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ABSTRACT 

A novel virtual screening methodology called fragment- and negative image-based (F-NiB) 

screening is introduced and tested experimentally using phosphodiesterase 10A (PDE10A) as 

a case study. Potent PDE10A-specific small-molecule inhibitors are actively sought after for 

their antipsychotic and neuroprotective effects. The F-NiB combines features from both 

fragment-based drug discovery and negative image-based (NIB) screening methodologies to 

facilitate rational drug discovery. The selected structural parts of protein-bound ligand(s) are 

seamlessly combined with the negative image of the target’s ligand-binding cavity. This 

cavity- and fragment-based hybrid model, namely its shape and electrostatics, is used directly 

in the rigid docking of ab initio generated ligand 3D conformers. In total, 14 compounds 

were acquired using the F-NiB methodology, 3D quantitative structure-activity relationship 

modeling and pharmacophore modeling. Three of the small-molecules inhibited PDE10A at 

~27 µM to ~67 µM range in a radiometric assay. In a larger context, the study shows that the 

F-NiB provides a flexible way to incorporate small-molecule fragments into the drug 

discovery. 

 

Key words: Phosphodiesterase 10A (PDE10A), schizophrenia, Parkinson’s disease, 

Huntington’s disease, negative image-based (NIB), fragment- and negative image-based (F-

NiB) screening, virtual screening, structure-based virtual screening, radiometric activity 

assay, fragment-based drug discovery. 

 

 

INTRODUCTION 

In theory, virtual screening assays, which sieve through thousands to billions of compounds 

within hours or days, produce sufficient level of enrichment to limit the costly experimental 

testing to the very best drug candidates. In reality, these in silico assays frequently come short 

of this goal and produce lackluster results. Regardless, the computations can still bring forth 

solid innovations such as drug scaffolds to be developed further using systematic organic 

synthesis programmes (Frydenvang et al., 2009; Lash et al., 2008; Niinivehmas, Manivannan, 

Rauhamäki, Huuskonen, & Pentikäinen, 2016; Postila, Swanson, & Pentikäinen, 2010).  

The virtual screening approaches are divided roughly in two categories: the ligand-based and 

structure-based methodologies. The ligand-based methods such as pharmacophore (PHA) and 

three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling, which 

rely on the advance knowledge of active compounds, are computationally inexpensive. 

However, despite being commonly used in the drug discovery and lead optimization, the 

PHA and 3D-QSAR model generation does not necessarily utilize the bioactive ligand 

conformers but those that generate the most explanatory model(s) (Cramer, Patterson, & 

Bunce, 1988; Kinase, Zhang, Li, Zhang, & Ai, 2010; Lowe, Ferrebee, Rodriguez, Conn, & 

Meiler, 2010; Niinivehmas et al., 2016; Patel, Noolvi, & Sharma, 2014; Shubina, 

Niinivehmas, & Pentikäinen, 2015; Tian et al., 2011; Yadav et al., 2010). In contrast, the 

structure-based methods such as flexible molecular docking, which attempt to predict the 

ligand’s bioactive binding pose and estimate its binding energy, rely solely on the target 

protein’s 3D structure and require a lot of computational resources (Niinivehmas et al., 2016; 

Nurminen et al., 2010; Shubina et al., 2015). 
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In this regard, the negative image-based (NIB) screening (Figs. 1 and S1) (Ahinko, Kurkinen, 

Niinivehmas, Pentikäinen, & Postila, 2019; Lätti, Niinivehmas, & Pentikäinen, 2016; 

Niinivehmas, Salokas, Lätti, Raunio, & Pentikäinen, 2015; Niinivehmas, Virtanen, Lehtonen, 

Postila, & Pentikäinen, 2011; Virtanen & Pentikäinen, 2010) is set to get the best from both 

worlds as it can be used to screen compounds with only the protein 3D structure and the 

screening process itself lends its speed from the traditional ligand-based screening 

methodology. 

[Figure_1] 

In the NIB screening, the shape of the ligand-binding cavity is utilized directly in the cavity-

based rigid docking (Figs. 1 and S1). The technique is reminiscent of the traditional ligand-

based approach in which the similarity comparison is performed against a known template 

ligand, whose active binding pose has been solved experimentally using for example X-ray 

crystallography. The NIB method relies on building a drug-like pseudo-ligand or negative 

image of the protein’s ligand-binding cavity, where the electrostatics, solvation and 

alternative protonation can be incorporated as well (Figs. 1 and S1). The NIB models are 

composed of neutral filler atoms and negatively and positively charged cavity points 

reflecting the hydrogen bonding (H-bonding) features of the cavity lining residues (Fig. 1). 

The models need to be generated using specifically tailored cavity detection software 

PANTHER (Niinivehmas et al., 2015), but the ab initio generated ligand 3D conformers and 

the similarity comparison or rigid docking is performed with established ligand-based 

screening tools (Vainio & Johnson, 2007; Vainio, Puranen, & Johnson, 2009). 

Because the shape complementarity between the protein’s ligand-binding cavity and the 

ligand is a key factor in assuring strong binding, the NIB can outperform traditional virtual 

screening approaches such as flexible molecular docking on a case by case basis 

(Niinivehmas et al., 2015, 2011; Virtanen & Pentikäinen, 2010). In addition to the benchmark 

testing, the NIB methodology has been used successfully in tool compound discovery 

projects for metabolizing enzymes (Juvonen, Ahinko, Huuskonen, Raunio, & Pentikäinen, 

2018). The NIB benefits especially from the Molecular Mechanics Generalized Born Surface 

Area (MM/GBSA) post-processing, which, in general, has been shown to be an efficient way 

to recognize correct binding poses of small-molecule ligands (Ahinko, Niinivehmas, Jokinen, 

& Pentikäinen, 2019; Niinivehmas et al., 2011). The NIB has also been paired with the PHA 

filtering, where specific PHA points are generated based on well-known ligand-receptor hot 

spots or interaction sites (Rauhamäki et al., 2018). Moreover, the negative images can be 

used to rescore explicit docking poses to improve the flexible docking enrichment – a set-up 

that works excellently with a multitude of targets based on the benchmark testing (Kurkinen 

et al., 2018). What is common to these prior efforts is that the similarity comparison has 

relied solely on the cavity-based models composed of the charged cavity points and neutral 

filler atoms (Fig. 1). 

In the fragment-based drug discovery (FBDD), the virtual screening is used to find low-

molecular mass compounds or functional fragments that bind into the target protein rather 

than attempting to discover full-size drug candidates directly (Scott, Coyne, Hudson, & 

Abell, 2012). Frequently, the fatal challenge of the FBDD is the stage in which the fragments 

are supposed to be fused together to produce a potent drug – a process that typically involves 

organic synthesis (Hao et al., 2012; Xiong et al., 2017, 2016). Here, the idea of the fragment- 
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and negative image-based (F-NiB) screening (Figs. 1 and S1) is to simply incorporate the 

ligand fragments directly into the cavity-based negative image (Figs. 1 and S1) to improve 

the model fitness in the rigid docking. Thus, the F-NiB relies on generating hybrid models 

that, at least in theory, fuse seamlessly together the best parts from both the protein-bound 

fragment(s) and the cavity-based model. 

The viability of the F-NiB approach for drug discovery is demonstrated in practice by 

screening inhibitors for phosphodiesterase 10A (PDE10A; Fig. 2A). The hydrolysis of 

intracellular second messenger cyclic nucleotide monophosphate is catalyzed by the PDE10A 

(Fig. 2A-B) especially at the striatum (Fujishige, Kotera, & Omori, 1999). The enzyme was 

chosen as the test case for the F-NiB methodology, because, if discovered, potent PDE10A-

specific inhibitors (Fig. 2C-F) could be used in the treatment of schizophrenia and 

neurodegenerative disorders such as Parkinson’s and Huntington’s diseases (Garcia, 

Redondo, Martinez, & Gil, 2014). Moreover, the second messengers maintain neuronal 

functioning such as cellular metabolism and neurotransmitter synthesis and, thus, preventing 

their breakdown by the PDEs improves indirectly the synaptic neurotransmission (Duinen et 

al., 2015; Nestler & Duman, 1999). In addition, a vast amount of protein 3D structure and 

ligand activity data is available for PDE10A. This made it possible to apply various virtual 

screening methods such as the 3D-QSAR and flexible molecular docking in combination with 

the F-NiB in the search of the novel PDE10A inhibitors. 

[Figure_2] 

 

MATERIALS AND METHODS 

 
Computational methods 

 

Ligand preparation. Small-molecule ligands with experimentally measured activities were 

obtained from the ChEMBL (Bento et al., 2014) (n=804, mw: 215-600 g/mol, retrieved 22nd 

of July 2016) in the SMILES (Simplified Molecular-Input Line-Entry System) format. The 

3D structures were generated for the ligands by using LIGPREP in MAESTRO 10.5.013 

(Schrödinger Inc, Portland, OR, USA). In LIGPREP, the OPLS3 (Harder et al., 2016) force 

field was used, ionization was done at pH 7.4 with EPIK (Shelley et al., 2007), tautomers 

were created and ligands were desalted, specific chiralities were retained, at most 32 

tautomers and chiralities per ligand were generated, keeping one low energy ring 

conformation per ligand. Multiple conformations were generated for the 3D converted 

ligands with CONFGEN (Watts et al., 2010) in MAESTRO, using the intermediate search 

strategy. The SPECS molecular database (www.specs.net) was used as a source of molecules 

in virtual screening with all the models described below. The SPECS molecules (Specs 10mg 

drug-like Apr 2014 collection, max 8 rotbonds, mw: 250-600 g/mol) were provided as 

multiple conformers, produced in similar way as the ligands retrieved from the ChEMBL 

(Malamas, Ni, & Erdei, 2011). 
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Pharmacophore modeling. In the pharmacophore (PHA) modelling: a training set including 

preferably both active and inactive molecules is acquired; low-energy ligand 3D conformers 

are generated; the molecules are superimposed to produce the best fits for the functional 

groups; the overlaid/matching information is abstracted to simple PHA points/spheres such as 

H-bond donor or H-bond acceptor elements (PHA hypotheses); and, finally, a scoring 

function is used to rank the hypotheses according to their ability to represent the common 

pharmacophoric features of the active molecules (Leach, Gillet, Lewis, & Taylor, 2010). 

Here, a PHA model (Fig. S3A) was generated with PHASE (Dixon et al., 2006) in 

MAESTRO using default settings and a set of 74 PDE10A active ChEMBL ligands (Malamas 

et al., 2011). ChEMBL ligands, which were used in the PHA model building, are shown in 

Fig. S3B bound at the enzyme’s ligand-binding site (docked using PLANTS; see details 

below). Ligands that had experimental pIC50 > 8.0 were defined active. Hypotheses that 

utilized minimum of five pharmacophoric sites that matched at least 35 of the 42 active 

compounds were considered. The model AAHHR.155 that contained two H-bond acceptor 

sites, two hydrophobic sites and one aromatic ring site was selected because of having the 

best PHASE survival score (3.904). 

 

Field-based QSAR. Ligand alignment performed by, for example, PHA model can be used to 

establish quantitative structure-activity relationship (QSAR) on the aligned molecules (Leach 

et al., 2010). The field-based QSAR (FQSAR) reminds the PHA modelling in that it 

generates specific 3D fields (not necessarily spheres) designating the areas housing groups 

responsible of H-bonding or hydrophobic interactions based on the superimposition and 

abstraction. However, the FQSAR also incorporates QSAR data directly into the fields and, 

thus, allows the building of more representative and predictive models to provide more 

information of the contributions of different molecular features to the activity. An FQSAR 

model was created based on the active ligand alignment by AAHHR.155. The FQSAR model 

was generated by using Gaussian steric, electrostatic, hydrophobic, H-bond donor and 

acceptor 3D fields (Klebe & Abraham, 1999; Klebe, Abraham, & Mietzner, 1994). Linear 

correlation between independent (molecular properties represented by the 3D fields) and 

dependent variables (ligand activities) was constructed by using the Partial Least Squares 

(PLS) regression methodology. The model was internally validated by the leave-one-out 

method. 20 % of the active PDE10A ligands were assigned to the test set by random 

assignment and 80 % of the molecules were kept in the training set. The external validation of 

the QSAR model was performed by predicting the activities of the test set molecules. A series 

of models with an increasing number of PLS factors was examined and a model with the 

most statistical robustness was selected. The generated FQSAR model was used to predict 

activities of the SPECS molecules ranked best by the PHA model. 

 

Building fragment- and cavity negative image-based hybrid models. The hybrid models 

used in the F-NiB screening are built in a straightforward manner (Figs. 1 and S1): (1) a 

negative image of the binding pocket is generated using PANTHER; (2) one or more ligand 

fragments making the key interactions at the ligand-binding pocket are selected; (3) the 

coordinates are merged and the overlapping cavity sections are removed. Rest of the 

screening process involving protein preparation (e.g. solvation, protonation), ligand 3D 

conformer generation and the similarity screening do not differ from the established NIB 

methodology (Figs. 1 and S1) (Niinivehmas et al., 2015; Vainio et al., 2009).  
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In total, four hybrid models (I-IV; Figs. 3 and S4) were generated utilizing the ligand-binding 

pockets of two human PDE10A X-ray crystal structures (PDB: 4HEU; 3SN7) (Malamas et 

al., 2011; Rzasa et al., 2012). Before building the cavity-based negative images or NIB 

(negative image-based) models with PANTHER (Niinivehmas et al., 2015), protons were 

added to the protein structures using REDUCE 3.24.130724 (Word, Lovell, Richardson, & 

Richardson, 1999). The selected fragments of bound compounds, explained in more detail 

below, were incorporated in the models in the BODIL Molecular Modeling Environment 

(Lehtonen et al., 2004). Instead of trying to build one sweeping model that ticks all the boxes, 

Models I-IV (Figs. 3 and S4) were intended to act as realistic templates for finding 

moderately sized inhibitors that occupy a few specific high-potency regions of the spacious 

PDE10A pocket (Fig. 2G). 

[Figure_3] 

Model I: For the first model (Fig. 3A-B), PDB-entry 4HEU (Rzasa et al., 2012) was used as 

the input template structure in building the cavity’s negative image. For PANTHER 

(Niinivehmas et al., 2015), box radius was set to 12 Å and the model dimensions were kept 

close to the protein bound biaryl ether inhibitor (residue name: 15J) with ligand distance limit 

of 1.0 Å. The first fragment, a hydroxyl group extracted from the inhibitor (Fig. 2C-F), was 

incorporated directly into the model in BODIL (Fig. 3A). The hydroxyl group’s atoms were 

given charges matching serine residue in the charge library of PANTHER. The radius of the 

carbon atoms of the target protein was set to 2.25 Å in the PANTHER radius library to retain 

the size of the model in a moderate level. 

Model II: The second model (Fig. S4) was also built based on PDB-entry 4HEU with the 

same settings as was done with Model I and, thus, the hydroxyl of 15J was again directly 

incorporated into the hybrid model. However, in the middle section of the model was 

incorporated an additional fragment, three-ring system, extracted from compound 12 (Fig. 

S2), which was discovered from the SPECS database using the PHA model (Fig. S3A). 

Although compound 12 was eventually found inactive in the experimental testing, in its 

optimized binding pose the compound is forming three bonds with an optimal geometry: the 

amino group of Gln716 side chain donated  H-bonds both to the keto group and the nitrogen 

in the four-ring system; and the hydroxyl group of Tyr683 side chain (or Tyr683
OH

) donated 

an H-bond to the same keto group (Fig. S5). Those cavity points or filler atoms generated by 

PANTHER in the area occupied by the ring system were replaced by the ring system atoms in 

BODIL (Lehtonen et al., 2004). In the model, these ring atoms were given the same charges 

as designated in the SPECS molecular database. The polar groups in the fragment were 

placed in the same way as those obtained for the cavity model using PANTHER, but the 

introduction of the ring-system provided a more planar shape to the model at this site. 

Model III: Two changes were implemented for the third hybrid model (Fig. 3D-E) in 

comparison to the Model II (Fig. S4). First, the three-ring system fragment of compound 12 

(Fig. S2) was replaced with a 8-fluoro-6methoxy-3,4-dimethyl-imdazo[1,5-a]quinoxaline 

fragment extracted from a bound inhibitor ligand present in the PDB-entry 3SN7 (residue 

name: 540). The new fragment was given charges that are the opposite to the surrounding 

polar residues or the main chain nitrogen and oxygen of Gln716 and Tyr514, respectively 

(Fig. 2B-C). Second, the hydroxyl atoms acquired from the biaryl ether inhibitor 15J (Fig. 

2C) for the Models I and II (Figs. 3A-B and S4) were not included in the Model III. 
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Model IV: The fourth model (Fig. 3G-H) was generated using the PDB-entry 3SN7 

(Malamas et al., 2011). The NIB model dimensions were restricted by applying the ligand 

distance limit of 1.0 Å in PANTHER for the protein bound inhibitor 540. The inhibitor in 

question does not place any parts into the PDE10A “selectivity pocket” region (Verhoest et 

al., 2009) (cyan in Fig. 2G) and, accordingly the resulting model does not extend to this 

section of the pocket either. The same three-ring structure as in the Model II was incorporated 

to produce the hybrid model. 

Screening with fragment- and negative image-based models. The small-molecules were 

geometry optimized and aligned on top of the F-NiB Models I-IV using ShaEP (Vainio et al., 

2009). The similarity search algorithm compares the shape and electrostatics of the template 

F-NiB models against the ligand conformers, superimposes them, and ranks the results based 

on both the shape and electrostatics of the match. The hybrid models Model I and IV were 

directly screened against the inhibitor molecules obtained from the ChEMBL (Bento et al., 

2014) to validate their use in the screening with the molecules of the SPECS database. The 

Models I and IV were further processed using the FQSAR (see below). 

Field-based QSAR rescoring of F-NiB screening results. Activities of the top 5,000 SPECS-

molecules originating from the F-NiB screenings using Models I and IV were predicted by 

utilizing FQSAR. In other words, a set of 53 active PDE10A inhibitors (Rzasa et al., 2014, 

2012) was geometry optimized and aligned against the Model I with ShaEP (Vainio et al., 

2009) and a set of 78 active PDE10A inhibitors (Malamas et al., 2011) was similarly 

superposed against Model IV. The same settings for the model generation and validation were 

used as with the PHA-based FQSAR. 

 

Flexible molecular docking. A set of 78 active ChEMBL ligands (Malamas et al., 2011) was 

docked into the PDE10A binding site (see Fig. S3B) using PLANTS (Korb, Stützle, & Exner, 

2009) with the ChemPLP scoring function. The centroid for docking was taken directly from 

the inhibitor molecule 540 (PDB: 3SN7; chain A) (Malamas et al., 2011). Speed setting 1 and 

radius of 15 Å were used. The flexible docking did not produce a significant correlation with 

the available PDE10A activity data (data not shown) and the docking scores were not used as 

a basis for selecting any ligands for the activity testing. However, PLANTS did produce the 

binding pose of 540 with an RMSD of 0.56 Å when compared to the pose seen in the X-ray 

crystal structure. Due to this, the best-ranked SPECS small-molecules suggested by the F-

NiB Model III and PHA screening were docked flexibly with PLANTS for the follow-up 

MM/GBSA calculations (see below. With the Model III, PLANTS was expected to generate 

slightly better poses at the protein’s cavity than the original poses originating from the F-NiB 

screening. The optimized docking pose of compound 3 that differs from the original F-NiB 

screening pose is discussed in detail. 

 

Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations or binding 

free energy (∆G) calculations were performed using PRIME in MAESTRO (Jacobson, 

Friesner, Xiang, & Honig, 2002) on ligands suggested by the F-NiB, F-NiB-FQSAR and 

PHA screening. The ligand-protein complexes suggested by either ShaEP (Vainio et al., 2009) 

(Models I, II and IV) or PLANTS (Model III and PHA) were used as the starting structures 

for the subsequent MM/GBSA calculations. The VSGB solvation model (Li et al., 2011) and 

OPLS3 force field were used, defining amino acids within 4.0 Å from the ligand as flexible in 

the MM/GBSA calculations. The energy minimization was performed on the flexible region 

with the “Minimize” - sampling method. The binding free energy values obtained by 

MM/GBSA calculations were compared to values calculated for the inhibitors present in the 
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PDB-entries 4HEU (-87.518 kcal/mol) and 3SN7 (-46.883 kcal/mol) to guide the final 

compound selections for the experimental testing. 

 

Brain/blood permeability prediction, pan-assay interference compounds filtering. The 

brain/blood permeability (QPlogBB) of the compounds was estimated using QIKPROP 5.1 in 

MAESTRO. The methodology has been demonstrated to work robustly previously (Jhala, 

Chettiar, & Singh, 2012). The predicted QPlogBB values range from -0.064 to 1.030, which 

is well within the reference range of -3.0 to 1.2 needed for passing the blood brain barrier. 

Similarly, the active PDE10A compounds included in the ChEMBL were also predicted to 

pass the barrier without problems (data not shown). In addition, structural filtering was 

performed for the selected compounds in CANVAS (Duan, Dixon, Lowrie, & Sherman, 

2010; Sastry, Lowrie, Dixon, & Sherman, 2010) implementation of MAESTRO to detect 

possible pan-assay interference compounds (PAINS). The selected compounds passed the 

PAINS1-3 filters.  

Structural novelty. Structural similarity between the selected compounds and ChEMBL-

molecules was evaluated by 2D fingerprint similarity comparison in CANVAS (Duan et al., 

2010; Sastry et al., 2010). Hashed 32-bit linear 2D-fingerprints with Daylight atom typing 

and maximum path length 7 (14 for ring closures) were generated. Similarity analysis was 

performed by calculating Tanimoto coefficients to describe fingerprint overlap between those 

compounds selected via virtual screening and the known active (ChEMBL) molecules for the 

PDE10A. The aim of the similarity analysis was to avoid selecting molecules with high 

structural similarity when compared to the known PDE10A inhibitors. As completely similar 

and different 2D fingerprints give Tanimoto coefficients 1 and 0, respectively, molecules 

with low values (0-0.2) were considered structurally novel PDE10A inhibitor candidates. 

Figure preparation. Fig. 2 and C, D, F, G and I in Fig. 3 were prepared using VMD1.9.2 

(Humphrey, Dalke, & Schulten, 1996). Fig. 1, E and H in Fig. 3 were done with BODIL 

(Lehtonen et al., 2004), MOLSCRIPT 2.1.2 (Kraulis, 1991) and RASTER 3D 3.0.2 (Merritt 

& Murphy, 1994). 

 

Experimental materials and methods 

The purity of the active ligands is 95 % or more, based on proton nuclear magnetic resonance 

(H-NMR; 2 and 3) and liquid chromatography-mass spectrometry (LC-MS; 1-3) as provided 

by the SPECS molecular database (see Text S1). The radiometric activity assay was 

performed commercially by SB Drug Discovery (Glasgow, UK) using recombinant human 

PDE10A enzyme expressed in a baculoviral system. The similarity of the expressed system 

has been validated by comparing it against PDE10A enzyme taken directly from human 

tissue using known inhibitor standards where available. The radiometric assay method is a 

modification of the two-step method of by Thompson & Appleman (Thompson & Appleman, 

1971), which has been adapted for 96-well plate format. Dose response curves for 

compounds 1-13 and the control papaverine against human PDE10A1 are shown in Fig. S6. 
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RESULTS 

Virtual screening assays. The fragment- and negative image-based (F-NiB) screening (Figs. 

1 and S1) was performed using four different hybrid NIB models combining fragment and 

cavity information (Figs. 3 and S4; N=13; Table 1). Both pharmacophore (PHA) modelling 

(Fig. S3; N=1; Table 1) and flexible molecular docking (data not shown) were applied to 

discover novel PDE10A inhibitor compounds from the SPECS database. In addition, a field-

based QSAR or FQSAR-based rescoring scheme was applied on the small-molecules of the 

SPECS database ranked best by the screens with the PHA or the F-NiB with the Models I or 

IV.  

[Table 1] 

The molecular alignment is inarguably the most crucial part of the FQSAR model building. 

Both the PHA and the F-NiB models worked well in aligning the active ligands to produce 

predictive FQSAR-models. The PHA-based FQSAR model used 3 PLS factors and had R
2
 

(training set) = 0.87, Q
2
 (test set) = 0.81 and R

2
 Scramble = 0.41. The FQSAR model based 

on the Model I used a single PLS factor as utilizing a higher number of PLS factors resulted 

in over-fit models (R
2
 Scramble > 0.5). However, the PLS = 1 model having R

2
 = 0.89, Q

2
 = 

0.89 and R
2
 Scramble = 0.38 indicated adequate predictive power for usage in the virtual 

screening. The FQSAR model based on rigid docking using the Model IV utilized 3 PLS 

factors and had R
2
 = 0.74 and Q

2
 = 0.72 with R

2
 Scramble = 0.46. Full FQSAR model 

statistics, field contributions to the ligand activity and field contour maps are displayed in 

Tables S1 and S2 and Figure S7, respectively. 

The FQSAR methodology was used to predict pIC50-values of the best-ranked SPECS 

molecules: 75 molecules from the PHA screen were predicted to have pIC50 > 10.0, 47 

molecules from the F-NiB with the Model I screening had predicted pIC50 > 7.5 and 100 

molecules put forth by the F-NiB Model IV screening had predicted pIC50 > 8.7. The protein-

ligand complexes of these molecules were refined and their binding energies calculated using 

the MM/GBSA routine (Jacobson et al., 2002) in MAESTRO. In addition, 100 top-scored 

molecules from the F-NiB screens with the Models II and III were processed with the 

MM/GBSA routine (Fig. S5; Table 1). The optimized ligand-protein complexes were 

subjected to the final visual evaluation before the final compound selection. 

Compound selection. Regardless of the used screening/scoring method (Table 1), the chances 

of each compound to bind and inhibit PDE10A activity were estimated on case-by-case basis 

by inspecting and visualizing each of the bound ligands in complex with the protein. In visual 

examination of the binding poses, molecules forming favorable interactions especially at the 

“Gln interaction” and “hydrophobic clamp” sites were sought (Table S3). Ultimately, only 

those compounds with sufficient level of structural novelty or perceived “uniqueness” in 

comparison to the prior PDE10A inhibitors (listed in the ChEMBL database; 

www.ebi.ac.uk/chembl/) were chosen (Fig. S2). The structural novelty was evaluated by 

analyzing the structural similarity between the selected molecules and the ChEMBL-

molecules by 2D fingerprint comparison. Tanimoto coefficients of all selected molecules 

were <0.163, indicating structural novelty when compared to previously known PDE10A 

inhibitors (Table 1). 
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In practice, the manual selection process was limited to, at most, top 100 compounds put 

forth by each applied screening method and the scoring from different sources was cross-

referenced (Table S4). In total, 14 compounds (1-14 in Fig. S2) were purchased for the 

radiometric PDE10A activity testing. Although all of the compounds were predicted 

beforehand to be water-soluble (see LogS values in Table 1), compound 14 (Fig. S2) was 

later found out to be insoluble (Table 1) when preparing the dilutions from the DMSO stocks. 

In addition, the selected compounds were deemed likely to pass the blood brain barrier (see 

QPlogBB values in Table 1) using QIKPROP in MAESTRO. 

Experimental results. Majority of the compounds (4-12 in Fig. S2) produced >100 µM 

PDE10A inhibition and only compounds 13 and 14 (Fig. S2) were completely inactive (Table 

1). Importantly, compounds 1, 2 and 3 (Fig. S2), selected based on the F-NiB screening 

(Table 1), produced IC50 values of 27 µM, 49 µM, and 67 µM, respectively. The IC50 value of 

inhibitor papaverine (Fig. S2), which was used as a positive control in the testing, was 

determined to be 147 nM (Table 1). Accordingly, 1-3 function as PDE10A inhibitors at the 

micromolar range (Table 1) and, on broader terms, they are mid-range PDE10A inhibitors. 

The predicted binding modes of the new inhibitors. The binding modes of compounds 1-3, 

(Fig. S2) acquired via the F-NiB screening with the Models IV, I and III, respectively, are 

shown in Fig. 3 (Table 1). Their binding was determined also using flexible docking (Model 

III) and MM/GBSA calculations (Fig. S5); however, it is noteworthy that the binding energy 

predictions for the active compounds did not significantly differ from the inactive ones (1-3 

vs. 4-13 in Table 1). In general, the different ring systems of the compounds (Fig. 3C, F, I) 

aligned between or close to the side chains of Phe686 and Phe719 forming the “hydrophobic 

clamp” region (yellow in Fig. 2G) at the PDE10A active site (Chappie, Helal, & Hou, 2012). 

The binding modes of compounds 1-3 are described in more detail in Text S2. 

 

DISCUSSION 

Difficulties of fragment-based drug discovery. The major difficulty in implementing the 

fragment-based drug discovery (FBDD) in large scale is not necessarily the lack of promising 

fragments or even drug scaffolds but the limited ways in which these diverse parts can be 

patched up together. If starting the compound search using a specific fragment, however 

simple, one usually quickly discovers that there are no compounds available housing the 

other required parts in the existing molecular databases. This problem can sometimes be 

overcome by quick and simple organic synthesis efforts guided by expert insight and/or 

automated algorithms, but, more often than not, the issue is that the envisioned compound is 

difficult, costly or even impossible to produce at the chemist’s workbench. The problem is 

even more pronounced, when there is available only a single, possibly tiny, fragment to begin 

the drug design with, because it means that the researcher has to come up with rest of the 

molecule on the spot for the organic synthesis. 

Fragment- and negative image-based screening. In the novel virtual screening methodology, 

referred as fragment- and negative image-based (F-NiB; Figs. 1 and S1) screening, the user-

selected ligand fragments are fused together with the cavity-based negative image to produce 

a hybrid F-NIB model, which, in turn, is used directly in the rigid docking of ab initio 

generated ligand 3D conformers. Ideally the chosen fragments, originating for example from 
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X-ray crystallography, improve the cavity’s shape/charge characteristics and, thus, facilitate 

the discovery of potent compounds from the vast virtual screening libraries during the 

screening phase. On the one hand, the hybrid methodology bypasses some of these practical 

run-of-the-mill chemistry issues linked to the FBDD, on the other hand, the F-NiB shares 

some of the limitations common to all virtual screening techniques. 

Firstly, because the similarity search is performed using the hybrid NIB model containing 

both the fragment(s) and the cavity-based negative image, there is no need to come up with 

explicit solutions for merging the diverse fragments into a single full-sized compound. 

Secondly, the similarity searches focus on the validated small-molecule libraries containing 

drug-like compounds and, thus, neither the low-molecular mass fragments nor organic 

synthesis steps need to be considered. Thirdly, when working with just a single fragment, the 

F-NiB approach truly excels as even a tiny fragment can be expanded to facilitate full-size 

compound search. This is achieved by increasing the size of the template fragment by 

introducing information directly from the cavity itself. Fourthly, the screening is not limited 

by the original chemical composition of the ligand fragment(s); i.e. different bioisosteres are 

interchangeable and readily swapped during the similarity searches without undue bias given 

to the original fragment(s). 

Due to the sheer speed and the reduced fidelity towards the chosen fragment(s), the F-NiB 

method differs markedly from the prior, mostly flexible docking-based, in silico FBDD 

protocols (Scott et al., 2012). Although the docking algorithms usually produce correct 

binding poses for the ligands or fragments, the scoring functions are not always able to rank 

these poses high enough (Verdonk et al., 2011). In the F-NiB, the fragments can originate 

from molecular docking simulations (Model IV; Fig.  2A), experiments such as X-ray 

crystallography (Models I and III; Fig. 3D and G) or from both sources (Model II; Fig. S4) 

and they can be taken from protein-bound full-size ligands or low-molecular mass fragments. 

Thus, if implemented properly, the F-NiB approach could be used to discover truly novel 

compounds for experimental testing using minimal amount of computing resources. This 

tendency for scaffold hopping is usually a desired property, but one could limit the ligand set 

to include only those compounds containing certain desired fragment part(s), if need be. 

Furthermore, as is demonstrated in this study, the activity data of previously known ligands 

can be considered in the virtual screening protocol to utilize rescoring of the top F-NiB 

screening results by 3D-QSAR modeling (Fig. 2). The implementation of FQSAR in unison 

with the F-NiB makes it possible to inspect for example specific H-bonding interactions with 

the target protein via the representative fields (Fig S7). Consequently, the fields describing 

the activity contributions of different physicochemical properties of small-molecules could be 

used as guidance for generating novel F-NiB models containing fragments that exhibit these 

properties. However, as is shown by discovery of the active compound 3 (Figs. 2F and 3G; 

Table 1), the F-NiB approach performs well even if not enough active ligand data is available 

for generating a reliable QSAR model. Thus, in comparison to for example e-pharmacophore 

technique (Loving, Salam, & Sherman, 2009; Salam, Nuti, & Sherman, 2009), which relies 

on a vast amount of docking experiments with known active ligands, the F-NiB can be 

performed successfully with limited amount of prior ligand data. 
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The downside of streamlining the fragment-based search with the F-NiB (Figs. 1 and S1) is 

shared by all structure-based virtual screening methodologies; i.e. the readily available 

molecular databases do not necessarily contain active compounds; the used protein 3D 

structure could be in a conformation that does not facilitate drug binding; and/or the scoring 

functions fail to recognize the active compounds. Despite these common concerns, the F-NiB 

clearly provides a tangible way to accomplish the task of using potent but low-molecular 

mass fragments in the drug discovery and virtual screening in an innovative manner. Thus, 

while the F-NiB requires further optimization and automation, the technique shows great 

promise due to its speed and cost-effective features in comparison to the FBDD relying on 

flexible docking and extensive organic synthesis programmes. 

 

CONCLUSIONS 

A novel virtual screening protocol called fragment- and negative image-based (F-NiB; Fig. 1) 

screening is introduced and tested experimentally using the phosphodiesterase 10A 

(PDE10A) as a case study. In the negative image-based (NIB; Fig. 1) screening small-

molecules are rigidly docked by focusing on the shape/electrostatics complementarity with 

the protein’s ligand-binding pocket (Niinivehmas et al., 2015, 2011; Virtanen & Pentikäinen, 

2010). The F-NiB adds another dimension to the methodology: hybrid F-NiB models that 

incorporate both the fragments of bound ligands and the protein’s cavity information are 

generated and used in the similarity comparison (Fig. 1). In theory, the hybrid models 

encompass key features from both the bound ligand(s) and the cavity itself. If activity data is 

available, it can be included into the F-NiB methodology by utilizing 3D-QSAR as a 

rescoring scheme. As a proof of concept, three micromolar-range PDE10A inhibitors were 

discovered from the SPECS database using both the F-NiB and the combined F-NiB-QSAR 

screening. In short, the results indicate that the target protein’s cavity shape/electrostatics can 

be used in unison with protein-bound ligand fragments to discover active compounds. 

 

ABBREVIATIONS USED 

Phosphodiesterase 10A (PDE10A), negative image-based (NIB), fragment- and negative 

image-based (F-NiB), Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), 

pharmacophore (PHA), Fragment-based drug discovery (FBDD), Quantitative structure-

activity relationship (QSAR), Field-based QSAR (FQSAR), Partial Least Squares (PLS), 
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Table 1. Virtual screening and experimental activity testing results. 

 

  

Compound 
Compound 

 (SPECS name) 
ShaEP 

MM/GBSA 

(Kcal/mol) 

IC50 

(µM) 
pIC50 

pIC50    

Pred
1
 

QPlogBB
2
 LogS

3
 TcMax

6
 Model

7
 Method

8
 

 
 

 
 

 

1 AT-057-43485961 0.522 -62.948 26.8 4.572 9.219 0.527 -5.82 0.099 IV F-NiB/FQSAR 

2 AM-879-42012742 0.553 -72.828 48.8 4.312 9.382 0.052 -9.65 0.063 I F-NiB/FQSAR 

3 AG-690-09287047 0.585 -58.432 67.0 4.174 - 1.03 -6.77 0.102 III F-NiB 

4 AG-205-09068036 0.582 -47.282 >100 <4 - -0.014 -2.78 0.146 III F-NiB 

5 AG-690-36108027 0.594 -52.288 >100 <4 - 0.559 -6.73 0.163 III F-NiB 

6 AK-968-15360495 0.584 -46.702 >100 <4 - 0.669 -4.3 0.139 III F-NiB 

7 AN-329-41642008 0.650 -83.451 >100 <4 - 0.916 -6.24 0.099 II F-NiB 

8 AN-329-43449158 0.590 -50.464 >100 <4 - 0.139 -3.5 0.064 III F-NiB 

9 AN-465-14013021 0.594 -49.440 >100 <4 - -0.064 -8.86 0.11 III F-NiB 

10 AP-853-42879195 0.607 -53.995 >100 <4 - 0.333 -4.06 0.085 III F-NiB 

11 AP-970-41728638 0.586 -48.305 >100 <4 - 0.687 -5.67 0.08 III F-NiB 

12 AO-022-43390442 N/A  -74.222 NI NI 10.112 0.478 -6.72 0.086 PHA PHA/FQSAR 

13 AP-853-42160322 0.600 -49.780 NI NI - 0.397 -4.95 0.158 III F-NiB 

14 AO-022-43453889 0.550 -85.774 N/A
4
 N/A

4
 7.583 0.197 -6.87 0.092 I F-NiB/FQSAR 

Papaverine - (control) N/A N/A 147 nM 6.833 - - -4.4
5
  N/A N/A - 
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NI = no inhibition; N/A = not available, PHA = pharmacophore 

1
 pIC50 value predicted by an FQSAR model. 

2
 QPlogBB (the brain/blood permeability) from QIKPROP module calculations in MAESTRO.

 

3
 LogS (the aqueous solubility) from the SPECS database (www.specs.net).  

4
 Not soluble.  

5
 LogS from ALOGPS (http://www.vcclab.org/lab/alogps/) 

6
 Maximum value of Tanimoto coefficient when compared to all molecules obtained from the ChEMBL database.  

7
 The hybrid F-NiB models I-IV, the cavity-based negative images with incorporated ligand fragment(s), are shown in Figs. 3 and S4. 

The PHA model is shown in Fig. S3A.  

8
 F-NiB: fragment- and negative image-based (F-NiB) screening or rigid docking; F-NiB/FQSAR: F-NiB docking in combination with 

the field-based QSAR; PHA/FQSAR: pharmacophore-based ligand alignment combined with the FQSAR.
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FIGURE LEGENDS 

 

Figure 1. Utilizing ligand fragments and cavity information in the virtual screening. The 

fragment- and negative image-based (F-NiB) screening protocol follows four successive steps: 

(1) the negative image or negative image-based (NIB) model generation. The PANTHER-

generated (Niinivehmas et al., 2015) NIB model (transparent surface) is composed of neutral 

filler atoms (black sphere) and charged cavity points (blue/red spheres). The positively (blue 

sphere) or negatively (red sphere) charged cavity points mirror the H-bond donors and acceptors 

lining the ligand-binding cavity; (2) the selection of protein-bound ligand fragments from 

validated 3D structures (stick model with yellow backbone) or in silico predictions; (3) the 

merging of the fragments and cavity points and removal of the overlapping points to generate a 

hybrid F-NiB model; and (4), finally, the similarity comparison screening or rigid docking with 

ShaEP (Vainio et al., 2009) (brown arrows). The shape/charge comparison against the F-NiB 

model is shown against multiple 3D conformers of two ligands (Lig #1 and Lig #2; stick models 

of different colors). Those conformers (and ligands) matching best the shape/electrostatic 

properties of the template F-NiB model in the rigid docking are predicted active (green stick 

model) and, in contrast, the weaker matching ligands are assumed inactive (red stick model). 

Finally, the docking poses of the top-ranked compounds are visually inspected with the protein 

and compounds are selected for in vitro testing. 

 

 

Figure 2. Phosphodiesterase 10A and its ligands. (A) The 3D structure of the PDE10A (cyan 

cartoon; PDB: 2OUN; chain A) (Wang et al., 2007) shown with adenosine monophosphate 

(AMP; pink CPK model). (B) The AMP (ball-and-stick model with pink backbone) binding is 

shown with the key residues (stick models with white backbone) such as Gln716 and His515 

forming H-bonds (magenta dotted lines; PDB: 4HEU; A chain) (Rzasa et al., 2012) and 

participating with the divalent ions in the hydrolysis of cyclic AMP (or cAMP) or cyclic GMP 

(cGMP; nucleoside 3',5'-cyclic phosphate + H2O = nucleoside 5'-phosphate.). (C) The binding of 

inhibitors such as the biaryl ether 15J (ball-and-stick model with magenta backbone) does not 

involve the divalent ions. When comparing the validated binding of an inhibitor to the predicted 

poses for (D) 1, (E) 2 and (F) 3, the new molecules occupy roughly the same 3D space in the 

cavity. The binding poses of 2 and 3 are alike with 15J, whereas 1 differs somewhat. (G) The 

new inhibitor binding centers on the four regions shown in the cross section of the cavity surface: 

“hydrophobic clamp” (yellow); “Gln interaction” (pink); “buried waters” (green); and 

“selectivity pocket” (cyan) (Chappie et al., 2012). Notably, 1 (ball-and stick model with orange 

backbone) does not extend to the “selectivity pocket” region. Chlorine, oxygen, and nitrogen 

atoms in the compounds are shown with green, red and blue color, respectively.  
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Figure 3. Fragment- and negative image-based hybrid models and their representative hits. 

Models (A) IV, (D) I, and (G) III (blue surface), composed of ligand fragments (sticks) and 

cavity points or filler atoms (balls) generated with PANTHER (Niinivehmas et al., 2015), occupy 

key regions of the PDE10A cavity (grey surface; see Fig. 2G). Compounds (B) 1, (E) 2 and (H) 3 

(ball-and-stick models with orange backbone) produced high shape/charge similarity scores 

(Table 1), when the hybrid models (transparent surface with charge potential) were compared 

against the SPECS compounds using ShaEP (Vainio et al., 2009). The binding modes of 

compounds (C) 1, (F) 2, and (I) 3 are shown with the key residues (stick models with white 

backbone) focusing on the hydrogen (magenta dotted lines) and halogen (green dotted lines) 

bonding. Note that the direct H-bond between Tyr514 and 2 could also be substituted by a water 

bridge (not shown). Those residues that were notably adjusted by the MM/GBSA routine are 

shown with both the original (transparent sticks; PDB: 3SN7 in A, C and 4HEU in D, F, G and I) 

(Malamas et al., 2011; Rzasa et al., 2012) and optimized poses; otherwise only original side 

chain conformations are shown (panel I).  
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