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Abstract
Aalto, Tuomas
The First-Order Evolution of Cosmic Scalar Perturbations
Master’s thesis
Department of Physics, University of Jyväskylä, 2019, 89 pages.

According to the current understanding, the early universe was close to homogeneity
with small perturbations left as remnants of the inflation. How these small perturba-
tions evolved into the cosmic structures we observe today is one of the central topics
in cosmology.

Of different types of perturbations, it is the scalar ones that most dominantly
couple to perturbations in energy density and lead to structure formation. This thesis
is a review of the well-established evolution of the cosmic scalar perturbations within
the context of linear cosmological perturbation theory. We present the derivation of
the equations governing the evolution of the scalar perturbations starting from the
cosmological perturbation theory. The derivation is done in the Newtonian gauge.

Rudimentary solutions to the evolution equations are also presented, both through
analytical approximations and numerical computations. In the emerging picture,
the structure formation starts with the accumulation of dark matter in radiation
dominance. Baryonic matter is prevented from accumulation until decoupling from
the photons at the redshift z ≈ 1000.

The validity of the perturbative method is examined through a comparison with
the spherical collapse model of structure formation. This well known comparison
shows how the linear perturbation theory underestimates the growth of perturbations
in the energy density.

Keywords: cosmology, large scale structure, structure formation, cosmological per-
turbation theory
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Tiivistelmä
Aalto, Tuomas
Kosmisten skalaarihäiriöiden ensimmäisen asteen kehitys
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2019, 89 sivua

Nykytietämyksen mukaan kosminen inflaatio jätti pieniä häiriöitä lähes homogeeni-
seen varhaiseen maailmankaikkeuteen. Nykyään havaittavien kosmisten rakenteiden
kehittyminen näistä häiriöistä on yksi kosmologian keskeisistä osa-alueista.

Rakenteiden muodostumisen kannalta keskeisimpiä ovat skalaarityyppiset häiriöt,
joihin maailmankaikkeuden energiatiheyden häiriöt pääasiallisesti kytkeytyvät. Tämä
tutkielma on katsaus lineaarisen kosmologisen häiriöteorian antamaan hyvin tunnet-
tuun kuvaukseen skalaarihäiriöiden kehittymiselle. Skalaarihäiriöiden kehittymistä
kuvaavien yhtälöiden johto esitetään kosmologisesta häiriöteoriasta alkaen. Yhtälöt
on johdettu newtonilaista mittaa käyttäen.

Häiriöiden kehitystä kuvaaville yhtälöille esitetään sekä analyyttisillä approksi-
maatioilla että numeerisella laskennalla saatavia viitteellisiä ratkaisuja. Muodostu-
vassa mallissa rakenteiden syntyminen alkaa pimeän aineen kasautumisella säteilyn
dominanssin aikana. Baryonisen aineen kasautuminen pääsee alkamaan vasta sen
irtikytkeydyttyä fotoneista punasiirtymän z ≈ 1000 kohdalla.

Häiriöteoriaan perustuvan menetelmän validisuutta tarkastellaan vertaamalla
saatuja tuloksia rakenteenmuodostumisen pallomaisen romahdusmallin kanssa. Tämä
entuudestaan tunnettu vertailu näyttää, kuinka lineaarinen häiriöteoria aliarvioi
energiatiheyden häiriöiden kasvua.

Avainsanat: kosmologia, suuren skaalan rakenne, rakenteen muodostuminen, lineaari-
nen perturbaatioteoria
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1 Introduction
In the universe we observe today, the structures on supergalactic scales form a
hierarchical system from groups and clusters of galaxies to superclusters, walls
and filaments [1, 2]. This Large Scale Structure (LSS) has evolved from small
perturbations in the nearly homogeneous early universe. Detailed understanding of
the highly non-linear structure formation process is one of the major challenges in
modern cosmology.

At the theoretical heart of cosmology is the general relativity. General relativity
is a theory of gravity in which gravity is attributed to the curvature of spacetime.
General relativity describes the dynamics of the universe: how energy and momentum
affect the spacetime and vice versa.

In the basic model of the universe used in cosmology, the Friedmann-Robertson-
Walker (FRW) universe, the universe is assumed to be spatially homogeneous and
isotropic. The FRW universe describes the average dynamics on scales larger than
100 Mpc. The requirements of homogeneity and isotropy must be relieved when
modelling a universe with structures. In cosmological perturbation theory, the
structures are described by a layer of perturbations added onto the FRW universe
[3–5]. Cosmological perturbation theory sets the theoretical framework of early
structure formation analysis.

The evolution of the cosmological perturbations can be traced with the cosmolog-
ical perturbation theory. From the perspective of structure formation, the quantity
of most interest is the perturbation in energy density, especially that of matter.
By definition, the perturbation in matter energy density is the deviation of energy
density of matter from its homogeneous, FRW universe value. As such, it measures
the accumulation of matter under gravity to form structures.

Solving the evolution of matter perturbations in detail requires solving the
evolution of perturbations of other components of the cosmic plasma as well. This is
due to both direct interactions between the components and indirect interactions
through the metric [6, 7]. However, in linear cosmological perturbation theory,
where perturbations are dealt with only up to the first order, one is able to restrict
the analysis to a category of perturbations known as the scalar perturbations [3].
Invoking a higher order perturbation theory increases the complexity of the analysis
significantly [8, 9] while still being limited by the requirement of small perturbations.
Matter accumulating to form structures on a given scale eventually causes the
perturbations to reach a point where a perturbation theory of any order is rendered
invalid on that scale.

A simple and well-known method for estimating the validity of the structure
formation analysis based on cosmological perturbation theory is comparing its results
with those of the spherical collapse model [10]. In the spherical collapse model,
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a collapsing structure is a closed FRW universe of its own, embedded in a flat
FRW background universe. The model is a quite limited representation of the
collapsing process, but it reveals some shortcomings of the results given by linear
perturbation theory. The region of structure formation where the perturbative
method is unapplicable can be studied with N-body simulations [11–13].

For cosmological perturbation theory to be able to trace the evolution of per-
turbations, the initial state of the perturbations must be established. The birth of
cosmological perturbations is most likely explained by inflation [14–16]. Inflation is a
period during which the expansion of the universe is accelerated under the supposed
influence of an inflaton field. Inflation precedes the radiation dominated epoch of the
universe. Fluctuations of the inflaton field persist as the seeds of structure formation
[17]. Notably, the perturbations produced by the inflation are predicted to be nearly
scale-invariant and adiabatic [17], in agreement with observations [18].

The first few sections of this thesis introduce the preliminaries required by the
derivation of the perturbation equations. Section 2 briefly covers the main concepts
of general relativity. In section 3, the tools of GR are applied to a homogeneous and
isotropic metric, resulting in FRW cosmology. In section 4, a perturbation is added
to the FRW universe, leading to the cosmological perturbation theory.

At the core of this thesis is the derivation of equations governing the evolution of
different components of the cosmic fluid within the context of linear cosmological
perturbation theory in section 5. The section 5 also establishes the initial conditions
for the derived differential equations. Rudimentary solutions to the derived equa-
tions are given in section 6, both through analytic approximations and numerical
computations. The validity of the analysis is assessed in section 7 by a comparison
with the spherical collapse model.

This thesis is review-like in nature, with all of the presented concepts and methods
previously established in literature.

1.1 Notation and Conventions
The natural units used throughout this thesis are defined by setting

c ≡ ~ ≡ kB ≡ 1. (1)

In indices, greek alphabets run from 0 to 3 and latin alphabets from 1 to 3. The
Einstein summation convention is used, so that summation is implied over an index
appearing both in subscript and superscript positions:

qµqµ ≡
3∑

µ=0
qµqµ. (2)

The present day value of quantity q is denoted with a subscript zero as q0.
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2 General Relativity in Brief
General relativity is a theory of space, time and gravity. In general relativity, gravity
is a manifestation of the curvature of spacetime. Gravitational interactions occur
through the spacetime: mass curves the spacetime and the curvature of spacetime
affects the trajectories of particles. The tight constraints on the theory of gravity
from observations on a wide range of distance and mass scales agree extremely well
with general relativity (see e.g. [19, 20]).

In this short overview of general relativity, two key components of the theory are
introduced. The first one is the set of Einstein field equations, which describes how
spacetime is curved by energy and momentum. The second component is the geodesic
equation, which governs the motion of free particles in curved spacetime. There will
be little in the way of derivation for these results in this section or inspection of
the mathematical basis of general relativity. For a detailed introduction to general
relativity, see for example [21].

2.1 The Einstein Equations
The concept of spacetime appears already in special relativity where gravity is not
present. Unlike in Newtonian mechanics where there is a universal notion of time,
in special relativity the time span between two events depends on reference frame.
A meaningful measure for distance between two events is given by the spacetime
interval

∆s2 ≡ −∆t2 + ∆x2 + ∆y2 + ∆z2

= ηµν∆xµ∆xν .
(3)

In (3), ηµν is the Minkowski metric,

ηµν = Diag(−1, 1, 1, 1). (4)

The spacetime of special relativity has a simple, flat geometry, described by the
Minkowski metric (4).

General relativity is a more general theory than special relativity because it
includes gravity. Taking the spacetime interval ∆s2 to the infinitesimal limit, a line
element is introduced as

ds2 = gµνdx
µdxν (5)

with a general metric gµν . With the line element the distance between two spacetime
points can be defined on a curve connecting the points.

The metric gµν specifies the geometry of the spacetime. In general relativity, this
geometry is identified as gravity when gµν 6= ηµν . The gravitation law of general
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relativity describes how the geometry, or the metric, depends on the distribution of
energy and momentum in the universe. The law is given by the Einstein equations
(see e.g. [21]):

Gµν = M−2
p Tµν . (6)

The Einstein tensor Gµν is directly determined by the metric, as will be shown
briefly. The energy-momentum tensor Tµν describes the energy and momentum
related properties of the system: energy density, pressure, stress and so on. The
coupling constantMP is the reduced Planck mass, relating to the Newton’s gravitation
constant by M−2

P = 8πGN. In the limit of weak gravity, the metric is

gµν = ηµν + δgµν , |δgµν | � 1. (7)

At this limit, the Einstein equations (6) reduce to the Newton’s gravitation law

∇2Φ = 4πGNρ. (8)

As will be discussed next, the Einstein tensor contains second derivatives of the
metric, so the metric generalizes the gravitation potential Φ of Newton’s gravitation
law, and the energy-momentum tensor generalizes the mass distribution ρ.

The curvature of the spacetime is characterized by the Riemann curvature tensor
(see e.g. [21])

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ, (9)

where Γσµν is the Christoffel symbol

Γσµν = 1
2g

σρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (10)

The Ricci tensor is defined as a contraction of the Riemann curvature tensor:

Rµν ≡ Rλ
µλν . (11)

The trace of the Ricci tensor is known as the Ricci scalar

R ≡ Rλ
λ. (12)

The Einstein tensor is then defined with Ricci tensor and scalar as (see e.g. [21])

Gµν ≡ Rµν −
1
2Rgµν . (13)

From the equations (9) and (10) we see that the elements of the Riemann tensor are
composed from second derivatives of the metric. Since the Einstein tensor Gµν is
built of contractions of the Riemann tensor, it too is composed of second derivatives
of the metric.

Because the Ricci tensor is a contraction of the Riemann curvature tensor, it does
not contain all the degrees of freedom of the Riemann curvature tensor. The Ricci
tensor characterizes curvature from local energy-momentum properties as per the
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Einstein equations (6). The remaining degrees of freedom in the Riemann curvature
tensor describe curvature from non-local sources, corresponding to gravitational
waves (see e.g. [21]).

The form of the energy-momentum tensor of most practical use is that of a perfect
fluid:

Tµν = (ρ+ p)uµuν + pgµν , (14)

with ρ being the energy density of the fluid, p its pressure and uµ its four-velocity.
Deviations from the perfect fluid form introduce an anisotropic stress tensor Πµν .
The energy-momentum tensor then becomes

Tµν = (ρ+ p)uµuν + p (gµν + Πµν) . (15)

The anisotropic stress tensor is symmetric and traceless with Πµ
0 = Π0

µ = 0.
In general, the partial derivative of a vector ∂µV ν is not a tensor. The derivation

operation that transforms as a tensor is the covariant derivative, constructed with
the Christoffel symbol:

∇µV
ν = ∂µV

ν + ΓνµλV λ. (16)

Similarly for duals
∇µων = ∂µων − Γλµνωλ. (17)

The covariant derivative generalizes to higher rank tensors in a simple manner,
containing a term with the Christoffel symbol for every index.

From the symmetries of the Riemann curvature tensor Rρ
σµν it follows that the

contraction of the Einstein tensor with the covariant derivative vanishes:

∇µG
µ
ν = 0. (18)

Together with the Einstein equations (6) this implies a similar equation for the
energy-momentum tensor:

∇µT
µ
ν = 0. (19)

The equation (19) is the continuity law of energy and momentum in general relativity.

2.2 The Geodesic Equation
Energy and momentum determine the geometry of spacetime according to the
Einstein equations (6). Trajectories of free particles subject only to gravity are given
by the geodesic equation

dxν

dλ
∇ν

dxµ

dλ
= 0. (20)

The solutions to the geodesic equation are curves xµ(λ) in the spacetime, λ being
the curve parameter. The geodesic equation plays a similar role in general relativity
as the Newton’s second law F = ma in Newtonian mechanics for a particle subject
to the gravitational force F.



14

For massive particles, the proper time τ is a natural choice for the curve parameter
λ. With the four-momentum pµ = mdxµ/dτ the geodesic equation (20) is then
equivalent with

pν∇νp
µ = 0. (21)

For massless particles, the curve parameter λ can be chosen so that pµ = dxµ/dλ.
Therefore the equation (21) holds also for massless particles. With the equations
(16) and (21), the geodesic equation can be written as

m
dpµ

dτ
+ Γµρσpρpσ = 0 (22)

for massive particles and
dpµ

dλ
+ Γµρσpρpσ = 0 (23)

for massless particles.



15

3 FRW Cosmology

With the machinery of general relativity set up in section 2, we are ready to solve the
Einstein equations (6) in the physical situation most interesting to cosmology: the
homogeneous and isotropic universe. This system, where energy is evenly distributed
and no direction is special, provides a reasonable description of our universe on scales
larger than 100 Mpc [22, 23]. It also goes by the name of Friedmann-Robertson-
Walker (FRW) universe after the pioneers of the model. In cosmological perturbation
theory, which is the subject of section 4, the FRW universe is the background solution
on top of which the perturbation is added.

3.1 The Robertson-Walker Metric
The most general metric describing a homogeneous and isotropic spacetime is the
Robertson-Walker metric, which in polar coordinates has the form (see e.g. [21])

ds2 = −dt2 + a2(t)
(

dr2

1−Kr2 + r2dθ2 + r2 sin2 θ dφ2
)
. (24)

The scale factor a(t) is the sole dynamical variable of the RW metric. The constant
parameter K relates to spatial curvature. In a spatially flat spacetime K = 0.

Observations are consistent with the observable universe having no significant
spatial curvature [18]. It is therefore often justified to ignore the curvature parameter
K in (24). The RW metric in Cartesian coordinates is then

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (25)

Spatial curvature becomes relevant when discussing the spherical collapse model in
section 7.

Homogeneity and isotropy force the energy-momentum tensor to be of the perfect
fluid form (14). The cosmic fluid is at rest with respect to the comoving coordinate
system, so its four-velocity is uµ = (1, 0, 0, 0). Computing the Einstein tensor from
the metric (24) with equations (9) – (13) and applying the Einstein equations (6)
results in (see e.g. [21])

(
ȧ

a

)2
= ρ

3M2
P
− K

a2 (26)

ä

a
= −ρ+ 3p

6M2
P
. (27)
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Here the dots denote time derivatives. The equations (26) and (27) are known as the
Friedmann equations, with the Friedmann equation referring to (26). The logarithmic
rate of change of the scale factor a is known as the Hubble parameter,

H ≡ d ln a
dt

= ȧ

a
. (28)

The scaling of the scale factor is in principle arbitrary, but its relative changes
are observable as the redshift z:

a0

a(t) = 1 + z(t). (29)

The quantity z is known as the redshift because the wavelength of a photon emitted
at time t and detected at present time t0 has by the time of detection increased by
factor 1 + z(t) due to expansion of space (see e.g. [21]).

3.2 Fluid Components
The Friedmann equations (26) and (27) determine how the evolution of the scale
factor a depends on the properties of the cosmic fluid, namely its energy density ρ
and pressure p. The properties of the fluid in turn depend on its composition and
the properties of the components.

The equation of state pi = pi(ρi) of a fluid component i expresses the dependence
of pressure on energy density. In the perfect fluid model the components of the
cosmic fluid have a particularly simple equation of state with a constant equation of
state parameter wi:

pi = wiρi. (30)

For the whole fluid the equation of state parameter w is defined similarly as

w ≡ p

ρ
, (31)

where p = ∑
pi and ρ = ∑

ρi. In general, the parameter w varies with time even if
wi is a constant for all of the fluid components.

A fluid component is unrelativistic if its temperature is well below particle mass.
This is what we label as matter. Pressure of matter is negligible, so that its equation
of state parameter is wm = 0. Radiation consists of relativistic particles. The
equation of state for radiation is wr = 1/3. In the concordance model of cosmology,
the ΛCDM model, there is a third kind of fluid component: the vacuum energy (see
e.g. [24]). In ΛCDM, the current acceleration of expansion of space is due to vacuum
energy. Vacuum energy has equation of state parameter wΛ = −1.

In the FRW universe, the continuity of energy and momentum (19) has the form

ρ̇ = −3H(ρ+ p), (32)
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which holds both for the fluid as a whole and for its individual components. For a
fluid component i with a constant equation of state parameter wi the continuity (32)
implies the dependence of energy density ρi on scale factor a:

ρi ∝ a−3(1+wi). (33)

Hence the energy densities of matter, radiation and vacuum energy evolve as

ρm ∝ a−3 (34)
ρr ∝ a−4 (35)
ρΛ = const, (36)

respectively.
The energy density of fluid component i is often expressed through its density

parameter
Ωi ≡

ρi
ρc
, (37)

where ρc is the critical density

ρc ≡ 3M2
PH

2. (38)

From the Friedmann equation (26) we see that the curvature parameter K vanishes
when the energy density of the whole fluid is equal to the critical density ρc. Setting
the density parameter of the whole fluid Ω ≡ ρ/ρc to unity, we get from the Friedmann
equation (26)

H2 = H2
0

(
Ωr0

(
a0

a

)4
+ Ωm0

(
a0

a

)3
+ ΩΛ0

)
. (39)

From the scale factor dependence of different fluid components (34) – (36) we see
how the history of the universe divides into epochs during which the energy density
of one of the components dominates over all the others. Here we are setting aside
the period of inflation which precedes all the discussed epochs. Going back in time
the scale factor approaches zero. With the radiation density ρr ∝ a−4 growing faster
than that of matter ρm ∝ a−3 or vacuum energy ρΛ = const when a→ 0, the first
epoch is radiation dominated. Using (29) and (37) with (34) and (35), the redshift
zeq at which energy densities of radiation and matter are equal is

zeq = Ωm0

Ωr0
− 1. (40)

With the measured parameter values [18] listed in appendix A, zeq ≈ 3400. At that
point, the universe enters the matter dominated epoch. Similarly with the energy
density of matter and vacuum energy evolving as (34) and (36), respectively, the
universe enters the vacuum energy dominated epoch at [18]

z =
(

ΩΛ0

Ωm0

)1/3

− 1

≈ 0.31.
(41)
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3.3 Conformal Time
The so called conformal time η is defined as

dt ≡ a dη. (42)

Conformal time is often a convenient choice of time coordinate when spatial curvature
is negligible. With the conformal time, the spatially flat RW metric (25) becomes

gµν = a2(η)ηµν , (43)

where ηµν is the Minkowski metric (4).
The comoving Hubble parameter H is defined by

H ≡ d ln a
dη

= a′

a
= ȧ = aH, (44)

where the derivative with respect to conformal time is denoted by prime: ( )′ ≡ d/dη.
Using the conformal time, the Friedmann equations (26) and (27) with K = 0 become

H2 = ρa2

3M2
p

(45)

H′ = −(ρ+ 3p)a2

6M2
p

. (46)
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4 Cosmological Perturbation Theory
The FRW universe sets a solid foundation for cosmology [22, 23], but approximating
the universe to be homogeneous and isotropic is applicable only up to a point. A
universe in which matter accumulates to form structure is not a homogeneous one.

Structure formation can be approached perturbatively. In cosmological perturba-
tion theory, the FRW universe is taken as a background, and a layer of perturbations is
added on top of it. As with the FRW universe, the perturbed universe is characterized
by its metric. The perturbed metric is of the form

gµν = ḡµν + δgµν (47)

with the background part ḡµν being the Robertson-Walker metric of (25) and δgµν a
small perturbation.

The perturbation δgµν is assumed to be small in comparison to the background
value ḡµν so that terms higher order in δgµν can be ignored. The simplest choice,
applied throughout this thesis, is to keep terms only up to first order in δgµν , resulting
in linear perturbation theory. Going up to second order in perturbations increases
the complexity of the theory significantly [8, 9].

When dividing the metric gµν into background part ḡµν and perturbation δgµν
a choice is made, since the division is not unique. This freedom of choice acts as a
gauge freedom of the theory, with a particular choice of division fixing the gauge.
Until the gauge is fixed, there are non-physical degrees of freedom, or gauge modes,
in the theory. (See e.g. [5].)

Different gauges have been used within the context of cosmological perturbation
theory with certain gauges usually being better suited for some situations than
others. Especially before the 1980s, what is known as the synchronous gauge was
the most common one, used for example in the influential textbook by Peebles [25].
The synchronous gauge, however, has the inconvenient property of not being fully
fixed, leading to difficulty in interpretation of the physical implications of the theory.
One solution, presented by Bardeen [26], is to write the theory in terms of gauge
invariant variables, which are unaffected by gauge modes. An approach combining
the physical clarity of a gauge invariant theory and computational simplicity of a
fixed-gauge theory is to fix the gauge in such a way that the remaining variables
are gauge invariant. This is the approach adopted in this thesis, where we shall be
using the Newtonian gauge. In the Newtonian gauge, the perturbation of the metric
δgµν is written in terms of the gauge invariant variables introduced by Bardeen. (See
e.g. [5].)

The goal of this section is to lay a solid foundation for the perturbed universe
whose dynamics will be solved in upcoming sections. Some amount of technical
details are presented here to establish the physical and mathematical considerations



20

P

P
~

P
_

Figure 1. With a perturbed spacetime built on top of the FRW spacetime,
a point P̄ in the FRW universe is associated with a point P in the perturbed
universe. In a different gauge the point P̄ is associated with a different point P̃ .

required by the perturbed universe. For a more complete discussion on cosmological
perturbation theory, see e.g. [4, 5]. From practical point of view, however, there are
essentially only two key results that make reappearences in following sections: vector
and tensor perturbations can be ignored while discussing structure formation, and
the perturbed metric has the form (91).

While improving the cosmological description of the universe over the FRW model,
a perturbation theory with perturbations up to any order has a limited scope. That is
because at some point in the structure formation the accumulation of matter reaches
a point when perturbations are no longer small in comparison to the background.
To study structure formation beyond that point, N-body simulations are used, as in
[11–13]. The point at which the perturbative approach breaks depends on at what
scale the universe is inspected: the larger the scale, the smoother the universe. To
examine the perturbations on different scales, much of the analysis of cosmological
perturbations is done in the Fourier space, discussed in section 4.3.

4.1 Gauge Transformations

To build a perturbed universe by adding a perturbation to the FRW universe we need
a one-to-one correspondence between the spacetime points of the two universes. As a
manifestation of the gauge freedom, there is no unique choice of mapping between the
spacetimes: a given point in the background spacetime can be associated with several
points close to each other in the perturbed universe. The situation is illustrated in
figure 1.

The mapping between the background and the perturbed spacetime is established
through coordinate systems. Let {x̄µ} be the coordinate system in the background
spacetime and {xµ} and {x̃µ} the coordinate systems associating the background
point P̄ with perturbed spacetime points P and P̃ respectively. The coordinate
systems are related by

x̄µ(P̄ ) = xµ(P ) = x̃µ(P̃ ). (48)
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Let us denote the difference between coordinates of a single point by ξµ, so that

x̃µ(P ) = xµ(P ) + ξµ(P ) (49)
x̃µ(P̃ ) = xµ(P̃ ) + ξµ(P̃ ). (50)

The equations (49) and (50) establish the gauge transformations between the two
gauges. The difference of differences ξµ(P )− ξµ(P̃ ) is second order in perturbation
and thus can be ignored:

ξµ(P ) = ξµ(P̃ ) ≡ ξµ. (51)

A scalar quantity q by definition is unchanged by a coordinate transformation. The
background and perturbation parts q̄ and δq, however, do change under coordinate
transformations, as they are not tensoral. This reflects the fact that they are
not directly observables like q. Next we shall determine the effect a coordinate
transformation of the form (49) has on the perturbative part δq. This is a stepladder
towards the transformation of the quantity of most interest to us, the metric.

By definition the perturbation is the difference between the total value and the
background value. In the two different gauges then

δq(P̄ ) = q(P )− q̄(P̄ ) (52)
δ̃q(P̄ ) = q(P̃ )− q̄(P̄ ). (53)

Note that both the background value q̄ and the perturbation δq are functions of
the background spacetime, since the value of both of them in a single point in the
perturbed spacetime depends on the chosen gauge. The total quantity q at point P̃
can be approximated with an expansion around point P :

q(P̃ ) = q(P ) + ∂µq(P )
(
xµ(P̃ )− xµ(P )

)
. (54)

With different coordinates relating through (48) and (50), the equation (54) yields

δ̃q(P̄ ) = δq(P̄ )− ξµ∂µq(P ). (55)

Dropping second order terms gives the gauge transformation law for the perturbation
of a scalar quantity:

δ̃q(P̄ ) = δq(P̄ )− ξ0q̄′(P̄ ). (56)

Unlike scalars, the components of a type (0,2) tensor Bµν are not unchanged
under a coordinate tranformation but tranformed as

Bµ̃ν̃ = ∂xα

∂x̃µ̃
∂xβ

∂x̃ν̃
Bαβ. (57)

The gauge transformation (49) implies

∂xµ

∂x̃ν̃
= δµν̃ − ∂ν̃ξµ. (58)
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As with the scalar field, expressing the tensor Bµν at point P̃ in terms of expansion
around P gives

Bµν(P̃ ) = Bµν(P )− ξ0B̄′µν(P̄ ). (59)

Using the coordinate transformation law (57):

Bµ̃ν̃(P̃ ) = ∂xα

∂x̃µ̃
∂xβ

∂x̃ν̃

(
Bαβ(P )− ξ0B̄′αβ(P̄ )

)
. (60)

Applying (58) and dropping higher order terms results in the gauge transformation
law

δ̃Bµν = δBµν − ξ0B̄′µν − B̄µλ∂νξ
λ − B̄λν∂µξ

λ. (61)

Transformations for different types of tensors can be derived similarly, but the
transformation law of (61) will be the one needed when deriving the form of the
perturbed metric in the next section.

4.2 The Perturbed Metric
Solving the dynamics of the perturbed universe proceeds in the manner seen with the
FRW universe in section 3: we specify the metric from geometric properties and the
energy-momentum tensor from physical properties and use the Einstein equations (6).
Most focus will be on the metric, as it is with the metric that we shall fix the gauge.
This gauge choice will then propagate to the energy-momentum tensor through the
Einstein equations in section 5.2.

To start deriving the perturbed metric, let us label the components of its pertur-
bation δgµν :

δgµν = a2(η)
(
−2A −Bi

−Bi −2Dδij + 2Eij

)
. (62)

In (62), the matrix Eij is traceless

δijEij = 0, (63)

making the division between Eij and Dδij unique. The D component then relates to
the trace of δgij by

D = − 1
6a2 δ

ijδgij. (64)

With (62), the ten parameters of δgµν are labelled by A, Bi, D and Eij, the last
being a symmetric and traceless matrix. However, not all of these degrees of freedom
are relevant for structure formation. To separate the relevant components from the
rest, we shall perform a scalar-vector-tensor (SVT) decomposition (see e.g. [27]). The
decomposition separates components based on their behaviour under global rotations
of the background spacetime. While δgµν or its components do not transform as
tensors under a general coordinate transformations, limiting to rotations sees the
components transform in a tensorial fashion. In the end, it will be the components
behaving like scalars that we will be interested in.
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A general spatial rotation

Rµ
ν =

(
1 0
0 Ri

j

)
(65)

has the defining properties Ri
kRj

k = δij and det(R) = 1. Rotating the total metric

gµ̃ν̃ = Rα
µ̃R

β
ν̃gαβ (66)

with perturbation components labelled as in (62) results in transformations

Ã = A (67)
D̃ = D (68)
Bı̃ = Rj

ı̃Bj (69)
Eı̃̃ = Rk

ı̃R
l
̃Ekl. (70)

Hence A and D are scalars, Bi a 3-vector and Eij a (0,2)-tensor under global rotations
of the background spacetime.

An additional scalar field can be extracted from Bi. Consider the Helmholtz
decomposition of the vector field Bi

Bi = BS
i +BV

i , (71)

with the vector field BS
i having zero curl and BV

i being divergenceless. The curl-free
BS
i can be expressed as the gradient of a scalar field B

BS
i ≡ ∂iB, (72)

defining the field B.
A similar treatment of the tensor field Eij breaks it into three parts (see e.g. [27])

Eij = ES
ij + EV

ij + ET
ij . (73)

In (73), ES
ij defines a scalar field E:

ES
ij ≡ (∂i∂j −

1
3δij∇

2)E. (74)

A divergenceless vector field Ei can be extracted from EV
ij :

EV
ij ≡

1
2(∂jEi + ∂iEj). (75)

The remaining component ET
ij constitutes a transverse and traceless tensor:

δijET
ij = 0 (76)

δik∂kE
T
ij = 0. (77)
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The perturbation degrees of freedom in the metric gµν are now categorized by
four scalar perturbations A, B, D and E, divergenceless vector fields Bi and Ei and
a transverse and traceless tensor field ET

ij . The scalar perturbations are the most
relevant ones from the point of view of the structure formation since they couple
to perturbations in energy density and pressure. The vector perturbations decay
and hence have little relevance [3]. The tensor perturbations describe gravitational
waves.

Up to linear order in perturbations, the different categories of perturbations
develop independent of each other (see e.g. [4]). The formation of structure is
reflected in the perturbation of energy density, δρ. Because δρ is a scalar, we are able
to ignore all but the scalar perturbations while analyzing the structure formation
within the context of linear perturbation theory. Without the vector and tensor
perturbations the perturbation of the metric has the form

δgµν = a2(η)
(
−2A −∂iB
−∂iB −2Dδij + 2(∂i∂j − 1

3δij∇
2)E

)
. (78)

Up to this point no gauge has been specified. As it turns out, two of the degrees of
freedom in (78) are gauge modes. Fixing the gauge in a suitable manner is the last
step in specifying the perturbed metric.

Transforming the perturbation of the metric (78) with (61), we see that the scalar
perturbations change under a gauge transformation (49) as

Ã = A−Hξ0 − ξ0′, (79)
∂iB̃ = ∂iB + ξi′ − ∂iξ0, (80)

and

D̃δij − (∂i∂j −
1
3δij∇

2)Ẽ =

Dδij − (∂i∂j −
1
3δij∇

2)E +Hξ0δij + 1
2(∂iξj + ∂jξ

i).
(81)

Separating (81) into trace and a traceless part gives separate eqations for D and E:

D̃ = D +Hξ0 + 1
3∂kξ

k (82)

and

(∂i∂j −
1
3δij∇

2)Ẽ =

(∂i∂j −
1
3δij∇

2)E − 1
2(∂iξj + ∂jξ

j) + 1
3δij∂kξ

k.
(83)

When ignoring non-scalar perturbations, gauge transformations introducing vector
perturbations are irrelevant. The source of the vector perturbation in such a gauge
transformation is the divergenceless part of the Helmholtz decomposition of the
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gauge transformation 3-vector ξi. Without loss of generality we can therefore ignore
the divergenceless part of ξi and express the curl-free part in terms of scalar ξ as

ξi ≡ δij∂jξ (84)

when focusing on scalar perturbations. With this, the transformations of the metric
perturbations become

Ã = A−Hξ0 − ξ0′, (85)
B̃ = B − ξ0 + ξ′, (86)

D̃ = D +Hξ0 + 1
3∇

2ξ, (87)

Ẽ = E − ξ. (88)

There are no constants of integration in (86) and (88) since perturbations average to
zero.

With transformations (85) – (88), we are ready to fix the gauge by specifying
the gauge transformation parameters ξ0 and ξ by which one can transition from an
arbitrary gauge to the chosen gauge. A desirable goal would be to have a diagonal
metric for computational simplicity and that the remaining metric perturbations
would be gauge invariant. One suitable set of gauge invariants is the Bardeen
potentials [26]:

Φ ≡ A−H(B + E ′)− (B + E ′)′ (89)

Ψ ≡ D + 1
3∇

2E +H(B + E ′). (90)

If we now perform a gauge transformation with ξ = E and ξ0 = E ′ +B, from (86)
and (88) we see that the metric perturbations B and E vanish in the new gauge. The
Bardeen potentials Φ and Ψ are then equal to the remaining metric perturbations A
and D, respectively. The perturbed metric is then simply

gµν = a2(η)
(
−1− 2Φ 0

0 (1− 2Ψ)δij

)
. (91)

4.3 Perturbations in the Fourier Space
Going to the Fourier space enables us to examine perturbations on different length
scales. The convention used in this thesis is to define the Fourier transformation of
function f(t, xi) by

f(t, xi) ≡
∫
d3k f(t, ki)eikjx

j

. (92)

For tensors of different rank, the Fourier transformation is defined similarly.
As has been stated, we are restricting our focus on scalar perturbations. The

Fourier transformation of the scalar field v with vS
i ≡ ∂iv can be made to have the
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same dimension and magnitude as the vector field vS
i by adding an extra k ≡

√
kiki

in its transformation:
v(t, xi) ≡

∫
d3k

v(t, ki)
k

eikjx
j

. (93)

For the same reason the Fourier transformation of a scalar field A associated with a
symmetric and traceless tensor field Aij through

AS
ij(t, xk) = (∂i∂j −

1
3δij∇

2)A(t, xk) (94)

carries an additional k2:

A(t, xi) =
∫
d3k

A(t, ki)
k2 eikjx

j

. (95)

As xi are comoving coordinates, ki is a comoving wave vector. With corresponding
physical and comoving wave lengths λphys and λ respectively, the magnitude of the
physical wave vector kiphys relates to k as

kphys = 2π
λphys

= 2π
aλ

= k

a
. (96)

The factors of 2π are largely ignored, so that the length scale corresponding to
Fourier mode k is just k−1.

A length scale is said to be subhorizontal if a spatial patch of the scale is
causally connected. In the converse case the scale is superhorizontal. The Hubble
time H−1 = a/ȧ is a characteristic time scale of the Robertson-Walker metric (24),
indicating the time scale on which appreciable expansion occurs. The distance
travelled by a light ray in one Hubble time is the Hubble length, also H−1 with the
speed of light c set to unity. Hence the Hubble length can be taken as the length scale
of the causally connected patch. With the comoving Hubble length (Ha)−1 = H−1

subhorizontal scales have k−1 < H−1, or k > H, while superhorizontal scales are
those with k < H.
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5 The Perturbation Equations
With the cosmological perturbation theory introduced in section 4, we have the
necessary framework for deriving the equations governing the evolution of cosmological
perturbations. The derivation starts by establishing the time frame of the structure
formation in section 5.1. The composition of the cosmic fluid and the relevant
interactions between fluid components during structure formation are also subjects
of section 5.1.

In section 5.2, the Einstein equations (6) for the perturbed universe are solved.
The Einstein equations relate the metric perturbations Φ and Ψ to the perturbations
of the cosmic fluid.

The evolution equations for non-interacting fluid components are derived in
section 5.3. The lack of direct interactions with other fluid components makes the
derivation quite straightforward, as the energy-momentum continuity can be invoked
for the non-interacting components separately.

The section 5.4 contains the most involved derivation of evolution equations
presented in this thesis, namely the equations for photons and baryons. Because of
the interactions between photons and baryons, the Boltzmann equation is required
to describe their evolution. In section 5.4, this is done in detail for photons only.
The baryon equations are constructed by utilizing conservation laws and the dark
matter equations derived in section 5.3.

Initial values of perturbations are established in section 5.5. Though the initial
perturbations are supposedly created by the inflation, the details of the mechanism
are not important here. The fact that the initial perturbations are adiabatic is
enough for the initial values to be determined once the evolution equations have
been derived.

5.1 Fluid Composition during Structure Formation
To specify the composition of the cosmic fluid and the relevant interactions between
different components during the time when perturbations evolve, we must determine
the time frame of the process.

CMB observations [18] indicate that perturbations on superhorizon scales were
adiabatic and nearly scale-invariant in the radiation dominated epoch, presumably
as a remnant of the inflation [17]. As is discussed in detail when specifying the initial
conditions in section 5.5, the adiabaticity of these primordial perturbations implies
that they remain constant on superhorizontal scales or evolve as powers of k/H � 1.
By and large, the perturbations on scale k therefore start evolving only after the
scale crosses the horizon at roughly k = H. From the second Friedmann equation
(46) we see that the comoving Hubble length H−1 increases if the cosmic fluid has
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ρ+ 3p > 0, bringing scales into the horizon. Hence the perturbations begin to evolve
in the radiation and matter dominated epochs starting from the small scales.

We are interested in length scales upwards from the size of a galaxy, ie. the scale
k−1

phys(t0) ∼ 0.1 Mpc and larger (see e.g. [28]). The linear perturbation theory is of
meager use in explaining the currently observable structures on smaller scales due to
growth of perturbations having rendered the perturbative approach invalid so far in
the past on those scales (see e.g. [29]). Using the equations (29), (39) and (96) we
see that the present day physical scale kphys,0 enters the horizon roughly at

kphys,0 = H0

√
Ωr0(1 + z)2 + Ωm0(1 + z) + ΩΛ0(1 + z)−2. (97)

Solving z from (97) for k−1
phys,0 = 0.1 Mpc with the cosmological parameter values

listed in appendix A results in z ≈ 4.6× 106.
From conservation of entropy it follows that after electron-positron annihilations

at T ∼ 0.5 MeV the temperature scales as (see e.g. [30])

T ∝ 1
a
. (98)

With (29) and (98), temperature corresponding to redshift z is

T = (1 + z)T0. (99)

Substituting the present day CMB temperature T0 = 2.725 48 K [31] and z = 4.6×106

into (99) results in T ≈ 1100 eV. We will therefore consider T ∼ 1 keV as the starting
time point in our structure formation analysis.

The concordance model of cosmology is the ΛCDM model. In the ΛCDM model,
there are five components in the cosmic fluid: baryons, cold dark matter, photons,
neutrinos and vacuum energy. As is common in the nomenclature of cosmology,
baryons are taken to include also electrons (see e.g. [29]). Vacuum energy is
homogeneous in the ΛCDM model. (See e.g. [24])

At T ∼ 1 keV, both neutrinos and cold dark matter have decoupled from the
plasma (see e.g. [30]), meaning that they interact with other fluid components only
through gravitation. We shall approximate neutrinos to be massless. Thus there are
two non-interacting components in the fluid: neutrinos that behave as radiation and
cold dark matter that behaves as matter.

Electrons with masses me ∼ 500 keV are non-relativistic at T ∼ 1 keV. Because
electrons are the lightest particles of what is here called baryons, baryons are non-
relativistic during structure formation. Having T � me also implies that the primary
interaction between photons and baryons is Compton scattering of photons and
electrons in the low energy limit, or Thomson scattering. Scattering between photons
and protons is suppressed in comparison because of the cross section depending on
the mass as σ ∝ m−2. A notable feature of the Thomson scattering is that very little
energy is transferred between scattering particles. (See e.g. [32])
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5.2 The Perturbed Einstein Equations
Using the Einstein equations (6) always proceeds in a similar way: the Einstein
tensor Gµ

ν is computed from the metric and energy-momentum tensor T µν from fluid
properties, and the Einstein equations set a connection between these two tensors.
Here the focus will be on the perturbations, as the background Einstein equations
result merely in the Friedmann equations (45) and (46). The Einstein equations of
interest are therefore

δGµ
ν = M−2

p δT µν . (100)

The background Einstein tensor Ḡµ
ν is computed with the recipe described in

section 2 from the Robertson-Walker metric (43) and the total Einstein tensor from
the conformal Newtonian metric (91). The perturbation of the Einstein tensor is
simply their difference:

δGµ
ν = Gµ

ν − Ḡµ
ν . (101)

A straightforward computation reveals that to first order in perturbations

δG0
0 = 2a−2

(
3H(Ψ′ +HΦ)−∇2Ψ

)
(102)

δGi
0 = 2a−2∂i (Ψ′ +HΦ) (103)

δG0
i = −δGi

0 (104)
δGi

j = a−2∂i∂j(Ψ− Φ) +
a−2

[
2
(
Ψ′′ +H(Φ′ + 2Ψ′)− 3H2wΦ

)
+∇2(Φ−Ψ)

]
δij. (105)

The background energy-momentum tensor T̄ µν is necessarily of the perfect fluid
form (14) due to isotropy:

T̄ µν = (ρ̄+ p̄)ūµūν + p̄δµν . (106)

The total energy-momentum tensor T µν has the addition of anisotropic stress tensor
Πµ

ν as per the equation (15):

T µν = (ρ+ p)uµuν + p (δµν + Πµ
ν) . (107)

Keeping only the scalar part of the SVT decomposition of Πµ
ν , its spatial components

can be expressed with a scalar Π as (see e.g. [27])

Πij = (∂i∂j −
1
3δij∇

2)Π. (108)

In the background, homogeneity and isotropy set the fluid to be at rest so that
the four-velocity of the fluid is ūµ = a−1(1, 0, 0, 0). The four-velocity is normalized by
ūµūµ = −1, so that ūµ = a(−1, 0, 0, 0). With a small perturbation the four-velocity
can be written as

uµ = 1
a

(
1 + aδu0, ∂1v, ∂2v, ∂3v

)
(109)

uµ = (−a+ δu0, δu1, δu2, δu3) . (110)
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Here a velocity perturbation scalar field was defined as ∂iv ≡ aui. For the total
four-velocity, the normalization implies δu0 = a2δu0. On the other hand, uµ = gµνu

ν .
Combining these with the metric (91) it follows that

δu0 = −Φ
a

(111)

δui = a ∂iv. (112)

With (111) and (112), the four-velocity expressions (109) and (110) become

uµ = 1
a

(1− Φ, ∂iv) (113)

uµ = a (−1− Φ, ∂iv) . (114)

With four-velocities resolved, subtracting the background energy-momentum
tensor of (106) from the total tensor of (107) gives the perturbation of the energy-
momentum tensor:

δT 0
0 = −δρ (115)

δT i0 = −(ρ̄+ p̄)∂iv (116)
δT 0

i = −δT i0 (117)

δT ij = δpδij + p̄
(
∂i∂j −

1
3δ

i
j∇2

)
Π. (118)

The Einstein equations (100) can now be used to relate perturbation of the
Einstein tensor δGµ

ν with the perturbation of the energy-momentum tensor δT µν .
For δG0

0 from (102) and δT 0
0 from (115) the Einstein equations yield

3H(Ψ′ +HΦ)−∇2Ψ = −3
2H

2δ. (119)

In the equation (119), δ is the density contrast, defined as

δ ≡ δρ

ρ̄
= ρ

ρ̄
− 1. (120)

The Friedmann equation (45) was also used to simplify the equation (119).
Taking δGi

0 from (103) and δT i0 from (116) and applying the Einstein equations
gives

∂i(Ψ′ +HΦ) = −3
2(1 + w)H2 ∂iv. (121)

In (121), the equation of state parameter w is defined with respect to background
quantities,

w ≡ p̄

ρ̄
. (122)

Because perturbations average to zero, equal gradients of perturbative quantities
mean that the quantities themselves must be equal. From (121) then follows

Ψ′ +HΦ = −3
2(1 + w)H2 v. (123)



31

For relations resulting from δGi
j and δT ij components, it is convenient to separate

the respective matrices to their traces and trace-free parts. For the traces, the Einstein
equations set δGi

i = M−2
p δT ii, so that with (105) and (118)

Ψ′′ +H(Φ′ + 2Ψ′)− 3wH2Φ + 1
3∇

2(Φ−Ψ) = 3
2H

2 δp

ρ̄
. (124)

The Einstein equations applied to the trace-free parts give

δGi
j −

1
3δG

k
kδ
i
j = M−2

p (δT ij −
1
3δT

k
kδ
i
j), (125)

or with (105) and (118):

(∂i∂j −
1
3δij∇

2)(Ψ− Φ) = 3wH2(∂i∂j −
1
3δij∇

2)Π. (126)

Again invoking the fact that perturbations average to zero it follows from (126) that

Ψ− Φ = 3wH2Π. (127)

The final set of Einstein equations is then equations (119), (123), (124) and (127).
In Fourier space, these read

3H−1(Ψ′ +HΦ) +
(
k

H

)2

Ψ = −3
2δ (128)

H−1Ψ′ + Φ = −3
2(1 + w)H

k
v (129)

H−2Ψ′′ +H−1(Φ′ + 2Ψ′)− 3wΦ + 1
3

(
k

H

)2

(Ψ− Φ) = 3
2
δp

ρ̄
(130)

Ψ− Φ = 3w
(H
k

)2
Π. (131)

5.3 Non-Interacting Fluid Components
As stated in section 5.1, neutrinos and dark matter have decoupled from the cosmic
plasma by the time when scales relevant to large scale structure formation start to
enter the horizon. As a result, neutrinos and dark matter both evolve freely with
no transfer of energy or momentum with other fluid components. Therefore these
components satisfy separate energy-momentum continuities (19):

∇µ(Ti)µν = 0, (132)

with i being either c for cold dark matter or ν for neutrinos.
In the unperturbed background, ∇µ(Ti)µ0 = 0 results in the FRW continuity

equation (32). Using this result, ∇µ(Ti)µ0 = 0 up to first order in perturbations
results in

(δρi)′ = −3H(δρi + δpi) + (ρ̄i + p̄i)(3Ψ′ −∇2vi). (133)
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With the density contrast (120) this can be recast as

δ′i = 3H
(
wiδi −

δpi
ρ̄i

)
+ (1 + wi)(3Ψ′ −∇2vi). (134)

The rest of the continuity equations, ∇µ(Ti)µj = 0, result in

∂j

(
(ρ̄′i + p̄′i)vi + (ρ̄i + p̄i) (v′i + 4Hvi + Φ) + δpi + 2

3 p̄i∇
2Πi

)
= 0. (135)

Since everything inside the parenthesis is perturbative and perturbations average to
zero, the term inside the parenthesis must be zero. Solving v′i gives

v′i =
(
H(3wi − 1)− w′i

1 + wi

)
vi −

δpi
ρ̄i + p̄i

− 2
3

wi
1 + wi

∇2Πi − Φ. (136)

Approximating neutrinos to be massless, their equation of state is pν = ρν/3.
Equations (134) and (136) then give

δ′ν = −4
3∇

2vν + 4Ψ′ (137)

v′ν = −1
4δν −

1
6∇

2Πν − Φ. (138)

Cold dark matter has no pressure, so

δ′c = −∇2vc + 3Ψ′ (139)
v′c = −Hvc − Φ. (140)

In Fourier space these read

δ′ν = 4
3kvν + 4Ψ′ (141)

v′ν = −1
4kδν + 1

6kΠν − kΦ (142)

δ′c = kvc + 3Ψ′ (143)
v′c = −Hvc − kΦ. (144)

The evolution equations for photons and baryons, derived in the next section,
are similar to those of neutrinos and dark matter respectively, only with interaction
terms added. An equation for the neutrino anisotropic stress Πν is also needed to
gain a complete set of differential equations. That equation will be derived as a side
result of photon equations.
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5.4 Photons and Baryons
As was established in section 5.1, the primary interaction between baryons and
photons during structure formation is the Thomson scattering between low-energy
photons (T � me) and non-relativistic electrons:

e−(pe) + γ(pγ)↔ e−(p′e) + γ(p′γ). (145)

In Thomson scattering, there is essentially no transfer of energy between electrons
and photons, so that only the three-momentum pi of the particles is changed (see
e.g. [32]). Electrons and protons are held in equilibrium by their electromagnetic
interactions and hence protons are also affected by the scattering process.

Because of scatterings, the evolution equations for photons and baryons must be
derived starting from the Boltzmann equation (see e.g. [33])

df

dη
= C[f ]. (146)

The Boltzmann equation states that scattering, manifesting in the collision term C,
changes the phase space distribution f of the particle species. The collision term
is computed with basic particle physics machinery using Feynman rules. In the
following derivation of the Boltzmann equation for photons, the collision term will
be taken from literature. The baryon equations can be derived using the photon
equations and conservation of momentum in the scattering.

As will be seen in section 5.4.4, the Boltzmann equation for photons results in an
infinite series of differential equations for multipoles of the photon brightness function.
This presents a problem for a numerical solution of the perturbation equations as
some approximation must be made to truncate the series. A truncation scheme with
some degree of justification is presented in section 5.4.4.

5.4.1 The Distribution Function

The phase space distribution f(η, xi, pi) measures the number of particles within the
phase space volume d3x d3p at time η so that if N is the number of particles

dN ≡ g

(2π)3f(η, xi, pi)d3x d3p. (147)

The prefactor g/(2π)3 with the number of internal degrees of freedom g is the density
of states. For photons with two spin states g = 2.

The distribution f is a Lorentz scalar (see e.g. [34]), so that we are free to choose
the coordinate system. It will be convenient to take the momentum to be that
measured by a comoving observer. Let q be the measured photon energy. The frame
in which q is the zero component of the photon four-momentum pµ̂ = dxµ̂/dλ is the
local orthonormal frame at the point of observation (see e.g. [35]). This is because in
the local orthonormal frame the photon energy can be expressed using the observer
four-velocity uµ̂ = (1, 0, 0, 0) as

q = −ηµ̂ν̂pµ̂uν̂ = p0̂. (148)
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The observed three-momentum is then qi = qni = pî, with ni being a unit vector in
direction of the momentum. The suitable variables for the distribution function are
now set with f = f(η, xi, q, ni).

In the end, we would like to discuss the perturbations in the photon fluid in
terms of density contrast δ and velocity perturbation v as was done with the fluid
as a whole and its non-interacting components in sections 5.2 and 5.3 respectively.
Relating the distribution function to the fluid quantities can be done through the
energy-momentum tensor.

In the local orthonormal frame, the energy-momentum tensor can be expressed
as (see e.g. [34])

T µ̂ν̂ = g

(2π)3

∫ d3p

p0̂
fpµ̂pν̂ . (149)

In the coordinate frame, the energy-momentum tensor of photons is of the same
form as for the whole fluid:

T 0
0 = −ρ (150)

T 0
i = (ρ̄+ p̄)∂iv (151)

T i0 = −δT 0
i (152)

T ij = pδij + p̄Πi
j (153)

as seen in equations (106) and (115) – (118). By inspection of the metric (91) the
transformation between the coordinate frame and the local orthonormal frame is

∂xµ

∂xν̂
= 1
a

(
1− Φ

(1 + Ψ)δij

)
. (154)

Transforming the photon energy-momentum tensor to the local orthonormal frame
results in

T µ̂ν̂ = ∂xµ̂

∂xα
∂xβ

∂xν̂
Tαβ = T µν . (155)

A relation this simple holds only up to first order in perturbations.
The connections between the distribution and the fluid quantities are then (with

pµ̂ = qµ)

ρ = g

(2π)3

∫
d3q fq (156)

(ρ̄+ p̄)∂iv = g

(2π)3

∫
d3q fqni (157)

p̄Πi
j = g

(2π)3

∫
d3q

(
ninj −

1
3δ

i
j

)
fq. (158)
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5.4.2 Expanding the df/dη Term

The derivative of the distribution function f = f(η, xi, q, ni) with respect to conformal
time η can be expanded with the chain rule:

df

dη
= ∂f

∂η
+ ∂f

∂xi
dxi

dη
+ ∂f

∂q

dq

dη
+ ∂f

∂ni
dni

dη
. (159)

In the homogeneous and isotropic background universe, the distribution has no
dependence on location xi or direction ni, making ∂f/∂xi and ∂f/∂ni first order
quantities. A collisionless change in the direction of the photon requires a non-
homogeneous energy density, making dni/dη a first order term. The last term in
(159) is therefore second order and is neglected.

With the chain rule, dxi/dη can be expressed in terms of photon four-momentum
pµ = dxµ/dλ:

dxi

dη
= dxi

dλ

dλ

dη

= pi

p0 .

(160)

Transforming the photon four-momentum from the local orthonormal frame to the
coordinate frame with (154) gives

pµ = q

a
(1− Φ, (1 + Ψ)ni). (161)

Because in (159) dxi/dη is multiplied by the first-order term ∂f/∂xi, only zeroth
order terms of dxi/dη are relevant. From (160) and (161) we get to zeroth order

dxi

dη
≈ ni. (162)

The photon energy as measured by the comoving observer is q = −pµ̂uµ̂ = −pµuµ
as stated in (148). Its derivative with respect to conformal time is then

dq

dη
= −pµduµ

dη
− uµ

dpµ

dη
. (163)

Up to first order in perturbations

duµ
dη

= ∂uµ
∂η

+ ∂uµ
∂xi

ni. (164)

In (164), the zeroth order expression (162) was used since ∂uµ/∂xi is a first order
term. With the metric (91) the four-velocity of a comoving observer is

u0 = 1
a

(1− Φ)

ui = 0.
(165)
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The corresponding dual vector is then

u0 = −a(1 + Φ)
ui = 0.

(166)

With (161), (164) and (166), the first term on the right hand side of the equation
(163) is

pµ
duµ
dη

= −q
(
H + Φ′ + ni∂iΦ

)
. (167)

In (163), dpµ/dη is contracted with uµ. Since ui = 0, only the zero component of
dpµ/dη is relevant. With the chain rule

dp0

dη
= 1
p0
dp0

dλ
. (168)

From the geodesic equation (23) we get

dp0

dλ
= −Γ0

ρσp
ρpσ. (169)

Computing the connections Γ0
ρσ from the metric (91) and taking the observer four-

velocity and the photon four-momentum from (166) and (161) respectively results in

uµ
dpµ

dη
= u0

dp0

dη
= q

(
2H + Φ′ −Ψ′ + 2ni∂iΦ

)
. (170)

With (167) and (170), the equation (163) becomes

dq

dη
= −q(H−Ψ′ + ni ∂iΦ). (171)

At this point, the left hand side of the Boltzmann equation (146) for photons can
be expressed as

df

dη
= ∂f

∂η
+ ni∂if − q

∂f

∂q
(H−Ψ′ + ni ∂iΦ). (172)

The perturbations enter as the last two terms inside the parenthesis in (172). These
terms encode the effects of gravitational red- and blueshift on photons, whereas the
term proportional to H describes redshift due to expansion of the universe.

In a homogeneous and isotropic universe, the second term on the right hand
side of (172) vanishes, as well as the two last terms inside the parenthesis. In the
background universe, the photons distribution maintains their equilibrium form and
the collision term of the Boltzmann equation (146) is zero:

df̄

dη
= ∂f̄

∂η
− q∂f̄

∂q
H = 0. (173)



37

Equation (173) results in the continuity equation (32) with the equation (156), which
relates the energy density to the distribution function. Using the equations (172) and
(173) and dividing the distribution into background and perturbation f = f̄ + δf
makes df/dη depend solely on perturbations:

df

dη
= d(δf)

dη
= ∂(δf)

∂η
+ ni∂i(δf)− q∂(δf)

∂q
H + q

∂f̄

∂q
(Ψ′ − ni∂iΦ). (174)

Thus far nothing has been stated about the distribution function f that is specific
to photons. Giving an expression to the distribution function is the subject of the
next section.

5.4.3 The Brightness Function

In the background universe the photon distribution is independent of location and
direction. Since photons are bosons, their background distribution is of the Bose-
Einstein form:

f̄(η, q) = 1
eq/T (η) − 1 . (175)

The only type of deviation from the background distribution form (175) that has been
observed in the cosmic microwave background is the fluctuation of temperature [36,
37]. The temperature contrast δT/T is commonly known as the brightness function
Θ (see e.g. [35]):

Θ ≡ δT

T
. (176)

In this notation T always refers to the background temperature. What it means
for the brightness function Θ to be a perturbation of the temperature is that it
does not change the functional form of the energy distribution as described by the
Bose-Einstein distribution (175). Therefore Θ does not depend of the photon energy.
With the addition of Θ, the distribution of photons is

f(η, xi, q, ni) = 1
exp

(
q

T (η)(1+Θ(η,xi,ni))

)
− 1

. (177)

The types of perturbations omitted from the distribution (177) are known as
spectral distortions. Spectral distortions come in two flavors: those introducing a
non-zero photon chemical potential µ and those that make the distribution deviate
from the Bose-Einstein form. Setting µ = 0 implies assuming that photon number
changing processes, most notably double Compton scattering and bremsstrahlung, are
effective in keeping the number of photons at a given temperature at the blackbody
value. Sustaining the Bose-Einstein form on the other hand is the result of the
Thomson scattering being able to keep the photons in kinetic equilibrium. The
spectrum of CMB is predicted to be slightly distorted, but to such a small degree
that the distortions are beyond the current precision of observations [38]. [39–41]
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The distribution f of (177) can be divided into background and perturbation
as f = f̄ + δf with the perturbation δf depending on the brightness function Θ.
Expanding the distribution around the background temperature T gives

f = f̄ + ∂f̄

∂T
δT. (178)

Since Θ = δT/T , the perturbation of the distribution can be identified as

δf = ∂f̄

∂T
TΘ. (179)

The background distribution function f̄ of (175) is a function of q/T , so

T
∂f̄

∂T
= −q∂f̄

∂q
. (180)

With (179) and (180), the perturbation can be expressed without explicitly referring
to the temperature as

δf = −q∂f̄
∂q

Θ. (181)

In Fourier space, the brightness function can be conveniently connected to
the density contrast δ and velocity perturbation v of the fluid. To this end, the
l:th multipole of the brightness function is defined by expansion with Legendre
polynomials Pl (see e.g. [42]):

Θ(η, ki, ni) =
∑
l

(−i)l(2l + 1)Pl(cos θ)Θl(η, ki). (182)

In the expansion the photon direction ni is expressed through its angle with the
Fourier mode ki:

cos θ ≡ kin
i

k
. (183)

Using the orthogonality relation of the Legendre polynomials∫ 1

−1
dxPl(x)Pk(x) = 2

2l + 1δlk (184)

the multipole Θl can be solved from (182):

Θl(η, ki) = il

2

∫ 1

−1
dcos θ Pl(cos θ)Θ(η, ki, ni). (185)

Switching to solid angle integral, (185) becomes

Θl(η, ki) = il

4π

∫
dΩPl(cos θ)Θ(η, ki, ni). (186)
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Taking the expression for energy density in terms of the distribution from (156),
relating the perturbation of the distribution to the brightness function with (181)
and using (186) results in

δ = δρ

ρ̄
= 4Θ0. (187)

Similarly with the used Fourier convention for the velocity perturbation v and
anisotropic stress Π the equations (157) and (158) yield

v = −3Θ1 (188)
Π = 12Θ2. (189)

5.4.4 The Boltzmann Hierarchy

The equation (174) gives an expression for df/dη in terms of the perturbation of the
distribution δf , and (181) relates δf to the brightness function. Combining these
yields

df

dη
= −q∂f̄

∂q

(
Θ′ + ni∂iΘ−Ψ′ + ni∂iΦ

)
. (190)

In Fourier space

df

dη
= −q∂f̄

∂q
(Θ′ + ikΘ cos θ −Ψ′ + ikΦ cos θ) . (191)

The collision term C[f ] in the Boltzmann equation (146) describes the effect of
Thomson scattering (145) on the distribution function. In equilibrium, the forward
and backward reactions of (145) balance each other and the collision term is zero.
In non-equilibrium state the collision term must be computed using the standard
particle physics toolkit. The calculation can be found for example in [29]. The
resulting approximate collision term is in Fourier space

C[f ] = −q∂f̄
∂q
aneσT

(
Θ0 −Θ + vb cos θ − 1

2P2(cos θ)Θ2

)
. (192)

In (192) ne is the free electron number density, σT the Thomson cross-section and vb
the baryon velocity perturbation. The evolution of ne is discussed in section 5.4.6.

The collision term of (192) is an approximation which ignores the effect of
polarization, which affects the invariant amplitude of the scattering (see e.g. [29]).
The polarization effects are small corrections to the collision term but of significant
physical interest since they introduce a method alternative to temperature anisotropy
measurements in probing the CMB. For a treatment including the polarization effects,
see e.g. [43].

The Boltzmann equation (146) equates df/dη from (191) and the collision term
(192). The prefactors cancel, leaving

Θ′ + ikΘ cos θ −Ψ′+ikΦ cos θ =

aneσT

(
Θ0 −Θ + ivb cos θ − 1

2P2(cos θ)Θ2

)
.

(193)
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The equation (193) can be turned into an equation of multipoles Θl by integrating
both sides with il

2
∫ 1
−1 dcos θ Pl(cos θ) and using the orthogonality relation (184) as

well as the recursive formula

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x) (194)

of Legendre polynomials. The resulting equation is

Θ′l + k

2l + 1((l + 1)Θl+1− lΘl−1)− 1
3kΦδl1 −Ψ′δl0 =

neσTa
(

Θ0δl0 −Θl −
1
3vbδl1 + 1

10Θ2δl2

)
.

(195)

Equation (195) is called the Boltzmann hierarchy of photons. In terms of fluid
quantities it can be recast with (187) – (189) as

δ′γ = 4
3kvγ + 4Ψ′ (196)

v′γ = −1
4kδγ + 1

6kΠγ − kΦ + neσTa(vb − vγ) (197)

Π′γ = −36
5 kΘ3 −

8
5kvγ −

9
10neσTaΠγ (198)

Θ′l = k

2l + 1(lΘl−1 − (l + 1)Θl+1)− neσTaΘl, l ≥ 3. (199)

Specifying the fluid component in the subscript has been reinstated in (196) – (198)
to make the fluid equations of photons consistent with those of neutrinos and dark
matter seen in section 5.3.

The Boltzmann hierarchy establishes the coupling between different multipoles
up to infinite l. Numerical solutions of the photon perturbations therefore require
truncating the hierarchy at some multipole lmax. A first approximation, used for
example in [44] and [45], would be to set all higher multipoles to zero :

Θl = 0, l > lmax. (200)

From (189) it can be seen that approximating the photons to behave as a perfect
fluid is equivalent with using the truncation scheme of (200) with lmax = 1.

Using (199) with the truncation scheme (200), the derivative of the multipole
lmax+1 is

Θ′lmax+1 = k

2lmax + 3(lmax + 1)Θlmax (201)

for lmax ≥ 2. Forcing Θlmax+1 = 0 as per (200) therefore contradicts the Boltzmann
hierarchy if Θlmax 6= 0. By ignoring the transfer of power from multipoles l ≤ lmax to
multipoles l > lmax, the simple truncation scheme (200) exaggerates the examined
perturbations [46].

In [42] a less arbitrary truncation scheme is offered. With the added assumption
of Φ′ + Ψ′ = 0 the multipole Θl can be shown to be proportional to spherical Bessel
function jl(kη). With the recursion relation of spherical Bessel functions

(2l + 1)jl = x (jl+1(x) + jl−1(x)) (202)
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the lmax + 1 multipole can be approximated to be [42]

Θlmax+1 ≈
2lmax + 1

kη
Θlmax −Θlmax−1. (203)

In the Boltzmann hierarchy (195), the evolution equation of multipole Θl involves
only multipoles l − 1, l and l + 1. Specifying Θlmax+1 in terms of Θlmax−1 and Θlmax

by (203) is therefore sufficient to truncate the Boltzmann hierarchy to a closed set
of coupled differential equations.

Though improving the correspondence between numerical solutions and observa-
tions compared to the naive truncation of (200), the truncation scheme of (203) is a
fairly crude approximation especially for low lmax [42]. Especially in the radiation
dominated epoch the perturbations of the metric Φ and Ψ vary rapidly, as can be
seen from numerical solutions in section 6.2.

For massless neutrinos, the Boltzmann equation results in hierarchy similar to
(196) – (199), only without the interaction terms. Indeed, the neutrino equations
(141) and (142) derived from energy-momentum continuity are identical to equations
(196) and (197) with the interaction term removed. The equation for the neutrino
anisotropic stress Πν is therefore

Π′ν = −36
5 k(Θν)3 −

8
5kvν (204)

with the higher multipoles evolving as

(Θν)′l = k

2l + 1(l(Θν)l−1 − (l + 1)(Θν)l+1), l ≥ 3. (205)

5.4.5 The Baryon Equations

For the purpose of this discussion, the only difference between baryonic and dark
matter is that baryons interact with photons through Thomson scattering (145),
whereas dark matter is decoupled from the plasma in the examined time period. The
baryon equations can therefore be constructed by adding an interaction term to the
dark matter equations (143) and (144).

Transfer of energy is insignificant in the low-energy Thomson scattering (see
e.g. [32]). Therefore the density contrast has no direct dependence on interactions,
making its evolution equation for baryons identical to that of dark matter

δ′b = kvb + 3Ψ′. (206)

Momentum is conserved in the scattering. For collisional contributions to v′ this
means that

(ρ̄b + p̄b)v′b,coll = −(ρ̄γ + p̄γ)v′γ,coll. (207)
Taking v′γ from (197) and using the equations of state p̄b = 0 and p̄γ = ρ̄γ/3, we get
the collision term for baryon velocity perturbation

v′b,coll = 4
3
ρ̄γ
ρ̄b
neσTa(vγ − vb). (208)
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The non-collisional part of v′b is identical to v′c, so that with (144)

v′b = −Hvb − kΦ + 4
3
ρ̄γ
ρ̄b
neσTa(vγ − vb). (209)

5.4.6 Recombination

To get a complete set of equations describing the evolution of perturbations we still
need an equation for the free electron number density ne. Free electron number
density makes an appearance in the interaction terms of equations (197) – (199)
and (209).

The density of free electrons depends on the amount of electrons bound in atoms.
At temperatures T & 1 eV, all electrons are free due to large number of high energy
photons instantly ionizing all forming atoms. As temperature drops, a growing
amount of electrons is able to combine with nuclei. This process is known as the
recombination. (See e.g. [29])

For this discussion, the only recombination process considered will be the forma-
tion and ionization of hydrogen

p+ + e− ↔ H + γ. (210)

We are thus ignoring the subdominant recombination processes, most notably that
of helium [46, 47]. Deriving the evolution of ne is further simplified by noting that
in the fluid equations ne appears in ((197) – (199) and (209)) it is multiplied by
first order perturbations. It is therefore sufficient to examine ne in the homogeneous
background universe.

We shall start by defining the free electron fraction Xe as the ratio of free electron
number density ne and the number density of all electrons n∗e:

Xe ≡
ne

n∗e
. (211)

Because the universe is electrically neutral, the total number density of electrons
matches that of protons, n∗e = n∗p. In the time frame of structure formation the
temperature is below T ∼ 1 keV at which point baryons1 are predominantly protons
due to them being the lightest baryon species (see e.g. [29]). Hence we approximate
nb ≈ n∗p. The free electron number density is thus

ne = Xenb. (212)

First we shall see how the free electron fraction Xe evolves in thermodynamic
equilibrium. In equilibrium, the distribution function f of photons is of the Bose-
Einstein form (175). By definition (147), the distribution function relates to number
density n as

n = g

(2π)3

∫
f d3p. (213)

1When discussing recombination, ”baryons” are defined in the normal particle physics manner,
i.e. electrons are not included.



43

Substituting f from (175) into (213) and integrating yields the number density of
photons in thermodynamic equilibrium:

nγ = 2ζ(3)
π2 T 3, (214)

where ζ is the Riemann zeta function.
The conservation of baryon number implies that their number density scales as

nb ∝ a−3. With a ∝ T−1 as established in (98), we get the temperature dependence
of nb:

nb ∝ T 3, (215)
valid from the electron-positron annihilations to the present day. From (214) and
(215) we see that in the discussed time frame the ratio of baryon and photon number
densities is a constant. Defining ηB to be the present day ratio

ηB ≡
nb(t0)
nγ(t0) (216)

and using (214) yields

nb = ηB
2ζ(3)
π2 T 3. (217)

Observations indicate that ηB ≈ 6.07× 10−10 [48].
Another relation nb fulfills can be found by considering the distribution function

of non-relativistic particles. In general, the distribution is

f = 1
e(E−µ)/T ± 1 (218)

with plus sign for fermions and minus for bosons. In (218), E =
√
m2 + p2 is the

energy and µ is the chemical potential. Since p� m for non-relativistic particles,
the energy can be approximated as

E ≈ m+ p2

2m. (219)

For a sufficiently dilute system of massive particles m− µ� T (see e.g. [49]). Then
the denominator in (218) is dominated by the exponential term and so

f ≈ exp(− p2

2mT −
m− µ
T

). (220)

The distribution of non-relativistic particles then makes no distinction between
fermions and bosons. The number density is given by (213) and (220):

n = g
(
mT

2π

)3/2
e−(m−µ)/T . (221)

The equation (221) expresses the number density of a massive particle species as
a function of their temperature T and chemical potential µ. While the recombination
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reaction (210) is in chemical equilibrium, the chemical potentials of the involved
particles have the relation

µp + µe = µH + µγ, (222)
where the chemical potential of photons µγ = 0 (see e.g. [49]). Combining (221) and
(222) implies

nH

npne
=
( 2π
meT

)3/2
eBH/T . (223)

Here BH = mp + me −mH = 13.6 eV is the hydrogen binding energy. Outside the
exponent, the mass of the hydrogen atom was approximated to equal the mass of
the proton in (223). Ignoring helium, nH = nb − ne. Taking nb from (217) and
expressing (223) in terms of Xe results in the Saha equation

1−Xe

X2
e

= 4
√

2ζ(3)√
π

ηB

(
T

me

)3/2
eBH/T . (224)

The Saha equation (224) describes the equilibrium evolution of free electron frac-
tion Xe.

As the universe expands, the interactions involved in the recombination reaction
(210) become inefficient at keeping the reaction in chemical equilibrium (see e.g.
[49]). Then free electron fraction Xe no longer obeys the Saha equation (224) and a
more general description of its evolution is required.

Tracking the general evolution of Xe is slightly more involved than the fairly
simple derivation of the Saha equation (224). When solving the Boltzmann equation
for electrons, it is necessary to consider which of the recombination reactions (210)
contribute to change in ne. Forming hydrogen straight into its ground state results
in emission of an ionizing photon [50]. Therefore in the relevant reactions hydrogen
is formed into an excited state and it later transitions into the ground state. The
lifetime of the excited state affects the recombination rate, since the atom can be
ionized before it reaches the ground state.

The resulting general equation for Xe is called the Peebles equation [50], which
in the notation of [42] has the form:

X ′e = aC
(
β(1−Xe)− nbα

(2)X2
e

)
. (225)

Decrease in the free electron fraction by recombination to an excited state is accounted
by the second term inside the outer brackets on the right hand side of (225). The
recombination rate is [42]

α(2) = 9.78 α
2

m2
e

√
BH

T
ln BH

T
. (226)

In equation (226), α is the fine structure constant. Increase in Xe by ionization of
ground state hydrogen atom is described by the first term on the right hand side of
(225). The ionization rate is [50]

β =
(
meT

2π

)3/2
e−BH/Tα(2). (227)
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Ionization of excited states decreases the rate of change in Xe by factor C. The
C factor is the fraction by which the excitation ends in decay, the other option being
ionization. Decay of an excited state to the ground state resulting in change of Xe
involves either two photon emission at rate Λ2γ = 8.227 s−1 [50] or production of
Lyman alpha photons at rate [42]

Λα = (3BH)3H
(8π)2a(1−Xe)nb

. (228)

With excited state ionization rate [42]

β(2) =
(
meT

2π

)3/2
e−BH/4Tα(2) (229)

the C factor has the expression [42]

C = Λα + Λ2γ

Λα + Λ2γ + β(2) . (230)

5.5 Initial Conditions
To solve the perturbation equations of sections 5.2 – 5.4, initial values must be
specified. The quantities whose initial values are determined in this section are
the Bardeen potentials Φ and Ψ and the fluid quantities δi, vi and Πi. For the
free electron fraction Xe the initial conditions have already been set, since the non-
differential Saha equation (224) can be used as the initial condition for the Peebles
equation (225). Since the perspective of this section is to establish initial values for
a set of differential equations to be solved, we are referring to the specified period
and the corresponding perturbations as ”initial” as opposed to the common (see e.g.
[35]) nomenclature of labelling them ”primordial”.

The period of initial conditions was established in section 5.1. That is, we are
determining the values of the specified quantities after electrons have become non-
relativistic at T ∼ 500 keV, but before scales of interest start entering the horizon at
T ∼ 1 keV. Therefore k � H for all scales k. During the initial period the universe
is radiation dominated, so that ρ ≈ ργ + ρν and w ≈ 1/3.

The initial conditions are heavily impacted by the level of adiabaticity of the fluid
during the initial period. A fluid is adiabatic if its pressure depends solely on energy
density, p = p(ρ) (see e.g. [5]). The pressure perturbation in general is therefore

δp = ∂p

∂ρ
δρ+ δpnad, (231)

where δpnad is the non-adiabatic component of pressure perturbation. With radiation
and matter equations of state p = ρ/3 and p = 0 respectively, the perturbations of a
single component fluid are always adiabatic. The non-adiabatic pressure perturbation
δpnad arises from relative differences in density of matter and radiation components
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in a mixed fluid. The relative entropy perturbation between fluid components i and
j is defined as [51]

Sij ≡ −3H
(
δρi
ρ′i
− δρj

ρ′j

)

= δi
1 + wi

− δj
1 + wj

.

(232)

The second line in (232) resulted from the background continuity equation (32)
and the definition of density contrast (120). With Sij the non-adiabatic pressure
perturbation has the expression [51]

δpnad = 1
6Hρ̄′

∑
i,j

ρ̄′iρ̄
′
j(c2

i − c2
j)Sij. (233)

In (233) c2
i is the speed-of-sound parameter,

c2
i ≡

∂p̄i
∂ρ̄i

. (234)

A non-zero Sij corresponds to a non-adiabatic, or isocurvature mode (see e.g. [35]).
For adiabatic perturbations, Sij = 0 for all fluid components i and j.

Observations indicate that the initial perturbations are adiabatic [18], so we shall
ignore the non-adiabatic pressure perturbation δpnad. Vanishing relative entropy
perturbations (232) then set

δb = δc = 3
4δγ = 3

4δν (235)

during the initial period.
Adiabatic scalar perturbations have a single degree of freedom. This degree of

freedom can be encapsulated by the comoving curvature perturbation R (see e.g.
[52]). In the conformal Newtonian gauge R has the Fourier space representation2

(see e.g. [52])
R = Ψ−Hv

k
. (236)

Taking v/k from one of the Einstein equations (129) results in

R = Ψ + 2
3
HΦ + Ψ′
H(1 + w) . (237)

The goal of this determination of initial conditions is to relate the different perturba-
tions to R.

A key feature of the comoving curvature perturbation R is that it is conserved
on superhorion scales [53]. What this implies for the perturbations of the metric is

2Note that the extra k compared to the form in [52] results from the Fourier convention specified
in section 4.3.
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clearest seen in the case of perfect fluid, for which the anisotropic stress Π vanishes.
The fourth Einstein equation (131) sets Φ = Ψ for a perfect fluid. Taking R to be
constant and differentiating (237) gives

H−1Φ′′ + 4Φ′ = 0 (238)

in radiation dominance. The Friedmann equations (45) and (46) were used in
simplifying (238). The scale factor dependence of the background radiation energy
density (35) with the Friedmann equation (45) implies that in radiation dominance

H = 1
η
. (239)

With (239), the equation (238) has the general solution

Φ = C1 + C2

η3 . (240)

The terms on the right hand side of (240) are the growing mode and the decaying
mode, respectively. After a sufficient time since the generation of the perturbations,
the growing has become dominant so that Φ is constant. This result holds also for
non-perfect fluids: after the decaying modes have died out, the metric perturbations
Φ and Ψ are constant on superhorizon scales for adiabatic perturbations [54, 55].

Thus far we have established that during the initial period w = 1/3 due to
radiation domination, k � H since scales of interest are superhorizontal, and
adiabaticity sets δp = δρ/3 and Φ′ = Ψ′ = 0. Inserting these into the Einstein
equations (128) – (131) results in

δ = −2Φ (241)

v = −1
2
k

H
Φ (242)

Π =
(
k

H

)2

(Ψ− Φ). (243)

With the aforementioned statements and the equation (237), the comoving curvature
perturbation becomes

R = Ψ + 1
2Φ. (244)

In radiation dominance, ρ̄ ≈ ρ̄γ + ρ̄ν and δρ ≈ δργ + δρν . With these and (235)
we get

δ = δγ = δν . (245)
The equations (235) and (245) relate the initial values of all density contrasts to the
initial Bardeen potential Φ through (241).

The derivative δ′i for non-interacting fluid components was derived in (134). With
Ψ′ = 0 and δpi = wiδρi it becomes

δ′i = (1 + wi)kvi. (246)
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For photons and baryons an interaction term needs to be added. In general, the
derivative of the relative entropy perturbation Sij of (232) is of the form

S ′ij = k(vi − vj) + interactions. (247)

Since Sij remains zero during the initial period, S ′ij = 0. For the non-interacting
components (247) then implies

vc = vν . (248)

In radiation dominance, the number density of photons far outweighs that of baryons,
making the interactions insignificant from the photons’ perspective. Therefore (247)
sets the velocity perturbation of photons equal to the velocity perturbation of dark
matter and neutrinos. The baryons are kept tightly bound to photons by scattering,
so that vb = vγ. The total velocity perturbation v relates to its components as

(ρ+ p)v =
∑
i

(ρi + pi)vi. (249)

Since all initial component velocity perturbations are equal,

v = vγ = vν = vc = vb. (250)

With equations (242) and (250), the initial velocity perturbations are related to the
Bardeen potential Φ.

Well before recombination, photons and baryons were tightly coupled. Interactions
with baryons maintained the isotropy of photons, enforcing Πγ = 0. The whole fluid
anisotropic stress divides into component stresses as

p̄Π =
∑
i

p̄iΠi. (251)

With neutrinos being the only component of anisotropic stress,

Π = fνΠν , (252)

where fν is the neutrino fraction of the radiation energy density in the background

fν = ρ̄ν
ρ̄γ + ρ̄ν

. (253)

Since the background energy densities of radiation components have the same time
dependence (35), fν is a constant after electron-positron annihilations. With the
parameter values of appendix A, fν ≈ 0.405.

Similar to photons, interactions with the plasma kept neutrinos isotropic until
decoupling, setting all neutrino multipoles from octupole onwards to zero (see
e.g. [52]). After decoupling, the higher multipoles start to evolve, but the evolution
of multipole l is hindered by the scale dependence in (205) in comparison to the
multipole l − 1 on superhorizon scales. Therefore during the initial period the l = 3
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multipole in (204) can be ignored. The equations (204), (242) and (250) relate Πν

to the Bardeen potential Φ:

Πν = 2
5

(
k

H

)2

Φ. (254)

The Bardeen potentials can now be related to each other by (243), (252) and
(254):

Ψ =
(

1 + 2
5fν

)
Φ. (255)

Substituting this into (244) gives Φ in terms of the comoving curvature perturbation
R:

Φ = 10
15 + 4fν

R. (256)

With (256) all the initial conditions are related to R as desired.
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6 Solving the Evolution of Perturbations

The evolution of perturbations is now set up by a complete set of differential equations:
the four Einstein equations from section 5.2, two equations for both species of matter
and Boltzmann hierarchies of the radiation components from sections 5.3 and 5.4
and the Peebles equation for the free electron fraction (225). Two of the Einstein
equations can be replaced by continuities ∇µG

µ
ν = 0 and ∇µT

µ
ν = 0, leaving two

independent equations governing the two metric perturbations Φ and Ψ. The number
of equations then matches the number of variables, and with the initial conditions
specified in section 5.5, the perturbation equations can be solved.

No exact analytic solution can be found for the complex system of coupled differ-
ential equations describing the evolution of the perturbations. Rough solutions can
be found by making enough approximations. This is done in section 6.1. Numerical
solutions are presented in section 6.2.

6.1 Analytic Approximations

The goal of this section is to derive analytic solutions for the perturbation equations.
In particular, we are interested in the behaviour of the density contrast of different
fluid components after horizon entry. To get there, a number of approximations need
to be made.

The first approximation is to assume the cosmic fluid to be a perfect fluid.
For a perfect fluid, the anisotropic stress Π vanishes, as evident from the energy-
momentum tensor (15). The fourth Einstein equation (131) then sets Ψ = Φ, leaving
the metric (91) with a single perturbation degree of freedom. As discussed when
specifying the initial conditions in section 5.5, Thomson scattering keeps the photon
distribution isotropic while in radiation domination. Neutrino anisotropies, however,
start to develop once the scale enters the horizon as described by the initial period
equation (254). Because of this, the following approximate results for radiation
describe the behaviour of the neutrinos poorly, as can be seen when comparing them
with the numerical solutions in section 6.2.

The second approximation is to treat baryons as completely coupled to photons
in radiation dominance and completely decoupled in matter dominance. As baryons
are a subdominant component in radiation dominance and we are already ignoring
anisotropic stress, we may ignore any effect baryons have on photons in radiation
dominance. In effect, the cosmic fluid then consists of radiation and matter with no
interactions between them. In radiation dominance, dark matter is the only compo-
nent behaving as pressureless matter, while in matter dominance baryons behave as
matter, too. As the evolution of non-interacting fluid components was established in
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section 5.3, the evolution of radiation is described by the neutrino equations (141)
and (142) and the evolution of matter by the dark matter equations (143) and (144).

6.1.1 Perturbations in Radiation Dominance

First let us consider radiation perturbations in a radiation dominated universe. With
the radiation equation of state p = ρ/3 the Einstein equations (128) and (130)
become

H−1Φ′ + Φ + 1
3

(
k

H

)2

Φ = −1
2δ (257)

and
H−2Φ′′ + 3H−1Φ′ − Φ = 1

2δ, (258)

respectively. Summing these and switching to use the scale factor a as the time
variable instead of conformal time yields

d2Φ
da2 +

(
a′′

(a′)2 + 4
a

)
dΦ
da

+ 1
3

(
k

a′

)2

Φ = 0. (259)

In the equation (35), the energy density of radiation was established to scale as
ρ ∝ a−4. The Friedmann equation (45) then implies that a′ is constant and thus
a′′ = 0. With constant a′, the equation (259) can further be simplified by using

x ≡ k√
3 a′

a = k√
3H

(260)

as the time variable, resulting in

d2Φ
dx2 + 4

x

dΦ
dx

+ Φ = 0. (261)

The equation (261) has the general solution

Φ = C1
x sin x+ cosx

x3 + C2
sin x− x cosx

x3 . (262)

In section 5.5 it was discussed how the Bardeen potential Φ is constant on superhorizon
scales providing that the initial perturbations are adiabatic. Requiring Φ in (262)
to stay finite as x approaches 0 sets C1 = 0. The remaining term goes to C2/3 as
x→ 0, so

Φ = 3Φin
sin x− x cosx

x3 , (263)

where Φin is the initial value of Φ.
For scales well outside the horizon, k � H, or x � 1. The Bardeen potential

Φ then remains constant at its initial value Φin. The equation (258) then sets the
density contrast to a constant value of δin = −2Φin, in consistency with (241).
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For subhorizontal scales, x� 1, and Φ evolves as

Φ = −3Φin
cosx
x2 , (264)

ie. Φ oscillates with damping. On the left hand side of the equation (257), the term
proportional to k/H dominates, so that

δ = 6Φin cosx. (265)

In this approximation, the density contrast of radiation therefore oscillates with a
constant amplitude in radiation dominance. With the coupling between baryons and
photons, (265) also implies that the density contrast of baryons oscillates with a
constant amplitude.

The equations (143) and (144) describe the evolution of dark matter density
contrast and velocity perturbation, respectively. Substituting Ψ = Φ from (263) into
them yields

δ′c = kvc + 3Φ′ (266)
v′c = −Hvc − kΦ. (267)

Differentiating (266) and performing substitutions with (267) results in a second
order differential equation for δc:

δ′′c +Hδ′c = 3Φ′′ + 3HΦ′ − k2Φ. (268)

With x from (260) as the time variable the equation (268) becomes

d2δc

dx2 + 1
x

dδc

dx
= 3d

2Φ
dx2 + 3

x

dΦ
dx
− 3Φ. (269)

In (269), the right hand side acts as a source to the evolution of δc, let us denote it
by S:

S(x) ≡ 3d
2Φ
dx2 + 3

x

dΦ
dx
− 3Φ. (270)

An explicit form for S can be obtained from (263).
Setting the source term S to zero, one obtains a homogeneous solution to the

equation (269):
δc,homog = C1 + C2 ln x. (271)

A general solution can be acquired by variation of parameters and has the form

δc = C1 + C2 ln x+
∫ x

0
dx′ x′S(x′)(ln x− ln x′). (272)

As x approaches zero, the intergral in (272) goes to zero. Following results from
section 5.5, we require δc to stay finite at the limit x→ 0. Therefore C2 = 0 and C1
is the initial value of δc.
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In the subhorizon limit x � 1, Φ approaches zero, as seen in equation (264).
Therefore the source term S goes to zero as well, and we can do an approximation
where the integral in (272) goes to infinity:

δc = δc,in +
∫ ∞

0
dx′ x′S(x′)(ln x− ln x′). (273)

Now only the first term in the integral has x dependence, so that δc is of the form

δc = A1 + A2 ln x (274)

with constants A1 and A2. As a′ is constant in radiation dominance, x ∝ a as per the
definition of x (260). Hence in radiation dominance dark matter starts accumulating
logarithmically with respect to the scale factor a.

6.1.2 Perturbations in Matter Dominance

In matter dominance, the cosmic fluid is approximatively pressureless: p ≈ 0. The
Einstein equation (130) for a perfect fluid then reads

Φ′′ + 3HΦ′ = 0. (275)

With the scale factor a as the time variable, the equation (275) becomes

d2Φ
da2 +

(
a′′

(a′)2 + 3
a

)
dΦ
da

= 0. (276)

The Friedmann equations (45) and (46) for p = 0 result in a differential equation
for the scale factor:

a′′

(a′)2 = 1
2a. (277)

Substituting this into (276) yields a closed equation for Φ:

d2Φ
da2 + 7

2a
dΦ
da

= 0. (278)

The equation (278) has the general solution

Φ = C1

a5/2 + C2. (279)

The first term on the right hand side of (279) is a decaying term due to the scale
factor growing with time. For sufficiently late times the decaying term can be ignored,
resulting in the potential Φ remaining constant.

Density contrast δ can be related to the metric perturbation Φ with the first
Einstein equation (128):

δ = −2
1 + 1

3

(
k

H

)2
Φ. (280)
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On subhorizon scales, the term proportional to k/H dominates:

δ ≈ −2
3

(
k

H

)2

Φ. (281)

According to (34) the energy density of matter scales as ρ ∝ a−3. This scaling with
the Friedmann equation (45) results in H2 ∝ a−1. Therefore, with the decaying
mode of Φ in (279) died out, the equation (281) has the matter density contrast
grow linearly with a on subhorizon scales:

δ ∝ a. (282)

The density contrast δ of both matter components, baryons and dark matter, therefore
grow linearly in matter dominance.

Comparing (282) with the equation (274) we see that the accumulation of dark
matter becomes more rapid as the universe transitions from radiation dominance to
matter dominance. Baryons on the other hand are prevented from accumulation in
radiation dominance and start forming structures only in matter dominance. The
overdensities that the dark matter has formed by the time the universe becomes
matter dominated act as gravity wells into which baryonic matter is pulled.

6.2 Numerical Solutions
This section presents numerical solutions to the perturbation equations specified in
section 5. The Python code that was used to compute the solutions can be found in
the appendix B and at http://users.jyu.fi/~tuereiaa/structform/realFluid.
py. The values of cosmological parameters used in the computation are listed in
appendix A.

When specifying the initial conditions in 5.5, the initial values of perturbations
were related to the initial comoving curvature perturbation Rin. As a result, the
numerical solutions are computed in units of Rin. In other words, the computed
solution for the evolution of quantity q is its transfer function Tq, defined by (see
e.g. [35])

q(k, t) ≡ Tq(k, t)Rin(k). (283)

The transfer function encaptures the time dependence of the quantity q. Alternative
definitions for the transfer function usually add a constant factor to the right hand
side of (283) to set the initial value of the transfer function to unity (see e.g. [35]).

In the presented solutions, the Boltzmann hierarchies of photons and neutrinos
are truncated at the multipole lmax = 2. The multipole lmax + 1 of the brightness
function is approximated by (203) both for photons and neutrinos. The solutions
are therefore a slight improvement over the ideal fluid approximation, for which
lmax = 1 and (Θγ/ν)l = 0 for all l ≥ 2. The used lmax is still relatively low; for
numerical computations with a similar approach and lmax in the order of thousands,
see e.g. [42].

http://users.jyu.fi/~tuereiaa/structform/realFluid.py
http://users.jyu.fi/~tuereiaa/structform/realFluid.py
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The equations of section 5 use the conformal time η as the time variable. To make
the solutions independent of the scaling of the scale factor, the numerical solutions
use redshift z from (29) as the time variable in the form

1
1 + z

= a

a0
. (284)

The inverse is taken so that the time variable would grow with time.
In the solutions, a specific comoving scale k is referred to by the corresponding

present day physical kphys(t0). With the relation (96) we define

k0 ≡ kphys(t0) = k

a0
. (285)

6.2.1 Matter Perturbations

Numerical solutions for the density contrast of dark matter on four scales k0 are
shown in figure 2a. The figure shows that dark matter perturbations start to grow
right after horizon entry. This is expected, since dark matter is affected only by
gravitation, which causes the accumulation. For scales that enter the horizon during
the radiation dominated epoch, the rate of accumulation decreases until matter
dominance is reached. In matter dominance, the growth of the density perturbation
is approximately linear in a.

The numerical results of figure 2a agree well with the analytical approximations
of section 6.1. The decelerating growth of the dark matter density perturbation
during radiation dominance can be identified as logarithmic in a with the equation
(274), and the linear growth in matter dominance was seen in equation (282).

As can be seen from the figure 2b, the evolution of baryon density contrast in
radiation dominance is significantly different from that of dark matter. In radiation
dominance, the coupling of baryons to photons with the latter being a dominant fluid
component forces baryons to follow the behaviour of photons. The density contrast
of photons in figure 3a shows similar oscillations during the radiation dominated
epoch as the baryon density contrast.

After the universe has entered matter dominance, the coupling between baryons
and photons is broken and baryonic matter is free to evolve similar to dark matter.
The analytic approximation of δb ∝ a from equation (282) agrees well with the
numerical solution of figure 2b in matter dominance. Since dark matter has started
to accumulate earlier during the radiation dominated epoch, it has created gravity
wells before baryonic matter starts to accumulate. As a result, baryonic matter will
gather into overdensities of dark matter.



57

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

(1 + z) 1

100

101

102

103

104

105
|

c| 
(

pr
im

)

z = zeqk0 = 2 Mpc 1

k0 = 0.1 Mpc 1

k0 = 0.003 Mpc 1

k0 = 0.0005 Mpc 1

(a) CDM

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

(1 + z) 1

100

101

102

103

104

105

|
b| 

(
pr

im
)

z = zeqk0 = 2 Mpc 1

k0 = 0.1 Mpc 1

k0 = 0.003 Mpc 1

k0 = 0.0005 Mpc 1

(b) Baryons

Figure 2. Numerically solved transfer functions of dark matter and baryon
density contrasts on four different scales. Matter-radiation equilibrium is denoted
by a vertical line. The dots on the curves represent the approximate point of
horizon entry, where k = aH. The shown values of the scales correspond to their
present day physical values, k0 = k/a0.

6.2.2 Radiation Perturbations

Numerical solutions for the density contrast of radiation components are shown in
figures 3a and 3b. Unlike matter components, the radiation components do not
accumulate: for radiation, the gravitational pull is countered by pressure, resulting
in oscillatory behaviour visible in the figures.

In the approximative equation of (265), radiation was found to oscillate with a
constant amplitude in radiation dominance. In the numerical solutions of figures 3a
and 3b, this holds only for photons. This is because the perfect fluid approximation
is more valid for photons in radiation dominance than for neutrinos. The validity
of perfect fluid approximation can be seen from figures 4a and 4b where numerical
solutions for the anisotropic stresses of the radiation components are plotted. The
smaller the anisotropic stress is, the better the fluid is described by the perfect
fluid model. Photons start to gain anisotropic stress only after matter-radiation
equilibrium, whereas neutrinos start to deviate from the perfect fluid approximation
right after horizon entry.

In the Boltzmann hierarchy of photons (196) – (199), the differential equation for
the multipole l of the brightness function involves multipoles l − 1 and l + 1. Since
the l = 2 multipole corresponding to the anisotropic stress as per equation (189)
vanishes for photons in radiation dominance, the equations for the density contrast
δγ and velocity perturbation vγ are decoupled from the higher multipoles. The low
truncation value of lmax = 2 therefore affects photons in radiation dominance only
indirectly through the impact neutrinos have on the metric.

The numerical solutions for neutrinos are less reliable for all periods after horizon
entry. With non-zero anisotropic stress, all multipoles have in principle an effect on
the density perturbation. The truncation scheme of (203) relies on the sum of the
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Figure 3. Numerically solved transfer functions of photon and neutrino density
contrasts on four different scales. Matter-radiation equilibrium is denoted by a
vertical line. The dots on the curves represent the approximate point of horizon
entry, where k = aH. The shown values of the scales correspond to their present
day physical values, k0 = k/a0.
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Figure 4. Numerically solved transfer functions of anisotropic stress of the
radiation components on four different scales. Matter-radiation equilibrium is
denoted by a vertical line. The dots on the curves represent the approximate
point of horizon entry, where k = aH. The shown values of the scales correspond
to their present day physical values, k0 = k/a0.
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Figure 5. Numerically solved transfer functions of the Bardeen potentials on
four different scales. Matter-radiation equilibrium is denoted by a vertical line.
The dots on the curves represent the approximate point of horizon entry, where
k = aH. The shown values of the scales correspond to their present day physical
values, k0 = k/a0.

Bardeen potentials Φ and Ψ remaining relatively unchanged. This is an especially
ill-justified approximation in radiation dominance, as can be seen from the figures
5a and 5b.

6.2.3 Metric Perturbations

Figures 5a and 5b depict numerical solutions for the Bardeen potentials Φ and Ψ,
respectively. The potentials behave similarly after horizon entry, only having different
initial values. Both decay in radiation dominance and remain constant in matter
dominance. Comparing the figures with the approximative analytic results of (264)
and (279) we can see that both methods predicted similar behaviours for the Bardeen
potentials with the analytic approximations missing the difference between Φ and Ψ.

The drop in the potentials starting at z ≈ 3 is because of the emergence of the
vacuum energy dominated epoch: as a homogeneous and isotropic fluid component
becomes dominant, the metric approaches Robertson-Walker form and hence its
perturbations start to vanish.
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7 End of the Linear Regime

The perturbation theory approach to the structure formation is valid only for as long
as the perturbations are small. Since the formation of cosmic structure sees matter
perturbations grow, at some point the matter density contrast δm on a given scale
reaches unity. At that point, ρ̄m = δρm, and the assumption of small perturbations
has been well invalidated on that scale.

An analytic estimate for the validity of the perturbation theory is the subject
of this section. Here we shall present what is called the spherical collapse model of
structure formation [10]. In the model, a spherically symmetric overdensity of matter
collapses under its own gravity. Comparing the growth of matter density contrast in
the spherical collapse model with that of linear perturbation theory gives a sense of
when and how the linear theory prediction of structure formation begins to fail.

Because of the assumption of spherical symmetry, the spherical collapse model
pertains to a perturbation of a particular and idealized geometry. The quantitative
deviation between the linear model and the spherical collapse model found in the
following comparison is a precise measure on the failure of the linear theory only for
that special case. Still, the spherical collapse model provides a rule-of-thumb for
the point at which the evolution of matter perturbations becomes non-linear (see
e.g. [29]).

The linear perturbation theory is the simplest form of a perturbation theory. A
higher order perturbation theory [8, 9] is a more precise description of the evolution
of perturbations at the cost of computational complexity as well as introducing
phenomena absent from the linear theory, such as mixing of scalar, vector and
tensor perturbations. However, the benefits of a higher order theory are limited
because expanding a quantity to any finite order in perturbation becomes invalid at
the point when the perturbation reaches the background value. Beyond the linear
regime, N-body simulations [11–13] can be utilized in analyzing the evolution of
perturbations.

7.1 The Spherical Collapse Model

The spherical collapse model describes the collapse of a spherically symmetric matter
overdensity under gravity. The overdense region is assumed to be homogeneous and
isotropic so that it can be modelled as a closed FRW universe embedded in a flat
background FRW universe.

As seen in section 6.2, baryons start to accumulate only after the universe has
entered matter dominance, and the rate of dark matter accumulation increases
significantly after matter-radiation equilibrium. It is a decent approximation to
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restrict ourselves in the matter-dominated universe when gauging the end of the
applicability of the linear theory.

As the background universe has no spatial curvature, its energy density ρ̄ equals
the background critical density ρ̄c (38):

ρ̄ = ρ̄c ≡ 3M2
pH̄

2. (286)

Since the inspected region is overdense, its energy density ρ exceeds the critical
energy density of the region ρc. By the definition of the density parameter Ω (37),
the region has Ω > 1 and, with the Friedmann equation (26), curvature parameter
K > 0.

Let us denote by t∗ some initial time when the density parameter of the overdense
region Ω is still close to unity. As the curvature parameter K is a constant, with the
Friedmann equation (26) and the density parameter (37) it can be expressed as

K = H2
∗a

2
∗(Ω∗ − 1). (287)

In matter dominance, the energy density scales as ρ ∝ a−3 as described in (34). With
this scaling the energy density of the region has the expression

ρ = ρ∗

(
a∗
a

)3
. (288)

Using (288) with the Friedmann equation (26) and the definition of the density
parameter (37) we then get

da

dt
= H∗a∗

√
Ω∗ − 1

√
C − a
a

, (289)

where
C ≡ Ω∗a∗

Ω∗ − 1 . (290)

Because the region is collapsing, its scale factor is between zero and some maximum
value amax. As such, the solution of the equation (289) can be parametrized by the
development angle θ:

a(θ) ≡ C sin2 θ

2 = 1
2C(1− cos θ). (291)

Substituting this back into (289) yields

dt

dθ
= Ω∗

2H∗(Ω∗ − 1)3/2 (1− cos θ). (292)

The coordinate time in terms of the development angle is then

t(θ) = Ω∗
2H∗(Ω∗ − 1)3/2 (θ − sin θ). (293)



63

Using (287), (288) and (291) with the Friedmann equation (26) gives the energy
density of the overdense region in terms of the development angle θ and the Hubble
rate H of the region:

ρ =
6M2

pH
2

1 + cos θ . (294)

The equations (286) and (294) give an expression for the density contrast δ = (ρ−ρ̄)/ρ̄
of the overdense region:

δ = 2
1 + cos θ

(
H

H̄

)2
− 1. (295)

The Hubble rate of the overdense region in terms of the development angle can
be computed with (291) and (292):

H = ȧ

a
= 2H∗(Ω∗ − 1)3/2

Ω∗
sin θ

(1− cos θ)2 . (296)

In the background, the Friedmann equation (26) with the matter dominance energy
density (34) is

H̄2 =
( ˙̄a
ā

)2

= ρ̄0

3M2
p

(
ā0

ā

)3
. (297)

Solving the scale factor from the equation (297) results in ā ∝ t2/3. The Hubble rate
in the background universe is then

H̄ = 2
3t . (298)

The coordinate time t is the same for both the overdense region and the background.
Substituting t in the equation (298) with (293) results in

H̄ = 4H∗(Ω∗ − 1)3/2

3Ω∗
1

θ − sin θ . (299)

Substituting the Hubble rates of (296) and (299) into (295), the density contrast of
the overdense region is

δ = 9
2

(θ − sin θ)2

(1− cos θ)3 − 1. (300)

As the development angle θ approaches 2π, the scale factor a goes to zero and
the density contrast δ to infinity as per equations (291) and (300), respectively.
Nothing prevents a perfectly spherical cloud of pressureless matter from collapsing
under its own gravity to an infinitely small region, which leads to an infinite density
contrast. Evidently matter can and does collapse into structures other than black
holes, resulting in finite density contrasts. Hence the spherical collapse model for
pressureless fluid has a limited range of validity in description of a realistic collapse
process, and it overestimates the growth of perturbations.

At the other limit of θ → 0, the inspected region assimilates to the flat background
with the density contrast going to zero.
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7.2 Comparison with the Linear Theory
Next we shall see how the spherical collapse model prediction for the density contrast
expressed in the equation (300) deviates from the prediction given by the linear
perturbation theory. As was done with the spherical collapse model, matter is
approximated to be pressureless and free of interactions, ie. the fluid is predominantly
composed of cold dark matter.

As seen in (282), the linear theory prediction for the density contrast δlin is
proportional to the scale factor a in matter dominance. Since a ∝ t2/3 in matter
dominance,

δlin = δlin
∗

(
t

t∗

)2/3
. (301)

Expressing t in terms of the development angle θ with (293) yields

δlin = δlin
∗

(
θ − sin θ
θ∗ − sin θ∗

)2/3

. (302)

Taking the time t∗ to again be early from the perspective of the collapse, we have
δlin
∗ ≈ δ∗. Taking δ∗ from (300)

δlin =
(

9
2

(θ∗ − sin θ∗)2

(1− cos θ∗)3 − 1
)(

θ − sin θ
θ∗ − sin θ∗

)2/3

. (303)

At the limit θ∗ → 0, the equation (303) becomes

δlin = 3
5

(
3(θ − sin θ)

4

)2/3

. (304)

The density contrasts both from the spherical collapse model δ and from the linear
perturbation theory δlin are plotted in the figure 6 as functions of the development
angle θ. Since the linear theory is only valid for small perturbations by construction,
the density contrasts start to deviate at δ ≈ 1. The linear theory is inable to describe
the collapse of matter with the density contrast reaching the well-known value (see
e.g. [56])

δlin(θ = 2π) = 3
5

(3π
2

)2/3

≈ 1.686
(305)

at the time of the collapse. The linear theory therefore underestimates the growth of
spherical perturbations. By the time the linear theory value for the density contrast
has reached approximately 1.7, spherical perturbations have undergone complete
collapse.

A notable application of the linear theory density contrast at the time of the
collapse (305) can be found in the Press-Schechter formalism [57]. The Press-Schechter
formalism can be used to predict the abundance of gravitationally bound large scale
objects, such as galaxy clusters. The bound objects are identified by their density
contrast exceeding a critical value, which can be taken to be the spherical collapse
value of (305) (see e.g. [56]).
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Figure 6. The density contrast δ both from the spherical collapse model and
the linear perturbation theory as functions of the development angle θ from
equations (300) and (304), respectively. The graphs start to deviate at δ ≈ 1,
when the linear theory becomes invalid. At collapse time θ = 2π, the linear
theory prediction reaches δ ≈ 1.686 (the horizontal line in the figure), whereas
the spherical collapse prediction goes to infinity.
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8 Conclusions
The study of cosmological perturbations remains a key topic in cosmology. In the past
few decades, much of the observational focus in cosmology has been on investigating
the temperature anisotropies in the cosmic microwave background [24, 58, 59]. With
the upcoming galaxy surveys [60–62], the focus of observations is shifting from the
early universe as imprinted on the CMB to more recent history of the universe, where
structure has been forming over the course of billions of years.

In this thesis, we have reviewed the evolution of cosmic scalar perturbations
within the context of linear perturbation theory. At the core of this review is the
presentation of the derivation of the evolution equations for the perturbations in
section 5. In the set of derived equations, there are four Einstein equations (128) –
(131). These are the equations of the metric perturbations Φ and Ψ. The extra two
equations are there because of the continuity properties ∇µG

µν = 0 and ∇µT
µν = 0.

For matter components, there are equations for the density contrast δ and the
velocity perturbation v. The density contrast equation for baryonic matter (206)
is identical to that of dark matter (143), reflecting the fact that the low energy
scatterings between photons and baryons transfer very little energy. The velocity
perturbation equations differ by the baryon equation (209) containing an extra term
compared to the dark matter equation (144) as baryons exchange momentum with
the photons.

The evolution of the radiation components is governed by their respective Boltz-
mann hierarchies. A Boltzmann hierarchy constitutes of an infinite series of coupled
differential equations, each describing the evolution of a multipole of the brightness
function. Similar to matter components, the photon hierarchy (196) – (199) differs
from the neutrino hierarchy (141), (142), (204), (205) by the inclusion of interaction
terms.

A major choice made in the derivation of evolution equations was to keep per-
turbations only up to linear order. The linear perturbation theory is the simplest
choice for analyzing the structure formation. The evolution equations have been
derived up to second order in perturbations [8, 9], but the complexity of the theory
is significantly increased in the process. One of the virtues of the linear perturbation
theory is that it allows the restriction to only scalar perturbations as they do not
couple with vector and tensor perturbations in the linear order. The gains of going
to a higher order perturbation theory are also limited by the fact that a perturbative
approach of any order becomes invalid when perturbations reach background values.

Section 6 presents solutions to the evolution equations. The evolution of matter
density contrasts in figure 2 shows that the structure formation begins with the dark
matter starting to accumulate in radiation dominance. Baryonic matter is prevented
from accumulation until decoupling from photons around redshift z ≈ 1000. Figure 3
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shows that the density contrasts of the radiation components oscillate, as gravity
and pressure counteract each other.

By comparing the analytic approximations of section 6.1 with the numerical
solutions of section 6.2 one can see how ignoring the interactions between photons
and baryons and using the perfect fluid approximation affects the predicted evolution
of perturbations. The analytic approximations yield heuristics similar to those of
the numerical solutions. The logarithmic growth of dark matter density contrast in
radiation dominance described by the equation (274) is reflected in the numerical
solution of figure 2a. Numerical solutions for both baryonic and dark matter density
contrasts in figures 2a and 2b show the linear growth in terms of the scale factor
in matter dominance predicted by the equation (282). The constant amplitude
oscillation of radiation density contrast in radiation dominance in equation (265) is
seen with photons in figure 3a. For neutrinos, the approximate treatment is more
erraneous, as the numerical solution of figure 3b shows damped oscillations.

In the numerical solutions of section 6.2, the Boltzmann hierarchies of photons
and neutrinos were chosen to be truncated at multipole l = 2, with the multipole
l = 3 approximated by (203). A low truncation limit reduces the accuracy of the
numerical solutions. The results for photons in radiation dominance are of fair
accuracy due to vanishing of the multipole l = 2, corresponding to anisotropic stress,
as seen in figure (4a). For neutrinos at all times and for photons in matter dominance
the numerical solutions are to be taken as rudimentary.

The failing of the linear perturbation theory is examined in section 7. Figure 6
compares the approximated density contrast in matter dominance from the linear
theory to that given by the spherical collapse model. From the figure we see that
the linear theory underestimates the density contrast after the contrast has grown
to unity. The spherical collapse model also provides a way to identify collapsed
structures from linear analysis by the critical density contrast of δ ≈ 1.7 given by
the equation (305).
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A Values of Astrophysical Parameters
This appendix lists the parameter values used in the numerical computations of
section 6.2.

CMB temperature [1]
T0 = 2.725 48 K. (A.1)

Baryon-to-photon ratio [2]
ηB = 6.07× 10−10. (A.2)

Parameters from [3]

H0 = 100 h km s−1 Mpc−1 (A.3)
h = 0.6781 (A.4)

Ωm0 = 0.308 (A.5)
ΩΛ0 = 0.692 (A.6)
Ωb0 = 0.022 26 h−2 (A.7)
Ωc0 = 0.1186 h−2. (A.8)

The density parameters for neutrinos and photons are computable from the CMB
temperature. The energy density of photons depends on temperature as (see e.g. [4])

ργ = π2

15T
4. (A.9)

With (A.1) and (A.3), the photon density parameter is

Ωγ0 = π2

45
T 4

0
M2

pH
2
0

≈ 5.37× 10−5.

(A.10)

After the electron-positron annihilations, the neutrino energy density differs from
that of photons by factor (see e.g. [4])

Rν/γ ≡
ρν
ργ

= 21
8

( 4
11

)4/3
. (A.11)

The density parameter of neutrinos is then

Ων0 = Rν/γΩγ0

≈ 3.66× 10−5.
(A.12)



76

References
[1] D. J. Fixsen. “The Temperature of the Cosmic Microwave Background”. In:

The Astrophysical Journal 707 (2009), pp. 916–920. doi: 10.1088/0004-
637X/707/2/916.

[2] R. H. Cyburt et al. “Big Bang Nucleosynthesis: Present Status”. In: Reviews of
Modern Physics 88.1 (2016), p. 015004. doi: 10.1103/RevModPhys.88.015004.

[3] Planck Collaboration. “Planck 2015 results. XIII. Cosmological Parameters”.
In: Astronomy & Astrophysics 594 (2016), A13. doi: 10.1051/0004-6361/
201525830.

[4] S. Dodelson. Modern Cosmology. Academic Press, 2003.

http://dx.doi.org/10.1088/0004-637X/707/2/916
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://dx.doi.org/10.1103/RevModPhys.88.015004
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830


77

B The Python code

1 ’’’
2 Computes the evolution of perturbation variables in a
3 universe filled with five component (cold dark matter c,
4 baryons b, photons g, neutrinos n and dark energy l) real fluid.
5 Neutrino and photon perturbations are computed up to
6 second multipoles
7
8 y = 1/(1+z), z being the redshift , is used as the time variable
9 Figures are stored in ’fig/’.’
10
11 Made by Tuomas Aalto
12 Version 27.11.2018
13 ’’’
14
15 from scipy.integrate import solve_ivp
16 from scipy.interpolate import interp1d
17 import numpy as np
18 import matplotlib.pyplot as plt
19 from concurrent.futures import ProcessPoolExecutor
20 from itertools import repeat
21 from os import mkdir
22
23 plt.rcParams.update ({’font.size’ : 12})
24
25 # natural constants from CODATA , arXiv :1507.07956
26 c = 299792458 # Speed of light in m/s
27 alpha = 1/137.035999139 # Fine structure constant
28 me = 510998.9461 # Electron mass in eV
29 sigmat = 66.524587158 # Cross section for Thomson scattering

in fm^2
30
31 # Present day CMB temperature in K from Fixsen 2009 , arXiv

:0911.1955
32 T0 = 2.72548
33 Omg0 = 5.37e-5 # Omega_0 for photons from T0
34
35 # Baryon -to - photon ratio from Cyburt 2015 , arXiv :1505.01076
36 eta_bg = 6.07*10**( -10)
37
38 # Cosmological parameters from Planck 2015 , arXiv :1502.01589
39 h = 0.6781 # Hubble constant parameter , H0 = h*100

(km/s)/Mpc
40 H0 = h*100*1000/c # Hubble constant in Mpc ^-1
41 Omb0 = 0.02226/h**2 # Omega_0 for baryons
42 Omc0 = 0.1186/h**2 # Omega_0 for CDM
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43 Omm0 = 0.308 # Omega_0 for matter
44 Oml0 = 0.692 # Omega_0 for dark energy
45
46 eps0 = 13.6 # Hydrogen ionization energy in eV
47 R_ng = 21/8*(4/11) **(4/3) # Ratio of neutrino and photon energy

densities
48 Omn0 = R_ng*Omg0 # Omega_0 for neutrinos
49 Omr0 = Omg0 + Omn0 # Omega_0 for radiation
50
51
52 class Quantity:
53 ’’’A class to specify eg. plotting details of a quantity ’’’
54
55 def __init__(self ,symbol):
56 self.symbol = symbol
57 self.simplesymbol = ""
58 self.colindex = -1,
59 self.xlims = None ,
60 self.ylims = None ,
61 self.legendloc = 1
62
63
64 def iFirstSmaller(a,x):
65 ’’’First index i when a[i] < x ’’’
66 i = 0
67 while i < len(a) and a[i] > x:
68 i = i + 1
69 return i
70
71
72 def Hubble(y):
73 ’’’Hubble rate at y in Mpc ^-1 ’’’
74 return H0*np.sqrt(Omm0*y**( -3) + Omr0*y**(-4) + Oml0)
75
76
77 def iHorizonCrossing(k0 , ys):
78 ’’’Index i so that scale k0 crosses horizon at ys[i]
79
80 Parameters
81 ----------
82 k0 : double
83 Scale of interest
84 ys : array of doubles
85 Time values
86
87 ’’’
88
89 Hy = Hubble(ys) * ys
90 return iFirstSmaller(Hy, k0)
91
92
93 def iRadEnd(tolerance , ys):
94 ’’’Index i so that radiation becomes a non - dominant
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95 component of energy density with given tolerance at ys[i]
96
97 Parameters
98 ----------
99 tolerance : double between 0 and 1

100 Threshold determining what is considered
101 the end of radiation domination ;
102 at the end of the epoch rho_rad / rho = tolerance
103 ys : array of doubles
104 Time values
105
106 ’’’
107
108 radiationFraction = Omr0/(Omr0 + Omm0*ys + Oml0 * ys**4)
109 return iFirstSmaller(radiationFraction , tolerance)
110
111
112 def dXedy(y,Xe):
113 ’’’
114 The derivative of free electron fraction with
115 respect to y from Peebles equation
116 ’’’
117
118 H = Hubble(y)
119 T0ineV = T0 *8.6173303*10**( -5)
120 nb = eta_bg *2*1.202056903159594/ np.pi **2*( T0ineV/y)**3 # in

eV^3
121 alpha2 = 9.78* alpha*alpha*np.sqrt(eps0*y/T0ineV)*np.log(eps0*y/

T0ineV)/me**2
122 beta = (me*T0ineV /(2*np.pi*y))**(3/2)*np.exp(-eps0*y/T0ineV)*

alpha2
123 dimFact = 1.5637377549048648 e29 # Mpc * eV
124 Lambda2s = 5.4151117694e-15
125 LambdaAlpha = ((3* eps0)**3 * H)/((8*np.pi)**2 * (1-Xe) * nb)/

dimFact
126 beta2 = (me*T0ineV /(2*np.pi*y))**(3/2)*np.exp(-eps0*y/(4* T0ineV

))*alpha2
127 C = (LambdaAlpha + Lambda2s)/( LambdaAlpha + Lambda2s + beta2)
128 return C*((1-Xe)*beta - Xe*Xe*nb*alpha2)*dimFact /(H*y)
129
130
131 def XeFromSaha(y):
132 ’’’
133 Free electron fraction at y from Saha equation ,
134 valid when near equilibrium (Xe ~ 1)
135 ’’’
136
137 T0ineV = T0 *8.6173303e-5
138 B = np.sqrt(np.pi)*np.exp(-eps0*y/T0ineV)*(me*y/T0ineV)**(3/2)

/(4*np.sqrt (2) *1.202056903159594* eta_bg)
139 return (np.sqrt(B*(B+4))-B)/2
140
141
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142 def Xe(y):
143 ’’’Solve free electron fraction at y’s ’’’
144
145 vXeFromSaha = np.vectorize(XeFromSaha)
146 Xes = vXeFromSaha(y)
147
148 # Determine from which index to switch from Saha eq to Peebles

eq
149 peeblesStart = iFirstSmaller(Xes ,0.99)
150
151 Xes[peeblesStart :] = solve_ivp(
152 dXedy ,
153 (y[peeblesStart],y[-1]),
154 (Xes[peeblesStart ],),
155 t_eval=y[peeblesStart :],
156 method=’Radau’
157 ).y[0,:]
158
159 return Xes
160
161 def da0etady(y,a0eta):
162 return 1/(H0*np.sqrt(Omm0*y + Omr0 + Oml0*np.power(y,4)))
163
164 def a0eta(ys):
165 ’’’Solve a0 * eta at ys ’’’
166
167 res = solve_ivp(
168 da0etady ,
169 (ys[0],ys[-1]),
170 [ys[0]/H0/np.sqrt(Omr0)],
171 method=’LSODA’,
172 t_eval=ys)
173
174 return res.y[0,:]
175
176 def dqsdy(y,qs):
177 ’’’
178 Compute the derivatives of metric and fluid
179 perturbations with respect to
180 y = 1/(1+z) at y.
181
182 Scale k0 is passed as a constant in qs , as
183 solve_ivp doesn ’t take additional arguments .
184
185 Parameters
186 ----------
187 y : double
188 Timelike variable 1/(1+z), z being the redshift
189 qs : numpy array
190 Values of (Psi ,
191 deltac ,vc ,
192 deltab ,vb ,
193 deltag ,vg ,
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194 deltan ,vn ,
195 Pi_g ,Pi_n ,
196 k0) at y
197
198 Returns
199 -------
200 numpy array
201 Derivatives of quantities
202 Psi ,deltac ,vc ,deltab ,vb ,deltag ,vg ,
203 deltan ,vn ,Pi_g ,Pi_n ,k0
204 where the derivative of Psi is at index 0 etc
205 ’’’
206
207 Psi , deltac , vc , deltab , vb , deltag , vg , deltan , vn , Pi_g , Pi_n

, k0 = qs
208 delta = (Omg0*deltag + Omn0*deltan + Omb0*y*deltab + Omc0*y*

deltac)/(Omg0 +
209 Omn0 + Omb0*y + Omc0*y + Oml0*y**4)
210 H = Hubble(y)
211 dimFact = 2.5698598286089585 # Mpc * fm^2 * K^3
212 nb = eta_bg *2*1.202056903159594/ np.pi **2*(T0/y)**3
213 Xe = XeValuesInterp(y)
214 a0eta = a0etaValuesInterp(y)
215 # print ("y: ", y, " a0eta: ", a0eta)
216 dPi_g = -(1/(H*y**2))*(4*k0*vg +
217 3*(3*nb*Xe*sigmat*dimFact*y/10 + 1/a0eta)*Pi_g)
218 dPi_n = -(1/(H*y**2))*(4*k0*vn +
219 3*Pi_n/a0eta)
220 # print ("y: ", y, " a0eta: ", a0eta , " dPi_n: ", dPi_n)
221 wPi = (Omg0*Pi_g + Omn0*Pi_n)/(3*( Omr0 + Omm0*y + Oml0*y**4))
222 Phi = Psi - 3*wPi*(H*y/k0)**2
223 dPsi = -(1/y)*(Phi + (k0/(H*y))**2* Psi/3 + delta /2)
224 return (dPsi , # d Psi / d y
225 k0*vc/(H*y**2) + 3*dPsi , # d deltac / d y
226 -k0*Phi/(H*y**2) - vc/y, # d vc / d y
227 k0*vb/(H*y**2) + 3*dPsi , # d deltab / d y
228 -vb/y - 1/(H*y**2)*(k0*Phi + 4*Omg0*nb*Xe*sigmat *(vb -vg

)*dimFact /(3* Omb0)), # d vb / dy
229 4*k0*vg/(3*H*y**2) + 4*dPsi , # d deltag / dy
230 -(k0/(H*y**2))*( deltag /4 + Phi - Pi_g /6) + Xe*nb*sigmat

*(vb -vg)*dimFact/H/y, # d vg / d y
231 4*k0*vn/(3*H*y**2) + 4*dPsi , # d deltan / d y
232 -(k0/(H*y**2))*( deltan /4 + Phi - Pi_n /6), # d vn / d y
233 dPi_g , # d Pi_g / d y
234 dPi_n , # d Pi_n / d y
235 0 # d k0 / d y; scale k0

is kept constant
236 )
237
238 def develOfK(ys, k0, i_radEnd):
239 ’’’
240 Compute the development of quantities Psi , deltac , vc ,
241 deltab , vb , deltag , vg , deltan , vn , Pi_g , Pi_n for scale k0
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over the span ys
242
243 Parameters
244 ----------
245 ys : array like of doubles
246 Points y where quantities are evaluated
247 k0 : double
248 Scale k0 for which quantities will be computed
249 i_radEnd : int
250 Time ys[ i_radEnd ] at which radiation dominated
251 epoch ends
252
253 Returns
254 -------
255 dictionary with keywords
256 ’k0’ : double
257 k0 -value for which solving was performed
258 ’ys’ : array like
259 Points y where quantities are evaluated
260 ’vals ’ : numpy array
261 Solved values for the quantities
262 with Psi in column 0 etc
263
264 ’’’
265
266 # Determine the starting point for DE solving ;
267 # quantities constant when rho ~ rho_r and k0/Hy << 1
268 kHubRatio = k0/( Hubble(ys)*ys)
269 i_kh = iFirstSmaller(-kHubRatio , -0.01)
270 solvingStarts = min((i_kh , i_radEnd))
271
272 # Initial values
273 Phi_in = 1/(2* R_ng /(5*(1+ R_ng)) + 3/2)
274 v_in = -k0*Phi_in /(2* Hubble(ys[solvingStarts ])*ys[solvingStarts

])
275 y0 = [1 - Phi_in/2, # Psi
276 -3/2*Phi_in , # deltac
277 v_in , # vc
278 -3/2*Phi_in , # deltab
279 v_in , # vb
280 -2*Phi_in , # deltag
281 v_in , # vg
282 -2*Phi_in , # deltan
283 v_in , # vn
284 0, # Pi_g
285 2* Phi_in /5*(k0/( Hubble(ys[solvingStarts ])*ys[

solvingStarts ]))**2, # Pi_n
286 k0] # k0
287
288 sol = solve_ivp(dqsdy
289 ,(ys[solvingStarts], ys[-1])
290 ,y0
291 ,t_eval=ys[solvingStarts :]
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292 ,method=’Radau’) #
293
294 if sol.status != 0:
295 print(sol.message)
296
297 vals = np.zeros(( solvingStarts + len(sol.t) ,11))
298
299 # Change initial conditions for varying quantities to
300 # be their values in the pre - solving regime
301 v_in_var = -k0*Phi_in /(2* Hubble(ys[0: solvingStarts ])*ys[0:

solvingStarts ])
302 y0[2] = v_in_var
303 y0[4] = v_in_var
304 y0[6] = v_in_var
305 y0[8] = v_in_var
306 y0[10] = 2* Phi_in /5*(k0/( Hubble(ys[0: solvingStarts ])*ys[0:

solvingStarts ]))**2 # Pi_n
307
308 # Psi in column 0, deltac in column 1 ,... , Pi_n in column 10
309 for i in range (0,11):
310 vals[: solvingStarts ,i] = y0[i]
311 vals[solvingStarts:,i] = sol.y[i,:] #
312
313 return {’k0’ : k0
314 ,’ys’ : np.concatenate ((ys[0: solvingStarts], sol.t))
315 ,’vals’ : vals
316 }
317
318
319 def develOfKs(ys,ksOfInterest , i_radEnd):
320 ’’’
321 Compute the development of quantities Psi , deltac , vc , deltab ,
322 vb , deltag , vg , deltan , vn , Pi_g , Pi_n for scales ksOfInterest

over the span ys
323
324 Parameters
325 ----------
326 ys : array like of doubles
327 Points y where quantities are evaluated
328 ksOfInterest : array like of doubles
329 Scales k0 for which quantities will be computed
330 i_radEnd : int
331 Time ys[ i_radEnd ] at which radiation dominated
332 epoch ends
333
334 Returns
335 -------
336 list of dictionaries with keywords
337 ’k0’ : double
338 k0 -value for which solving was performed
339 ’ys’ : array like of doubles
340 Points y where quantities are evaluated
341 ’vals ’ : numpy array
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342 Solved values for the quantities
343 with Psi in column 0 etc
344 ’’’
345
346 with ProcessPoolExecutor () as executor:
347 future = executor.map(develOfK , repeat(ys), ksOfInterest ,

repeat(i_radEnd))
348
349 return list(future)
350
351
352 def plotQuantity(data , xlims , ylims , symbol , simplesymbol ,

legendloc ,
353 loglog , y_eq_xsepf = 5e-5, y_eq_ysepf =0.05):
354 ’’’Make and save a (y, quantity ) -plot
355
356 Parameters
357 ----------
358 data : list
359 Data to be plotted as a list of dictionarys ,
360 each dictionary containing keywords :
361 ’k0’ : scale k0
362 ’ys’ : y values
363 ’vals ’ : values of the quantity at given y values
364 xlims : 2-tuple of floats or None
365 X axis limits to be set for the plot (if any)
366 ylims : 2-tuple of floats or None
367 Y axis limits to be set for the plot (if any)
368 symbol : str
369 Symbol of the quantity
370 simplesymbol : str
371 Symbol of the quantity without Latex formatting
372 loglog : bool
373 True if both axis should be logarithmic
374 y_eq_xsepf : float
375 Separation factor in x direction between the matter -

radiation
376 equilibrium line and its legend ; 0 for legend on the line ,
377 1 for legend at the right border of the plot
378 y_eq_ysepf : float
379 Separation factor in y direction between the top of the

plot and
380 matter - radiation equilibrium legend ; 0 for legend on top of

the plot ,
381 1 for legend at the bottom of the plot
382 ’’’
383
384 plt.gcf().clear()
385
386 i = 0
387 while i < len(data):
388 dataSingleK = data[i]
389 label = "$k_0$␣=␣{0:.3g}␣Mpc$^-$$^1$".format(dataSingleK[’
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k0’])
390 color = ’C’ + str(i)
391 plt.plot(dataSingleK[’ys’]
392 ,dataSingleK[’vals’]
393 ,color + ’-’
394 ,label=label
395 ,zorder =0
396 )
397
398 # point where scale crosses horizon
399 try:
400 i_cross = iHorizonCrossing(dataSingleK[’k0’],

dataSingleK[’ys’])
401 quantityk = dataSingleK[’vals’][ i_cross]
402 plt.scatter ([ dataSingleK[’ys’][ i_cross], ]
403 ,[quantityk , ]
404 ,50
405 ,color=color
406 ,zorder =5
407 )
408 except IndexError:
409 pass
410
411 i = i+1
412
413 if loglog:
414 plt.loglog ()
415 else:
416 plt.semilogx ()
417
418 try:
419 plt.xlim(xlims)
420 except:
421 pass
422 try:
423 plt.ylim(ylims)
424 except:
425 pass
426
427 plt.legend(loc=legendloc)
428
429
430 # Point of matter radiation equilibrium y_eq as a vertical line
431 y_eq = Omr0/Omm0
432 ax = plt.gca() # [xmin ,xmax ,ymin ,ymax]
433 plt.plot([y_eq , y_eq]
434 ,[ax.get_ylim ()[0] ,ax.get_ylim ()[1]]
435 ,color=’black’
436 ,linewidth =1.
437 ,linestyle="--")
438 plt.annotate(’$z␣=␣z_{\ mathrm{eq}}$’
439 ,(y_eq + y_eq_xsepf *(ax.get_xlim ()[1] - ax.get_xlim

()[0])
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440 ,ax.get_ylim ()[1] - y_eq_ysepf *(ax.get_ylim ()[1] -
ax.get_ylim ()[0]))

441 )
442
443 plt.ylabel(symbol + ’␣($\mathcal{R}_{\ mathrm{prim}}$)’)
444 plt.xlabel(’$(1+z)^{-1}$’)
445
446 # Save the figure
447 plt.savefig("fig/" + simplesymbol + ".pdf", dpi =144)
448
449
450 if __name__ == ’__main__ ’:
451 Psi = Quantity(’$\Psi$’)
452 Psi.simplesymbol = "Psi"
453 Psi.colindex = 0
454 Psi.ylims = (-0.2, 0.9)
455 Psi.legendloc = 3
456
457 deltac = Quantity(’$\delta_\mathrm{c}$’)
458 deltac.simplesymbol = "deltac"
459 deltac.colindex = 1
460 deltac.ylims = (-100,10)
461 deltac.legendloc = 3
462
463 vc = Quantity(’$v_\mathrm{c}$’)
464 vc.simplesymbol = "vc"
465 vc.colindex = 2
466 vc.ylims = (-20,5)
467 vc.legendloc = 3
468
469 deltab = Quantity(’$\delta_\mathrm{b}$’)
470 deltab.simplesymbol = "deltab"
471 deltab.colindex = 3
472 deltab.ylims = (-100,15)
473 deltab.legendloc = 3
474
475 vb = Quantity(’$v_\mathrm{b}$’)
476 vb.simplesymbol = "vb"
477 vb.colindex = 4
478 vb.ylims = (-20,5)
479 vb.legendloc = 3
480
481 deltag = Quantity(’$\delta_\mathrm {\ gamma}$’)
482 deltag.simplesymbol = "deltag"
483 deltag.colindex = 5
484 deltag.ylims = (-5,5)
485 deltag.legendloc = 2
486
487 vg = Quantity(’$v_\mathrm {\ gamma}$’)
488 vg.simplesymbol = "vg"
489 vg.colindex = 6
490 vg.ylims = ( -2.3 ,2.3)
491 vg.legendloc = 2
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492
493 deltan = Quantity(’$\delta_\mathrm {\\nu}$’)
494 deltan.simplesymbol = "deltan"
495 deltan.colindex = 7
496 deltan.ylims = (-5,1.5)
497 deltan.legendloc = 2
498
499 vn = Quantity(’$v_\mathrm {\\nu}$’)
500 vn.simplesymbol = "vn"
501 vn.colindex = 8
502 vn.ylims = (-2,2)
503 vn.legendloc = 2
504
505 Pi_g = Quantity(’$\Pi_\mathrm {\\ gamma}$’)
506 Pi_g.simplesymbol = "Pi_g"
507 Pi_g.colindex = 9
508 Pi_g.ylims = (-2,2)
509 Pi_g.legendloc = 3
510
511 Pi_n = Quantity(’$\Pi_\mathrm {\\nu}$’)
512 Pi_n.simplesymbol = "Pi_n"
513 Pi_n.colindex = 10
514 Pi_n.ylims = ( -4.5 ,1.5)
515 Pi_n.legendloc = 3
516
517 quantities = [Psi ,
518 deltac ,
519 vc ,
520 deltab ,
521 vb ,
522 deltag ,
523 vg ,
524 deltan ,
525 vn ,
526 Pi_g ,
527 Pi_n
528 ]
529
530 for qty in quantities:
531 qty.xlims = (1e-9, 1)
532
533 ksOfInterest = [2, 0.1, 0.003 , 0.0005]
534 ys = np.logspace ( -13 ,0 ,50000)
535
536 # Solve free electron fraction and save its plot
537 XeValues = Xe(ys)
538 XeValuesInterp = interp1d(ys , XeValues ,kind=’cubic’,fill_value=

’extrapolate ’)
539
540 plt.gcf().clear()
541 plt.plot(ys , XeValues)
542 plt.loglog ()
543 plt.ylim ((5e-5, 5e0))
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544 plt.xlim ((1e-9,1))
545 plt.ylabel(’X$_{\ mathrm{e}}$’)
546 plt.xlabel(’$(1+z)^{-1}$’)
547 try:
548 plt.savefig("fig/Xe.pdf", dpi =144)
549 except FileNotFoundError:
550 mkdir("fig")
551 plt.savefig("fig/Xe.pdf", dpi =144)
552
553 # Solve a0 * eta ( present day scale factor times conformal time

)
554 # and save its plot
555 a0etaValues = a0eta(ys)
556 a0etaValuesInterp = interp1d(ys ,a0etaValues ,kind=’cubic’,

fill_value=’extrapolate ’)
557
558 plt.gcf().clear()
559 plt.plot(ys , a0etaValues)
560 plt.loglog ()
561 plt.ylabel(’$a_0␣\eta$’)
562 plt.xlabel(’$(1+z)^{-1}$’)
563 try:
564 plt.savefig("fig/a0eta.pdf", dpi =144)
565 except FileNotFoundError:
566 mkdir("fig")
567 plt.savefig("fig/a0eta.pdf", dpi =144)
568
569 # Point y at which radiation domination starts to phase out
570 i_radEnd = iRadEnd (0.95, ys)
571
572 # Solve other quantities
573 res = develOfKs(ys ,ksOfInterest , i_radEnd)
574
575 # Plot Phi = Psi - 3*w*Pi*(H*y/k0)^2
576 phiData = []
577 for result in res:
578 y = result[’ys’]
579 k0 = result[’k0’]
580 H = Hubble(y)
581 wPi = (Omg0*result[’vals’][:,Pi_g.colindex] + Omn0*result[’

vals’][:,Pi_n.colindex ]) /(3*( Omr0 + Omm0*y + Oml0*y**4))
582 Phi = result[’vals’][:,Psi.colindex] - 3*wPi*(H*y/k0)**2
583 phiData.append ({’k0’ : k0
584 ,’vals’ : Phi
585 ,’ys’ : y
586 })
587
588 plotQuantity(phiData
589 ,(1e-9,1)
590 ,(-0.2,0.8)
591 ,’$\Phi$’
592 ,’Phi’
593 ,3
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594 ,False)
595
596 # Save the plots of the rest of the quantities
597 for qnty in quantities:
598 data = []
599 for result in res:
600 data.append ({’k0’ : result[’k0’]
601 ,’vals’ : result[’vals’][:,qnty.colindex]
602 ,’ys’ : result[’ys’]
603 })
604
605 plotQuantity(data
606 ,qnty.xlims
607 ,qnty.ylims
608 ,qnty.symbol
609 ,qnty.simplesymbol
610 ,qnty.legendloc
611 ,False)
612
613 # Save a loglog plot of matter density contrasts
614 for qnty in [deltab ,deltac ]:
615 data = []
616 for result in res:
617 data.append ({’k0’ : result[’k0’]
618 ,’vals’ : np.abs(result[’vals’][:,qnty.

colindex ])
619 ,’ys’ : result[’ys’]
620 })
621
622 plotQuantity(data
623 ,qnty.xlims
624 ,[6e -1 ,100000]
625 ,"|" + qnty.symbol + "|"
626 ,"abs_" + qnty.simplesymbol + "_loglog"
627 ,2
628 ,True
629 ,y_eq_ysepf =0.5)
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