous nitrogen. This is because242

no drinking water treatment plant would supply the effluent of a biodenitrification unit as it is: post-243

treatments have to be provided, at least for safety reasons in case of malfunctioning. Thus, nitrite and244
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organic carbon concentrations in the biofilter effluent have to be minimized rather than keeping below245

regulation limits to minimize costs of the required post-treatments. Consequently, this evaluation is246

integrated in the optimization problem in OBJ3 instead of adding specific constraints.247

2.4 Multiobjective optimization methods248

To solve the design problem, the interactive MOO method NIMBUS was applied and its performance249

compared to an EMO algorithm. Typically, interactive methods calculate few Pareto optimal solutions250

based on the preference information specified by a human DM and iteratively support the DM in finding251

the most preferred solution. The synchronous NIMBUS method (Miettinen and Mäkelä, 2006) was252

applied, implemented in the IND-NIMBUS software framework (Miettinen, 2006; Ojalehto et al.,253

2014).254

NIMBUS starts by computing the ranges of the OBJ values in the Pareto front and an initial Pareto255

optimal solution, which is shown to the DM. If the DM is satisfied, the most preferred solution has been256

found. Otherwise, the DM is asked to express preferences on how the solution should be changed to get257

a more preferred solution. This is done through a classification of the OBJs, indicating whether their258

values at the current Pareto optimal solution:259

1. should be improved as much as possible,260

2. should be improved up to a given bound,261

3. are acceptable as they are,262

4. are allowed to impair till a given bound, or263

5. may change freely at the moment.264

Because of Pareto optimality, if some OBJ is improved, some others should be allowed to impair. The265

classification information of the DM is considered when new Pareto optimal solutions are computed266

(up to four in the synchronous NIMBUS method). These solutions are then shown to the DM who can267

select the most preferred of them and either stop or classify again. This iteration continues until the DM268

is satisfied and is convinced that better solutions do not exist. The interaction is enabled through a269

graphical user interface of IND-NIMBUS (see an example screenshot in Supporting Information S5).270

Pareto optimal solutions are computed by converting the MOO problem with the preference information271

into single objective optimization sub-problems, which are solved with appropriate optimizers. In the272
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present work, they were solved with the differential evolution optimizer (Storn and Price, 1997) (with273

6000 maximum iterations allowed, with maximum 400 generations, crossover rate of 0.9, and F factor274

of 0.8).275

Contrary to interactive methods, EMO algorithms operate with a set of solutions (called a population)276

whose evolution through different iterations (called generations) selects nondominated solutions277

providing an approximation of the Pareto front after a number of generations. No expression of278

preferences is required from the DM up to the final choice of the most preferred solution from the final279

nondominated set. As an EMO algorithm, the commonly used NSGA-II algorithm (Deb et al., 2002)280

and its Matlab implementation NGPM (Lin, 2011) were used.  In NSGA-II, a population of solutions281

is initialized randomly. Then, for each generation, the population evolves by using genetic operators282

(selection, crossover and mutation) that include randomness to obtain a new population that is both283

closer to the Pareto front and as diverse as possible. After the maximum number of generations, the284

output is a set of nondominated solutions that is used to approximate the Pareto front (the parameters285

for NGPM were: population size 100 points with 100 generations, crossover rate 1.2 and mutation286

probability 0.5).287

2.5 Sensitivity analysis288

A sensitivity analysis was performed to test the robustness of the solutions and generalize the efficacy289

of the MOO method in solving the design problem: case-study specific parameters and the adopted290

biofilter simulation model were changed and the obtained MOO solutions were compared.291

First, the variability of the optimization results was assessed due to the variation of four parameters,292

with considered values in parentheses:293

- nitric nitrogen concentration in raw water (NO3-Nin, tested values: 4.5 mgN/L, 20 mgN/L,294

30 mgN/L);295

- influent flow rate (Q, tested values: 0.3 m3/h, 1.2 m3/h, 1.8 m3/h);296

- biomass concentration in backwashing water (XTOT,bw, tested values: 100 mgCOD/L, 400 mgCOD/L,297

600 mgCOD/L);298

- dispersion in the biofilter simulated through a different number of CSTRs in series (n, tested values:299

4 and 6).300
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Then, the effect of simulation model variation was studied considering two different simulation models301

presented in Kornaros and Lyberatos (1998) and Magrí and Flotats (2008), characterized by process302

rates and parameters described in Supporting Information S6.303

3. Results and Discussion304

A preliminary assessment of the MOO problem was performed through a feasible region investigation305

by generating 3000 random points between the upper and lower bounds of the DVs and simulating the306

system for each point. The feasibility of the points was checked by evaluating the corresponding307

constraint function values and the ratio of feasible points was calculated to identify which constraint308

was limiting. Results are summarized in Supporting Information S7. This analysis permits to highlight309

the conflicts among OBJs: while a reduction of CODout (OBJ3) and costs (OBJ2) can be achieved310

concurrently, both OBJs conflict with NO3-Nout concentrations (OBJ3). The conflict is especially critical311

in case of desired OBJ3 values below 0.2 mgN/L NO3-Nout. The DM’s role, hence, is to find the preferred312

balance of such conflicting objectives.313

3.1 Multiobjective optimization through IND-NIMBUS314

The optimization applying IND-NIMBUS was started by evaluating the ranges of the OBJs (so-called315

nadir and ideal objective vectors) (Miettinen, 1999) and a first Pareto optimal solution, reported in Table316

2 (iteration 1). Then, an iterative solution process guided by the DM’s preference information (as317

classification, see Section 2.4), was conducted resulting in Pareto optimal solutions reported in Table 2318

(iterations 2-4). All the solutions generated are shown in Figure 1.319

The ideal and the nadir objective vectors showed that solutions do exist that are able to perform320

complete NO3-N removal (ideal OBJ1 = 0) or to assure almost no worsening of effluent quality (ideal321

OBJ3 = 0), but not simultaneously.322

The first Pareto optimal solution (solution 1) allows an 87% nitrate nitrogen removal with 7202 euro323

costs (12003 euro·m-3·h) and COD effluent concentration of about 1.16 mgCOD/L. Higher nitrogen324

removal efficiencies are reported in the literature for full scale drinking water biodenitrification units325

(Richard, 1989), and an efficiency higher than 90% is reported for pilot scale units (Matějů et al., 1992).326

Furthermore, the low level of CODout limits post-treatment requirements but it can correspond to a327

dramatic contribution of nitrous nitrogen considering the low value of dosed carbon (49% of328
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stoichiometric requirements). Thus, further optimization was needed and the DM started providing329

preference information to find more preferable solutions.330

331

Table 2. Pareto optimal solutions generated by IND-NIMBUS and DM’s preference information at332

different iterations. The most preferred Pareto optimal solution is highlighted in grey.333

NIMBUS
iteration

Pareto
optimal
solution

DM’s Preference Information DV1 DV2 DV3 OBJ1 OBJ2 OBJ3

MOO
Starting
Point

OBJ that
should
improve

OBJ
acceptable
as it is

OBJ
allowed to
impair

OBJ that
may
change
freely

Vr Cdos SRT NO3-Nout Costs CODout

[L] [mgCOD/L] [d] [mgN/L] [euros] [mgCOD/L]

1

Nadir - - - - - - - - 8.89 56,100 158

Ideal - - - - - - - - 0 41.3 0.2

1 - - - - - 83 25.4 26.8 1.13293 7,202 1.16173

2

2

1
OBJ3
(as much as
possible)

OBJ1 - OBJ2

52 31.4 4.1 0.71954 8,921 1.12766

3 151 31.3 4.1 0.73631 8,961 1.12750

4 73 31.3 4.1 0.72356 8,909 1.12768

3

5

4
OBJ1
(as much as
possible)

- - OBJ2
OBJ3

101 42.8 7.5 0.00019 12,169 4.07301

6 107 42.9 7.6 0.00017 12,214 4.17777

7 117 39.0 10.2 0.00117 11,115 2.56437

8 89 27.9 26.1 0.40238 7,898 1.27773

4 9 1
OBJ1
(up to
0.89 mgN/L)

-

OBJ2 (up
to 10000€)
OBJ3 (up
to
2 mgCOD/L)

- 57 31.3 4.1 0.75324 8,875 1.27357

334

To demonstrate the DM’s role in the solution process, we discuss here some particular aspects. At the335

second iteration, the DM accepted the OBJ1 value as it is, asking to improve as much as possible OBJ3336

and letting OBJ2 change freely. Three Pareto optimal solutions were computed with a negligible337

difference in performances. A little improvement was obtained in OBJ3 (2.9% reduction of CODout338

value) thanks to a higher carbon dosage (61% of stoichiometric requirements), that implied an339

improvement in OBJ1 (36% reduction). As the dosed carbon was still lower than stoichiometric340

requirements, the risk of incomplete denitrification still existed and the nitrous nitrogen contribution to341

CODout could be relevant. Thus, the DM started iteration 3 from solution 4. After the preferences had342

been expressed, four more Pareto optimal solutions were computed, with almost complete NO3 removal,343

higher costs and higher values of CODout. The results suggested to the DM that a 90% NO3 removal344
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(0.89 mgN/L NO3-Nout), with costs around 10,000 euros and CODout concentration around 2 mgCOD/L345

could be a good trade-off.346

347

Figure 1. Nondominated solutions found with NGPM (generation 100) and Pareto optimal solutions348

found with IND-NIMBUS in the design space (a) and in the objective space (b).349

350

The obtained Pareto optimal solutions were few and thus easy to compare, but carrying relevant351

information supporting the choice of the most preferred design and insight about the feasibility of the352

preferences expressed.353

Indeed, some trade-offs clearly appeared to the DM. First of all, the iterations guided by the DM’s354

preference information rapidly reached solutions assuring almost complete nitrate removal (solutions 2355

- 9) at acceptable costs, but also that the lowest OBJ3 value for Pareto optimal solutions is 1.13 mgCOD/L.356

It also showed that Pareto optimal solutions can be obtained with a dosed carbon lower than the357

stoichiometric requirements, since the simulation model takes into account the organic carbon available358

from biomass decay (endogenous organic carbon). However, supplying carbon under the stoichiometric359

level does not assure the complete removal of nitrous nitrogen, which can represent an important360

fraction of the OBJ3 value. Therefore, the iterative comparison of solutions showed to the DM a critical361

issue: obtained values for OBJ3 are difficult to be fully evaluated: the minimum value of OBJ3362
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corresponded to an acceptable concentration of residual carbon (0.42 mgC/L), in case of complete363

denitrification, but it corresponded also to an unacceptable value of NO2-N (0.66 mgN/L), in case of364

incomplete denitrification. Thus, the iterative process revealed a difficulty in identifying the acceptable365

level of impairment for OBJ3, as it aggregates the concentrations of NO2-N and TOC in the effluent366

water. The results suggested that further studies should be performed, with the implementation of a367

fourth OBJ (splitting OBJ3 in two), which offers a more informative optimization model.368

Considering what has been outlined so far, solution 5 represented the most preferred design to be369

implemented. Compared to other Pareto optimal solutions, it involves a higher CODout value. However,370

it assures a high removal of nitric nitrogen (>90%, NO3-Nout < 0.89 mgN/L) with a SRT value that371

implies good biomass retention, good endogenous carbon and carbon dosage equal to 83% of the372

stoichiometric requirements that, together, are more likely to involve complete denitrification with a373

high TOC contribution and almost zero NO2-N contribution to the CODout value (accepted to be around374

4 mgCOD/L). Overall, the interactive solution process enabled the DM to learn about the375

interdependencies of the objectives and the feasibility of expressed preferences and get convinced of376

the goodness of the solution found.377

Finally, considering the calculation time, 8 hours were needed for the problem initialization but only 2378

hours were necessary for each optimization. This calculation time was still regarded as acceptable but379

it would have also been possible to employ an approach directed to computationally expensive problems380

as e.g. in Steponavičė et al. (2014).381

Despite the calculation time, the application of IND-NIMBUS was intuitive and user-friendly from the382

DM’s point of view, since she was not asked to understand the working principles of the optimization383

algorithm. The limited number of solutions to compare helped the DM in the choice of the best suited384

one. Lastly, the iterative procedure gave a deeper insight on relationships among objectives, increasing385

the ability and the confidence in choosing the optimal design to be implemented, without neglecting386

potentially interesting portions of the Pareto front.387

3.2 Multiobjective optimization through NGPM388

The NGPM software, where no preferences are considered, was also applied to study the effect of389

including DM’s preferences into the optimization. The NGPM optimization took 10.35 hours and390
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generated 100 nondominated points with an increasing ratio of feasible points for each population391

(reaching 100% at generation 3). As it is typical of EMO methods, Pareto optimality of solutions is not392

assured and it is only known that they are nondominated. In this sense, the population obtained at393

generation 100 represented an approximation of the Pareto front. Smallest and largest values for each394

objective in the final population are reported in Table 3.395

396

Table 3. Main descriptive statistics of nondominated solutions produced by NGPM (generation 100).397

DV1 DV2 DV3 OBJ1 OBJ2 OBJ3

Vr Cdos SRT NO3-Nout Costs CODout

[L] [mgCOD/L] [d] [mgN/L] [euro] [mgCOD/L]
Minimum 75 5 5 2·10-6 1,619 0.3
Maximum 984 200 34 8.50 56,409 158

398

When considering the aim of the optimization, a single Pareto optimal design to be implemented had to399

be found among the 100 nondominated solutions obtained and therefore a choice by the DM was needed400

based on her experience. In fact, it should be stressed that EMO methods do not give any additional401

information to help the DM’s choice. The NGPM optimization gave indications on the most suitable402

range of values for Vr and SRT design variables (Table 3), but no suggestion could be deduced about403

Cdos, which involves a wide range of design performances. The choice could be made by visually404

analyzing the objective space in a 3D plot, because the problem had only three objectives (this is no405

more possible if the number of OBJs is higher). Thus, in this case, the most preferred solution could be406

sought among solutions with NO3-Nout lower than 1 mgN/L and CODout lower than 5 mgCOD/L. This407

corresponded to the four preferred solutions that are shown in Figure 1, characterized by Vr, SRT and408

Cdos respectively equal to 231 - 444 L, 11 - 28 d and 26 - 37 mgCOD/L (corresponding to Cdos/Cstech equal409

to 50-70%). The carbon dosage of these solutions is too low since with a carbon dosage lower than410

stoichiometric requirements, the risk of incomplete denitrification increases as Cdos/Cstech ratio411

decreases. However, it appeared to be complicated to find a proper solution among the NGPM solutions412

with a lower CODout, which is obtained through a higher dosage of carbon and acceptable values of the413

other two objectives.414
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3.3 Discussion and validation of optimization results415

The presented results showed that MOO is a valuable tool for drinking water treatment design416

optimization, with strengths and weaknesses depending on the applied method. When comparing417

solutions found with the two optimization methods, one must keep in mind that NGPM solutions are418

only nondominated while IND-NIMBUS solutions are assured to be Pareto optimal (if the single419

objective optimizer guarantees optimality). Then, a comparison can be done by checking if the IND-420

NIMBUS solutions belong to the region of design and objective spaces where NGPM solutions are421

concentrated. Considering results reported in Tables 2 and 3, all IND-NIMBUS solutions have reactor422

volume values on a different range compared to NGPM and the same can be said about SRT values of423

solutions 1 and 9. This indicates that Pareto optimal solutions found with IND-NIMBUS do not overlap424

with nondominated solutions found with NGPM. Thus, NGPM did not find solutions that the DM found425

with IND-NIMBUS, as visualized in Figure 1 in both design and objective spaces.426

General considerations on biofilter optimal design can be drawn by normalizing IND-NIMBUS results:427

Pareto optimal solutions resulted to be characterized by volumetric loading in the range 0.85-428

2.54 kgN m-3 d-1 (with EBCTs in the range 5-15 min) and a carbon dosage of 0.49-0.83 gC,dos/gC,stoich,429

with SRTs in the range 4-27 d. Pareto optimal solutions in these ranges are expected to involve a nitric430

nitrogen removal efficiency of 87-100%, with 809-1573 €/gN,removed and 0.04±0.097 gCOD,out/gCOD,in, with431

the COD content in the effluent being made up both by residual carbon and nitrite.432

Considering the performances of the pilot scale biofilter built for the validation of the MOO results433

(data not shown), it has to be reported that applying the suggested carbon dosage for volumetric loadings434

and EBCTs led to lower nitric nitrogen efficiencies (40-75%) with average CODout equal to435

4.8 mgCOD/L, but with peaks of nitrous nitrogen up to 5.4 mgN/L. On the contrary, higher efficiencies436

(55-100%) were obtained for volumetric loadings and EBCTs in the proposed ranges but with a carbon437

dosage of 1.05-1.34 gC,dos/gC,stoich with average CODout equal to 7.4 mgCOD/L but composed by residual438

organic carbon for 87% on average. These observations confirm the need of splitting the third objective439

in two, for a better optimization of nitrous nitrogen concentration in the effluent as a function of the440

dosed carbon.441
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When comparing the applied optimization methods, the reported results proved that NGPM can be442

applied to get an approximation of the Pareto front, keeping in mind that the distance from the real443

Pareto front is unknown and decreases only by increasing the number of generations. Thus, it can be444

applied if the purpose of the optimization is the estimation of possible trade-offs. However:445

- If the purpose is finding the most preferred Pareto optimal solution as the design to be446

implemented, NGPM is not able to identify it and further optimizations or analyses are needed.447

- NGPM results can give some indications to help the DM’s choice of the most preferred solution,448

but an unsupported choice has to be made mainly based on the DM’s experience.449

- The evaluation of the NGPM results has to be done by plotting them in the design and objective450

spaces. However, this is possible only for up to three dimensions and in higher dimensions451

other visualizations are needed (Miettinen, 2014).452

On the contrary, IND-NIMBUS has not been intended for studying the whole Pareto front but to help453

the DM in finding her/his preferred Pareto optimal solution. IND-NIMBUS proved to be well suited for454

the design problem considered:455

- It allowed obtaining Pareto optimal solutions, whose evaluation was supported by an easy456

visualization of the results. This enables also the consideration of a higher number of objectives.457

- It allowed performing multiple optimization iterations that increased DM’s knowledge on the458

MOO problem in the areas of interest. It also showed the best and the worst design459

performances in terms of defined objectives and revealed the need for a better MOO problem460

formulation (i.e., by splitting the third objective into two distinct ones for a better evaluation of461

required post-treatments).462

- The DM’s choice was effectively supported to find the most preferred design to be implemented463

and the DM was not overloaded by having to study too much information at a time.464

3.4 Sensitivity analysis results465

A sensitivity analysis was performed evaluating the variation of the feasible region, NGPM and IND-466

NIMBUS results and detailed outputs are available in Supporting Information S8.467
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The feasible region analysis appeared to be affected mainly by nitric nitrogen concentration in the468

influent: increasing values of NO3-Nin decreased the number of feasible solutions, because of an469

increasing number of points violating constraint 2 (adequate nitrate removal).470

As for IND-NIMBUS, the sensitivity analysis was conducted performing five steps of the interactive471

method to identify the most preferred design, for each different MOO problem. The obtained results472

revealed that the greatest variations of DVs and OBJ values for the most preferred design, were473

associated with NO3-Nin variation (+736% DV1 value), and the application of 4-CSTRs model (+698%474

DV3 value) and Magrì and Flotats (2008) model (+654% DV1 value and 1105% DV3 value).475

As for NGPM, the highest variations were observed varying influent flow rate that led to reactor volume476

variation up to +255%, involving a cost variation of +208%. However, the nondominated solutions477

were also significantly affected by NO3-Nin: increasing values increased both the reactor volume (up to478

+95%) and the dosed carbon (up to 198%) leading to designs with higher costs (up to 196%) but also479

higher residual concentrations in the effluent of NO3-N (up to +56%) and COD (up to +189%). Lower480

but remarkable variations were observed increasing hydraulic dispersion (e.g. for lower number of481

CSTRs in series) and applying the simulation model of Magrì and Flotats (2008): the former involved482

higher values of SRT (up to +126%), while the latter identified designs with higher reactor volumes (up483

to +174%) and higher values of NO3-Nout (up to +63%).484

The presented results allowed generalizing the efficacy of the proposed MOO approach indicating that485

NO3-Nin is the most important parameter affecting the optimization results, together with influent flow486

rate, hydraulic dispersion in the reactor and the considered simulation model.487

4. Conclusions488

Reported results show that it is beneficial to formulate a denitrification biofilter design problem as a489

multiobjective optimization problem. We demonstrated that applying an interactive MOO method490

offers advantages over a widely used a posteriori evolutionary algorithm and, thus, it is necessary to491

choose the correct MOO method to find the most preferred Pareto optimal design to be implemented.492

Considering the specific design problem of a pilot scale biofilter for groundwater biodenitrification,493

results showed that:494
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- The interactive method was the most suitable one, effectively supporting the design process up495

to the identification of the final, most preferred, Pareto optimal design.496

- General considerations on biodenitrification designs can be drawn by normalizing IND-497

NIMBUS results: Pareto optimal designs resulted to be characterized by volumetric loading in498

the range 0.85-2.54 kgN m-3 d-1 (with EBCTs in the range 5-15 min) and a carbon dosage of499

0.49-0.83 gC,dos/gC,stoich, with SRTs in the range 4-27 d. These values are expected to involve a500

nitric nitrogen removal efficiency of 87-100% with 809-1573 €/gN,removed and501

0.044±0.097 gCOD,out/gCOD,in and the COD content in the effluent made up by residual carbon502

and nitrite.503

- Observations on a pilot scale biofilter validated the identified Pareto optimal designs. However,504

they also confirmed the need of splitting the third objective in two, for a better optimization of505

nitrous nitrogen concentration in the effluent as a function of the dosed carbon.506

In general, the presented MOO design approach with the aid of the IND-NIMBUS software allowed507

obtaining a Pareto optimal design without any “a priori” evaluation based on practical experience, as in508

the case of volumetric-load-driven design procedures. In order to narrow and improve the range of the509

Pareto optimal designs, further studies should be done adopting a four-objective model by splitting the510

“effluent water quality” objective in two, considering nitrite and carbon concentrations separately. In511

that case, the efficiency of the EMO software NPGM applied would suffer further but IND-NIMBUS512

would still be applicable.513
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