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Abstract. Real-world data are often linked with each other since they
share some common characteristics. The mutual linking can be seen as
a core driving force of group analysis. This study proposes a general-
ized linked canonical polyadic tensor decomposition (GLCPTD) model
that is well suited to exploiting the linking nature in multi-block tensor
analysis. To address GLCPTD model, an efficient algorithm based on hi-
erarchical alternating least squares (HALS) method is proposed, termed
as GLCPTD-HALS algorithm. The proposed algorithm enables the si-
multaneous extraction of common components, individual components
and core tensors from tensor blocks. Simulation experiments of synthetic
EEG data analysis and image reconstruction and denoising were con-
ducted to demonstrate the superior performance of the proposed gener-
alized model and its realization.

Key words: Linked tensor decomposition ·Hierarchical alternating least
squares · Canonical polyadic · Simultaneous extraction

1 Introduction

Linked tensor decomposition (LTD) is an emerging technique for group analysis
in recent years, specially designed for simultaneous analysis of multi-block tensor
data. It has been successfully applied in the fields of neuroscience [1], multi-
dimensional harmonic retrieval [2], array signal processing [3] and metabolic
physiology [4].

Linked tensor decomposition can be seen as an extension of tensor decom-
position applied to single-block tensor [5–7] in multi-block data analysis, e.g.,
analysis of electrophysiological (EEG) data collected from different subjects un-
der a certain stimulus, which can be naturally linked together for sharing the
similar brain activities [1]. LTD method can take full advantage of such link-
ing/coupling information among data blocks to improve the decomposition iden-
tifiability [3]. In addition, LTD method has its advantage in imposing constraints
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on particular modes or components compared to its matrix counterpart [9, 10].
Any combination of constraints including independence, sparsity, smoothness
and non-negativity can be added more easily and flexibly [11]. Moreover, im-
posing specific constraints on different modes or components would contribute
to obtaining more reasonable decomposition solutions with convincing interpre-
tations [6, 8, 11]. For example, the constraint of non-negativity is applied in the
processing of ERP data with time-frequency representation [6]. Furthermore,
tensor decomposition is superior to two-way matrix factorization such as solu-
tion uniqueness and component identification in some cases [12]. To unfold some
of the modes in matrix factorization will inevitably loss the potential interactions
under the multiway structure [13]. Therefore, it is reliable to take the high-order
characteristics of tensors into consideration in data analysis.

With the LTD model, simultaneous extraction of common components, indi-
vidual components and core tensors can be obtained. The notion ‘linked’ is based
on the assumption that different data blocks share the same or highly correlated
components while retaining individual information [14]. In group data analysis,
e.g. face images collected from different subjects with the same expression [14],
or EEG data collected from different participants under the same stimulus [8],
all subjects may share the similar or even identical information, which can be
regarded as linking factors among tensors. However, individual characteristics
will exist in particular subjects at the same time, which may lead to inconsis-
tent number of components for tensors. Obviously, this inconsistency does not
match the linked canonical polyadic tensor decomposition (LCPTD) model in
[14]. Therefore, this study aims to develop a more generalized and flexible model
with inconsistent component number for linked tensor decomposition. To obtain
the solution of the new model, we propose a generalized linked canonical polyadic
tensor decomposition algorithm based on HALS strategy [7], which is termed as
GLCPTD-HALS algorithm. The experiment results show that the generalized
model is more practical in multi-block data analysis, and its realization can
achieve better performance.

This paper is organized as follows. Section 2 introduces LCPTD model and its
generalization. In section 3, GLCPTD-HALS algorithm is proposed. In section
4, simulation experiments are conducted to verify the performance of proposed
algorithm. The last section summarizes this paper.

2 Problem formulation

In this section, we mainly introduce the linked canonical polyadic tensor decom-
position (LCPTD) model [14] and its generalization. CP model [15] is also called
parallel factor analysis (PARAFAC) [16] and canonical composition (CANDE-
COMP) [17]. CP decomposition (CPD) can decompose a tensor into a minimal
number of rank-1 tensors, and the minimum number R is termed as the rank of
a tensor. It can achieve good unique identification under some mild conditions
without any special constraints. Please refer to [18] for a detailed description of
standard notations and basic tensor operations.
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2.1 Review of LCPTD Model

To deal with multi-block tensors with coupling information, researchers in [14]
proposed a model of simultaneous decomposition, namely LCPTD model, which
is defined as follows:

X (s)≈X̂
(s)

=

R∑
r=1

λ(s)r u (1,s)
r ◦ u (2,s)

r ◦ · · · ◦ u (N,s)
r

=
r
G(s);U (1,s),U (2,s), · · · ,U (N,s)

z
,

(1)

where X (s) ∈ <I1×I2×···IN and X̂
(s)
∈ <I1×I2×···IN denote the original and

estimated tensors, respectively. U (n,s) =
[
u

(n,s)
1 ,u

(n,s)
2 , · · · ,u (n,s)

R

]
∈ <In×R

denotes the n-mode factor matrix of sth tensor. S , R, N are denoted as the
number, rank and order of tensors, respectively. G(s) ∈ <R×R×···R denotes the

sth core tensor with non-zero entries only on the super-diagonal. λ
(s)
r is the

(r, r, ..., r)th element of G(s). The LCPTD model assumes that each factor ma-

trix U (n,s) =
[
U

(n)
C U

(n,s)
I

]
∈ <In×R consists of two parts: U

(n)
C ∈ <In×Ln ,

0 ≤ Ln ≤ R and U
(n,s)
I ∈ <In×(R−Ln). The former shared by all tensor blocks

represents the coupling (same or highly correlated) information, whereas the
latter corresponds to the individual characteristics of each tensor block.

2.2 Generalization of LCPTD Model

Even though multiple data blocks are collected under the same condition, indi-
vidual characteristics will exist in the particular blocks due to the individual dif-
ferences. These characteristics may lead to inconsistent number of components
for tensors. Obviously, this inconsistency does not match the LCPTD model.
Therefore, we extend the LCPTD model to the generalized case with different
component number R(s), termed as GLCPTD, which is defined as:

X (s)≈X̂
(s)

=

R(s)∑
r=1

λ(s)r u (1,s)
r ◦ u (2,s)

r ◦ · · · ◦ u (N,s)
r

=
r
G(s);U (1,s),U (2,s), · · · ,U (N,s)

z
.

(2)

The generalized LCPTD model still assumes that each factor matrix U (n,s) =[
U

(n)
C U

(n,s)
I

]
∈ <In×R(s)

consists of two parts: U
(n)
C ∈ <In×Ln , 0 ≤ Ln ≤

min(R(s)) and U
(n,s)
I ∈ <In×(R(s)−Ln), representing the same meanings with

LCPTD model. G(s) ∈ <R(s)×R(s)×···R(s)

denotes the sth core tensor.
Fig. 1 illustrates the conceptual model of dual-linked tensor decomposition

based on CP model (all tensors are linked together by the common parts U
(1)
C

and U
(2)
C ).



4 X. Wang et al.

⋮

( )S
G

( )( )1

S
I R´ ( ) ( ) ( )( )S S S

R R R´ ´
( )( )2´
S

R I

( )3I R´

( )1,S
U

( )2,S T
U

( )3,S
U

@

( )1 2 3I I I´ ´

( )S
X

( )1
G ( )2 1 T

U

( )3,1
U

( )1 1
U

⋮

@( )1
X

( )1
C
U

( )1 1

I
U

( )1
C
U

( )1,S

I
U

( )2 1 T

I
U

( )2 T
C
U

( )2,S T

I
U

( )2 T
C
U

( )( )11I R´

( ) ( ) ( )( )1 1 1
R R R´ ´

( )( )1

2R I´

Fig. 1. Conceptual illustration of GLCPTD model with dual-linked parts [11]

3 Realization of GLCPTD Model

In this section, we aim to provide a solution of how to solve the above-mentioned
GLCPTD model through HALS strategy [7]. The optimization criterion of squared
Euclidean distance minimization is utilized to minimize the error between the
original and estimated tensors. Therefore, the cost function can be expressed as:

min

S∑
s=1

∥∥∥∥∥∥X (s) −
R(s)∑
r=1

λ(s)r u (1,s)
r ◦ u (2,s)

r ◦ · · · ◦ u (N,s)
r

∥∥∥∥∥∥
2

F

(3)

s.t.u (n,1)
r = · · · = u (n,S)

r , r ≤ Ln,∥∥∥u (n,s)
r

∥∥∥ = 1, n = 1 · · ·N, r = 1 · · ·R(s), s = 1 · · ·S.

The above minimized optimization problem can be transformed intomax(R(s))
sub-problems via HALS strategy, which can be solved sequentially and iteratively
as follows:

D
(r)
F (λ(s)r ,u(n,s)

r ) =

S∑
s=1,r≤R(s)

∥∥∥Y (s)
r − λ(s)r u(1,s)

r ◦ u(2,s)
r ◦ · · · ◦ u(N,s)

r

∥∥∥2
F
, (4)

where Y (s)
r

.
= X(s) −

∑R(s)

k 6=r λ
(s)
k u

(1,s)
k ◦ u(2,s)

k ◦ · · · ◦ u(N,s)
k . For the solution of

u
(n,s)
r , we only set the derivative of D

(r)
F (λ

(s)
r ,u

(n,s)
r ) with respect to u

(n,s)
r to

zero. The learning rule of u
(n,s)
r can be formulated as:

u (n,s)
r =


∑
s

(
Y

(s)
r,(n)λ

(s)
r {u (s)

r }�−n

)/∑
s

(
λ
(s)T
r λ

(s)
r

)
, r ≤ Ln,

Y
(s)
r,(n){u

(s)
r }�−n

/
λ
(s)T
r , r > Ln,

(5)
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where Y
(s)
r,(n) is the mode-n matricization of Y (s)

r . {u(s)
r }�−n = u

(N,s)
r � · · · �

u
(n+1,s)
r �u

(n−1,s)
r � · · ·�u

(1,s)
r and ‘�’ denotes the Khatri-Rao product. If r ≤

Ln, u
(n,s)
r will be calculated by combining all tensor information and assigned

to each s. Otherwise, it needs to be calculated separately. u
(n,s)
r needs to be

normalized to unit variance by u
(n,s)
r ← u

(n,s)
r /‖u (n,s)

r ‖2 in each iteration. After

N iterations of u
(n,s)
r , the (r, r, ..., r)th element λ

(s)
r of core tensors is updated

as follows:

λ(s)r ← Y (s)
r ×1 u

(1,s)
r ×2 u

(2,s)
r · · · ×N u (N,s)

r . (6)

These max(R(s)) stages are alternatively updated one after another until
convergence. In order to impose non-negativity, a simple “half-rectifying” non-

linear projection is applied as u
(n,s)
r ← ‖u (n,s)

r ‖+ or λ
(s)
r ← ‖λ(s)r ‖+ after (5) and

(6). We summarize the extended GLCPTD-HALS algorithm in Algorithm 1.

Algorithm 1: GLCPTD-HALS algorithm

Input: X(s), Ln and R(s), n = 1, · · · , N , s = 1, · · · , S
Initialization: G(s), U (n,s), u

(n,s)
r ← u

(n,s)
r /‖u(n,s)

r ‖2
E(s) = X(s) −

∑R(s)

r λ
(s)
r u

(1,s)
r ◦ u(2,s)

r ◦ · · · ◦ u(N,s)
r

while not convergence do

for r = 1, 2, · · · ,max(R(s)) do

Y (s) = E(s) + λ
(s)
r u

(1,s)
r ◦ u(2,s)

r ◦ · · · ◦ u(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

for n = 1, 2, · · · , N do

update u
(n,s)
r , r ≤ R(s), s = 1, 2, · · · , S via equation (5)

end

update λ
(s)
r , s = 1, 2, · · · , S via equation (6)

E(s) = Y (s) − λ(s)
r u

(1,s)
r ◦ u(2,s)

r ◦ · · · ◦ u(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

end

end

Output: G(s), U (n,s), n = 1, ..., N , s = 1, ..., S

4 Simulation Results

4.1 Synthetic EEG Data Analysis

In this part, we synthetically generate three types of factor matrices based on
brain activities, respectively presenting topography, waveform and power spec-
trum, as shown in the Fig. 2 (a)-(c). Through the back projection of factor
matrices, four tensor blocks representing four subjects are constructed with the
SNR of 10dB, as shown in Fig. 2 (d). SNR refers to the signal-to-noise ratio,
which is defined as SNR = 10log10(σs/σn). σs and σn denote the levels of signal
and noise, respectively. To prove the usefulness of GLCPTD model, we set the
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number of components for four tensors as {4, 4, 3, 3}. Furthermore, factor ma-
trices of topography and power spectrum consist of two common bases and one
or two individual bases (L1 = L2 = 2), while the components of waveform are
completely individual (L3 = 0). The common bases represent that the occipital
region in the mid-line and left-hemisphere of four subjects are activated with
the alpha oscillations (8∼13Hz).

Fig. 2. Illustration of factor matrices of (a) topography, (b) waveform and (c) power
spectrum and (d) tensors (frequency×time×channel) for four subjects. Factor matrices
of topography and power spectrum for each subject consist of two common components
and one/two individual components, while temporal components are individual for each
subject.

We apply LCPTD-HALS [14], GLCPTD-HALS, and NTF-HALS [7] algo-
rithms with nonnegative constraint to analyze the four tensor blocks. Solutions
of topography learned by these algorithms are shown in Fig. 3 (a)-(d). We can
see that, GLCPTD-HALS and NTF-HALS algorithms can successfully extract
the common components as well as individual components. The difference is that
the components learned by NTF-HALS algorithm are disordered. Clustering and
other post-ordering methods need to be applied to obtain the common bases.
Although LCPTD-HALS algorithm can extract all the common components,
only 3 components are extracted from subject 1 or subject 2 shown in Fig. 3 (c)
and 4 components are recovered from subject 3 or subject 4 shown in Fig. 3 (d).
The former causes potential components to be omitted (subject 1) or merged
(subject 2). The latter depends on the magnitude of the particular component
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being redistributed in a certain way driven by algorithm (e.g. the 1st component
of subject 3 in Fig. 2 (a) is recovered to the 1st and 4th components in Fig. 3 (d)
corresponding to that its magnitude is divided into two parts from predefined
1), which makes group analysis more complicated especially when the number
of components increases.

Fig. 3. Illustration of factor matrices of topography for four subjects under four condi-
tions. (a)-(d) show the components learned by GLCPTD-HALS, NTF-HALS, LCPTD-
HALS (R = 3) and LCPTD-HALS (R = 4) algorithms, respectively.

4.2 Image Reconstruction and Denoising

In this part, to examine and demonstrate the performance of the proposed al-
gorithm, we apply the LCPTD and GLCPTD models to image reconstruction
and denoising. There are 165 gray-scale images from 15 individuals in the Yale
face database. Each individual has 11 images of different face expressions (‘cen-
terlight’, ‘glasses’, ‘happy’, ‘leftlight’, ‘noglasses’, ‘normal’, ‘rightlight’, ‘sad’,
‘sleepy’, ‘surprised’, ‘wink’) , and the size of each image is 215× 171 pixels. We
construct the multi-block tensors by stacking corresponding face images under
two conditions: (1) Face images from the same subject with different expressions,
I1 = 215, I2 = 171, I3 = 11, S = 15; (2) Face images from different subjects with
the same expression, I1 = 215, I2 = 171, I3 = 15, S = 11. Furthermore, 5% salt-
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and-pepper noises are added to all face images. We use the peak-signal-to-noise
ratio (PSNR) to measure the quality of reconstructed images.

In terms of the number of components in each tensor, we set R to 40 in
the LCPTD model, which is consistent with the original parameter in [14]. Dif-
ferently, in the GLCPTD model, we use the following method to calculate it:
we concatenate each tensor along the first mode to generate a matrix, and per-
form principle component analysis (PCA) on the matrices successively; when
the percentage of the total variance explained by each principle component is
greater than 99.6%, the number of corresponding principle components is chosen
as the number of components. In this experiment, we assume that the coupling
information exists in two modes of images so that we set the number of coupled
components to L1 = L2, L3 = 0, and the values of L1,2 are changed in {10, 20,
30}.

17.5099 22.9862 21.9793 20.0933 19.3200

16.9517 21.9548 21.4064 20.6532 20.1881

17.1596 20.6686 20.5557 20.1793 18.5204

16.9923 22.5435 21.3091 19.7628 18.7277

Fig. 4. Original, noisy and reconstructed face images of ‘centerlight’ from four subjects
with PSNRs (dB). 1st column: original images, 2nd column: noisy images, 3rd column:
GLCPTD model of condition I, 4th column: LCPTD model of condition I, 5th column:
GLCPTD model of condition II, 6th column: LCPTD model of condition II.

By performing the LCPTD-HALS [14] and GLCPTD-HALS algorithms with
nonnegative constraint on the above two models, we can compute the PSNRs
of reconstructed images. Fig. 4 depict the original, noisy and reconstructed face
images from subject 1-4 with the same expression of ‘centerlight’ (I1,2 = 10).
We can see that the images reconstructed by LPCTD model/condition II are
more fuzzier or distorted than those from GLCPTD model/condition I. Table 1
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shows the averaged PSNRs of the reconstructed images under the two conditions.
The PSNRs obtained by GLCPTD model are higher than those obtained by
the LCPTD model in both conditions. It can be considered that the proposed
GLCPTD model matches the real-world data more closely, which may make it
more practical in real-world data analysis. The PSNRs obtained under condition
I are higher than those under condition II, which means that it is more reliable
to stack face images from the same subject with different expressions together.
It seems that if the number of common components becomes larger, the PSNRs
become smaller. The excessive number of common components may affect the
fitness of the estimated tensors. However, the selection of parameter Ln is still
an open issue in the current study, which will be one of our future works.

Table 1. Averaged PSNRs (dB) of reconstructed images

Condition I Condition II

L1, L2 = 10 20 30 L1, L2 = 10 20 30

LCPTD 21.3651 20.7517 19.9021 19.0809 18.8694 18.5321

GLPCTD 22.0421 21.5476 20.8134 19.9649 19.6537 19.4444

5 Conclusion

The main objective of this paper is to develop a generalized and flexible model
of linked tensor decomposition which is more suitable for group analysis. We
proposed the generalized LCPTD model as well as its realization, in which the
common components, individual components and core tensors can be extracted
simultaneously. Experiments of synthetic EEG data analysis and image recon-
struction and denoising were conducted to compare the performance of pro-
posed algorithm with LCPTD-HALS and NTF-HALS algorithms. The results
illustrated the superior performance of the newly generalized model and its re-
alization.
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