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Summary6

1. There has been rapid development in tools for multivariate analysis based7

on fully specified statistical models or “joint models”. One approach8

attracting a lot of attention is generalized linear latent variable models9

(GLLVMs). However, software for fitting these models is typically slow10

and not practical for large datsets.11

2. The R package gllvm offers relatively fast methods to fit GLLVMs via12

maximum likelihood, along with tools for model checking, visualization13

and inference.14

3. The main advantage of the package over other implementations is speed15

e.g. being two orders of magnitude faster, and capable of handling thou-16

sands of response variables. These advances come from using variational17

approximations to simplify the likelihood expression to be maximised, au-18

tomatic differentiation software for model-fitting (via the TMB package),19

and careful choice of initial values for parameters.20

4. Examples are used to illustrate the main features and functionality of21

the package, such as constrained or unconstrained ordination, including22

functional traits in “fourth corner” models, and (if the number of envi-23

ronmental coefficients is not large) make inferences about environmental24

associations.25

Keywords: High-dimensional data, joint modelling, multivariate analysis, or-26

dination, species interactions27
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Multivariate abundance data, consisting of observations of multiple interacting species28

(or other taxonomic group) from a set of samples, are often collected in ecological studies29

to characterise a community or assemblage of organisms. The term “abundance” is taken30

here to mean counts, presence-absence records, biomass data or any other measure of31

the extent to which a species may be present at a site. Common ecological questions32

that such data are used to answer include whether a set of sites are similar in terms of33

their species composition (Bjork et al., 2018), finding between species interactions and34

visualization of correlation patterns across species (Royan et al., 2016), hypothesis testing35

of environmental effects (Lammel et al., 2018), and making predictions for abundances36

(Buisson et al., 2008).37

In recent years, there has been a growing movement towards the specification of statistical38

models for multivariate analysis in ecology (Ovaskainen et al., 2010; Warton et al., 2015;39

Ovaskainen et al., 2017). Of particular interest are methods that use random effects to40

incorporate between species correlation in models predicting species abundance as a func-41

tion of environmental variables, often termed joint species distribution models (Pollock42

et al., 2014). One exciting possibility offered by these methods is the potential to tease43

apart some of the causes of species co-occurrence – joint response to known environmental44

gradients versus other sources, e.g. biotic interaction.45

A key approach for statistical modelling of multivariate abundance data is the generalized46

linear latent variable model (GLLVM, Skrondal and Rabe-Hesketh, 2004). A GLLVM47

extends the basic generalized linear model to multivariate data using a factor analytic48

approach, i.e. incorporating a small number of latent variables for each site accompanied49

by species specific factor loadings to model correlations between responses. These latent50

variables have a natural interpretation as ordination axes, but with additional capacity,51

e.g. predicting new values, controlling for known environmental variables, using standard52

model selection tools to choose number of ordination axes (Hui et al., 2015). One of the53

main advantages of GLLVMs is that they can handle situations where there are many54

species, because the number of parameters in the covariance model scales linearly with55

the number of responses (Warton et al., 2015). This is a key technical challenge – often56

there are more species being sampled than sites, e.g. microbial data often has thousands57

of taxa (Niku et al., 2017; Kumar et al., 2017).58

Software for fitting GLLVMs in ecology is currently quite slow computationally and not59

practical for large datasets. In particular, packages in the freely available software R60

have been developed, e.g. the boral (Hui, 2016) and HMSC packages (Tikhonov et al.,61
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2019), but using Bayesian MCMC for estimation, which is relatively slow and not prac-62

tical for large microbial datasets. More technical advances provide the opportunity to63

reduce computation times on some problems from hours to minutes or minutes to sec-64

onds, using variational (Hui et al., 2017) or Laplace (Niku et al., 2017) approximations65

to likelihoods, especially via automated differentiation software such as Template Model66

Builder (Kristensen et al., 2016).67

This paper presents the R package gllvm (Niku et al., 2019a), which has been devel-68

oped for rapid fitting of GLLVMs to multivariate abundance data. The package offers69

a framework for model-based ordination, as well as allowing us to study the effect of70

environmental covariates or environmental-trait interactions on responses simultaneously71

with the analysis of correlation patterns across species. The package also contains tools72

for statistical inference, model selection and visualization. While other R packages have73

similar functionality (Tikhonov et al., 2019; Hui, 2016), the key point of distinction is74

that gllvm fits models much faster than its immediate competitors (e.g. see Table 3) and75

is capable of modelling larger datasets. Version 1.1.7 of the gllvm package is currently76

available on the Comprehensive R Archive Network (CRAN).77

Generalized linear latent variable models78

A multivariate abundance dataset can be defined by a matrix of abundances, with n rows79

(usually sites) and m columns of responses (usually species). Denote the abundance of80

the jth species at the ith site as yij. A set of k environmental variables, or experimental81

treatments, may also be recorded at each site and stored in the vector xi = (xi1, . . . , xik)
>.82

A GLLVM regresses the mean abundance µij against environmental variables and a vector83

of d� m latent variables, ui = (ui1, . . . , uid)
>:84

g(µij) = ηij = αi + β0j + x>
i βj + u>

i γj, (1)

where βj and γj are vectors of species specific coefficients related to the covariates and85

latent variables, respectively. The latent variables ui can be thought of as unmeasured86

environmental variables, or as ordination scores, capturing the main axes of covariation of87

abundance (after controlling for observed predictors xi). We assume these latent variables88

are independent across sites and standard normally distributed. The parameters β0j are89

species specific intercepts, while αi are optional site effects which can be chosen as either90

fixed or random effects (αi ∼ N(0, σ2)). The row effects αi can be included for site total91

3
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abundance standardization, that is, all other terms in the model can then be subsequently92

interpreted as modelling relative abundance or compositional effects (Hui et al., 2015). To93

ensure that the above model is identifiable, for m > 1 the upper triangular of the loading94

matrix Γ = [γ1 . . .γm]′ needs to be set to zero and the diagonal elements positive to avoid95

rotational invarance; see Hui et al. (2015) and Niku et al. (2017) for further information.96

The residual covariance matrix, storing information on species co-occurrence that is not97

explained by environmental variables, can be calculated as Σ = ΓΓ>. This is the correct98

form of correlation when the responses are Poisson distributed. In the case of negative bi-99

nomial distribution with dispersion parameters Φ = (φ1, . . . , φm)>, we adjust the diagonal100

elements by adding the term log(φj + 1), which corresponds to the variance explained by101

the NB distribution. Analogously, for the binomial probit model the residual covariance102

is Σ = ΓΓ> + Im (Ovaskainen et al., 2016).103

If q trait covariates tj = (ti1, . . . , tiq)
> are also recorded, we can use them to help explain104

inter-specific variation in environmental response. This leads to an extension of the so-105

called “fourth corner model” (Jamil and ter Braak, 2013; Brown et al., 2014) where106

multivariate abundance is regressed against a function of traits and environment, and the107

environment-trait interactions represents the fourth corner association between traits and108

environment. The associated fourth corner GLLVM then has mean model:109

g(µij) = ηij = αi + β0j + x>
i βe + (tj ⊗ xi)>βI + u>

i γj, (2)

where βe is a vector of main effects for environmental covariates, and βI are the fourth110

corner coefficients. A main effect for traits was not included, because main effects on111

abundance across species are absorbed by the intercept term β0j. This model assumes112

that all inter-specific variation in response to covariates is mediated by species, which113

reduces the number of parameters related to covariates from mk in equation (1) to k(q+1)114

in (2).115

In both GLLVM formulations above, a key feature is that the number of parameters116

characterizing the residual correlation ΓΓ> grows linearly with the number of responses m.117

This contrasts to the quadratic rate of growth when an unstructured residual covariance118

matrix were assumed across responses (Pollock et al., 2014). Thus the term u>
i γj is able119

to model residual correlation across response variables even when the number of species120

is relatively large.121

4
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Estimation122

A difficulty fitting the GLLVM is that the ui’s are unobserved and we must integrate over123

their possible values. Specifically, the log-likelihood function we wish to maximise has the124

form125

l(Ψ) =
n∑
i=1

log(f(yij,Ψ)) =
n∑
i=1

log

(∫
IRd

m∏
j=1

f(yij|ui; Ψ)f(ui)dui,

)
, (3)

where ψ includes all model parameters. In this expression we have assumed abundances126

are independent across sites and any correlation across responses is captured by the latent127

variables ui. Thus conditional on ui, the yij are independent of each other within sites.128

In the literature, several solutions have been proposed to the problem of integration129

(3), most notably adaptive quadrature (Rabe-Hesketh et al., 2002), the Monte-Carlo130

applications of the expectation maximization (EM) algorithm (Hui et al., 2015), and131

Bayesian MCMC (Tikhonov et al., 2019; Hui, 2016). For large datasets and multiple132

latent variables these methods are, however, time-consuming.133

The gllvm package overcomes these computational problems using three key innovations:134

• Maximising an approximation to the log-likelihood that is (almost completely)135

closed form. We provide two ways to do this – using Gaussian variational ap-136

proximations (VA, Hui et al., 2017) for overdispersed counts, binary and ordinal137

responses, or using Laplace approximations (LA, Niku et al., 2017) for other ex-138

ponential family distributions when a fully closed form variational approximation139

cannot be obtained e.g. biomass data can be modelled by the Tweedie distribution.140

• Parameter estimation makes use of automatic differentiation software in C++ to ac-141

celerate computation times, via the interface provided by the R package TMB (Kris-142

tensen et al., 2016).143

• Careful choice of starting values. In particular, we use a factor analysis on Dunn-144

Smyth residuals (Niku et al., 2019b) to obtain starting values close to the anticipated145

solution, optionally, with jittering to check the sensitivity of the approach.146

The end result is a package that provides more stable solutions, and is orders of magnitude147

faster than current competitors.148

5
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Using the R package gllvm149

The R package gllvm provides a flexible implementation for fitting GLLVMs to multivari-150

ate data. The main function of the gllvm package is gllvm(), which can be used to fit151

GLLVMs for multivariate data with the most important arguments listed in the following:152

gllvm(y = NULL, X = NULL, TR = NULL, data = NULL, formula = NULL,153

num.lv = 2, family, method = "VA", row.eff = FALSE, offset = NULL,154

Power = 1.5, starting.val = "res", ...)155

Data input can be specified using the “wide format” matrices via y, X and TR arguments,156

or using the long format via data argument, and formula is used for model specification157

(which defaults to including linear terms for all variables from X and TR, and all interac-158

tions between variables in X and variables in TR). The number of latent variables can be159

defined using the argument num.lv, with zero latent variables corresponding to a simple160

multi-response GLM that does not account for correlation across responses (Wang et al.,161

2012). The response distribution can be chosen using the argument family, and mod-162

els can be fitted using either the VA (method = "VA", default) or with the LA (method163

= "LA") method. The currently available distributions, link functions and methods for164

different response types are listed in Table 1.165

Other important arguments in the gllvm call are row.eff for defining the type of row166

effects (none, fixed or random), offset for potential inclusion of offsets, Power for defining167

the power parameter of the Tweedie distribution (Niku et al., 2017) and starting.val168

for judicious choice of starting values for the latent variables (Niku et al., 2019b). For an169

overview of the available functions in gllvm, see Table 2.170

Below, we demonstrate the main features of the gllvm package by example. In the171

examples we consider the antTraits data, which is available in the R package mvabund172

(Wang et al., 2012) and consists of counts of 41 ant species measured at 30 sites across173

south-east Australia, along with records of five environmental variables and five trait174

variables for each species. The package and the data can be loaded as follows.175

> library(gllvm)176

> data(antTraits)177

> y <- as.matrix(antTraits$abund); X <- scale(as.matrix(antTraits$env))178

> TR <- antTraits$traits179

6

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Model-based ordination180

GLLVMs can be used as a model-based approach to unconstrained ordination by including181

(e.g.) two latent variables in the model but no predictors (Walker and Jackson, 2011; Hui182

et al., 2015). The corresponding ordination plot then provides a graphical representation183

of which sites are similar in terms of their species composition. Such a model can be fitted184

to the antTraits data using the function gllvm() as below. We will consider two count185

distributions for the data – the Poisson and negative binomial (NB).186

> fitp <- gllvm(y, family = poisson())187

> fitp188

Call:189

gllvm(y = y, family = poisson())190

family:191

[1] "poisson"192

...193

AIC: 4501.263194

AICc: 4178.553195

BIC: 4672.209196

> fit_ord <- gllvm(y, family = "negative.binomial")197

> fit_ord198

Call:199

gllvm(y = y, family = "negative.binomial")200

family:201

[1] "negative.binomial"202

...203

AIC: 4116.173204

AICc: 3717.188205

BIC: 4344.568206

The default printout includes information criteria, which all suggest that the NB distribu-207

tion is a better choice than the Poisson distribution for modelling the response. Residual208

plots for diagnosing model fit in Figure 1 can be obtained using the plot() function. Two209

plots for both models are of Dunn-Smyth residuals, which are randomized quantile based210

residuals designed for discrete data (Dunn and Smyth, 1996), plotted against linear pre-211

dictors, and a normal quantile-quantile plot with a simulated point-wise 95% confidence212

7
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interval envelope. The residual diagnostics for the Poisson model shows some overdisper-213

sion in residuals, in particular, a telltale fan-shape in the plot of residuals against fitted214

values. These issues are largely resolved in the NB model. Note that the latent variables215

in the model provide some capacity to account for overdispersion, so overdispersed counts216

do not always require us to move beyond the Poisson distribution, although there is clear217

evidence of such a need in this example.218

Once an appropriate model has been established for the data, we can construct an ordina-219

tion as a scatter plot of the predicted latent variables via the ordiplot() function. The220

species with the largest factor loadings (largest norms, ||γj||), and hence most strongly221

associated with ordination scores, can be added using the logical argument biplot, lead-222

ing to a biplot for finding indicator species corresponding to specific sites. The ind.spp223

argument defines the number of species to be plotted.224

> ordiplot(fit_ord, biplot = TRUE, ind.spp = 15,225

+ xlim = c(-3, 3), ylim = c(-2, 1.6))226

The above command creates the biplot as shown in Figure 2 based on the GLLVM fitted227

to the antTraits data. We can see one large cluster of sites on the top with many228

indicator species, and few smaller clusters with only few indicator species e.g. sites 12–15.229

In Appendix 3 we apply classical algorithm-based ordination methods to the ant data230

and compare the results. While the results between GLLVMs and the algorithmic-based231

methods are quite similar, GLLVMs offer the advantage of standard tools for diagonsing232

model fit and performing model selection.233

Model with environmental variables234

Environmental variables can be included in the model, whether to study their effects on235

assemblages, or to study patterns of species co-occurrence after controlling for environ-236

mental variables.237

> fit_env <- gllvm(y, X, family = "negative.binomial", num.lv = 3,238

+ formula = ~ Bare.ground + Shrub.cover + Volume.lying.CWD)239

A model with three latent variables was chosen based on the AICc value, and residual240

analysis indicates that a NB distribution offered the most suitable mean-variance rela-241

tionship for the responses.242

8
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The estimated coefficients for predictors and their confidence intervals can be plotted243

using the coefplot() function, in order to study the nature of effects of environmental244

variables on species.245

> coefplot(fit_env, cex.ylab = 0.7, mar = c(4, 9, 2, 1),246

+ xlim.list = list(NULL, NULL, c(-4, 4)))247

The resulting plot is given in Figure 3. Note that with a log link used, a unit change248

covariate l equates to a multiplicative change of exp(β̂jl) in the predicted mean µ̂ij for249

species j. Most of the 95% confidence intervals include zero, indicating that the majority250

of the species do not exhibit evidence of a strong association between environment and251

species abundance. This may be due to a lack of information in the data, as much as252

being due to a lack of environmental association after accounting for potential residual253

species covariation.254

Studying co-occurrence patterns255

Latent variables induce correlation across response variables, and so provide a means of256

estimating correlation patterns across species, and the extent to which they can be ex-257

plained by environmental variables. As explained previously, information on correlation is258

stored in the factor loadings, and the getResidualCor() function can be used to estimate259

the correlation matrix of the linear predictor across species. This can be visualised using260

the corrplot package:261

> cr <- getResidualCor(fit_env)262

> library("corrplot"); library("gclus");263

> corrplot(cr[order.single(cr), order.single(cr)], diag = FALSE, type =264

+ "lower", method = "square", tl.cex = 0.8, tl.srt = 45, tl.col = "red")265

Regions coloured in dark blue on Figure 4 indicate clusters of species that are positively266

correlated with each other, after controlling for covariation in species explained by the267

environmental terms in fit env. There are also two regions coloured in red, indicating268

negative correlation between pairs of species. The effect of the environmental variables269

on the between species correlations can be seen by comparing the correlation matrix in270

Figure 4 to the correlation matrix given by the model without environmental variables,271

see example in Appendix 1, where the correlation patterns are considerably different from272

9
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one another. Correlations can also be visualized in a residual biplot (Appendix 1). The273

traces of residual covariances obtained via the getResidualCov() function can be used274

to quantify the amount of variation in the data explained by environmental variables275

(Warton et al., 2015), see Appendix 1.276

Incorporating functional traits into “fourth corner” models277

In the previous section, environmental associations were studied by fitting separate terms278

for each species, without attempting to explain why different species respond differently279

to the environment. Adding functional traits to the model offers the potential to explain280

why species differ in environmental response. The fourth corner model in equation (2)281

can be fitted by using the argument TR to include traits, and the argument formula is282

used to specify the model.283

> fit_4th <- gllvm(y, X, TR, family = "negative.binomial", num.lv = 3,284

+ formula = y ~ (Bare.ground + Shrub.cover + Volume.lying.CWD) +285

+ (Bare.ground + Shrub.cover + Volume.lying.CWD) :286

+ (Pilosity + Polymorphism + Webers.length))287

As previously, coefficients can be plotted using the function coefplot(). The environmen-288

tal-trait interaction terms, also known as the fourth corner terms, can also be visualized289

using the function levelplot() from the package lattice, see Appendix 1 for example290

code. The resulting plots in Figure 5 indicate that interactions of the trait variable291

Polymorphism with Bare.ground and Webers.length with Volume.lying.CWD have the292

strongest effects on ant abundances. Notice that Pilosity and Polymorphism are factors293

and gllvm() recognises this.294

By using a maximum likelihood framework, gllvm offers likelihood-based machinery for295

model-based inference. A particular example is likelihood ratio testing via the anova()296

function when comparing nested models. In Figure 5, for example, all the trait-environ-297

ment interactions appear to be relatively small and most of the confidence intervals of298

the coefficients include zero values. But to formally test whether these traits vary en-299

vironment, in the below code we fitted a second model without traits and performed a300

likelihood ratio test. Notice that in order to separate the next model from the one which301

has species specific coefficients for environmental variables, we include TR matrix to the302

function call.303

10
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> fit_4th2 <- gllvm(y, X, TR, family = "negative.binomial", num.lv = 3,304

+ formula = y ~ (Bare.ground + Shrub.cover + Volume.lying.CWD))305

> anova(fit_4th, fit_4th2)306

Model 1 : y ~ (Bare.ground + Shrub.cover + Volume.lying.CWD)307

Model 2 : y ~ (Bare.ground + Shrub.cover + Volume.lying.CWD) +308

(Bare.ground + Shrub.cover + Volume.lying.CWD) : (Pilosity + Polymorphism309

+ Webers.length)310

Resid.Df D Df.diff P.value311

1 1025 0.00000 0312

2 1007 18.90272 18 0.397837313

Based on the output from applying the anova() function, the p-value suggests that the314

simpler model where traits were not included is more appropriate i.e., there is no strong315

evidence of traits mediating the environmental response of species.316

The validity of any model-based inference procedure relies on the assumptions of its317

underlying model. Note that the above test is based on fit 4th, a model that made the318

strong assumption that all interspecific variation in environmental response is captured319

by the trait in the model. Tests based on such models can have inflated false positive320

rates when this assumption is violated, as can be shown using simulations with missing321

trait predictors (ter Braak, 2019). We are working on an extension of our model, using a322

random slope across species, to capture variation in environmental response not captured323

by the trait model. Tests based on such a model can be expected to have much-improved324

robustness to missing predictors in the trait model.325

Summary326

In this paper, we introduced the R package gllvm for the analysis of multivariate abun-327

dance data using GLLVMs. The package caters for the types of response variables most328

commonly seen in ecology, including presence-absence data, overdispersed counts, biomass329

and ordinal data. The main point of difference between gllvm and other packages for fit-330

ting GLLVMs (Tikhonov et al., 2019; Hui, 2016) is that our algorithm is much faster for331

model-fitting, and thus capable of handling much larger datasets. Computational effi-332

ciency was achieved by avoiding MC approaches to estimation, and instead making use of333

recent innovations for maximum likelihood estimation as discussed in Estimation. Table 3334

illustrates this by comparing the computation time of gllvm to boral with default set-335

11
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tings (40 000 total iterations, warm-up at 10 000, thinning at 30), for the three example336

models of this paper. Computation times were over 140 times shorter when using gllvm,337

analysing the data in seconds rather than minutes. Note that this example dataset was338

relatively small, and differences in computation time become practically meaningful for339

larger datasets. For example, for the metagenomic dataset of Niku et al. (2017), with 56340

rows and 985 responses, gllvm fitted a two latent variable model without predictors in341

15 minutes, while boral (under default settings) took 10 hours, without achieving con-342

vergence. Even larger datasets again can be handled by gllvm, for which analysis is343

otherwise infeasible with currently available packages.344

A second point of difference between gllvm and competing packages is that it uses a345

maximum likelihood framework, and thus can employ likelihood-based tools for inference.346

Familiar generic R functions like AIC, BIC and anova can be applied to gllvm objects,347

although as previously we emphasise that anova results will only be reliable when testing348

hypotheses concerning a relatively small number of parameters. To compare, packages349

that fit GLLVMs under a Bayesian framework would return full posterior distributions for350

both parameters and latent variables (Tikhonov et al., 2019; Hui, 2016), while our likeli-351

hood based framework returns approximate confidence intervals for parameters, assuming352

estimators are normally distributed. On the other hand, performing Bayesian hypothesis353

testing presents a bigger challenge compared to using likelihood based hypothesis testing354

as the gllvm package implements.355

The GLLVM framework is distinct from methods historically used for ordination in ecol-356

ogy, such as non-metric multi-dimensional scaling (nMDS, as in vegan, Oksanen et al.,357

2018) and duality diagrams (as in ade4, Dray and Dufour, 2007). A key point of distinc-358

tion is that a GLLVM specifies a statistical model for the data intended to capture key359

data properties. In particular, multivariate abundance data typically have a strong mean-360

variance relationship, which if not accounted for, often introduces artifacts into analyses361

(Warton et al., 2012; Warton and Hui, 2017). Specifying a statistical model that aims to362

capture this mean-variance relationship, and using diagnostic tools to check its adequacy363

(Figure 1), can avoid this issue.364

In the future, we plan to broaden the scope of the gllvm package to handle spatial and365

temporal correlations that often characterise observational multivariate abundance data,366

by allowing the latent variables to be structured rather than assuming independence367

across observational units. We will also extend the fourth corner models by including368

species specific random slopes for the predictors, to account for interspecific variation369

12
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in environmental response that is not explained by traits. The code repository for the370

package can be found from github, see https://github.com/JenniNiku/gllvm .371
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Tables480

Table 1: Overview of available distributions with the mean, E(yij), and mean-variance,

V (µij), functions, estimation methods and link functions for various response types in

gllvm.

Response Distribution Method Link Description

Counts Poisson VA/LA log E(yij) = µij, V (µij) = µij

NB VA/LA log E(yij) = µij, V (µij) = µij + φjµ
2
ij,

where φj > 0 is a dispersion parameter

ZIP LA log E(yij) = (1− pj)µij, P (yij = 0) = pj,

V (µij) = µij(1− pj)(1 + µijpj)

Binary Bernoulli VA/LA probit E(yij) = µij, V (µij) = µij(1− µij)
LA logit

Biomass Tweedie LA log E(yij) = µij, V (µij) = φjµ
ν
ij,

where 1 < ν < 2 is a power parameter

and φj > 0 is a dispersion parameter

Ordinal Multinomial VA probit Cumulative probit model

Normal Gaussian VA/LA identity E(yij) = µij, V (yij) = φ2
j
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Table 2: Overview of functions available in gllvm.

Function Description

gllvm() Fits a generalized linear latent variable model

anova.gllvm() Analysis of deviance for ‘gllvm’ objects

coefplot.gllvm() Plots covariate coefficients and confidence intervals

logLik.gllvm() Log-likelihood of an object of class ‘gllvm’

residuals.gllvm() Dunn-Smyth residuals for ‘gllvm’ model

summary.gllvm() Summarizing ‘gllvm’ model fits

ordiplot.gllvm() Plots latent variables from a ‘gllvm’ model

plot.gllvm() Plots diagnostics for a ‘gllvm’ object

confint.gllvm() Confidence intervals for ‘gllvm’ model parameters

predict.gllvm() Obtains predictions from a ‘gllvm’ model

getResidualCov.gllvm() Calculates residual covariance matrix for a ‘gllvm’ fit

getResidualCor.gllvm() Calculates residual correlations for a ‘gllvm’ fit

getPredictErr.gllvm() Prediction errors for predicted latent variables

simulate.gllvm() Generate new data based on a ‘gllvm’ fit

Table 3: Computation times in seconds (on a Intel Core i7-3770 (3.4GHz)) to fit the

example GLLVM objects of this paper using gllvm and boral (with default settings)

using. The gllvm reduces computation times from minutes to seconds for each example.

fit ord fit env fit 4th

gllvm 4.0 10.0 10.3

boral 595.4 1483.6 1529.9

Figures481
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Figure 1: Residual plots for the Poisson GLLVM (top) and the NB-GLLVM (bottom) ap-

plied for model-based ordination. Specifically, Dunn-Smyth residuals are plotted against

linear predictors (left), while simulated point-wise 95% confidence interval envelope are

added in the normal quantile-quantile plot (right). The fan shape and unusually large

residuals for the Poisson GLLVM suggest data are slightly overdispersed compared to

the Poisson distribution. The lack of pattern and smaller residuals for the NB-GLLVM,

suggests a better model fit to the data.
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Figure 2: A biplot with 15 indicator species based on the NB-GLLVM fitted to the ant

data. The numbers correspond to the site indices.
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Figure 3: Plots of the point estimates (ticks) for coefficients of the environmental variables

and their 95% confidence intervals (lines) for the NB-GLLVM, with those colored in grey

(black) denoting intervals (not) containing zero. The x-axis of the coefficient plot of the

third variable is truncated due to very wide confidence interval for one of the coefficients.
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Figure 4: Residual correlation matrix based on latent factor loadings for the NB-GLLVM

with environmental covariates.
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Figure 5: A plot of the estimated coefficients (ticks) and their 95% confidence intervals

(lines) for all terms in the fourth corner model (left), and a level plot for the fourth corner

interaction terms (right) in the NB-GLLVM. The colors offer an indication of the signs

and magnitudes of the point estimates.
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